| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef VPX_VPX_PORTS_X86_H_ |
| #define VPX_VPX_PORTS_X86_H_ |
| #include <stdlib.h> |
| |
| #if defined(_MSC_VER) |
| #include <intrin.h> /* For __cpuidex, __rdtsc */ |
| #endif |
| |
| #include "vpx_config.h" |
| #include "vpx/vpx_integer.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| typedef enum { |
| VPX_CPU_UNKNOWN = -1, |
| VPX_CPU_AMD, |
| VPX_CPU_AMD_OLD, |
| VPX_CPU_CENTAUR, |
| VPX_CPU_CYRIX, |
| VPX_CPU_INTEL, |
| VPX_CPU_NEXGEN, |
| VPX_CPU_NSC, |
| VPX_CPU_RISE, |
| VPX_CPU_SIS, |
| VPX_CPU_TRANSMETA, |
| VPX_CPU_TRANSMETA_OLD, |
| VPX_CPU_UMC, |
| VPX_CPU_VIA, |
| |
| VPX_CPU_LAST |
| } vpx_cpu_t; |
| |
| #if defined(__GNUC__) && __GNUC__ || defined(__ANDROID__) |
| #if VPX_ARCH_X86_64 |
| #define cpuid(func, func2, ax, bx, cx, dx) \ |
| __asm__ __volatile__("cpuid \n\t" \ |
| : "=a"(ax), "=b"(bx), "=c"(cx), "=d"(dx) \ |
| : "a"(func), "c"(func2)); |
| #else |
| #define cpuid(func, func2, ax, bx, cx, dx) \ |
| __asm__ __volatile__( \ |
| "mov %%ebx, %%edi \n\t" \ |
| "cpuid \n\t" \ |
| "xchg %%edi, %%ebx \n\t" \ |
| : "=a"(ax), "=D"(bx), "=c"(cx), "=d"(dx) \ |
| : "a"(func), "c"(func2)); |
| #endif |
| #elif defined(__SUNPRO_C) || \ |
| defined(__SUNPRO_CC) /* end __GNUC__ or __ANDROID__*/ |
| #if VPX_ARCH_X86_64 |
| #define cpuid(func, func2, ax, bx, cx, dx) \ |
| asm volatile( \ |
| "xchg %rsi, %rbx \n\t" \ |
| "cpuid \n\t" \ |
| "movl %ebx, %edi \n\t" \ |
| "xchg %rsi, %rbx \n\t" \ |
| : "=a"(ax), "=D"(bx), "=c"(cx), "=d"(dx) \ |
| : "a"(func), "c"(func2)); |
| #else |
| #define cpuid(func, func2, ax, bx, cx, dx) \ |
| asm volatile( \ |
| "pushl %ebx \n\t" \ |
| "cpuid \n\t" \ |
| "movl %ebx, %edi \n\t" \ |
| "popl %ebx \n\t" \ |
| : "=a"(ax), "=D"(bx), "=c"(cx), "=d"(dx) \ |
| : "a"(func), "c"(func2)); |
| #endif |
| #else /* end __SUNPRO__ */ |
| #if VPX_ARCH_X86_64 |
| #if defined(_MSC_VER) && _MSC_VER > 1500 |
| #define cpuid(func, func2, a, b, c, d) \ |
| do { \ |
| int regs[4]; \ |
| __cpuidex(regs, func, func2); \ |
| a = regs[0]; \ |
| b = regs[1]; \ |
| c = regs[2]; \ |
| d = regs[3]; \ |
| } while (0) |
| #else |
| #define cpuid(func, func2, a, b, c, d) \ |
| do { \ |
| int regs[4]; \ |
| __cpuid(regs, func); \ |
| a = regs[0]; \ |
| b = regs[1]; \ |
| c = regs[2]; \ |
| d = regs[3]; \ |
| } while (0) |
| #endif |
| #else |
| #define cpuid(func, func2, a, b, c, d) \ |
| __asm mov eax, func __asm mov ecx, func2 __asm cpuid __asm mov a, \ |
| eax __asm mov b, ebx __asm mov c, ecx __asm mov d, edx |
| #endif |
| #endif /* end others */ |
| |
| // NaCl has no support for xgetbv or the raw opcode. |
| #if !defined(__native_client__) && (defined(__i386__) || defined(__x86_64__)) |
| static INLINE uint64_t xgetbv(void) { |
| const uint32_t ecx = 0; |
| uint32_t eax, edx; |
| // Use the raw opcode for xgetbv for compatibility with older toolchains. |
| __asm__ volatile(".byte 0x0f, 0x01, 0xd0\n" |
