| //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Take a scop created by ScopInfo and map it to GPU code using the ppcg |
| // GPU mapping strategy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "polly/CodeGen/PPCGCodeGeneration.h" |
| #include "polly/CodeGen/CodeGeneration.h" |
| #include "polly/CodeGen/IslAst.h" |
| #include "polly/CodeGen/IslNodeBuilder.h" |
| #include "polly/CodeGen/PerfMonitor.h" |
| #include "polly/CodeGen/Utils.h" |
| #include "polly/DependenceInfo.h" |
| #include "polly/LinkAllPasses.h" |
| #include "polly/Options.h" |
| #include "polly/ScopDetection.h" |
| #include "polly/ScopInfo.h" |
| #include "polly/Support/SCEVValidator.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/IRReader/IRReader.h" |
| #include "llvm/Linker/Linker.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/IPO/PassManagerBuilder.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| |
| #include "isl/union_map.h" |
| |
| extern "C" { |
| #include "ppcg/cuda.h" |
| #include "ppcg/gpu.h" |
| #include "ppcg/gpu_print.h" |
| #include "ppcg/ppcg.h" |
| #include "ppcg/schedule.h" |
| } |
| |
| #include "llvm/Support/Debug.h" |
| |
| using namespace polly; |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "polly-codegen-ppcg" |
| |
| static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule", |
| cl::desc("Dump the computed GPU Schedule"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| DumpCode("polly-acc-dump-code", |
| cl::desc("Dump C code describing the GPU mapping"), cl::Hidden, |
| cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir", |
| cl::desc("Dump the kernel LLVM-IR"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm", |
| cl::desc("Dump the kernel assembly code"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> FastMath("polly-acc-fastmath", |
| cl::desc("Allow unsafe math optimizations"), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| static cl::opt<bool> SharedMemory("polly-acc-use-shared", |
| cl::desc("Use shared memory"), cl::Hidden, |
| cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| static cl::opt<bool> PrivateMemory("polly-acc-use-private", |
| cl::desc("Use private memory"), cl::Hidden, |
| cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| bool polly::PollyManagedMemory; |
| static cl::opt<bool, true> |
| XManagedMemory("polly-acc-codegen-managed-memory", |
| cl::desc("Generate Host kernel code assuming" |
| " that all memory has been" |
| " declared as managed memory"), |
| cl::location(PollyManagedMemory), cl::Hidden, |
| cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure", |
| cl::desc("Fail and generate a backtrace if" |
| " verifyModule fails on the GPU " |
| " kernel module."), |
| cl::Hidden, cl::init(false), cl::ZeroOrMore, |
| cl::cat(PollyCategory)); |
| |
| static cl::opt<std::string> CUDALibDevice( |
| "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden, |
| cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"), |
| cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<std::string> |
| CudaVersion("polly-acc-cuda-version", |
| cl::desc("The CUDA version to compile for"), cl::Hidden, |
| cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory)); |
| |
| static cl::opt<int> |
| MinCompute("polly-acc-mincompute", |
| cl::desc("Minimal number of compute statements to run on GPU."), |
| cl::Hidden, cl::init(10 * 512 * 512)); |
| |
| extern bool polly::PerfMonitoring; |
| |
| /// Return a unique name for a Scop, which is the scop region with the |
| /// function name. |
| std::string getUniqueScopName(const Scop *S) { |
| return "Scop Region: " + S->getNameStr() + |
| " | Function: " + std::string(S->getFunction().getName()); |
| } |
| |
| /// Used to store information PPCG wants for kills. This information is |
| /// used by live range reordering. |
| /// |
| /// @see computeLiveRangeReordering |
| /// @see GPUNodeBuilder::createPPCGScop |
| /// @see GPUNodeBuilder::createPPCGProg |
| struct MustKillsInfo { |
| /// Collection of all kill statements that will be sequenced at the end of |
| /// PPCGScop->schedule. |
| /// |
| /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set` |
| /// which merges schedules in *arbitrary* order. |
| /// (we don't care about the order of the kills anyway). |
| isl::schedule KillsSchedule; |
| /// Map from kill statement instances to scalars that need to be |
| /// killed. |
| /// |
| /// We currently derive kill information for: |
| /// 1. phi nodes. PHI nodes are not alive outside the scop and can |
| /// consequently all be killed. |
| /// 2. Scalar arrays that are not used outside the Scop. This is |
| /// checked by `isScalarUsesContainedInScop`. |
| /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } |
| isl::union_map TaggedMustKills; |
| |
| /// Tagged must kills stripped of the tags. |
| /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] } |
| isl::union_map MustKills; |
| |
| MustKillsInfo() : KillsSchedule(nullptr) {} |
| }; |
| |
| /// Check if SAI's uses are entirely contained within Scop S. |
| /// If a scalar is used only with a Scop, we are free to kill it, as no data |
| /// can flow in/out of the value any more. |
| /// @see computeMustKillsInfo |
| static bool isScalarUsesContainedInScop(const Scop &S, |
| const ScopArrayInfo *SAI) { |
| assert(SAI->isValueKind() && "this function only deals with scalars." |
| " Dealing with arrays required alias analysis"); |
| |
| const Region &R = S.getRegion(); |
| for (User *U : SAI->getBasePtr()->users()) { |
| Instruction *I = dyn_cast<Instruction>(U); |
| assert(I && "invalid user of scop array info"); |
| if (!R.contains(I)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Compute must-kills needed to enable live range reordering with PPCG. |
| /// |
| /// @params S The Scop to compute live range reordering information |
| /// @returns live range reordering information that can be used to setup |
| /// PPCG. |
| static MustKillsInfo computeMustKillsInfo(const Scop &S) { |
| const isl::space ParamSpace = S.getParamSpace(); |
| MustKillsInfo Info; |
| |
| // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria: |
| // 1.1 phi nodes in scop. |
| // 1.2 scalars that are only used within the scop |
| SmallVector<isl::id, 4> KillMemIds; |
| for (ScopArrayInfo *SAI : S.arrays()) { |
| if (SAI->isPHIKind() || |
| (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI))) |
| KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release())); |
| } |
| |
| Info.TaggedMustKills = isl::union_map::empty(ParamSpace); |
| Info.MustKills = isl::union_map::empty(ParamSpace); |
| |
| // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the |
| // schedule: |
| // - filter: "[control] -> { }" |
| // So, we choose to not create this to keep the output a little nicer, |
| // at the cost of some code complexity. |
| Info.KillsSchedule = nullptr; |
| |
| for (isl::id &ToKillId : KillMemIds) { |
| isl::id KillStmtId = isl::id::alloc( |
| S.getIslCtx(), |
| std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr); |
| |
| // NOTE: construction of tagged_must_kill: |
| // 2. We need to construct a map: |
| // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] } |
| // To construct this, we use `isl_map_domain_product` on 2 maps`: |
| // 2a. StmtToScalar: |
| // [param] -> { Stmt_phantom[] -> scalar_to_kill[] } |
| // 2b. PhantomRefToScalar: |
| // [param] -> { ref_phantom[] -> scalar_to_kill[] } |
| // |
| // Combining these with `isl_map_domain_product` gives us |
| // TaggedMustKill: |
| // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } |
| |
| // 2a. [param] -> { Stmt[] -> scalar_to_kill[] } |
| isl::map StmtToScalar = isl::map::universe(ParamSpace); |
| StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId)); |
| StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId)); |
| |
| isl::id PhantomRefId = isl::id::alloc( |
| S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(), |
| nullptr); |
| |
| // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] } |
| isl::map PhantomRefToScalar = isl::map::universe(ParamSpace); |
| PhantomRefToScalar = |
| PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId); |
| PhantomRefToScalar = |
| PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId); |
| |
| // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] } |
| isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar); |
| Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill); |
| |
| // 2. [param] -> { Stmt[] -> scalar_to_kill[] } |
| Info.MustKills = Info.TaggedMustKills.domain_factor_domain(); |
| |
| // 3. Create the kill schedule of the form: |
| // "[param] -> { Stmt_phantom[] }" |
| // Then add this to Info.KillsSchedule. |
| isl::space KillStmtSpace = ParamSpace; |
| KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId); |
| isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace); |
| |
| isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain); |
| if (Info.KillsSchedule) |
| Info.KillsSchedule = isl::manage( |
| isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy())); |
| else |
| Info.KillsSchedule = KillSchedule; |
| } |
| |
| return Info; |
| } |
| |
| /// Create the ast expressions for a ScopStmt. |
| /// |
| /// This function is a callback for to generate the ast expressions for each |
| /// of the scheduled ScopStmts. |
| static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt( |
| void *StmtT, __isl_take isl_ast_build *Build_C, |
| isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA, |
| isl_id *Id, void *User), |
| void *UserIndex, |
| isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User), |
| void *UserExpr) { |
| |
| ScopStmt *Stmt = (ScopStmt *)StmtT; |
| |
| if (!Stmt || !Build_C) |
| return NULL; |
| |
| isl::ast_build Build = isl::manage_copy(Build_C); |
| isl::ctx Ctx = Build.get_ctx(); |
| isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0); |
| |
| Stmt->setAstBuild(Build); |
| |
| for (MemoryAccess *Acc : *Stmt) { |
| isl::map AddrFunc = Acc->getAddressFunction(); |
| AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain()); |
| |
| isl::id RefId = Acc->getId(); |
| isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc); |
| |
| isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA); |
| MPA = MPA.coalesce(); |
| MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex)); |
| |
| isl::ast_expr Access = Build.access_from(MPA); |
| Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr)); |
| RefToExpr = RefToExpr.set(RefId, Access); |
| } |
| |
| return RefToExpr.release(); |
| } |
| |
| /// Given a LLVM Type, compute its size in bytes, |
| static int computeSizeInBytes(const Type *T) { |
| int bytes = T->getPrimitiveSizeInBits() / 8; |
| if (bytes == 0) |
| bytes = T->getScalarSizeInBits() / 8; |
| return bytes; |
| } |
| |
| /// Generate code for a GPU specific isl AST. |
| /// |
| /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which |
| /// generates code for general-purpose AST nodes, with special functionality |
| /// for generating GPU specific user nodes. |
| /// |
| /// @see GPUNodeBuilder::createUser |
| class GPUNodeBuilder : public IslNodeBuilder { |
| public: |
| GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, |
| const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE, |
| DominatorTree &DT, Scop &S, BasicBlock *StartBlock, |
| gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch) |
| : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock), |
| Prog(Prog), Runtime(Runtime), Arch(Arch) { |
| getExprBuilder().setIDToSAI(&IDToSAI); |
| } |
| |
| /// Create after-run-time-check initialization code. |
| void initializeAfterRTH(); |
| |
| /// Finalize the generated scop. |
| virtual void finalize(); |
| |
| /// Track if the full build process was successful. |
| /// |
| /// This value is set to false, if throughout the build process an error |
| /// occurred which prevents us from generating valid GPU code. |
| bool BuildSuccessful = true; |
| |
| /// The maximal number of loops surrounding a sequential kernel. |
| unsigned DeepestSequential = 0; |
| |
| /// The maximal number of loops surrounding a parallel kernel. |
| unsigned DeepestParallel = 0; |
| |
| /// Return the name to set for the ptx_kernel. |
| std::string getKernelFuncName(int Kernel_id); |
| |
| private: |
| /// A vector of array base pointers for which a new ScopArrayInfo was created. |
| /// |
| /// This vector is used to delete the ScopArrayInfo when it is not needed any |
| /// more. |
| std::vector<Value *> LocalArrays; |
| |
| /// A map from ScopArrays to their corresponding device allocations. |
| std::map<ScopArrayInfo *, Value *> DeviceAllocations; |
| |
| /// The current GPU context. |
| Value *GPUContext; |
| |
| /// The set of isl_ids allocated in the kernel |
| std::vector<isl_id *> KernelIds; |
| |
| /// A module containing GPU code. |
| /// |
| /// This pointer is only set in case we are currently generating GPU code. |
| std::unique_ptr<Module> GPUModule; |
| |
| /// The GPU program we generate code for. |
| gpu_prog *Prog; |
| |
| /// The GPU Runtime implementation to use (OpenCL or CUDA). |
| GPURuntime Runtime; |
| |
| /// The GPU Architecture to target. |
| GPUArch Arch; |
| |
| /// Class to free isl_ids. |
| class IslIdDeleter { |
| public: |
| void operator()(__isl_take isl_id *Id) { isl_id_free(Id); }; |
| }; |
| |
| /// A set containing all isl_ids allocated in a GPU kernel. |
| /// |
| /// By releasing this set all isl_ids will be freed. |
| std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs; |
| |
| IslExprBuilder::IDToScopArrayInfoTy IDToSAI; |
| |
| /// Create code for user-defined AST nodes. |
| /// |
| /// These AST nodes can be of type: |
| /// |
| /// - ScopStmt: A computational statement (TODO) |
| /// - Kernel: A GPU kernel call (TODO) |
| /// - Data-Transfer: A GPU <-> CPU data-transfer |
| /// - In-kernel synchronization |
| /// - In-kernel memory copy statement |
| /// |
| /// @param UserStmt The ast node to generate code for. |
| virtual void createUser(__isl_take isl_ast_node *UserStmt); |
| |
| virtual void createFor(__isl_take isl_ast_node *Node); |
| |
| enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST }; |
| |
| /// Create code for a data transfer statement |
| /// |
| /// @param TransferStmt The data transfer statement. |
| /// @param Direction The direction in which to transfer data. |
| void createDataTransfer(__isl_take isl_ast_node *TransferStmt, |
| enum DataDirection Direction); |
| |
| /// Find llvm::Values referenced in GPU kernel. |
| /// |
| /// @param Kernel The kernel to scan for llvm::Values |
| /// |
| /// @returns A tuple, whose: |
| /// - First element contains the set of values referenced by the |
| /// kernel |
| /// - Second element contains the set of functions referenced by the |
| /// kernel. All functions in the set satisfy |
| /// `isValidFunctionInKernel`. |
| /// - Third element contains loops that have induction variables |
| /// which are used in the kernel, *and* these loops are *neither* |
| /// in the scop, nor do they immediately surroung the Scop. |
| /// See [Code generation of induction variables of loops outside |
| /// Scops] |
| std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, |
| isl::space> |
| getReferencesInKernel(ppcg_kernel *Kernel); |
| |
| /// Compute the sizes of the execution grid for a given kernel. |
