| // Copyright (C) 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| |
| // file: rbbi_cache.cpp |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_BREAK_ITERATION |
| |
| #include "unicode/ubrk.h" |
| #include "unicode/rbbi.h" |
| |
| #include "rbbi_cache.h" |
| |
| #include "brkeng.h" |
| #include "cmemory.h" |
| #include "rbbidata.h" |
| #include "rbbirb.h" |
| #include "uassert.h" |
| #include "uvectr32.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| /* |
| * DictionaryCache implementation |
| */ |
| |
| RuleBasedBreakIterator::DictionaryCache::DictionaryCache(RuleBasedBreakIterator *bi, UErrorCode &status) : |
| fBI(bi), fBreaks(status), fPositionInCache(-1), |
| fStart(0), fLimit(0), fFirstRuleStatusIndex(0), fOtherRuleStatusIndex(0) { |
| } |
| |
| RuleBasedBreakIterator::DictionaryCache::~DictionaryCache() { |
| } |
| |
| void RuleBasedBreakIterator::DictionaryCache::reset() { |
| fPositionInCache = -1; |
| fStart = 0; |
| fLimit = 0; |
| fFirstRuleStatusIndex = 0; |
| fOtherRuleStatusIndex = 0; |
| fBreaks.removeAllElements(); |
| } |
| |
| UBool RuleBasedBreakIterator::DictionaryCache::following(int32_t fromPos, int32_t *result, int32_t *statusIndex) { |
| if (fromPos >= fLimit || fromPos < fStart) { |
| fPositionInCache = -1; |
| return FALSE; |
| } |
| |
| // Sequential iteration, move from previous boundary to the following |
| |
| int32_t r = 0; |
| if (fPositionInCache >= 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) { |
| ++fPositionInCache; |
| if (fPositionInCache >= fBreaks.size()) { |
| fPositionInCache = -1; |
| return FALSE; |
| } |
| r = fBreaks.elementAti(fPositionInCache); |
| U_ASSERT(r > fromPos); |
| *result = r; |
| *statusIndex = fOtherRuleStatusIndex; |
| return TRUE; |
| } |
| |
| // Random indexing. Linear search for the boundary following the given position. |
| |
| for (fPositionInCache = 0; fPositionInCache < fBreaks.size(); ++fPositionInCache) { |
| r= fBreaks.elementAti(fPositionInCache); |
| if (r > fromPos) { |
| *result = r; |
| *statusIndex = fOtherRuleStatusIndex; |
| return TRUE; |
| } |
| } |
| UPRV_UNREACHABLE; |
| } |
| |
| |
| UBool RuleBasedBreakIterator::DictionaryCache::preceding(int32_t fromPos, int32_t *result, int32_t *statusIndex) { |
| if (fromPos <= fStart || fromPos > fLimit) { |
| fPositionInCache = -1; |
| return FALSE; |
| } |
| |
| if (fromPos == fLimit) { |
| fPositionInCache = fBreaks.size() - 1; |
| if (fPositionInCache >= 0) { |
| U_ASSERT(fBreaks.elementAti(fPositionInCache) == fromPos); |
| } |
| } |
| |
| int32_t r; |
| if (fPositionInCache > 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) { |
| --fPositionInCache; |
| r = fBreaks.elementAti(fPositionInCache); |
| U_ASSERT(r < fromPos); |
| *result = r; |
| *statusIndex = ( r== fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex; |
| return TRUE; |
| } |
| |
| if (fPositionInCache == 0) { |
| fPositionInCache = -1; |
| return FALSE; |
| } |
| |
| for (fPositionInCache = fBreaks.size()-1; fPositionInCache >= 0; --fPositionInCache) { |
| r = fBreaks.elementAti(fPositionInCache); |
| if (r < fromPos) { |
| *result = r; |
| *statusIndex = ( r == fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex; |
| return TRUE; |
| } |
| } |
| UPRV_UNREACHABLE; |
| } |
| |
| void RuleBasedBreakIterator::DictionaryCache::populateDictionary(int32_t startPos, int32_t endPos, |
| int32_t firstRuleStatus, int32_t otherRuleStatus) { |
| if ((endPos - startPos) <= 1) { |
| return; |
| } |
| |
| reset(); |
| fFirstRuleStatusIndex = firstRuleStatus; |
| fOtherRuleStatusIndex = otherRuleStatus; |
| |
| int32_t rangeStart = startPos; |
| int32_t rangeEnd = endPos; |
| |
| uint16_t category; |
| int32_t current; |
| UErrorCode status = U_ZERO_ERROR; |
| int32_t foundBreakCount = 0; |
| UText *text = &fBI->fText; |
| |
| // Loop through the text, looking for ranges of dictionary characters. |
| // For each span, find the appropriate break engine, and ask it to find |