| : "=a"(eax), "=d"(edx) |
| : "c"(ecx)); |
| return ((uint64_t)edx << 32) | eax; |
| } |
| #elif (defined(_M_X64) || defined(_M_IX86)) && defined(_MSC_FULL_VER) && \ |
| _MSC_FULL_VER >= 160040219 // >= VS2010 SP1 |
| #include <immintrin.h> |
| #define xgetbv() _xgetbv(0) |
| #elif defined(_MSC_VER) && defined(_M_IX86) |
| static INLINE uint64_t xgetbv(void) { |
| uint32_t eax_, edx_; |
| __asm { |
| xor ecx, ecx // ecx = 0 |
| // Use the raw opcode for xgetbv for compatibility with older toolchains. |
| __asm _emit 0x0f __asm _emit 0x01 __asm _emit 0xd0 |
| mov eax_, eax |
| mov edx_, edx |
| } |
| return ((uint64_t)edx_ << 32) | eax_; |
| } |
| #else |
| #define xgetbv() 0U // no AVX for older x64 or unrecognized toolchains. |
| #endif |
| |
| #if defined(_MSC_VER) && _MSC_VER >= 1700 |
| #undef NOMINMAX |
| #define NOMINMAX |
| #ifndef WIN32_LEAN_AND_MEAN |
| #define WIN32_LEAN_AND_MEAN |
| #endif |
| #include <windows.h> |
| #if WINAPI_FAMILY_PARTITION(WINAPI_FAMILY_APP) |
| #define getenv(x) NULL |
| #endif |
| #endif |
| |
| #define HAS_MMX 0x001 |
| #define HAS_SSE 0x002 |
| #define HAS_SSE2 0x004 |
| #define HAS_SSE3 0x008 |
| #define HAS_SSSE3 0x010 |
| #define HAS_SSE4_1 0x020 |
| #define HAS_AVX 0x040 |
| #define HAS_AVX2 0x080 |
| #define HAS_AVX512 0x100 |
| #ifndef BIT |
| #define BIT(n) (1u << (n)) |
| #endif |
| |
| static INLINE int x86_simd_caps(void) { |
| unsigned int flags = 0; |
| unsigned int mask = ~0u; |
| unsigned int max_cpuid_val, reg_eax, reg_ebx, reg_ecx, reg_edx; |
| char *env; |
| (void)reg_ebx; |
| |
| /* See if the CPU capabilities are being overridden by the environment */ |
| env = getenv("VPX_SIMD_CAPS"); |
| |
| if (env && *env) return (int)strtol(env, NULL, 0); |
| |
| env = getenv("VPX_SIMD_CAPS_MASK"); |
| |
| if (env && *env) mask = (unsigned int)strtoul(env, NULL, 0); |
| |
| /* Ensure that the CPUID instruction supports extended features */ |
| cpuid(0, 0, max_cpuid_val, reg_ebx, reg_ecx, reg_edx); |
| |
| if (max_cpuid_val < 1) return 0; |
| |
| /* Get the standard feature flags */ |
| cpuid(1, 0, reg_eax, reg_ebx, reg_ecx, reg_edx); |
| |
| if (reg_edx & BIT(23)) flags |= HAS_MMX; |
| |
| if (reg_edx & BIT(25)) flags |= HAS_SSE; /* aka xmm */ |
| |
| if (reg_edx & BIT(26)) flags |= HAS_SSE2; /* aka wmt */ |
| |
| if (reg_ecx & BIT(0)) flags |= HAS_SSE3; |
| |
| if (reg_ecx & BIT(9)) flags |= HAS_SSSE3; |
| |
| if (reg_ecx & BIT(19)) flags |= HAS_SSE4_1; |
| |
| // bits 27 (OSXSAVE) & 28 (256-bit AVX) |
| if ((reg_ecx & (BIT(27) | BIT(28))) == (BIT(27) | BIT(28))) { |
| // Check for OS-support of YMM state. Necessary for AVX and AVX2. |
| if ((xgetbv() & 0x6) == 0x6) { |
| flags |= HAS_AVX; |
| |
| if (max_cpuid_val >= 7) { |
| /* Get the leaf 7 feature flags. Needed to check for AVX2 support */ |
| cpuid(7, 0, reg_eax, reg_ebx, reg_ecx, reg_edx); |
| |
| if (reg_ebx & BIT(5)) flags |= HAS_AVX2; |
| |