| /// |
| /// @param Kernel The kernel to compute grid sizes for. |
| /// |
| /// @returns A tuple with grid sizes for X and Y dimension |
| std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel); |
| |
| /// Get the managed array pointer for sending host pointers to the device. |
| /// \note |
| /// This is to be used only with managed memory |
| Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo); |
| |
| /// Compute the sizes of the thread blocks for a given kernel. |
| /// |
| /// @param Kernel The kernel to compute thread block sizes for. |
| /// |
| /// @returns A tuple with thread block sizes for X, Y, and Z dimensions. |
| std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel); |
| |
| /// Store a specific kernel launch parameter in the array of kernel launch |
| /// parameters. |
| /// |
| /// @param Parameters The list of parameters in which to store. |
| /// @param Param The kernel launch parameter to store. |
| /// @param Index The index in the parameter list, at which to store the |
| /// parameter. |
| void insertStoreParameter(Instruction *Parameters, Instruction *Param, |
| int Index); |
| |
| /// Create kernel launch parameters. |
| /// |
| /// @param Kernel The kernel to create parameters for. |
| /// @param F The kernel function that has been created. |
| /// @param SubtreeValues The set of llvm::Values referenced by this kernel. |
| /// |
| /// @returns A stack allocated array with pointers to the parameter |
| /// values that are passed to the kernel. |
| Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F, |
| SetVector<Value *> SubtreeValues); |
| |
| /// Create declarations for kernel variable. |
| /// |
| /// This includes shared memory declarations. |
| /// |
| /// @param Kernel The kernel definition to create variables for. |
| /// @param FN The function into which to generate the variables. |
| void createKernelVariables(ppcg_kernel *Kernel, Function *FN); |
| |
| /// Add CUDA annotations to module. |
| /// |
| /// Add a set of CUDA annotations that declares the maximal block dimensions |
| /// that will be used to execute the CUDA kernel. This allows the NVIDIA |
| /// PTX compiler to bound the number of allocated registers to ensure the |
| /// resulting kernel is known to run with up to as many block dimensions |
| /// as specified here. |
| /// |
| /// @param M The module to add the annotations to. |
| /// @param BlockDimX The size of block dimension X. |
| /// @param BlockDimY The size of block dimension Y. |
| /// @param BlockDimZ The size of block dimension Z. |
| void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY, |
| Value *BlockDimZ); |
| |
| /// Create GPU kernel. |
| /// |
| /// Code generate the kernel described by @p KernelStmt. |
| /// |
| /// @param KernelStmt The ast node to generate kernel code for. |
| void createKernel(__isl_take isl_ast_node *KernelStmt); |
| |
| /// Generate code that computes the size of an array. |
| /// |
| /// @param Array The array for which to compute a size. |
| Value *getArraySize(gpu_array_info *Array); |
| |
| /// Generate code to compute the minimal offset at which an array is accessed. |
| /// |
| /// The offset of an array is the minimal array location accessed in a scop. |
| /// |
| /// Example: |
| /// |
| /// for (long i = 0; i < 100; i++) |
| /// A[i + 42] += ... |
| /// |
| /// getArrayOffset(A) results in 42. |
| /// |
| /// @param Array The array for which to compute the offset. |
| /// @returns An llvm::Value that contains the offset of the array. |
| Value *getArrayOffset(gpu_array_info *Array); |
| |
| /// Prepare the kernel arguments for kernel code generation |
| /// |
| /// @param Kernel The kernel to generate code for. |
| /// @param FN The function created for the kernel. |
| void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN); |
| |
| /// Create kernel function. |
| /// |
| /// Create a kernel function located in a newly created module that can serve |
| /// as target for device code generation. Set the Builder to point to the |
| /// start block of this newly created function. |
| /// |
| /// @param Kernel The kernel to generate code for. |
| /// @param SubtreeValues The set of llvm::Values referenced by this kernel. |
| /// @param SubtreeFunctions The set of llvm::Functions referenced by this |
| /// kernel. |
| void createKernelFunction(ppcg_kernel *Kernel, |
| SetVector<Value *> &SubtreeValues, |
| SetVector<Function *> &SubtreeFunctions); |
| |
| /// Create the declaration of a kernel function. |
| /// |
| /// The kernel function takes as arguments: |
| /// |
| /// - One i8 pointer for each external array reference used in the kernel. |
| /// - Host iterators |
| /// - Parameters |
| /// - Other LLVM Value references (TODO) |
| /// |
| /// @param Kernel The kernel to generate the function declaration for. |
| /// @param SubtreeValues The set of llvm::Values referenced by this kernel. |
| /// |
| /// @returns The newly declared function. |
| Function *createKernelFunctionDecl(ppcg_kernel *Kernel, |
| SetVector<Value *> &SubtreeValues); |
| |
| /// Insert intrinsic functions to obtain thread and block ids. |
| /// |
| /// @param The kernel to generate the intrinsic functions for. |
| void insertKernelIntrinsics(ppcg_kernel *Kernel); |
| |
| /// Insert function calls to retrieve the SPIR group/local ids. |
| /// |
| /// @param Kernel The kernel to generate the function calls for. |
| /// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit. |
| void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit); |
| |
| /// Setup the creation of functions referenced by the GPU kernel. |
| /// |
| /// 1. Create new function declarations in GPUModule which are the same as |
| /// SubtreeFunctions. |
| /// |
| /// 2. Populate IslNodeBuilder::ValueMap with mappings from |
| /// old functions (that come from the original module) to new functions |
| /// (that are created within GPUModule). That way, we generate references |
| /// to the correct function (in GPUModule) in BlockGenerator. |
| /// |
| /// @see IslNodeBuilder::ValueMap |
| /// @see BlockGenerator::GlobalMap |
| /// @see BlockGenerator::getNewValue |
| /// @see GPUNodeBuilder::getReferencesInKernel. |
| /// |
| /// @param SubtreeFunctions The set of llvm::Functions referenced by |
| /// this kernel. |
| void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions); |
| |
| /// Create a global-to-shared or shared-to-global copy statement. |
| /// |
| /// @param CopyStmt The copy statement to generate code for |
| void createKernelCopy(ppcg_kernel_stmt *CopyStmt); |
| |
| /// Create code for a ScopStmt called in @p Expr. |
| /// |
| /// @param Expr The expression containing the call. |
| /// @param KernelStmt The kernel statement referenced in the call. |
| void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt); |
| |
| /// Create an in-kernel synchronization call. |
| void createKernelSync(); |
| |
| /// Create a PTX assembly string for the current GPU kernel. |
| /// |
| /// @returns A string containing the corresponding PTX assembly code. |
| std::string createKernelASM(); |
| |
| /// Remove references from the dominator tree to the kernel function @p F. |
| /// |
| /// @param F The function to remove references to. |
| void clearDominators(Function *F); |
| |
| /// Remove references from scalar evolution to the kernel function @p F. |
| /// |
| /// @param F The function to remove references to. |
| void clearScalarEvolution(Function *F); |
| |
| /// Remove references from loop info to the kernel function @p F. |
| /// |
| /// @param F The function to remove references to. |
| void clearLoops(Function *F); |
| |
| /// Check if the scop requires to be linked with CUDA's libdevice. |
| bool requiresCUDALibDevice(); |
| |
| /// Link with the NVIDIA libdevice library (if needed and available). |
| void addCUDALibDevice(); |
| |
| /// Finalize the generation of the kernel function. |
| /// |
| /// Free the LLVM-IR module corresponding to the kernel and -- if requested -- |
| /// dump its IR to stderr. |
| /// |
| /// @returns The Assembly string of the kernel. |
| std::string finalizeKernelFunction(); |
| |
| /// Finalize the generation of the kernel arguments. |
| /// |
| /// This function ensures that not-read-only scalars used in a kernel are |
| /// stored back to the global memory location they are backed with before |
| /// the kernel terminates. |
| /// |
| /// @params Kernel The kernel to finalize kernel arguments for. |
| void finalizeKernelArguments(ppcg_kernel *Kernel); |
| |
| /// Create code that allocates memory to store arrays on device. |
| void allocateDeviceArrays(); |
| |
| /// Create code to prepare the managed device pointers. |
| void prepareManagedDeviceArrays(); |
| |
| /// Free all allocated device arrays. |
| void freeDeviceArrays(); |
| |
| /// Create a call to initialize the GPU context. |
| /// |
| /// @returns A pointer to the newly initialized context. |
| Value *createCallInitContext(); |
| |
| /// Create a call to get the device pointer for a kernel allocation. |
| /// |
| /// @param Allocation The Polly GPU allocation |
| /// |
| /// @returns The device parameter corresponding to this allocation. |
| Value *createCallGetDevicePtr(Value *Allocation); |
| |
| /// Create a call to free the GPU context. |
| /// |
| /// @param Context A pointer to an initialized GPU context. |
| void createCallFreeContext(Value *Context); |
| |
| /// Create a call to allocate memory on the device. |
| /// |
| /// @param Size The size of memory to allocate |
| /// |
| /// @returns A pointer that identifies this allocation. |
| Value *createCallAllocateMemoryForDevice(Value *Size); |
| |
| /// Create a call to free a device array. |
| /// |
| /// @param Array The device array to free. |
| void createCallFreeDeviceMemory(Value *Array); |
| |
| /// Create a call to copy data from host to device. |
| /// |
| /// @param HostPtr A pointer to the host data that should be copied. |
| /// @param DevicePtr A device pointer specifying the location to copy to. |
| void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr, |
| Value *Size); |
| |
| /// Create a call to copy data from device to host. |
| /// |
| /// @param DevicePtr A pointer to the device data that should be copied. |
| /// @param HostPtr A host pointer specifying the location to copy to. |
| void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr, |
| Value *Size); |
| |
| /// Create a call to synchronize Host & Device. |
| /// \note |
| /// This is to be used only with managed memory. |
| void createCallSynchronizeDevice(); |
| |
| /// Create a call to get a kernel from an assembly string. |
| /// |
| /// @param Buffer The string describing the kernel. |
| /// @param Entry The name of the kernel function to call. |
| /// |
| /// @returns A pointer to a kernel object |
| Value *createCallGetKernel(Value *Buffer, Value *Entry); |
| |
| /// Create a call to free a GPU kernel. |
| /// |
| /// @param GPUKernel THe kernel to free. |
| void createCallFreeKernel(Value *GPUKernel); |
| |
| /// Create a call to launch a GPU kernel. |
| /// |
| /// @param GPUKernel The kernel to launch. |
| /// @param GridDimX The size of the first grid dimension. |
| /// @param GridDimY The size of the second grid dimension. |
| /// @param GridBlockX The size of the first block dimension. |
| /// @param GridBlockY The size of the second block dimension. |
| /// @param GridBlockZ The size of the third block dimension. |
| /// @param Parameters A pointer to an array that contains itself pointers to |
| /// the parameter values passed for each kernel argument. |
| void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, |
| Value *GridDimY, Value *BlockDimX, |
| Value *BlockDimY, Value *BlockDimZ, |
| Value *Parameters); |
| }; |
| |
| std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) { |
| return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" + |
| std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id); |
| } |
| |
| void GPUNodeBuilder::initializeAfterRTH() { |
| BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(), |
| &*Builder.GetInsertPoint(), &DT, &LI); |
| NewBB->setName("polly.acc.initialize"); |
| Builder.SetInsertPoint(&NewBB->front()); |
| |
| GPUContext = createCallInitContext(); |
| |
| if (!PollyManagedMemory) |
| allocateDeviceArrays(); |
| else |
| prepareManagedDeviceArrays(); |
| } |
| |
| void GPUNodeBuilder::finalize() { |
| if (!PollyManagedMemory) |
| freeDeviceArrays(); |
| |
| createCallFreeContext(GPUContext); |
| IslNodeBuilder::finalize(); |
| } |
| |
| void GPUNodeBuilder::allocateDeviceArrays() { |
| assert(!PollyManagedMemory && |
| "Managed memory will directly send host pointers " |
| "to the kernel. There is no need for device arrays"); |
| isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release()); |
| |
| for (int i = 0; i < Prog->n_array; ++i) { |
| gpu_array_info *Array = &Prog->array[i]; |
| auto *ScopArray = (ScopArrayInfo *)Array->user; |
| std::string DevArrayName("p_dev_array_"); |
| DevArrayName.append(Array->name); |
| |
| Value *ArraySize = getArraySize(Array); |
| Value *Offset = getArrayOffset(Array); |
| if (Offset) |
| ArraySize = Builder.CreateSub( |
| ArraySize, |
| Builder.CreateMul(Offset, |
| Builder.getInt64(ScopArray->getElemSizeInBytes()))); |
| const SCEV *SizeSCEV = SE.getSCEV(ArraySize); |
| // It makes no sense to have an array of size 0. The CUDA API will |
| // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We |
| // choose to be defensive and catch this at the compile phase. It is |
| // most likely that we are doing something wrong with size computation. |
| if (SizeSCEV->isZero()) { |
| errs() << getUniqueScopName(&S) |
| << " has computed array size 0: " << *ArraySize |
| << " | for array: " << *(ScopArray->getBasePtr()) |
| << ". This is illegal, exiting.\n"; |
| report_fatal_error("array size was computed to be 0"); |
| } |
| |
| Value *DevArray = createCallAllocateMemoryForDevice(ArraySize); |
| DevArray->setName(DevArrayName); |
| DeviceAllocations[ScopArray] = DevArray; |
| } |
| |
| isl_ast_build_free(Build); |
| } |
| |
| void GPUNodeBuilder::prepareManagedDeviceArrays() { |
| assert(PollyManagedMemory && |
| "Device array most only be prepared in managed-memory mode"); |
| for (int i = 0; i < Prog->n_array; ++i) { |
| gpu_array_info *Array = &Prog->array[i]; |
| ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user; |
| Value *HostPtr; |
| |
| if (gpu_array_is_scalar(Array)) |
| HostPtr = BlockGen.getOrCreateAlloca(ScopArray); |
| else |
| HostPtr = ScopArray->getBasePtr(); |
| HostPtr = getLatestValue(HostPtr); |
| |
| Value *Offset = getArrayOffset(Array); |
| if (Offset) { |
| HostPtr = Builder.CreatePointerCast( |
| HostPtr, ScopArray->getElementType()->getPointerTo()); |
| HostPtr = Builder.CreateGEP(HostPtr, Offset); |
| } |
| |
| HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); |
| DeviceAllocations[ScopArray] = HostPtr; |
| } |
| } |
| |
| void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX, |
| Value *BlockDimY, Value *BlockDimZ) { |
| auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations"); |
| |
| for (auto &F : *M) { |
| if (F.getCallingConv() != CallingConv::PTX_Kernel) |
| continue; |
| |
| Value *V[] = {BlockDimX, BlockDimY, BlockDimZ}; |
| |
| Metadata *Elements[] = { |
| ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"), |
| ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"), |
| ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"), |
| ValueAsMetadata::get(V[2]), |
| }; |
| MDNode *Node = MDNode::get(M->getContext(), Elements); |
| AnnotationNode->addOperand(Node); |
| } |
| } |
| |
| void GPUNodeBuilder::freeDeviceArrays() { |
| assert(!PollyManagedMemory && "Managed memory does not use device arrays"); |
| for (auto &Array : DeviceAllocations) |
| createCallFreeDeviceMemory(Array.second); |
| } |
| |
| Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) { |
| const char *Name = "polly_getKernel"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| Args.push_back(Builder.getInt8PtrTy()); |
| FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| return Builder.CreateCall(F, {Buffer, Entry}); |
| } |
| |
| Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) { |
| const char *Name = "polly_getDevicePtr"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| return Builder.CreateCall(F, {Allocation}); |
| } |
| |
| void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX, |
| Value *GridDimY, Value *BlockDimX, |
| Value *BlockDimY, Value *BlockDimZ, |
| Value *Parameters) { |
| const char *Name = "polly_launchKernel"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| Args.push_back(Builder.getInt32Ty()); |
| Args.push_back(Builder.getInt32Ty()); |
| Args.push_back(Builder.getInt32Ty()); |
| Args.push_back(Builder.getInt32Ty()); |
| Args.push_back(Builder.getInt32Ty()); |
| Args.push_back(Builder.getInt8PtrTy()); |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, |
| BlockDimZ, Parameters}); |
| } |
| |
| void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) { |
| const char *Name = "polly_freeKernel"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| Builder.CreateCall(F, {GPUKernel}); |
| } |
| |
| void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) { |
| assert(!PollyManagedMemory && |
| "Managed memory does not allocate or free memory " |
| "for device"); |
| const char *Name = "polly_freeDeviceMemory"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| Builder.CreateCall(F, {Array}); |
| } |
| |
| Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) { |
| assert(!PollyManagedMemory && |
| "Managed memory does not allocate or free memory " |
| "for device"); |
| const char *Name = "polly_allocateMemoryForDevice"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt64Ty()); |
| FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| return Builder.CreateCall(F, {Size}); |
| } |
| |
| void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData, |
| Value *DeviceData, |
| Value *Size) { |
| assert(!PollyManagedMemory && |
| "Managed memory does not transfer memory between " |
| "device and host"); |
| const char *Name = "polly_copyFromHostToDevice"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| Args.push_back(Builder.getInt8PtrTy()); |
| Args.push_back(Builder.getInt64Ty()); |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| Builder.CreateCall(F, {HostData, DeviceData, Size}); |
| } |
| |
| void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData, |
| Value *HostData, |
| Value *Size) { |
| assert(!PollyManagedMemory && |
| "Managed memory does not transfer memory between " |
| "device and host"); |
| const char *Name = "polly_copyFromDeviceToHost"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| Args.push_back(Builder.getInt8PtrTy()); |
| Args.push_back(Builder.getInt64Ty()); |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| Builder.CreateCall(F, {DeviceData, HostData, Size}); |
| } |
| |
| void GPUNodeBuilder::createCallSynchronizeDevice() { |
| assert(PollyManagedMemory && "explicit synchronization is only necessary for " |
| "managed memory"); |
| const char *Name = "polly_synchronizeDevice"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| Builder.CreateCall(F); |
| } |
| |
| Value *GPUNodeBuilder::createCallInitContext() { |
| const char *Name; |
| |
| switch (Runtime) { |
| case GPURuntime::CUDA: |
| Name = "polly_initContextCUDA"; |
| break; |
| case GPURuntime::OpenCL: |
| Name = "polly_initContextCL"; |
| break; |
| } |
| |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| return Builder.CreateCall(F, {}); |
| } |
| |
| void GPUNodeBuilder::createCallFreeContext(Value *Context) { |
| const char *Name = "polly_freeContext"; |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *F = M->getFunction(Name); |
| |
| // If F is not available, declare it. |
| if (!F) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| Args.push_back(Builder.getInt8PtrTy()); |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); |
| F = Function::Create(Ty, Linkage, Name, M); |
| } |
| |
| Builder.CreateCall(F, {Context}); |
| } |
| |
| /// Check if one string is a prefix of another. |
| /// |
| /// @param String The string in which to look for the prefix. |
| /// @param Prefix The prefix to look for. |
| static bool isPrefix(std::string String, std::string Prefix) { |
| return String.find(Prefix) == 0; |
| } |
| |
| Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) { |
| isl::ast_build Build = isl::ast_build::from_context(S.getContext()); |
| Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size); |
| |
| if (!gpu_array_is_scalar(Array)) { |
| isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound); |
| |
| isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0); |
| isl::ast_expr Res = Build.expr_from(OffsetDimZero); |
| |
| for (unsigned int i = 1; i < Array->n_index; i++) { |
| isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i); |
| isl::ast_expr Expr = Build.expr_from(Bound_I); |
| Res = Res.mul(Expr); |
| } |
| |
| Value *NumElements = ExprBuilder.create(Res.release()); |
| if (NumElements->getType() != ArraySize->getType()) |
| NumElements = Builder.CreateSExt(NumElements, ArraySize->getType()); |
| ArraySize = Builder.CreateMul(ArraySize, NumElements); |
| } |
| return ArraySize; |
| } |
| |
| Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) { |
| if (gpu_array_is_scalar(Array)) |
| return nullptr; |
| |
| isl::ast_build Build = isl::ast_build::from_context(S.getContext()); |
| |
| isl::set Min = isl::manage_copy(Array->extent).lexmin(); |
| |
| isl::set ZeroSet = isl::set::universe(Min.get_space()); |
| |
| for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) |
| ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0); |
| |
| if (Min.is_subset(ZeroSet)) { |
| return nullptr; |
| } |
| |
| isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0)); |
| |
| for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) { |
| if (i > 0) { |
| isl::pw_aff Bound_I = |
| isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1)); |
| isl::ast_expr BExpr = Build.expr_from(Bound_I); |
| Result = Result.mul(BExpr); |
| } |
| isl::pw_aff DimMin = Min.dim_min(i); |
| isl::ast_expr MExpr = Build.expr_from(DimMin); |
| Result = Result.add(MExpr); |
| } |
| |
| return ExprBuilder.create(Result.release()); |
| } |
| |
| Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array, |
| ScopArrayInfo *ArrayInfo) { |
| assert(PollyManagedMemory && "Only used when you wish to get a host " |
| "pointer for sending data to the kernel, " |
| "with managed memory"); |
| std::map<ScopArrayInfo *, Value *>::iterator it; |
| it = DeviceAllocations.find(ArrayInfo); |
| assert(it != DeviceAllocations.end() && |
| "Device array expected to be available"); |
| return it->second; |
| } |
| |
| void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt, |
| enum DataDirection Direction) { |
| assert(!PollyManagedMemory && "Managed memory needs no data transfers"); |
| isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt); |
| isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0); |
| isl_id *Id = isl_ast_expr_get_id(Arg); |
| auto Array = (gpu_array_info *)isl_id_get_user(Id); |
| auto ScopArray = (ScopArrayInfo *)(Array->user); |
| |
| Value *Size = getArraySize(Array); |
| Value *Offset = getArrayOffset(Array); |
| Value *DevPtr = DeviceAllocations[ScopArray]; |
| |
| Value *HostPtr; |
| |
| if (gpu_array_is_scalar(Array)) |
| HostPtr = BlockGen.getOrCreateAlloca(ScopArray); |
| else |
| HostPtr = ScopArray->getBasePtr(); |
| HostPtr = getLatestValue(HostPtr); |
| |
| if (Offset) { |
| HostPtr = Builder.CreatePointerCast( |
| HostPtr, ScopArray->getElementType()->getPointerTo()); |
| HostPtr = Builder.CreateGEP(HostPtr, Offset); |
| } |
| |
| HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy()); |
| |
| if (Offset) { |
| Size = Builder.CreateSub( |
| Size, Builder.CreateMul( |
| Offset, Builder.getInt64(ScopArray->getElemSizeInBytes()))); |
| } |
| |
| if (Direction == HOST_TO_DEVICE) |
| createCallCopyFromHostToDevice(HostPtr, DevPtr, Size); |
| else |
| createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size); |
| |
| isl_id_free(Id); |
| isl_ast_expr_free(Arg); |
| isl_ast_expr_free(Expr); |
| isl_ast_node_free(TransferStmt); |
| } |
| |
| void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) { |
| isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt); |
| isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); |
| isl_id *Id = isl_ast_expr_get_id(StmtExpr); |
| isl_id_free(Id); |
| isl_ast_expr_free(StmtExpr); |
| |
| const char *Str = isl_id_get_name(Id); |
| if (!strcmp(Str, "kernel")) { |
| createKernel(UserStmt); |
| if (PollyManagedMemory) |
| createCallSynchronizeDevice(); |
| isl_ast_expr_free(Expr); |
| return; |
| } |
| if (!strcmp(Str, "init_device")) { |
| initializeAfterRTH(); |
| isl_ast_node_free(UserStmt); |
| isl_ast_expr_free(Expr); |
| return; |
| } |
| if (!strcmp(Str, "clear_device")) { |
| finalize(); |
| isl_ast_node_free(UserStmt); |
| isl_ast_expr_free(Expr); |
| return; |
| } |
| if (isPrefix(Str, "to_device")) { |
| if (!PollyManagedMemory) |
| createDataTransfer(UserStmt, HOST_TO_DEVICE); |
| else |
| isl_ast_node_free(UserStmt); |
| |
| isl_ast_expr_free(Expr); |
| return; |
| } |
| |
| if (isPrefix(Str, "from_device")) { |
| if (!PollyManagedMemory) { |
| createDataTransfer(UserStmt, DEVICE_TO_HOST); |
| } else { |
| isl_ast_node_free(UserStmt); |
| } |
| isl_ast_expr_free(Expr); |
| return; |
| } |
| |
| isl_id *Anno = isl_ast_node_get_annotation(UserStmt); |
| struct ppcg_kernel_stmt *KernelStmt = |
| (struct ppcg_kernel_stmt *)isl_id_get_user(Anno); |
| isl_id_free(Anno); |
| |
| switch (KernelStmt->type) { |
| case ppcg_kernel_domain: |
| createScopStmt(Expr, KernelStmt); |
| isl_ast_node_free(UserStmt); |
| return; |
| case ppcg_kernel_copy: |
| createKernelCopy(KernelStmt); |
| isl_ast_expr_free(Expr); |
| isl_ast_node_free(UserStmt); |
| return; |
| case ppcg_kernel_sync: |
| createKernelSync(); |
| isl_ast_expr_free(Expr); |
| isl_ast_node_free(UserStmt); |
| return; |
| } |
| |
| isl_ast_expr_free(Expr); |
| isl_ast_node_free(UserStmt); |
| } |
| |
| void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) { |
| createForSequential(isl::manage(Node), false); |
| } |
| |
| void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) { |
| isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index); |
| LocalIndex = isl_ast_expr_address_of(LocalIndex); |
| Value *LocalAddr = ExprBuilder.create(LocalIndex); |
| isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index); |
| Index = isl_ast_expr_address_of(Index); |
| Value *GlobalAddr = ExprBuilder.create(Index); |
| |
| if (KernelStmt->u.c.read) { |
| LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read"); |
| Builder.CreateStore(Load, LocalAddr); |
| } else { |
| LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write"); |
| Builder.CreateStore(Load, GlobalAddr); |
| } |
| } |
| |
| void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr, |
| ppcg_kernel_stmt *KernelStmt) { |
| auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; |
| isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr; |
| |
| LoopToScevMapT LTS; |
| LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); |
| |
| createSubstitutions(Expr, Stmt, LTS); |
| |
| if (Stmt->isBlockStmt()) |
| BlockGen.copyStmt(*Stmt, LTS, Indexes); |
| else |
| RegionGen.copyStmt(*Stmt, LTS, Indexes); |
| } |
| |
| void GPUNodeBuilder::createKernelSync() { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| const char *SpirName = "__gen_ocl_barrier_global"; |
| |
| Function *Sync; |
| |
| switch (Arch) { |
| case GPUArch::SPIR64: |
| case GPUArch::SPIR32: |
| Sync = M->getFunction(SpirName); |
| |
| // If Sync is not available, declare it. |
| if (!Sync) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false); |
| Sync = Function::Create(Ty, Linkage, SpirName, M); |
| Sync->setCallingConv(CallingConv::SPIR_FUNC); |
| } |
| break; |
| case GPUArch::NVPTX64: |
| Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0); |
| break; |
| } |
| |
| Builder.CreateCall(Sync, {}); |
| } |
| |
| /// Collect llvm::Values referenced from @p Node |
| /// |
| /// This function only applies to isl_ast_nodes that are user_nodes referring |
| /// to a ScopStmt. All other node types are ignore. |
| /// |
| /// @param Node The node to collect references for. |
| /// @param User A user pointer used as storage for the data that is collected. |
| /// |
| /// @returns isl_bool_true if data could be collected successfully. |
| isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) { |
| if (isl_ast_node_get_type(Node) != isl_ast_node_user) |
| return isl_bool_true; |
| |
| isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node); |
| isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); |
| isl_id *Id = isl_ast_expr_get_id(StmtExpr); |
| const char *Str = isl_id_get_name(Id); |
| isl_id_free(Id); |
| isl_ast_expr_free(StmtExpr); |
| isl_ast_expr_free(Expr); |
| |
| if (!isPrefix(Str, "Stmt")) |
| return isl_bool_true; |
| |
| Id = isl_ast_node_get_annotation(Node); |
| auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id); |
| auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt; |
| isl_id_free(Id); |
| |
| addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */); |
| |
| return isl_bool_true; |
| } |
| |
| /// A list of functions that are available in NVIDIA's libdevice. |
| const std::set<std::string> CUDALibDeviceFunctions = { |
| "exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf", |
| "copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"}; |
| |
| // A map from intrinsics to their corresponding libdevice functions. |
| const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = { |
| {"llvm.exp.f64", "exp"}, |
| {"llvm.exp.f32", "expf"}, |
| {"llvm.powi.f64", "powi"}, |
| {"llvm.powi.f32", "powif"}}; |
| |
| /// Return the corresponding CUDA libdevice function name @p Name. |
| /// Note that this function will try to convert instrinsics in the list |
| /// IntrinsicToLibdeviceFunc into libdevice functions. |
| /// This is because some intrinsics such as `exp` |
| /// are not supported by the NVPTX backend. |
| /// If this restriction of the backend is lifted, we should refactor our code |
| /// so that we use intrinsics whenever possible. |
| /// |
| /// Return "" if we are not compiling for CUDA. |
| std::string getCUDALibDeviceFuntion(StringRef Name) { |
| auto It = IntrinsicToLibdeviceFunc.find(Name); |
| if (It != IntrinsicToLibdeviceFunc.end()) |
| return getCUDALibDeviceFuntion(It->second); |
| |