| // any breaks within the span. |
| |
| utext_setNativeIndex(text, rangeStart); |
| UChar32 c = utext_current32(text); |
| category = ucptrie_get(fBI->fData->fTrie, c); |
| uint32_t dictStart = fBI->fData->fForwardTable->fDictCategoriesStart; |
| |
| while(U_SUCCESS(status)) { |
| while((current = (int32_t)UTEXT_GETNATIVEINDEX(text)) < rangeEnd |
| && (category < dictStart)) { |
| utext_next32(text); // TODO: cleaner loop structure. |
| c = utext_current32(text); |
| category = ucptrie_get(fBI->fData->fTrie, c); |
| } |
| if (current >= rangeEnd) { |
| break; |
| } |
| |
| // We now have a dictionary character. Get the appropriate language object |
| // to deal with it. |
| const LanguageBreakEngine *lbe = fBI->getLanguageBreakEngine(c); |
| |
| // Ask the language object if there are any breaks. It will add them to the cache and |
| // leave the text pointer on the other side of its range, ready to search for the next one. |
| if (lbe != NULL) { |
| foundBreakCount += lbe->findBreaks(text, rangeStart, rangeEnd, fBreaks); |
| } |
| |
| // Reload the loop variables for the next go-round |
| c = utext_current32(text); |
| category = ucptrie_get(fBI->fData->fTrie, c); |
| } |
| |
| // If we found breaks, ensure that the first and last entries are |
| // the original starting and ending position. And initialize the |
| // cache iteration position to the first entry. |
| |
| // printf("foundBreakCount = %d\n", foundBreakCount); |
| if (foundBreakCount > 0) { |
| U_ASSERT(foundBreakCount == fBreaks.size()); |
| if (startPos < fBreaks.elementAti(0)) { |
| // The dictionary did not place a boundary at the start of the segment of text. |
| // Add one now. This should not commonly happen, but it would be easy for interactions |
| // of the rules for dictionary segments and the break engine implementations to |
| // inadvertently cause it. Cover it here, just in case. |
| fBreaks.insertElementAt(startPos, 0, status); |
| } |
| if (endPos > fBreaks.peeki()) { |
| fBreaks.push(endPos, status); |
| } |
| fPositionInCache = 0; |
| // Note: Dictionary matching may extend beyond the original limit. |
| fStart = fBreaks.elementAti(0); |
| fLimit = fBreaks.peeki(); |
| } else { |
| // there were no language-based breaks, even though the segment contained |
| // dictionary characters. Subsequent attempts to fetch boundaries from the dictionary cache |
| // for this range will fail, and the calling code will fall back to the rule based boundaries. |
| } |
| } |
| |
| |
| /* |
| * BreakCache implemetation |
| */ |
| |
| RuleBasedBreakIterator::BreakCache::BreakCache(RuleBasedBreakIterator *bi, UErrorCode &status) : |
| fBI(bi), fSideBuffer(status) { |
| reset(); |
| } |
| |
| |
| RuleBasedBreakIterator::BreakCache::~BreakCache() { |
| } |
| |
| |
| void RuleBasedBreakIterator::BreakCache::reset(int32_t pos, int32_t ruleStatus) { |
| fStartBufIdx = 0; |
| fEndBufIdx = 0; |
| fTextIdx = pos; |
| fBufIdx = 0; |
| fBoundaries[0] = pos; |
| fStatuses[0] = (uint16_t)ruleStatus; |
| } |
| |
| |
| int32_t RuleBasedBreakIterator::BreakCache::current() { |
| fBI->fPosition = fTextIdx; |
| fBI->fRuleStatusIndex = fStatuses[fBufIdx]; |
| fBI->fDone = FALSE; |
| return fTextIdx; |
| } |
| |
| |
| void RuleBasedBreakIterator::BreakCache::following(int32_t startPos, UErrorCode &status) { |
| if (U_FAILURE(status)) { |
| return; |
| } |
| if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) { |
| // startPos is in the cache. Do a next() from that position. |
| // TODO: an awkward set of interactions with bi->fDone |
| // seek() does not clear it; it can't because of interactions with populateNear(). |
| // next() does not clear it in the fast-path case, where everything matters. Maybe it should. |
| // So clear it here, for the case where seek() succeeded on an iterator that had previously run off the end. |
| fBI->fDone = false; |
| next(); |
| } |
| return; |