| // bits 16 (AVX-512F) & 17 (AVX-512DQ) & 28 (AVX-512CD) & |
| // 30 (AVX-512BW) & 32 (AVX-512VL) |
| if ((reg_ebx & (BIT(16) | BIT(17) | BIT(28) | BIT(30) | BIT(31))) == |
| (BIT(16) | BIT(17) | BIT(28) | BIT(30) | BIT(31))) { |
| // Check for OS-support of ZMM and YMM state. Necessary for AVX-512. |
| if ((xgetbv() & 0xe6) == 0xe6) flags |= HAS_AVX512; |
| } |
| } |
| } |
| } |
| |
| return flags & mask; |
| } |
| |
| // Fine-Grain Measurement Functions |
| // |
| // If you are timing a small region of code, access the timestamp counter |
| // (TSC) via: |
| // |
| // unsigned int start = x86_tsc_start(); |
| // ... |
| // unsigned int end = x86_tsc_end(); |
| // unsigned int diff = end - start; |
| // |
| // The start/end functions introduce a few more instructions than using |
| // x86_readtsc directly, but prevent the CPU's out-of-order execution from |
| // affecting the measurement (by having earlier/later instructions be evaluated |
| // in the time interval). See the white paper, "How to Benchmark Code |
| // Execution Times on IntelĀ® IA-32 and IA-64 Instruction Set Architectures" by |
| // Gabriele Paoloni for more information. |
| // |
| // If you are timing a large function (CPU time > a couple of seconds), use |
| // x86_readtsc64 to read the timestamp counter in a 64-bit integer. The |
| // out-of-order leakage that can occur is minimal compared to total runtime. |
| static INLINE unsigned int x86_readtsc(void) { |
| #if defined(__GNUC__) && __GNUC__ |
| unsigned int tsc; |
| __asm__ __volatile__("rdtsc\n\t" : "=a"(tsc) :); |
| return tsc; |
| #elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) |
| unsigned int tsc; |
| asm volatile("rdtsc\n\t" : "=a"(tsc) :); |
| return tsc; |
| #else |
| #if VPX_ARCH_X86_64 |
| return (unsigned int)__rdtsc(); |
| #else |
| __asm rdtsc; |
| #endif |
| #endif |
| } |
| // 64-bit CPU cycle counter |
| static INLINE uint64_t x86_readtsc64(void) { |
| #if defined(__GNUC__) && __GNUC__ |
| uint32_t hi, lo; |
| __asm__ __volatile__("rdtsc" : "=a"(lo), "=d"(hi)); |
| return ((uint64_t)hi << 32) | lo; |
| #elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) |
| uint_t hi, lo; |
| asm volatile("rdtsc\n\t" : "=a"(lo), "=d"(hi)); |
| return ((uint64_t)hi << 32) | lo; |
| #else |
| #if VPX_ARCH_X86_64 |
| return (uint64_t)__rdtsc(); |
| #else |
| __asm rdtsc; |
| #endif |
| #endif |
| } |
| |
| // 32-bit CPU cycle counter with a partial fence against out-of-order execution. |
| static INLINE unsigned int x86_readtscp(void) { |
| #if defined(__GNUC__) && __GNUC__ |
| unsigned int tscp; |
| __asm__ __volatile__("rdtscp\n\t" : "=a"(tscp) :); |
| return tscp; |
| #elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) |
| unsigned int tscp; |
| asm volatile("rdtscp\n\t" : "=a"(tscp) :); |
| return tscp; |
| #elif defined(_MSC_VER) |
| unsigned int ui; |
| return (unsigned int)__rdtscp(&ui); |
| #else |
| #if VPX_ARCH_X86_64 |