| if (CUDALibDeviceFunctions.count(Name)) |
| return ("__nv_" + Name).str(); |
| |
| return ""; |
| } |
| |
| /// Check if F is a function that we can code-generate in a GPU kernel. |
| static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) { |
| assert(F && "F is an invalid pointer"); |
| // We string compare against the name of the function to allow |
| // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and |
| // "llvm.copysign". |
| const StringRef Name = F->getName(); |
| |
| if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0) |
| return true; |
| |
| return F->isIntrinsic() && |
| (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") || |
| Name.startswith("llvm.copysign")); |
| } |
| |
| /// Do not take `Function` as a subtree value. |
| /// |
| /// We try to take the reference of all subtree values and pass them along |
| /// to the kernel from the host. Taking an address of any function and |
| /// trying to pass along is nonsensical. Only allow `Value`s that are not |
| /// `Function`s. |
| static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); } |
| |
| /// Return `Function`s from `RawSubtreeValues`. |
| static SetVector<Function *> |
| getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues, |
| bool AllowCUDALibDevice) { |
| SetVector<Function *> SubtreeFunctions; |
| for (Value *It : RawSubtreeValues) { |
| Function *F = dyn_cast<Function>(It); |
| if (F) { |
| assert(isValidFunctionInKernel(F, AllowCUDALibDevice) && |
| "Code should have bailed out by " |
| "this point if an invalid function " |
| "were present in a kernel."); |
| SubtreeFunctions.insert(F); |
| } |
| } |
| return SubtreeFunctions; |
| } |
| |
| std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>, |
| isl::space> |
| GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) { |
| SetVector<Value *> SubtreeValues; |
| SetVector<const SCEV *> SCEVs; |
| SetVector<const Loop *> Loops; |
| isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params(); |
| SubtreeReferences References = { |
| LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(), |
| &ParamSpace}; |
| |
| for (const auto &I : IDToValue) |
| SubtreeValues.insert(I.second); |
| |
| // NOTE: this is populated in IslNodeBuilder::addParameters |
| // See [Code generation of induction variables of loops outside Scops]. |
| for (const auto &I : OutsideLoopIterations) |
| SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue()); |
| |
| isl_ast_node_foreach_descendant_top_down( |
| Kernel->tree, collectReferencesInGPUStmt, &References); |
| |
| for (const SCEV *Expr : SCEVs) { |
| findValues(Expr, SE, SubtreeValues); |
| findLoops(Expr, Loops); |
| } |
| |
| Loops.remove_if([this](const Loop *L) { |
| return S.contains(L) || L->contains(S.getEntry()); |
| }); |
| |
| for (auto &SAI : S.arrays()) |
| SubtreeValues.remove(SAI->getBasePtr()); |
| |
| isl_space *Space = S.getParamSpace().release(); |
| for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) { |
| isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i); |
| assert(IDToValue.count(Id)); |
| Value *Val = IDToValue[Id]; |
| SubtreeValues.remove(Val); |
| isl_id_free(Id); |
| } |
| isl_space_free(Space); |
| |
| for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) { |
| isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); |
| assert(IDToValue.count(Id)); |
| Value *Val = IDToValue[Id]; |
| SubtreeValues.remove(Val); |
| isl_id_free(Id); |
| } |
| |
| // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions |
| // SubtreeValues. This is important, because we should not lose any |
| // SubtreeValues in the process of constructing the |
| // "ValidSubtree{Values, Functions} sets. Nor should the set |
| // ValidSubtree{Values, Functions} have any common element. |
| auto ValidSubtreeValuesIt = |
| make_filter_range(SubtreeValues, isValidSubtreeValue); |
| SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(), |
| ValidSubtreeValuesIt.end()); |
| |
| bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64; |
| |
| SetVector<Function *> ValidSubtreeFunctions( |
| getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice)); |
| |
| // @see IslNodeBuilder::getReferencesInSubtree |
| SetVector<Value *> ReplacedValues; |
| for (Value *V : ValidSubtreeValues) { |
| auto It = ValueMap.find(V); |
| if (It == ValueMap.end()) |
| ReplacedValues.insert(V); |
| else |
| ReplacedValues.insert(It->second); |
| } |
| return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops, |
| ParamSpace); |
| } |
| |
| void GPUNodeBuilder::clearDominators(Function *F) { |
| DomTreeNode *N = DT.getNode(&F->getEntryBlock()); |
| std::vector<BasicBlock *> Nodes; |
| for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I) |
| Nodes.push_back(I->getBlock()); |
| |
| for (BasicBlock *BB : Nodes) |
| DT.eraseNode(BB); |
| } |
| |
| void GPUNodeBuilder::clearScalarEvolution(Function *F) { |
| for (BasicBlock &BB : *F) { |
| Loop *L = LI.getLoopFor(&BB); |
| if (L) |
| SE.forgetLoop(L); |
| } |
| } |
| |
| void GPUNodeBuilder::clearLoops(Function *F) { |
| SmallSet<Loop *, 1> WorkList; |
| for (BasicBlock &BB : *F) { |
| Loop *L = LI.getLoopFor(&BB); |
| if (L) |
| WorkList.insert(L); |
| } |
| for (auto *L : WorkList) |
| LI.erase(L); |
| } |
| |
| std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) { |
| std::vector<Value *> Sizes; |
| isl::ast_build Context = isl::ast_build::from_context(S.getContext()); |
| |
| isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size); |
| for (long i = 0; i < Kernel->n_grid; i++) { |
| isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i); |
| isl::ast_expr GridSize = Context.expr_from(Size); |
| Value *Res = ExprBuilder.create(GridSize.release()); |
| Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); |
| Sizes.push_back(Res); |
| } |
| |
| for (long i = Kernel->n_grid; i < 3; i++) |
| Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); |
| |
| return std::make_tuple(Sizes[0], Sizes[1]); |
| } |
| |
| std::tuple<Value *, Value *, Value *> |
| GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) { |
| std::vector<Value *> Sizes; |
| |
| for (long i = 0; i < Kernel->n_block; i++) { |
| Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]); |
| Sizes.push_back(Res); |
| } |
| |
| for (long i = Kernel->n_block; i < 3; i++) |
| Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1)); |
| |
| return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]); |
| } |
| |
| void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters, |
| Instruction *Param, int Index) { |
| Value *Slot = Builder.CreateGEP( |
| Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); |
| Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); |
| Builder.CreateStore(ParamTyped, Slot); |
| } |
| |
| Value * |
| GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F, |
| SetVector<Value *> SubtreeValues) { |
| const int NumArgs = F->arg_size(); |
| std::vector<int> ArgSizes(NumArgs); |
| |
| // If we are using the OpenCL Runtime, we need to add the kernel argument |
| // sizes to the end of the launch-parameter list, so OpenCL can determine |
| // how big the respective kernel arguments are. |
| // Here we need to reserve adequate space for that. |
| Type *ArrayTy; |
| if (Runtime == GPURuntime::OpenCL) |
| ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs); |
| else |
| ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs); |
| |
| BasicBlock *EntryBlock = |
| &Builder.GetInsertBlock()->getParent()->getEntryBlock(); |
| auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace(); |
| std::string Launch = "polly_launch_" + std::to_string(Kernel->id); |
| Instruction *Parameters = new AllocaInst( |
| ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator()); |
| |
| int Index = 0; |
| for (long i = 0; i < Prog->n_array; i++) { |
| if (!ppcg_kernel_requires_array_argument(Kernel, i)) |
| continue; |
| |
| isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); |
| const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); |
| |
| if (Runtime == GPURuntime::OpenCL) |
| ArgSizes[Index] = SAI->getElemSizeInBytes(); |
| |
| Value *DevArray = nullptr; |
| if (PollyManagedMemory) { |
| DevArray = getManagedDeviceArray(&Prog->array[i], |
| const_cast<ScopArrayInfo *>(SAI)); |
| } else { |
| DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)]; |
| DevArray = createCallGetDevicePtr(DevArray); |
| } |
| assert(DevArray != nullptr && "Array to be offloaded to device not " |
| "initialized"); |
| Value *Offset = getArrayOffset(&Prog->array[i]); |
| |
| if (Offset) { |
| DevArray = Builder.CreatePointerCast( |
| DevArray, SAI->getElementType()->getPointerTo()); |
| DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset)); |
| DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy()); |
| } |
| Value *Slot = Builder.CreateGEP( |
| Parameters, {Builder.getInt64(0), Builder.getInt64(Index)}); |
| |
| if (gpu_array_is_read_only_scalar(&Prog->array[i])) { |
| Value *ValPtr = nullptr; |
| if (PollyManagedMemory) |
| ValPtr = DevArray; |
| else |
| ValPtr = BlockGen.getOrCreateAlloca(SAI); |
| |
| assert(ValPtr != nullptr && "ValPtr that should point to a valid object" |
| " to be stored into Parameters"); |
| Value *ValPtrCast = |
| Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy()); |
| Builder.CreateStore(ValPtrCast, Slot); |
| } else { |
| Instruction *Param = |
| new AllocaInst(Builder.getInt8PtrTy(), AddressSpace, |
| Launch + "_param_" + std::to_string(Index), |
| EntryBlock->getTerminator()); |
| Builder.CreateStore(DevArray, Param); |
| Value *ParamTyped = |
| Builder.CreatePointerCast(Param, Builder.getInt8PtrTy()); |
| Builder.CreateStore(ParamTyped, Slot); |
| } |
| Index++; |
| } |
| |
| int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); |
| |
| for (long i = 0; i < NumHostIters; i++) { |
| isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); |
| Value *Val = IDToValue[Id]; |
| isl_id_free(Id); |
| |
| if (Runtime == GPURuntime::OpenCL) |
| ArgSizes[Index] = computeSizeInBytes(Val->getType()); |
| |
| Instruction *Param = |
| new AllocaInst(Val->getType(), AddressSpace, |
| Launch + "_param_" + std::to_string(Index), |
| EntryBlock->getTerminator()); |
| Builder.CreateStore(Val, Param); |
| insertStoreParameter(Parameters, Param, Index); |
| Index++; |
| } |
| |
| int NumVars = isl_space_dim(Kernel->space, isl_dim_param); |
| |
| for (long i = 0; i < NumVars; i++) { |
| isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); |
| Value *Val = IDToValue[Id]; |
| if (ValueMap.count(Val)) |
| Val = ValueMap[Val]; |
| isl_id_free(Id); |
| |
| if (Runtime == GPURuntime::OpenCL) |
| ArgSizes[Index] = computeSizeInBytes(Val->getType()); |
| |
| Instruction *Param = |
| new AllocaInst(Val->getType(), AddressSpace, |
| Launch + "_param_" + std::to_string(Index), |
| EntryBlock->getTerminator()); |
| Builder.CreateStore(Val, Param); |
| insertStoreParameter(Parameters, Param, Index); |
| Index++; |
| } |
| |
| for (auto Val : SubtreeValues) { |
| if (Runtime == GPURuntime::OpenCL) |
| ArgSizes[Index] = computeSizeInBytes(Val->getType()); |
| |
| Instruction *Param = |
| new AllocaInst(Val->getType(), AddressSpace, |
| Launch + "_param_" + std::to_string(Index), |
| EntryBlock->getTerminator()); |
| Builder.CreateStore(Val, Param); |
| insertStoreParameter(Parameters, Param, Index); |
| Index++; |
| } |
| |
| if (Runtime == GPURuntime::OpenCL) { |
| for (int i = 0; i < NumArgs; i++) { |
| Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]); |
| Instruction *Param = |
| new AllocaInst(Builder.getInt32Ty(), AddressSpace, |
| Launch + "_param_size_" + std::to_string(i), |
| EntryBlock->getTerminator()); |
| Builder.CreateStore(Val, Param); |
| insertStoreParameter(Parameters, Param, Index); |
| Index++; |
| } |
| } |
| |
| auto Location = EntryBlock->getTerminator(); |
| return new BitCastInst(Parameters, Builder.getInt8PtrTy(), |
| Launch + "_params_i8ptr", Location); |
| } |
| |
| void GPUNodeBuilder::setupKernelSubtreeFunctions( |
| SetVector<Function *> SubtreeFunctions) { |
| for (auto Fn : SubtreeFunctions) { |
| const std::string ClonedFnName = Fn->getName(); |
| Function *Clone = GPUModule->getFunction(ClonedFnName); |
| if (!Clone) |
| Clone = |
| Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage, |
| ClonedFnName, GPUModule.get()); |
| assert(Clone && "Expected cloned function to be initialized."); |
| assert(ValueMap.find(Fn) == ValueMap.end() && |
| "Fn already present in ValueMap"); |
| ValueMap[Fn] = Clone; |
| } |
| } |
| void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) { |
| isl_id *Id = isl_ast_node_get_annotation(KernelStmt); |
| ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id); |
| isl_id_free(Id); |
| isl_ast_node_free(KernelStmt); |
| |
| if (Kernel->n_grid > 1) |
| DeepestParallel = |
| std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set)); |
| else |
| DeepestSequential = |
| std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set)); |
| |
| Value *BlockDimX, *BlockDimY, *BlockDimZ; |
| std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel); |
| |
| SetVector<Value *> SubtreeValues; |
| SetVector<Function *> SubtreeFunctions; |
| SetVector<const Loop *> Loops; |
| isl::space ParamSpace; |
| std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) = |
| getReferencesInKernel(Kernel); |
| |
| // Add parameters that appear only in the access function to the kernel |
| // space. This is important to make sure that all isl_ids are passed as |
| // parameters to the kernel, even though we may not have all parameters |
| // in the context to improve compile time. |
| Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release()); |
| |
| assert(Kernel->tree && "Device AST of kernel node is empty"); |
| |
| Instruction &HostInsertPoint = *Builder.GetInsertPoint(); |
| IslExprBuilder::IDToValueTy HostIDs = IDToValue; |
| ValueMapT HostValueMap = ValueMap; |
| BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap; |
| ScalarMap.clear(); |
| BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap; |
| EscapeMap.clear(); |
| |
| // Create for all loops we depend on values that contain the current loop |
| // iteration. These values are necessary to generate code for SCEVs that |
| // depend on such loops. As a result we need to pass them to the subfunction. |
| for (const Loop *L : Loops) { |
| const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), |
| SE.getUnknown(Builder.getInt64(1)), |
| L, SCEV::FlagAnyWrap); |
| Value *V = generateSCEV(OuterLIV); |
| OutsideLoopIterations[L] = SE.getUnknown(V); |
| SubtreeValues.insert(V); |
| } |
| |
| createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions); |
| setupKernelSubtreeFunctions(SubtreeFunctions); |
| |
| create(isl_ast_node_copy(Kernel->tree)); |
| |
| finalizeKernelArguments(Kernel); |
| Function *F = Builder.GetInsertBlock()->getParent(); |
| if (Arch == GPUArch::NVPTX64) |
| addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ); |
| clearDominators(F); |
| clearScalarEvolution(F); |
| clearLoops(F); |
| |
| IDToValue = HostIDs; |
| |
| ValueMap = std::move(HostValueMap); |
| ScalarMap = std::move(HostScalarMap); |
| EscapeMap = std::move(HostEscapeMap); |
| IDToSAI.clear(); |
| Annotator.resetAlternativeAliasBases(); |
| for (auto &BasePtr : LocalArrays) |
| S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array); |