| } |
| |
| |
| void RuleBasedBreakIterator::BreakCache::preceding(int32_t startPos, UErrorCode &status) { |
| if (U_FAILURE(status)) { |
| return; |
| } |
| if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) { |
| if (startPos == fTextIdx) { |
| previous(status); |
| } else { |
| // seek() leaves the BreakCache positioned at the preceding boundary |
| // if the requested position is between two bounaries. |
| // current() pushes the BreakCache position out to the BreakIterator itself. |
| U_ASSERT(startPos > fTextIdx); |
| current(); |
| } |
| } |
| return; |
| } |
| |
| |
| /* |
| * Out-of-line code for BreakCache::next(). |
| * Cache does not already contain the boundary |
| */ |
| void RuleBasedBreakIterator::BreakCache::nextOL() { |
| fBI->fDone = !populateFollowing(); |
| fBI->fPosition = fTextIdx; |
| fBI->fRuleStatusIndex = fStatuses[fBufIdx]; |
| return; |
| } |
| |
| |
| void RuleBasedBreakIterator::BreakCache::previous(UErrorCode &status) { |
| if (U_FAILURE(status)) { |
| return; |
| } |
| int32_t initialBufIdx = fBufIdx; |
| if (fBufIdx == fStartBufIdx) { |
| // At start of cache. Prepend to it. |
| populatePreceding(status); |
| } else { |
| // Cache already holds the next boundary |
| fBufIdx = modChunkSize(fBufIdx - 1); |
| fTextIdx = fBoundaries[fBufIdx]; |
| } |
| fBI->fDone = (fBufIdx == initialBufIdx); |
| fBI->fPosition = fTextIdx; |
| fBI->fRuleStatusIndex = fStatuses[fBufIdx]; |
| return; |
| } |
| |
| |
| UBool RuleBasedBreakIterator::BreakCache::seek(int32_t pos) { |
| if (pos < fBoundaries[fStartBufIdx] || pos > fBoundaries[fEndBufIdx]) { |
| return FALSE; |
| } |
| if (pos == fBoundaries[fStartBufIdx]) { |
| // Common case: seek(0), from BreakIterator::first() |
| fBufIdx = fStartBufIdx; |
| fTextIdx = fBoundaries[fBufIdx]; |
| return TRUE; |
| } |
| if (pos == fBoundaries[fEndBufIdx]) { |
| fBufIdx = fEndBufIdx; |
| fTextIdx = fBoundaries[fBufIdx]; |
| return TRUE; |
| } |
| |
| int32_t min = fStartBufIdx; |
| int32_t max = fEndBufIdx; |
| while (min != max) { |
| int32_t probe = (min + max + (min>max ? CACHE_SIZE : 0)) / 2; |
| probe = modChunkSize(probe); |
| if (fBoundaries[probe] > pos) { |
| max = probe; |
| } else { |
| min = modChunkSize(probe + 1); |
| } |
| } |
| U_ASSERT(fBoundaries[max] > pos); |
| fBufIdx = modChunkSize(max - 1); |
| fTextIdx = fBoundaries[fBufIdx]; |
| U_ASSERT(fTextIdx <= pos); |
| return TRUE; |
| } |
| |
| |
| UBool RuleBasedBreakIterator::BreakCache::populateNear(int32_t position, UErrorCode &status) { |
| if (U_FAILURE(status)) { |
| return FALSE; |
| } |
| U_ASSERT(position < fBoundaries[fStartBufIdx] || position > fBoundaries[fEndBufIdx]); |
| |
| // Find a boundary somewhere in the vicinity of the requested position. |
| // Depending on the safe rules and the text data, it could be either before, at, or after |
| // the requested position. |
| |
| |
| // If the requested position is not near already cached positions, clear the existing cache, |
| // find a near-by boundary and begin new cache contents there. |
| |
| if ((position < fBoundaries[fStartBufIdx] - 15) || position > (fBoundaries[fEndBufIdx] + 15)) { |
| int32_t aBoundary = 0; |
| int32_t ruleStatusIndex = 0; |
| if (position > 20) { |
| int32_t backupPos = fBI->handleSafePrevious(position); |
| |
| if (backupPos > 0) { |
| // Advance to the boundary following the backup position. |
| // There is a complication: the safe reverse rules identify pairs of code points |
| // that are safe. If advancing from the safe point moves forwards by less than |
| // two code points, we need to advance one more time to ensure that the boundary |
| // is good, including a correct rules status value. |
| // |
| fBI->fPosition = backupPos; |
| aBoundary = fBI->handleNext(); |
| if (aBoundary <= backupPos + 4) { |
| // +4 is a quick test for possibly having advanced only one codepoint. |
| // Four being the length of the longest potential code point, a supplementary in UTF-8 |