| return (unsigned int)__rdtscp(); |
| #else |
| __asm rdtscp; |
| #endif |
| #endif |
| } |
| |
| static INLINE unsigned int x86_tsc_start(void) { |
| unsigned int reg_eax, reg_ebx, reg_ecx, reg_edx; |
| cpuid(0, 0, reg_eax, reg_ebx, reg_ecx, reg_edx); |
| return x86_readtsc(); |
| } |
| |
| static INLINE unsigned int x86_tsc_end(void) { |
| uint32_t v = x86_readtscp(); |
| unsigned int reg_eax, reg_ebx, reg_ecx, reg_edx; |
| cpuid(0, 0, reg_eax, reg_ebx, reg_ecx, reg_edx); |
| return v; |
| } |
| |
| #if defined(__GNUC__) && __GNUC__ |
| #define x86_pause_hint() __asm__ __volatile__("pause \n\t") |
| #elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) |
| #define x86_pause_hint() asm volatile("pause \n\t") |
| #else |
| #if VPX_ARCH_X86_64 |
| #define x86_pause_hint() _mm_pause(); |
| #else |
| #define x86_pause_hint() __asm pause |
| #endif |
| #endif |
| |
| #if defined(__GNUC__) && __GNUC__ |
| static void x87_set_control_word(unsigned short mode) { |
| __asm__ __volatile__("fldcw %0" : : "m"(*&mode)); |
| } |
| static unsigned short x87_get_control_word(void) { |
| unsigned short mode; |
| __asm__ __volatile__("fstcw %0\n\t" : "=m"(*&mode) :); |
| return mode; |
| } |
| #elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) |
| static void x87_set_control_word(unsigned short mode) { |
| asm volatile("fldcw %0" : : "m"(*&mode)); |
| } |
| static unsigned short x87_get_control_word(void) { |
| unsigned short mode; |
| asm volatile("fstcw %0\n\t" : "=m"(*&mode) :); |
| return mode; |
| } |
| #elif VPX_ARCH_X86_64 |
| /* No fldcw intrinsics on Windows x64, punt to external asm */ |
| extern void vpx_winx64_fldcw(unsigned short mode); |
| extern unsigned short vpx_winx64_fstcw(void); |
| #define x87_set_control_word vpx_winx64_fldcw |
| #define x87_get_control_word vpx_winx64_fstcw |
| #else |
| static void x87_set_control_word(unsigned short mode) { |
| __asm { fldcw mode } |
| } |
| static unsigned short x87_get_control_word(void) { |
| unsigned short mode; |
| __asm { fstcw mode } |
| return mode; |
| } |
| #endif |
| |
| static INLINE unsigned int x87_set_double_precision(void) { |
| unsigned int mode = x87_get_control_word(); |
| // Intel 64 and IA-32 Architectures Developer's Manual: Vol. 1 |
| // https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf |
| // 8.1.5.2 Precision Control Field |
| // Bits 8 and 9 (0x300) of the x87 FPU Control Word ("Precision Control") |
| // determine the number of bits used in floating point calculations. To match |
| // later SSE instructions restrict x87 operations to Double Precision (0x200). |
| // Precision PC Field |
| // Single Precision (24-Bits) 00B |
| // Reserved 01B |
| // Double Precision (53-Bits) 10B |
| // Extended Precision (64-Bits) 11B |
| x87_set_control_word((mode & ~0x300) | 0x200); |
| return mode; |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // VPX_VPX_PORTS_X86_H_ |