| LocalArrays.clear(); |
| |
| std::string ASMString = finalizeKernelFunction(); |
| Builder.SetInsertPoint(&HostInsertPoint); |
| Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues); |
| |
| std::string Name = getKernelFuncName(Kernel->id); |
| Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name); |
| Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name"); |
| Value *GPUKernel = createCallGetKernel(KernelString, NameString); |
| |
| Value *GridDimX, *GridDimY; |
| std::tie(GridDimX, GridDimY) = getGridSizes(Kernel); |
| |
| createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY, |
| BlockDimZ, Parameters); |
| createCallFreeKernel(GPUKernel); |
| |
| for (auto Id : KernelIds) |
| isl_id_free(Id); |
| |
| KernelIds.clear(); |
| } |
| |
| /// Compute the DataLayout string for the NVPTX backend. |
| /// |
| /// @param is64Bit Are we looking for a 64 bit architecture? |
| static std::string computeNVPTXDataLayout(bool is64Bit) { |
| std::string Ret = ""; |
| |
| if (!is64Bit) { |
| Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" |
| "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" |
| "64-v128:128:128-n16:32:64"; |
| } else { |
| Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" |
| "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:" |
| "64-v128:128:128-n16:32:64"; |
| } |
| |
| return Ret; |
| } |
| |
| /// Compute the DataLayout string for a SPIR kernel. |
| /// |
| /// @param is64Bit Are we looking for a 64 bit architecture? |
| static std::string computeSPIRDataLayout(bool is64Bit) { |
| std::string Ret = ""; |
| |
| if (!is64Bit) { |
| Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" |
| "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" |
| "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" |
| "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; |
| } else { |
| Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:" |
| "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:" |
| "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:" |
| "256:256-v256:256:256-v512:512:512-v1024:1024:1024"; |
| } |
| |
| return Ret; |
| } |
| |
| Function * |
| GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel, |
| SetVector<Value *> &SubtreeValues) { |
| std::vector<Type *> Args; |
| std::string Identifier = getKernelFuncName(Kernel->id); |
| |
| std::vector<Metadata *> MemoryType; |
| |
| for (long i = 0; i < Prog->n_array; i++) { |
| if (!ppcg_kernel_requires_array_argument(Kernel, i)) |
| continue; |
| |
| if (gpu_array_is_read_only_scalar(&Prog->array[i])) { |
| isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); |
| const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id)); |
| Args.push_back(SAI->getElementType()); |
| MemoryType.push_back( |
| ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); |
| } else { |
| static const int UseGlobalMemory = 1; |
| Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory)); |
| MemoryType.push_back( |
| ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1))); |
| } |
| } |
| |
| int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set); |
| |
| for (long i = 0; i < NumHostIters; i++) { |
| Args.push_back(Builder.getInt64Ty()); |
| MemoryType.push_back( |
| ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); |
| } |
| |
| int NumVars = isl_space_dim(Kernel->space, isl_dim_param); |
| |
| for (long i = 0; i < NumVars; i++) { |
| isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); |
| Value *Val = IDToValue[Id]; |
| isl_id_free(Id); |
| Args.push_back(Val->getType()); |
| MemoryType.push_back( |
| ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); |
| } |
| |
| for (auto *V : SubtreeValues) { |
| Args.push_back(V->getType()); |
| MemoryType.push_back( |
| ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0))); |
| } |
| |
| auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false); |
| auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier, |
| GPUModule.get()); |
| |
| std::vector<Metadata *> EmptyStrings; |
| |
| for (unsigned int i = 0; i < MemoryType.size(); i++) { |
| EmptyStrings.push_back(MDString::get(FN->getContext(), "")); |
| } |
| |
| if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) { |
| FN->setMetadata("kernel_arg_addr_space", |
| MDNode::get(FN->getContext(), MemoryType)); |
| FN->setMetadata("kernel_arg_name", |
| MDNode::get(FN->getContext(), EmptyStrings)); |
| FN->setMetadata("kernel_arg_access_qual", |
| MDNode::get(FN->getContext(), EmptyStrings)); |
| FN->setMetadata("kernel_arg_type", |
| MDNode::get(FN->getContext(), EmptyStrings)); |
| FN->setMetadata("kernel_arg_type_qual", |
| MDNode::get(FN->getContext(), EmptyStrings)); |
| FN->setMetadata("kernel_arg_base_type", |
| MDNode::get(FN->getContext(), EmptyStrings)); |
| } |
| |
| switch (Arch) { |
| case GPUArch::NVPTX64: |
| FN->setCallingConv(CallingConv::PTX_Kernel); |
| break; |
| case GPUArch::SPIR32: |
| case GPUArch::SPIR64: |
| FN->setCallingConv(CallingConv::SPIR_KERNEL); |
| break; |
| } |
| |
| auto Arg = FN->arg_begin(); |
| for (long i = 0; i < Kernel->n_array; i++) { |
| if (!ppcg_kernel_requires_array_argument(Kernel, i)) |
| continue; |
| |
| Arg->setName(Kernel->array[i].array->name); |
| |
| isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); |
| const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); |
| Type *EleTy = SAI->getElementType(); |
| Value *Val = &*Arg; |
| SmallVector<const SCEV *, 4> Sizes; |
| isl_ast_build *Build = |
| isl_ast_build_from_context(isl_set_copy(Prog->context)); |
| Sizes.push_back(nullptr); |
| for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) { |
| isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff( |
| Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j)); |
| auto V = ExprBuilder.create(DimSize); |
| Sizes.push_back(SE.getSCEV(V)); |
| } |
| const ScopArrayInfo *SAIRep = |
| S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array); |
| LocalArrays.push_back(Val); |
| |
| isl_ast_build_free(Build); |
| KernelIds.push_back(Id); |
| IDToSAI[Id] = SAIRep; |
| Arg++; |
| } |
| |
| for (long i = 0; i < NumHostIters; i++) { |
| isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i); |
| Arg->setName(isl_id_get_name(Id)); |
| IDToValue[Id] = &*Arg; |
| KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); |
| Arg++; |
| } |
| |
| for (long i = 0; i < NumVars; i++) { |
| isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i); |
| Arg->setName(isl_id_get_name(Id)); |
| Value *Val = IDToValue[Id]; |
| ValueMap[Val] = &*Arg; |
| IDToValue[Id] = &*Arg; |
| KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); |
| Arg++; |
| } |
| |
| for (auto *V : SubtreeValues) { |
| Arg->setName(V->getName()); |
| ValueMap[V] = &*Arg; |
| Arg++; |
| } |
| |
| return FN; |
| } |
| |
| void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) { |
| Intrinsic::ID IntrinsicsBID[2]; |
| Intrinsic::ID IntrinsicsTID[3]; |
| |
| switch (Arch) { |
| case GPUArch::SPIR64: |
| case GPUArch::SPIR32: |
| llvm_unreachable("Cannot generate NVVM intrinsics for SPIR"); |
| case GPUArch::NVPTX64: |
| IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x; |
| IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y; |
| |
| IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x; |
| IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y; |
| IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z; |
| break; |
| } |
| |
| auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable { |
| std::string Name = isl_id_get_name(Id); |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr); |
| Value *Val = Builder.CreateCall(IntrinsicFn, {}); |
| Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); |
| IDToValue[Id] = Val; |
| KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); |
| }; |
| |
| for (int i = 0; i < Kernel->n_grid; ++i) { |
| isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i); |
| addId(Id, IntrinsicsBID[i]); |
| } |
| |
| for (int i = 0; i < Kernel->n_block; ++i) { |
| isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i); |
| addId(Id, IntrinsicsTID[i]); |
| } |
| } |
| |
| void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel, |
| bool SizeTypeIs64bit) { |
| const char *GroupName[3] = {"__gen_ocl_get_group_id0", |
| "__gen_ocl_get_group_id1", |
| "__gen_ocl_get_group_id2"}; |
| |
| const char *LocalName[3] = {"__gen_ocl_get_local_id0", |
| "__gen_ocl_get_local_id1", |
| "__gen_ocl_get_local_id2"}; |
| IntegerType *SizeT = |
| SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty(); |
| |
| auto createFunc = [this](const char *Name, __isl_take isl_id *Id, |
| IntegerType *SizeT) mutable { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Function *FN = M->getFunction(Name); |
| |
| // If FN is not available, declare it. |
| if (!FN) { |
| GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage; |
| std::vector<Type *> Args; |
| FunctionType *Ty = FunctionType::get(SizeT, Args, false); |
| FN = Function::Create(Ty, Linkage, Name, M); |
| FN->setCallingConv(CallingConv::SPIR_FUNC); |
| } |
| |
| Value *Val = Builder.CreateCall(FN, {}); |
| if (SizeT == Builder.getInt32Ty()) |
| Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name); |
| IDToValue[Id] = Val; |
| KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id)); |
| }; |
| |
| for (int i = 0; i < Kernel->n_grid; ++i) |
| createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT); |
| |
| for (int i = 0; i < Kernel->n_block; ++i) |
| createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT); |
| } |
| |
| void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) { |
| auto Arg = FN->arg_begin(); |
| for (long i = 0; i < Kernel->n_array; i++) { |
| if (!ppcg_kernel_requires_array_argument(Kernel, i)) |
| continue; |
| |
| isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); |
| const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); |
| isl_id_free(Id); |
| |
| if (SAI->getNumberOfDimensions() > 0) { |
| Arg++; |
| continue; |
| } |
| |
| Value *Val = &*Arg; |
| |
| if (!gpu_array_is_read_only_scalar(&Prog->array[i])) { |
| Type *TypePtr = SAI->getElementType()->getPointerTo(); |
| Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr); |
| Val = Builder.CreateLoad(TypedArgPtr); |
| } |
| |
| Value *Alloca = BlockGen.getOrCreateAlloca(SAI); |
| Builder.CreateStore(Val, Alloca); |
| |
| Arg++; |
| } |
| } |
| |
| void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) { |
| auto *FN = Builder.GetInsertBlock()->getParent(); |
| auto Arg = FN->arg_begin(); |
| |
| bool StoredScalar = false; |
| for (long i = 0; i < Kernel->n_array; i++) { |
| if (!ppcg_kernel_requires_array_argument(Kernel, i)) |
| continue; |
| |
| isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set); |
| const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id)); |
| isl_id_free(Id); |
| |
| if (SAI->getNumberOfDimensions() > 0) { |
| Arg++; |
| continue; |
| } |
| |
| if (gpu_array_is_read_only_scalar(&Prog->array[i])) { |
| Arg++; |
| continue; |
| } |
| |
| Value *Alloca = BlockGen.getOrCreateAlloca(SAI); |
| Value *ArgPtr = &*Arg; |
| Type *TypePtr = SAI->getElementType()->getPointerTo(); |
| Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr); |
| Value *Val = Builder.CreateLoad(Alloca); |
| Builder.CreateStore(Val, TypedArgPtr); |
| StoredScalar = true; |
| |
| Arg++; |
| } |
| |
| if (StoredScalar) { |
| /// In case more than one thread contains scalar stores, the generated |
| /// code might be incorrect, if we only store at the end of the kernel. |
| /// To support this case we need to store these scalars back at each |
| /// memory store or at least before each kernel barrier. |
| if (Kernel->n_block != 0 || Kernel->n_grid != 0) { |
| BuildSuccessful = 0; |
| LLVM_DEBUG( |
| dbgs() << getUniqueScopName(&S) |
| << " has a store to a scalar value that" |
| " would be undefined to run in parallel. Bailing out.\n";); |
| } |
| } |
| } |
| |
| void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| |
| for (int i = 0; i < Kernel->n_var; ++i) { |
| struct ppcg_kernel_var &Var = Kernel->var[i]; |
| isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set); |
| Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType(); |
| |
| Type *ArrayTy = EleTy; |
| SmallVector<const SCEV *, 4> Sizes; |
| |
| Sizes.push_back(nullptr); |
| for (unsigned int j = 1; j < Var.array->n_index; ++j) { |
| isl_val *Val = isl_vec_get_element_val(Var.size, j); |
| long Bound = isl_val_get_num_si(Val); |
| isl_val_free(Val); |
| Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound)); |
| } |
| |
| for (int j = Var.array->n_index - 1; j >= 0; --j) { |
| isl_val *Val = isl_vec_get_element_val(Var.size, j); |
| long Bound = isl_val_get_num_si(Val); |
| isl_val_free(Val); |
| ArrayTy = ArrayType::get(ArrayTy, Bound); |
| } |
| |
| const ScopArrayInfo *SAI; |
| Value *Allocation; |
| if (Var.type == ppcg_access_shared) { |
| auto GlobalVar = new GlobalVariable( |
| *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name, |
| nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3); |
| GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8); |
| GlobalVar->setInitializer(Constant::getNullValue(ArrayTy)); |
| |
| Allocation = GlobalVar; |
| } else if (Var.type == ppcg_access_private) { |
| Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array"); |
| } else { |
| llvm_unreachable("unknown variable type"); |
| } |
| SAI = |
| S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array); |
| Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr); |
| IDToValue[Id] = Allocation; |
| LocalArrays.push_back(Allocation); |
| KernelIds.push_back(Id); |
| IDToSAI[Id] = SAI; |
| } |
| } |
| |
| void GPUNodeBuilder::createKernelFunction( |
| ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues, |
| SetVector<Function *> &SubtreeFunctions) { |
| std::string Identifier = getKernelFuncName(Kernel->id); |
| GPUModule.reset(new Module(Identifier, Builder.getContext())); |
| |
| switch (Arch) { |
| case GPUArch::NVPTX64: |
| if (Runtime == GPURuntime::CUDA) |
| GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); |
| else if (Runtime == GPURuntime::OpenCL) |
| GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl")); |
| GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */)); |
| break; |
| case GPUArch::SPIR32: |
| GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown")); |
| GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */)); |
| break; |
| case GPUArch::SPIR64: |
| GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown")); |
| GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */)); |
| break; |
| } |
| |
| Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues); |
| |
| BasicBlock *PrevBlock = Builder.GetInsertBlock(); |
| auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN); |
| |
| DT.addNewBlock(EntryBlock, PrevBlock); |
| |
| Builder.SetInsertPoint(EntryBlock); |
| Builder.CreateRetVoid(); |
| Builder.SetInsertPoint(EntryBlock, EntryBlock->begin()); |
| |
| ScopDetection::markFunctionAsInvalid(FN); |
| |
| prepareKernelArguments(Kernel, FN); |
| createKernelVariables(Kernel, FN); |
| |
| switch (Arch) { |
| case GPUArch::NVPTX64: |
| insertKernelIntrinsics(Kernel); |
| break; |
| case GPUArch::SPIR32: |
| insertKernelCallsSPIR(Kernel, false); |
| break; |
| case GPUArch::SPIR64: |