| utext_setNativeIndex(&fBI->fText, aBoundary); |
| if (backupPos == utext_getPreviousNativeIndex(&fBI->fText)) { |
| // The initial handleNext() only advanced by a single code point. Go again. |
| aBoundary = fBI->handleNext(); // Safe rules identify safe pairs. |
| } |
| } |
| ruleStatusIndex = fBI->fRuleStatusIndex; |
| } |
| } |
| reset(aBoundary, ruleStatusIndex); // Reset cache to hold aBoundary as a single starting point. |
| } |
| |
| // Fill in boundaries between existing cache content and the new requested position. |
| |
| if (fBoundaries[fEndBufIdx] < position) { |
| // The last position in the cache precedes the requested position. |
| // Add following position(s) to the cache. |
| while (fBoundaries[fEndBufIdx] < position) { |
| if (!populateFollowing()) { |
| UPRV_UNREACHABLE; |
| } |
| } |
| fBufIdx = fEndBufIdx; // Set iterator position to the end of the buffer. |
| fTextIdx = fBoundaries[fBufIdx]; // Required because populateFollowing may add extra boundaries. |
| while (fTextIdx > position) { // Move backwards to a position at or preceding the requested pos. |
| previous(status); |
| } |
| return true; |
| } |
| |
| if (fBoundaries[fStartBufIdx] > position) { |
| // The first position in the cache is beyond the requested position. |
| // back up more until we get a boundary <= the requested position. |
| while (fBoundaries[fStartBufIdx] > position) { |
| populatePreceding(status); |
| } |
| fBufIdx = fStartBufIdx; // Set iterator position to the start of the buffer. |
| fTextIdx = fBoundaries[fBufIdx]; // Required because populatePreceding may add extra boundaries. |
| while (fTextIdx < position) { // Move forwards to a position at or following the requested pos. |
| next(); |
| } |
| if (fTextIdx > position) { |
| // If position is not itself a boundary, the next() loop above will overshoot. |
| // Back up one, leaving cache position at the boundary preceding the requested position. |
| previous(status); |
| } |
| return true; |
| } |
| |
| U_ASSERT(fTextIdx == position); |
| return true; |
| } |
| |
| |
| |
| UBool RuleBasedBreakIterator::BreakCache::populateFollowing() { |
| int32_t fromPosition = fBoundaries[fEndBufIdx]; |
| int32_t fromRuleStatusIdx = fStatuses[fEndBufIdx]; |
| int32_t pos = 0; |
| int32_t ruleStatusIdx = 0; |
| |
| if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) { |
| addFollowing(pos, ruleStatusIdx, UpdateCachePosition); |
| return TRUE; |
| } |
| |
| fBI->fPosition = fromPosition; |
| pos = fBI->handleNext(); |
| if (pos == UBRK_DONE) { |
| return FALSE; |
| } |
| |
| ruleStatusIdx = fBI->fRuleStatusIndex; |
| if (fBI->fDictionaryCharCount > 0) { |
| // The text segment obtained from the rules includes dictionary characters. |
| // Subdivide it, with subdivided results going into the dictionary cache. |
| fBI->fDictionaryCache->populateDictionary(fromPosition, pos, fromRuleStatusIdx, ruleStatusIdx); |
| if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) { |
| addFollowing(pos, ruleStatusIdx, UpdateCachePosition); |
| return TRUE; |
| // TODO: may want to move a sizable chunk of dictionary cache to break cache at this point. |
| // But be careful with interactions with populateNear(). |
| } |
| } |
| |
| // Rule based segment did not include dictionary characters. |
| // Or, it did contain dictionary chars, but the dictionary segmenter didn't handle them, |
| // meaning that we didn't take the return, above. |
| // Add its end point to the cache. |
| addFollowing(pos, ruleStatusIdx, UpdateCachePosition); |
| |
| // Add several non-dictionary boundaries at this point, to optimize straight forward iteration. |
| // (subsequent calls to BreakIterator::next() will take the fast path, getting cached results. |
| // |
| for (int count=0; count<6; ++count) { |
| pos = fBI->handleNext(); |
| if (pos == UBRK_DONE || fBI->fDictionaryCharCount > 0) { |
| break; |
| } |