| insertKernelCallsSPIR(Kernel, true); |
| break; |
| } |
| } |
| |
| std::string GPUNodeBuilder::createKernelASM() { |
| llvm::Triple GPUTriple; |
| |
| switch (Arch) { |
| case GPUArch::NVPTX64: |
| switch (Runtime) { |
| case GPURuntime::CUDA: |
| GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda")); |
| break; |
| case GPURuntime::OpenCL: |
| GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl")); |
| break; |
| } |
| break; |
| case GPUArch::SPIR64: |
| case GPUArch::SPIR32: |
| std::string SPIRAssembly; |
| raw_string_ostream IROstream(SPIRAssembly); |
| IROstream << *GPUModule; |
| IROstream.flush(); |
| return SPIRAssembly; |
| } |
| |
| std::string ErrMsg; |
| auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg); |
| |
| if (!GPUTarget) { |
| errs() << ErrMsg << "\n"; |
| return ""; |
| } |
| |
| TargetOptions Options; |
| Options.UnsafeFPMath = FastMath; |
| |
| std::string subtarget; |
| |
| switch (Arch) { |
| case GPUArch::NVPTX64: |
| subtarget = CudaVersion; |
| break; |
| case GPUArch::SPIR32: |
| case GPUArch::SPIR64: |
| llvm_unreachable("No subtarget for SPIR architecture"); |
| } |
| |
| std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine( |
| GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>())); |
| |
| SmallString<0> ASMString; |
| raw_svector_ostream ASMStream(ASMString); |
| llvm::legacy::PassManager PM; |
| |
| PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis())); |
| |
| if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, |
| TargetMachine::CGFT_AssemblyFile, |
| true /* verify */)) { |
| errs() << "The target does not support generation of this file type!\n"; |
| return ""; |
| } |
| |
| PM.run(*GPUModule); |
| |
| return ASMStream.str(); |
| } |
| |
| bool GPUNodeBuilder::requiresCUDALibDevice() { |
| bool RequiresLibDevice = false; |
| for (Function &F : GPUModule->functions()) { |
| if (!F.isDeclaration()) |
| continue; |
| |
| const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName()); |
| if (CUDALibDeviceFunc.length() != 0) { |
| // We need to handle the case where a module looks like this: |
| // @expf(..) |
| // @llvm.exp.f64(..) |
| // Both of these functions would be renamed to `__nv_expf`. |
| // |
| // So, we must first check for the existence of the libdevice function. |
| // If this exists, we replace our current function with it. |
| // |
| // If it does not exist, we rename the current function to the |
| // libdevice functiono name. |
| if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc)) |
| F.replaceAllUsesWith(Replacement); |
| else |
| F.setName(CUDALibDeviceFunc); |
| RequiresLibDevice = true; |
| } |
| } |
| |
| return RequiresLibDevice; |
| } |
| |
| void GPUNodeBuilder::addCUDALibDevice() { |
| if (Arch != GPUArch::NVPTX64) |
| return; |
| |
| if (requiresCUDALibDevice()) { |
| SMDiagnostic Error; |
| |
| errs() << CUDALibDevice << "\n"; |
| auto LibDeviceModule = |
| parseIRFile(CUDALibDevice, Error, GPUModule->getContext()); |
| |
| if (!LibDeviceModule) { |
| BuildSuccessful = false; |
| report_fatal_error("Could not find or load libdevice. Skipping GPU " |
| "kernel generation. Please set -polly-acc-libdevice " |
| "accordingly.\n"); |
| return; |
| } |
| |
| Linker L(*GPUModule); |
| |
| // Set an nvptx64 target triple to avoid linker warnings. The original |
| // triple of the libdevice files are nvptx-unknown-unknown. |
| LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda")); |
| L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded); |
| } |
| } |
| |
| std::string GPUNodeBuilder::finalizeKernelFunction() { |
| |
| if (verifyModule(*GPUModule)) { |
| LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n"; |
| GPUModule->print(dbgs(), nullptr); dbgs() << "\n";); |
| LLVM_DEBUG(dbgs() << "verifyModule Error:\n"; |
| verifyModule(*GPUModule, &dbgs());); |
| |
| if (FailOnVerifyModuleFailure) |
| llvm_unreachable("VerifyModule failed."); |
| |
| BuildSuccessful = false; |
| return ""; |
| } |
| |
| addCUDALibDevice(); |
| |
| if (DumpKernelIR) |
| outs() << *GPUModule << "\n"; |
| |
| if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) { |
| // Optimize module. |
| llvm::legacy::PassManager OptPasses; |
| PassManagerBuilder PassBuilder; |
| PassBuilder.OptLevel = 3; |
| PassBuilder.SizeLevel = 0; |
| PassBuilder.populateModulePassManager(OptPasses); |
| OptPasses.run(*GPUModule); |
| } |
| |
| std::string Assembly = createKernelASM(); |
| |
| if (DumpKernelASM) |
| outs() << Assembly << "\n"; |
| |
| GPUModule.release(); |
| KernelIDs.clear(); |
| |
| return Assembly; |
| } |
| /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff` |
| /// @param PwAffs The list of piecewise affine functions to create an |
| /// `isl_pw_aff_list` from. We expect an rvalue ref because |
| /// all the isl_pw_aff are used up by this function. |
| /// |
| /// @returns The `isl_pw_aff_list`. |
| __isl_give isl_pw_aff_list * |
| createPwAffList(isl_ctx *Context, |
| const std::vector<__isl_take isl_pw_aff *> &&PwAffs) { |
| isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size()); |
| |
| for (unsigned i = 0; i < PwAffs.size(); i++) { |
| List = isl_pw_aff_list_insert(List, i, PwAffs[i]); |
| } |
| return List; |
| } |
| |
| /// Align all the `PwAffs` such that they have the same parameter dimensions. |
| /// |
| /// We loop over all `pw_aff` and align all of their spaces together to |
| /// create a common space for all the `pw_aff`. This common space is the |
| /// `AlignSpace`. We then align all the `pw_aff` to this space. We start |
| /// with the given `SeedSpace`. |
| /// @param PwAffs The list of piecewise affine functions we want to align. |
| /// This is an rvalue reference because the entire vector is |
| /// used up by the end of the operation. |
| /// @param SeedSpace The space to start the alignment process with. |
| /// @returns A std::pair, whose first element is the aligned space, |
| /// whose second element is the vector of aligned piecewise |
| /// affines. |
| static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>> |
| alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs, |
| __isl_take isl_space *SeedSpace) { |
| assert(SeedSpace && "Invalid seed space given."); |
| |
| isl_space *AlignSpace = SeedSpace; |
| for (isl_pw_aff *PwAff : PwAffs) { |
| isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff); |
| AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace); |
| } |
| std::vector<isl_pw_aff *> AdjustedPwAffs; |
| |
| for (unsigned i = 0; i < PwAffs.size(); i++) { |
| isl_pw_aff *Adjusted = PwAffs[i]; |
| assert(Adjusted && "Invalid pw_aff given."); |
| Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace)); |
| AdjustedPwAffs.push_back(Adjusted); |
| } |
| return std::make_pair(AlignSpace, AdjustedPwAffs); |
| } |
| |
| namespace { |
| class PPCGCodeGeneration : public ScopPass { |
| public: |
| static char ID; |
| |
| GPURuntime Runtime = GPURuntime::CUDA; |
| |
| GPUArch Architecture = GPUArch::NVPTX64; |
| |
| /// The scop that is currently processed. |
| Scop *S; |
| |
| LoopInfo *LI; |
| DominatorTree *DT; |
| ScalarEvolution *SE; |
| const DataLayout *DL; |
| RegionInfo *RI; |
| |
| PPCGCodeGeneration() : ScopPass(ID) {} |
| |
| /// Construct compilation options for PPCG. |
| /// |
| /// @returns The compilation options. |
| ppcg_options *createPPCGOptions() { |
| auto DebugOptions = |
| (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options)); |
| auto Options = (ppcg_options *)malloc(sizeof(ppcg_options)); |
| |
| DebugOptions->dump_schedule_constraints = false; |
| DebugOptions->dump_schedule = false; |
| DebugOptions->dump_final_schedule = false; |
| DebugOptions->dump_sizes = false; |
| DebugOptions->verbose = false; |
| |
| Options->debug = DebugOptions; |
| |
| Options->group_chains = false; |
| Options->reschedule = true; |
| Options->scale_tile_loops = false; |
| Options->wrap = false; |
| |
| Options->non_negative_parameters = false; |
| Options->ctx = nullptr; |
| Options->sizes = nullptr; |
| |
| Options->tile = true; |
| Options->tile_size = 32; |
| |
| Options->isolate_full_tiles = false; |
| |
| Options->use_private_memory = PrivateMemory; |
| Options->use_shared_memory = SharedMemory; |
| Options->max_shared_memory = 48 * 1024; |
| |
| Options->target = PPCG_TARGET_CUDA; |
| Options->openmp = false; |
| Options->linearize_device_arrays = true; |
| Options->allow_gnu_extensions = false; |
| |
| Options->unroll_copy_shared = false; |
| Options->unroll_gpu_tile = false; |
| Options->live_range_reordering = true; |
| |
| Options->live_range_reordering = true; |
| Options->hybrid = false; |
| Options->opencl_compiler_options = nullptr; |
| Options->opencl_use_gpu = false; |
| Options->opencl_n_include_file = 0; |
| Options->opencl_include_files = nullptr; |
| Options->opencl_print_kernel_types = false; |
| Options->opencl_embed_kernel_code = false; |
| |
| Options->save_schedule_file = nullptr; |
| Options->load_schedule_file = nullptr; |
| |
| return Options; |
| } |
| |
| /// Get a tagged access relation containing all accesses of type @p AccessTy. |
| /// |
| /// Instead of a normal access of the form: |
| /// |
| /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)] |
| /// |
| /// a tagged access has the form |
| /// |
| /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)] |
| /// |
| /// where 'id' is an additional space that references the memory access that |
| /// triggered the access. |
| /// |
| /// @param AccessTy The type of the memory accesses to collect. |
| /// |
| /// @return The relation describing all tagged memory accesses. |
| isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) { |
| isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release()); |
| |
| for (auto &Stmt : *S) |
| for (auto &Acc : Stmt) |
| if (Acc->getType() == AccessTy) { |
| isl_map *Relation = Acc->getAccessRelation().release(); |
| Relation = |
| isl_map_intersect_domain(Relation, Stmt.getDomain().release()); |
| |
| isl_space *Space = isl_map_get_space(Relation); |
| Space = isl_space_range(Space); |
| Space = isl_space_from_range(Space); |
| Space = |
| isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); |
| isl_map *Universe = isl_map_universe(Space); |
| Relation = isl_map_domain_product(Relation, Universe); |
| Accesses = isl_union_map_add_map(Accesses, Relation); |
| } |
| |
| return Accesses; |
| } |
| |
| /// Get the set of all read accesses, tagged with the access id. |
| /// |
| /// @see getTaggedAccesses |
| isl_union_map *getTaggedReads() { |
| return getTaggedAccesses(MemoryAccess::READ); |
| } |
| |
| /// Get the set of all may (and must) accesses, tagged with the access id. |
| /// |
| /// @see getTaggedAccesses |
| isl_union_map *getTaggedMayWrites() { |
| return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE), |
| getTaggedAccesses(MemoryAccess::MUST_WRITE)); |
| } |
| |
| /// Get the set of all must accesses, tagged with the access id. |
| /// |
| /// @see getTaggedAccesses |
| isl_union_map *getTaggedMustWrites() { |
| return getTaggedAccesses(MemoryAccess::MUST_WRITE); |
| } |
| |
| /// Collect parameter and array names as isl_ids. |
| /// |
| /// To reason about the different parameters and arrays used, ppcg requires |
| /// a list of all isl_ids in use. As PPCG traditionally performs |
| /// source-to-source compilation each of these isl_ids is mapped to the |
| /// expression that represents it. As we do not have a corresponding |
| /// expression in Polly, we just map each id to a 'zero' expression to match |
| /// the data format that ppcg expects. |
| /// |
| /// @returns Retun a map from collected ids to 'zero' ast expressions. |
| __isl_give isl_id_to_ast_expr *getNames() { |
| auto *Names = isl_id_to_ast_expr_alloc( |
| S->getIslCtx().get(), |
| S->getNumParams() + std::distance(S->array_begin(), S->array_end())); |
| auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get())); |
| |
| for (const SCEV *P : S->parameters()) { |
| isl_id *Id = S->getIdForParam(P).release(); |
| Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); |
| } |
| |
| for (auto &Array : S->arrays()) { |
| auto Id = Array->getBasePtrId().release(); |
| Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero)); |
| } |
| |
| isl_ast_expr_free(Zero); |
| |
| return Names; |
| } |
| |
| /// Create a new PPCG scop from the current scop. |
| /// |
| /// The PPCG scop is initialized with data from the current polly::Scop. From |
| /// this initial data, the data-dependences in the PPCG scop are initialized. |
| /// We do not use Polly's dependence analysis for now, to ensure we match |
| /// the PPCG default behaviour more closely. |
| /// |
| /// @returns A new ppcg scop. |
| ppcg_scop *createPPCGScop() { |
| MustKillsInfo KillsInfo = computeMustKillsInfo(*S); |
| |
| auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop)); |
| |
| PPCGScop->options = createPPCGOptions(); |
| // enable live range reordering |
| PPCGScop->options->live_range_reordering = 1; |
| |
| PPCGScop->start = 0; |
| PPCGScop->end = 0; |
| |
| PPCGScop->context = S->getContext().release(); |
| PPCGScop->domain = S->getDomains().release(); |
| // TODO: investigate this further. PPCG calls collect_call_domains. |
| PPCGScop->call = isl_union_set_from_set(S->getContext().release()); |
| PPCGScop->tagged_reads = getTaggedReads(); |
| PPCGScop->reads = S->getReads().release(); |
| PPCGScop->live_in = nullptr; |
| PPCGScop->tagged_may_writes = getTaggedMayWrites(); |
| PPCGScop->may_writes = S->getWrites().release(); |
| PPCGScop->tagged_must_writes = getTaggedMustWrites(); |
| PPCGScop->must_writes = S->getMustWrites().release(); |
| PPCGScop->live_out = nullptr; |
| PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release(); |
| PPCGScop->must_kills = KillsInfo.MustKills.release(); |
| |
| PPCGScop->tagger = nullptr; |
| PPCGScop->independence = |
| isl_union_map_empty(isl_set_get_space(PPCGScop->context)); |
| PPCGScop->dep_flow = nullptr; |
| PPCGScop->tagged_dep_flow = nullptr; |
| PPCGScop->dep_false = nullptr; |
| PPCGScop->dep_forced = nullptr; |
| PPCGScop->dep_order = nullptr; |
| PPCGScop->tagged_dep_order = nullptr; |
| |
| PPCGScop->schedule = S->getScheduleTree().release(); |
| // If we have something non-trivial to kill, add it to the schedule |
| if (KillsInfo.KillsSchedule.get()) |
| PPCGScop->schedule = isl_schedule_sequence( |
| PPCGScop->schedule, KillsInfo.KillsSchedule.release()); |
| |
| PPCGScop->names = getNames(); |
| PPCGScop->pet = nullptr; |
| |
| compute_tagger(PPCGScop); |
| compute_dependences(PPCGScop); |
| eliminate_dead_code(PPCGScop); |
| |
| return PPCGScop; |
| } |
| |
| /// Collect the array accesses in a statement. |
| /// |
| /// @param Stmt The statement for which to collect the accesses. |
| /// |
| /// @returns A list of array accesses. |
| gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) { |
| gpu_stmt_access *Accesses = nullptr; |
| |
| for (MemoryAccess *Acc : Stmt) { |
| auto Access = |
| isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access); |
| Access->read = Acc->isRead(); |
| Access->write = Acc->isWrite(); |
| Access->access = Acc->getAccessRelation().release(); |
| isl_space *Space = isl_map_get_space(Access->access); |
| Space = isl_space_range(Space); |
| Space = isl_space_from_range(Space); |
| Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release()); |
| isl_map *Universe = isl_map_universe(Space); |
| Access->tagged_access = |
| isl_map_domain_product(Acc->getAccessRelation().release(), Universe); |
| Access->exact_write = !Acc->isMayWrite(); |
| Access->ref_id = Acc->getId().release(); |
| Access->next = Accesses; |
| Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions(); |
| // TODO: Also mark one-element accesses to arrays as fixed-element. |
| Access->fixed_element = |
| Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false; |
| Accesses = Access; |
| } |
| |
| return Accesses; |
| } |
| |
| /// Collect the list of GPU statements. |
| /// |
| /// Each statement has an id, a pointer to the underlying data structure, |
| /// as well as a list with all memory accesses. |
| /// |
| /// TODO: Initialize the list of memory accesses. |
| /// |
| /// @returns A linked-list of statements. |
| gpu_stmt *getStatements() { |
| gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt, |
| std::distance(S->begin(), S->end())); |
| |
| int i = 0; |
| for (auto &Stmt : *S) { |
| gpu_stmt *GPUStmt = &Stmts[i]; |
| |
| GPUStmt->id = Stmt.getDomainId().release(); |
| |
| // We use the pet stmt pointer to keep track of the Polly statements. |
| GPUStmt->stmt = (pet_stmt *)&Stmt; |
| GPUStmt->accesses = getStmtAccesses(Stmt); |
| i++; |
| } |
| |
| return Stmts; |
| } |
| |
| /// Derive the extent of an array. |
| /// |
| /// The extent of an array is the set of elements that are within the |
| /// accessed array. For the inner dimensions, the extent constraints are |
| /// 0 and the size of the corresponding array dimension. For the first |
| /// (outermost) dimension, the extent constraints are the minimal and maximal |
| /// subscript value for the first dimension. |
| /// |
| /// @param Array The array to derive the extent for. |
| /// |
| /// @returns An isl_set describing the extent of the array. |
| isl::set getExtent(ScopArrayInfo *Array) { |
| unsigned NumDims = Array->getNumberOfDimensions(); |
| |
| if (Array->getNumberOfDimensions() == 0) |
| return isl::set::universe(Array->getSpace()); |
| |
| isl::union_map Accesses = S->getAccesses(Array); |
| isl::union_set AccessUSet = Accesses.range(); |
| AccessUSet = AccessUSet.coalesce(); |
| AccessUSet = AccessUSet.detect_equalities(); |
| AccessUSet = AccessUSet.coalesce(); |
| |
| if (AccessUSet.is_empty()) |
| return isl::set::empty(Array->getSpace()); |
| |
| isl::set AccessSet = AccessUSet.extract_set(Array->getSpace()); |
| |
| isl::local_space LS = isl::local_space(Array->getSpace()); |
| |
| isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0); |
| isl::pw_aff OuterMin = AccessSet.dim_min(0); |
| isl::pw_aff OuterMax = AccessSet.dim_max(0); |
| OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in)); |
| OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in)); |
| OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId()); |
| OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId()); |
| |
| isl::set Extent = isl::set::universe(Array->getSpace()); |
| |
| Extent = Extent.intersect(OuterMin.le_set(Val)); |
| Extent = Extent.intersect(OuterMax.ge_set(Val)); |
| |
| for (unsigned i = 1; i < NumDims; ++i) |
| Extent = Extent.lower_bound_si(isl::dim::set, i, 0); |
| |
| for (unsigned i = 0; i < NumDims; ++i) { |
| isl::pw_aff PwAff = Array->getDimensionSizePw(i); |
| |
| // isl_pw_aff can be NULL for zero dimension. Only in the case of a |
| // Fortran array will we have a legitimate dimension. |
| if (PwAff.is_null()) { |
| assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension"); |
| continue; |
| } |
| |
| isl::pw_aff Val = isl::aff::var_on_domain( |
| isl::local_space(Array->getSpace()), isl::dim::set, i); |
| PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in)); |
| PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in)); |
| isl::set Set = PwAff.gt_set(Val); |
| Extent = Set.intersect(Extent); |
| } |
| |
| return Extent; |
| } |
| |
| /// Derive the bounds of an array. |
| /// |
| /// For the first dimension we derive the bound of the array from the extent |
| /// of this dimension. For inner dimensions we obtain their size directly from |
| /// ScopArrayInfo. |
| /// |
| /// @param PPCGArray The array to compute bounds for. |
| /// @param Array The polly array from which to take the information. |
| void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) { |
| std::vector<isl_pw_aff *> Bounds; |
| |
| if (PPCGArray.n_index > 0) { |
| if (isl_set_is_empty(PPCGArray.extent)) { |
| isl_set *Dom = isl_set_copy(PPCGArray.extent); |
| isl_local_space *LS = isl_local_space_from_space( |
| isl_space_params(isl_set_get_space(Dom))); |
| isl_set_free(Dom); |
| isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS)); |
| Bounds.push_back(Zero); |
| } else { |
| isl_set *Dom = isl_set_copy(PPCGArray.extent); |
| Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1); |
| isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0); |
| isl_set_free(Dom); |
| Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound)); |
| isl_local_space *LS = |
| isl_local_space_from_space(isl_set_get_space(Dom)); |
| isl_aff *One = isl_aff_zero_on_domain(LS); |
| One = isl_aff_add_constant_si(One, 1); |
| Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One)); |
| Bound = isl_pw_aff_gist(Bound, S->getContext().release()); |
| Bounds.push_back(Bound); |
| } |
| } |
| |
| for (unsigned i = 1; i < PPCGArray.n_index; ++i) { |
| isl_pw_aff *Bound = Array->getDimensionSizePw(i).release(); |
| auto LS = isl_pw_aff_get_domain_space(Bound); |
| auto Aff = isl_multi_aff_zero(LS); |
| |
| // We need types to work out, which is why we perform this weird dance |
| // with `Aff` and `Bound`. Consider this example: |
| |
| // LS: [p] -> { [] } |
| // Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }. |
| // This `~` is used to denote a "null space" (which is different from |
| // a *zero dimensional* space), which is something that ISL does not |
| // show you when pretty printing. |
| |
| // Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional* |
| // space, not a "null space" which does not exist at all. |
| |
| // When we pullback (precompose) `Bound` with `Zero`, we get: |
| // Bound . Zero = |
| // ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) = |
| // [p] -> { ~ -> [(10p)] } = |
| // [p] -> [(10p)] (as ISL pretty prints it) |
| // Bound Pullback: [p] -> { [(10p)] } |
| |
| // We want this kind of an expression for Bound, without a |
| // zero dimensional input, but with a "null space" input for the types |
| // to work out later on, as far as I (Siddharth Bhat) understand. |
| // I was unable to find a reference to this in the ISL manual. |
| // References: Tobias Grosser. |
| |
| Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff); |
| Bounds.push_back(Bound); |
| } |
| |
| /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff` |
| /// to have the same parameter dimensions. So, we need to align them to an |
| /// appropriate space. |
| /// Scop::Context is _not_ an appropriate space, because when we have |
| /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not |
| /// contain all parameter dimensions. |
| /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together. |
| isl_space *SeedAlignSpace = S->getParamSpace().release(); |
| SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1); |
| |
| isl_space *AlignSpace = nullptr; |
| std::vector<isl_pw_aff *> AlignedBounds; |
| std::tie(AlignSpace, AlignedBounds) = |
| alignPwAffs(std::move(Bounds), SeedAlignSpace); |
| |
| assert(AlignSpace && "alignPwAffs did not initialise AlignSpace"); |
| |
| isl_pw_aff_list *BoundsList = |
| createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds)); |
| |
| isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent); |
| BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace); |
| |
| assert(BoundsSpace && "Unable to access space of array."); |
| assert(BoundsList && "Unable to access list of bounds."); |
| |
| PPCGArray.bound = |
| isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList); |
| assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly."); |
| } |
| |
| /// Create the arrays for @p PPCGProg. |
| /// |
| /// @param PPCGProg The program to compute the arrays for. |
| void createArrays(gpu_prog *PPCGProg, |
| const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) { |
| int i = 0; |
| for (auto &Array : ValidSAIs) { |
| std::string TypeName; |
| raw_string_ostream OS(TypeName); |
| |
| OS << *Array->getElementType(); |
| TypeName = OS.str(); |
| |
| gpu_array_info &PPCGArray = PPCGProg->array[i]; |
| |
| PPCGArray.space = Array->getSpace().release(); |
| PPCGArray.type = strdup(TypeName.c_str()); |
| PPCGArray.size = DL->getTypeAllocSize(Array->getElementType()); |
| PPCGArray.name = strdup(Array->getName().c_str()); |
| PPCGArray.extent = nullptr; |
| PPCGArray.n_index = Array->getNumberOfDimensions(); |
| PPCGArray.extent = getExtent(Array).release(); |
| PPCGArray.n_ref = 0; |
| PPCGArray.refs = nullptr; |
| PPCGArray.accessed = true; |
| PPCGArray.read_only_scalar = |
| Array->isReadOnly() && Array->getNumberOfDimensions() == 0; |
| PPCGArray.has_compound_element = false; |
| PPCGArray.local = false; |
| PPCGArray.declare_local = false; |
| PPCGArray.global = false; |
| PPCGArray.linearize = false; |
| PPCGArray.dep_order = nullptr; |
| PPCGArray.user = Array; |
| |
| PPCGArray.bound = nullptr; |
| setArrayBounds(PPCGArray, Array); |
| i++; |
| |
| collect_references(PPCGProg, &PPCGArray); |
| PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray); |
| } |
| } |
| |
| /// Create an identity map between the arrays in the scop. |
| /// |
| /// @returns An identity map between the arrays in the scop. |
| isl_union_map *getArrayIdentity() { |
| isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release()); |
| |
| for (auto &Array : S->arrays()) { |
| isl_space *Space = Array->getSpace().release(); |
| Space = isl_space_map_from_set(Space); |
| isl_map *Identity = isl_map_identity(Space); |
| Maps = isl_union_map_add_map(Maps, Identity); |
| } |
| |
| return Maps; |
| } |
| |
| /// Create a default-initialized PPCG GPU program. |
| /// |
| /// @returns A new gpu program description. |
| gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) { |
| |
| if (!PPCGScop) |
| return nullptr; |
| |
| auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog); |
| |
| PPCGProg->ctx = S->getIslCtx().get(); |
| PPCGProg->scop = PPCGScop; |
| PPCGProg->context = isl_set_copy(PPCGScop->context); |
| PPCGProg->read = isl_union_map_copy(PPCGScop->reads); |
| PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes); |
| PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes); |
| PPCGProg->tagged_must_kill = |
| isl_union_map_copy(PPCGScop->tagged_must_kills); |
| PPCGProg->to_inner = getArrayIdentity(); |
| PPCGProg->to_outer = getArrayIdentity(); |
| // TODO: verify that this assignment is correct. |
| PPCGProg->any_to_outer = nullptr; |
| PPCGProg->n_stmts = std::distance(S->begin(), S->end()); |
| PPCGProg->stmts = getStatements(); |
| |
| // Only consider arrays that have a non-empty extent. |
| // Otherwise, this will cause us to consider the following kinds of |
| // empty arrays: |
| // 1. Invariant loads that are represented by SAI objects. |
| // 2. Arrays with statically known zero size. |
| auto ValidSAIsRange = |
| make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool { |
| return !getExtent(SAI).is_empty(); |
| }); |
| SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(), |
| ValidSAIsRange.end()); |
| |
| PPCGProg->n_array = |
| ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end()); |
| PPCGProg->array = isl_calloc_array( |
| S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array); |
| |
| createArrays(PPCGProg, ValidSAIs); |
| |
| PPCGProg->array_order = nullptr; |
| collect_order_dependences(PPCGProg); |
| |
| PPCGProg->may_persist = compute_may_persist(PPCGProg); |
| return PPCGProg; |
| } |
| |
| struct PrintGPUUserData { |
| struct cuda_info *CudaInfo; |
| struct gpu_prog *PPCGProg; |
| std::vector<ppcg_kernel *> Kernels; |
| }; |
| |
| /// Print a user statement node in the host code. |
| /// |
| /// We use ppcg's printing facilities to print the actual statement and |
| /// additionally build up a list of all kernels that are encountered in the |
| /// host ast. |
| /// |
| /// @param P The printer to print to |
| /// @param Options The printing options to use |
| /// @param Node The node to print |
| /// @param User A user pointer to carry additional data. This pointer is |
| /// expected to be of type PrintGPUUserData. |
| /// |
| /// @returns A printer to which the output has been printed. |
| static __isl_give isl_printer * |
| printHostUser(__isl_take isl_printer *P, |
| __isl_take isl_ast_print_options *Options, |
| __isl_take isl_ast_node *Node, void *User) { |
| auto Data = (struct PrintGPUUserData *)User; |
| auto Id = isl_ast_node_get_annotation(Node); |
| |
| if (Id) { |
| bool IsUser = !strcmp(isl_id_get_name(Id), "user"); |
| |
| // If this is a user statement, format it ourselves as ppcg would |
| // otherwise try to call pet functionality that is not available in |
| // Polly. |
| if (IsUser) { |
| P = isl_printer_start_line(P); |
| P = isl_printer_print_ast_node(P, Node); |
| P = isl_printer_end_line(P); |
| isl_id_free(Id); |
| isl_ast_print_options_free(Options); |
| return P; |
| } |
| |
| auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id); |
| isl_id_free(Id); |
| Data->Kernels.push_back(Kernel); |
| } |
| |
| return print_host_user(P, Options, Node, User); |
| } |
| |
| /// Print C code corresponding to the control flow in @p Kernel. |
| /// |
| /// @param Kernel The kernel to print |
| void printKernel(ppcg_kernel *Kernel) { |
| auto *P = isl_printer_to_str(S->getIslCtx().get()); |
| P = isl_printer_set_output_format(P, ISL_FORMAT_C); |
| auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); |
| P = isl_ast_node_print(Kernel->tree, P, Options); |
| char *String = isl_printer_get_str(P); |
| outs() << String << "\n"; |
| free(String); |
| isl_printer_free(P); |
| } |
| |
| /// Print C code corresponding to the GPU code described by @p Tree. |
| /// |
| /// @param Tree An AST describing GPU code |
| /// @param PPCGProg The PPCG program from which @Tree has been constructed. |
| void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) { |
| auto *P = isl_printer_to_str(S->getIslCtx().get()); |
| P = isl_printer_set_output_format(P, ISL_FORMAT_C); |
| |
| PrintGPUUserData Data; |
| Data.PPCGProg = PPCGProg; |
| |
| auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get()); |
| Options = |
| isl_ast_print_options_set_print_user(Options, printHostUser, &Data); |
| P = isl_ast_node_print(Tree, P, Options); |
| char *String = isl_printer_get_str(P); |
| outs() << "# host\n"; |
| outs() << String << "\n"; |
| free(String); |
| isl_printer_free(P); |
| |
| for (auto Kernel : Data.Kernels) { |
| outs() << "# kernel" << Kernel->id << "\n"; |
| printKernel(Kernel); |
| } |
| } |
| |
| // Generate a GPU program using PPCG. |
| // |
| // GPU mapping consists of multiple steps: |
| // |
| // 1) Compute new schedule for the program. |
| // 2) Map schedule to GPU (TODO) |
| // 3) Generate code for new schedule (TODO) |
| // |
| // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer |
| // is mostly CPU specific. Instead, we use PPCG's GPU code generation |
| // strategy directly from this pass. |
| gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) { |
| |
| auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen); |
| |
| PPCGGen->ctx = S->getIslCtx().get(); |
| PPCGGen->options = PPCGScop->options; |
| PPCGGen->print = nullptr; |
| PPCGGen->print_user = nullptr; |
| PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt; |
| PPCGGen->prog = PPCGProg; |
| PPCGGen->tree = nullptr; |
| PPCGGen->types.n = 0; |
| PPCGGen->types.name = nullptr; |
| PPCGGen->sizes = nullptr; |
| PPCGGen->used_sizes = nullptr; |
| PPCGGen->kernel_id = 0; |
| |
| // Set scheduling strategy to same strategy PPCG is using. |
| isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true); |
| isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true); |
| isl_options_set_schedule_whole_component(PPCGGen->ctx, false); |
| |
| isl_schedule *Schedule = get_schedule(PPCGGen); |
| |
| int has_permutable = has_any_permutable_node(Schedule); |
| |
| Schedule = |
| isl_schedule_align_params(Schedule, S->getFullParamSpace().release()); |
| |
| if (!has_permutable || has_permutable < 0) { |
| Schedule = isl_schedule_free(Schedule); |
| LLVM_DEBUG(dbgs() << getUniqueScopName(S) |
| << " does not have permutable bands. Bailing out\n";); |
| } else { |
| const bool CreateTransferToFromDevice = !PollyManagedMemory; |
| Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice); |
| PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule)); |
| } |
| |
| if (DumpSchedule) { |
| isl_printer *P = isl_printer_to_str(S->getIslCtx().get()); |
| P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK); |
| P = isl_printer_print_str(P, "Schedule\n"); |
| P = isl_printer_print_str(P, "========\n"); |
| if (Schedule) |
| P = isl_printer_print_schedule(P, Schedule); |
| else |
| P = isl_printer_print_str(P, "No schedule found\n"); |
| |
| outs() << isl_printer_get_str(P) << "\n"; |
| isl_printer_free(P); |
| } |
| |
| if (DumpCode) { |
| outs() << "Code\n"; |
| outs() << "====\n"; |
| if (PPCGGen->tree) |
| printGPUTree(PPCGGen->tree, PPCGProg); |
| else |
| outs() << "No code generated\n"; |
| } |
| |
| isl_schedule_free(Schedule); |
| |
| return PPCGGen; |
| } |
| |
| /// Free gpu_gen structure. |
| /// |
| /// @param PPCGGen The ppcg_gen object to free. |
| void freePPCGGen(gpu_gen *PPCGGen) { |
| isl_ast_node_free(PPCGGen->tree); |
| isl_union_map_free(PPCGGen->sizes); |
| isl_union_map_free(PPCGGen->used_sizes); |
| free(PPCGGen); |
| } |
| |
| /// Free the options in the ppcg scop structure. |
| /// |
| /// ppcg is not freeing these options for us. To avoid leaks we do this |
| /// ourselves. |
| /// |
| /// @param PPCGScop The scop referencing the options to free. |
| void freeOptions(ppcg_scop *PPCGScop) { |
| free(PPCGScop->options->debug); |
| PPCGScop->options->debug = nullptr; |
| free(PPCGScop->options); |
| PPCGScop->options = nullptr; |
| } |
| |
| /// Approximate the number of points in the set. |
| /// |
| /// This function returns an ast expression that overapproximates the number |
| /// of points in an isl set through the rectangular hull surrounding this set. |
| /// |
| /// @param Set The set to count. |
| /// @param Build The isl ast build object to use for creating the ast |
| /// expression. |
| /// |
| /// @returns An approximation of the number of points in the set. |
| __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set, |
| __isl_keep isl_ast_build *Build) { |
| |
| isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1); |
| auto *Expr = isl_ast_expr_from_val(isl_val_copy(One)); |
| |
| isl_space *Space = isl_set_get_space(Set); |
| Space = isl_space_params(Space); |
| auto *Univ = isl_set_universe(Space); |
| isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One); |
| |
| for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) { |
| isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i); |
| isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i); |
| isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min); |
| DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff)); |
| auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize); |
| Expr = isl_ast_expr_mul(Expr, DimSizeExpr); |
| } |
| |
| isl_set_free(Set); |
| isl_pw_aff_free(OneAff); |
| |
| return Expr; |
| } |
| |
| /// Approximate a number of dynamic instructions executed by a given |
| /// statement. |
| /// |
| /// @param Stmt The statement for which to compute the number of dynamic |
| /// instructions. |
| /// @param Build The isl ast build object to use for creating the ast |
| /// expression. |
| /// @returns An approximation of the number of dynamic instructions executed |
| /// by @p Stmt. |
| __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt, |
| __isl_keep isl_ast_build *Build) { |
| auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build); |
| |
| long InstCount = 0; |
| |
| if (Stmt.isBlockStmt()) { |
| auto *BB = Stmt.getBasicBlock(); |
| InstCount = std::distance(BB->begin(), BB->end()); |
| } else { |
| auto *R = Stmt.getRegion(); |
| |
| for (auto *BB : R->blocks()) { |
| InstCount += std::distance(BB->begin(), BB->end()); |
| } |
| } |
| |
| isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount); |
| auto *InstExpr = isl_ast_expr_from_val(InstVal); |
| return isl_ast_expr_mul(InstExpr, Iterations); |
| } |
| |
| /// Approximate dynamic instructions executed in scop. |
| /// |
| /// @param S The scop for which to approximate dynamic instructions. |
| /// @param Build The isl ast build object to use for creating the ast |
| /// expression. |
| /// @returns An approximation of the number of dynamic instructions executed |
| /// in @p S. |
| __isl_give isl_ast_expr * |
| getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) { |
| isl_ast_expr *Instructions; |
| |
| isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0); |
| Instructions = isl_ast_expr_from_val(Zero); |
| |
| for (ScopStmt &Stmt : S) { |
| isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build); |
| Instructions = isl_ast_expr_add(Instructions, StmtInstructions); |
| } |
| return Instructions; |
| } |
| |
| /// Create a check that ensures sufficient compute in scop. |
| /// |
| /// @param S The scop for which to ensure sufficient compute. |
| /// @param Build The isl ast build object to use for creating the ast |
| /// expression. |
| /// @returns An expression that evaluates to TRUE in case of sufficient |
| /// compute and to FALSE, otherwise. |
| __isl_give isl_ast_expr * |
| createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) { |
| auto Iterations = getNumberOfIterations(S, Build); |
| auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute); |
| auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal); |
| return isl_ast_expr_ge(Iterations, MinComputeExpr); |
| } |
| |
| /// Check if the basic block contains a function we cannot codegen for GPU |
| /// kernels. |
| /// |
| /// If this basic block does something with a `Function` other than calling |
| /// a function that we support in a kernel, return true. |
| bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB, |
| bool AllowCUDALibDevice) { |
| for (const Instruction &Inst : *BB) { |
| const CallInst *Call = dyn_cast<CallInst>(&Inst); |
| if (Call && isValidFunctionInKernel(Call->getCalledFunction(), |
| AllowCUDALibDevice)) |
| continue; |
| |
| for (Value *Op : Inst.operands()) |
| // Look for (<func-type>*) among operands of Inst |
| if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) { |
| if (isa<FunctionType>(PtrTy->getElementType())) { |
| LLVM_DEBUG(dbgs() |
| << Inst << " has illegal use of function in kernel.\n"); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| /// Return whether the Scop S uses functions in a way that we do not support. |
| bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) { |
| for (auto &Stmt : S) { |
| if (Stmt.isBlockStmt()) { |
| if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(), |
| AllowCUDALibDevice)) |
| return true; |
| } else { |
| assert(Stmt.isRegionStmt() && |
| "Stmt was neither block nor region statement"); |
| for (const BasicBlock *BB : Stmt.getRegion()->blocks()) |
| if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Generate code for a given GPU AST described by @p Root. |
| /// |
| /// @param Root An isl_ast_node pointing to the root of the GPU AST. |
| /// @param Prog The GPU Program to generate code for. |
| void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) { |
| ScopAnnotator Annotator; |
| Annotator.buildAliasScopes(*S); |
| |
| Region *R = &S->getRegion(); |
| |
| simplifyRegion(R, DT, LI, RI); |
| |
| BasicBlock *EnteringBB = R->getEnteringBlock(); |
| |
| PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); |
| |
| // Only build the run-time condition and parameters _after_ having |
| // introduced the conditional branch. This is important as the conditional |
| // branch will guard the original scop from new induction variables that |
| // the SCEVExpander may introduce while code generating the parameters and |
| // which may introduce scalar dependences that prevent us from correctly |
| // code generating this scop. |
| BBPair StartExitBlocks; |
| BranchInst *CondBr = nullptr; |
| std::tie(StartExitBlocks, CondBr) = |
| executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI); |
| BasicBlock *StartBlock = std::get<0>(StartExitBlocks); |
| |
| assert(CondBr && "CondBr not initialized by executeScopConditionally"); |
| |
| GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S, |
| StartBlock, Prog, Runtime, Architecture); |
| |
| // TODO: Handle LICM |
| auto SplitBlock = StartBlock->getSinglePredecessor(); |
| Builder.SetInsertPoint(SplitBlock->getTerminator()); |
| |
| isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get()); |
| isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build); |
| isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build); |
| Condition = isl_ast_expr_and(Condition, SufficientCompute); |
| isl_ast_build_free(Build); |
| |
| // preload invariant loads. Note: This should happen before the RTC |
| // because the RTC may depend on values that are invariant load hoisted. |
| if (!NodeBuilder.preloadInvariantLoads()) { |
| // Patch the introduced branch condition to ensure that we always execute |
| // the original SCoP. |
| auto *FalseI1 = Builder.getFalse(); |
| auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); |
| SplitBBTerm->setOperand(0, FalseI1); |
| |
| LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " + |
| S->getFunction().getName() + |
| " | Scop Region: " + S->getNameStr()); |
| // adjust the dominator tree accordingly. |
| auto *ExitingBlock = StartBlock->getUniqueSuccessor(); |
| assert(ExitingBlock); |
| auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); |
| assert(MergeBlock); |
| polly::markBlockUnreachable(*StartBlock, Builder); |
| polly::markBlockUnreachable(*ExitingBlock, Builder); |
| auto *ExitingBB = S->getExitingBlock(); |
| assert(ExitingBB); |
| |
| DT->changeImmediateDominator(MergeBlock, ExitingBB); |
| DT->eraseNode(ExitingBlock); |
| isl_ast_expr_free(Condition); |
| isl_ast_node_free(Root); |
| } else { |
| |
| if (polly::PerfMonitoring) { |
| PerfMonitor P(*S, EnteringBB->getParent()->getParent()); |
| P.initialize(); |
| P.insertRegionStart(SplitBlock->getTerminator()); |
| |
| // TODO: actually think if this is the correct exiting block to place |
| // the `end` performance marker. Invariant load hoisting changes |
| // the CFG in a way that I do not precisely understand, so I |
| // (Siddharth<siddu.druid@gmail.com>) should come back to this and |
| // think about which exiting block to use. |
| auto *ExitingBlock = StartBlock->getUniqueSuccessor(); |
| assert(ExitingBlock); |
| BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor(); |
| P.insertRegionEnd(MergeBlock->getTerminator()); |
| } |
| |
| NodeBuilder.addParameters(S->getContext().release()); |
| Value *RTC = NodeBuilder.createRTC(Condition); |
| Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); |
| |
| Builder.SetInsertPoint(&*StartBlock->begin()); |
| |
| NodeBuilder.create(Root); |
| } |
| |
| /// In case a sequential kernel has more surrounding loops as any parallel |
| /// kernel, the SCoP is probably mostly sequential. Hence, there is no |
| /// point in running it on a GPU. |
| if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel) |
| CondBr->setOperand(0, Builder.getFalse()); |
| |
| if (!NodeBuilder.BuildSuccessful) |
| CondBr->setOperand(0, Builder.getFalse()); |
| } |
| |
| bool runOnScop(Scop &CurrentScop) override { |
| S = &CurrentScop; |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| DL = &S->getRegion().getEntry()->getModule()->getDataLayout(); |
| RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); |
| |
| LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S) |
| << " | loop depth: " << S->getMaxLoopDepth() << "\n"); |
| |
| // We currently do not support functions other than intrinsics inside |
| // kernels, as code generation will need to offload function calls to the |
| // kernel. This may lead to a kernel trying to call a function on the host. |
| // This also allows us to prevent codegen from trying to take the |
| // address of an intrinsic function to send to the kernel. |
| if (containsInvalidKernelFunction(CurrentScop, |
| Architecture == GPUArch::NVPTX64)) { |
| LLVM_DEBUG( |
| dbgs() << getUniqueScopName(S) |
| << " contains function which cannot be materialised in a GPU " |
| "kernel. Bailing out.\n";); |
| return false; |
| } |
| |
| auto PPCGScop = createPPCGScop(); |
| auto PPCGProg = createPPCGProg(PPCGScop); |
| auto PPCGGen = generateGPU(PPCGScop, PPCGProg); |
| |
| if (PPCGGen->tree) { |
| generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg); |
| CurrentScop.markAsToBeSkipped(); |
| } else { |
| LLVM_DEBUG(dbgs() << getUniqueScopName(S) |
| << " has empty PPCGGen->tree. Bailing out.\n"); |
| } |
| |
| freeOptions(PPCGScop); |
| freePPCGGen(PPCGGen); |
| gpu_prog_free(PPCGProg); |
| ppcg_scop_free(PPCGScop); |
| |
| return true; |
| } |
| |
| void printScop(raw_ostream &, Scop &) const override {} |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| ScopPass::getAnalysisUsage(AU); |
| |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<RegionInfoPass>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addRequired<ScopDetectionWrapperPass>(); |
| AU.addRequired<ScopInfoRegionPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| |
| // FIXME: We do not yet add regions for the newly generated code to the |
| // region tree. |
| } |
| }; |
| } // namespace |
| |
| char PPCGCodeGeneration::ID = 1; |
| |
| Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) { |
| PPCGCodeGeneration *generator = new PPCGCodeGeneration(); |
| generator->Runtime = Runtime; |
| generator->Architecture = Arch; |
| return generator; |
| } |
| |
| INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg", |
| "Polly - Apply PPCG translation to SCOP", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DependenceInfo); |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); |
| INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg", |
| "Polly - Apply PPCG translation to SCOP", false, false) |