| addFollowing(pos, fBI->fRuleStatusIndex, RetainCachePosition); |
| } |
| |
| return TRUE; |
| } |
| |
| |
| UBool RuleBasedBreakIterator::BreakCache::populatePreceding(UErrorCode &status) { |
| if (U_FAILURE(status)) { |
| return FALSE; |
| } |
| |
| int32_t fromPosition = fBoundaries[fStartBufIdx]; |
| if (fromPosition == 0) { |
| return FALSE; |
| } |
| |
| int32_t position = 0; |
| int32_t positionStatusIdx = 0; |
| |
| if (fBI->fDictionaryCache->preceding(fromPosition, &position, &positionStatusIdx)) { |
| addPreceding(position, positionStatusIdx, UpdateCachePosition); |
| return TRUE; |
| } |
| |
| int32_t backupPosition = fromPosition; |
| |
| // Find a boundary somewhere preceding the first already-cached boundary |
| do { |
| backupPosition = backupPosition - 30; |
| if (backupPosition <= 0) { |
| backupPosition = 0; |
| } else { |
| backupPosition = fBI->handleSafePrevious(backupPosition); |
| } |
| if (backupPosition == UBRK_DONE || backupPosition == 0) { |
| position = 0; |
| positionStatusIdx = 0; |
| } else { |
| // Advance to the boundary following the backup position. |
| // There is a complication: the safe reverse rules identify pairs of code points |
| // that are safe. If advancing from the safe point moves forwards by less than |
| // two code points, we need to advance one more time to ensure that the boundary |
| // is good, including a correct rules status value. |
| // |
| fBI->fPosition = backupPosition; |
| position = fBI->handleNext(); |
| if (position <= backupPosition + 4) { |
| // +4 is a quick test for possibly having advanced only one codepoint. |
| // Four being the length of the longest potential code point, a supplementary in UTF-8 |
| utext_setNativeIndex(&fBI->fText, position); |
| if (backupPosition == utext_getPreviousNativeIndex(&fBI->fText)) { |
| // The initial handleNext() only advanced by a single code point. Go again. |
| position = fBI->handleNext(); // Safe rules identify safe pairs. |
| } |
| } |
| positionStatusIdx = fBI->fRuleStatusIndex; |
| } |
| } while (position >= fromPosition); |
| |
| // Find boundaries between the one we just located and the first already-cached boundary |
| // Put them in a side buffer, because we don't yet know where they will fall in the circular cache buffer.. |
| |
| fSideBuffer.removeAllElements(); |
| fSideBuffer.addElement(position, status); |
| fSideBuffer.addElement(positionStatusIdx, status); |
| |
| do { |
| int32_t prevPosition = fBI->fPosition = position; |
| int32_t prevStatusIdx = positionStatusIdx; |
| position = fBI->handleNext(); |
| positionStatusIdx = fBI->fRuleStatusIndex; |
| if (position == UBRK_DONE) { |
| break; |
| } |
| |
| UBool segmentHandledByDictionary = FALSE; |
| if (fBI->fDictionaryCharCount != 0) { |
| // Segment from the rules includes dictionary characters. |
| // Subdivide it, with subdivided results going into the dictionary cache. |
| int32_t dictSegEndPosition = position; |
| fBI->fDictionaryCache->populateDictionary(prevPosition, dictSegEndPosition, prevStatusIdx, positionStatusIdx); |
| while (fBI->fDictionaryCache->following(prevPosition, &position, &positionStatusIdx)) { |
| segmentHandledByDictionary = true; |
| U_ASSERT(position > prevPosition); |
| if (position >= fromPosition) { |
| break; |
| } |
| U_ASSERT(position <= dictSegEndPosition); |
| fSideBuffer.addElement(position, status); |
| fSideBuffer.addElement(positionStatusIdx, status); |
| prevPosition = position; |
| } |
| U_ASSERT(position==dictSegEndPosition || position>=fromPosition); |
| } |
| |
| if (!segmentHandledByDictionary && position < fromPosition) { |
| fSideBuffer.addElement(position, status); |
| fSideBuffer.addElement(positionStatusIdx, status); |
| } |
| } while (position < fromPosition); |
| |
| // Move boundaries from the side buffer to the main circular buffer. |
| UBool success = FALSE; |
| if (!fSideBuffer.isEmpty()) { |
| positionStatusIdx = fSideBuffer.popi(); |
| position = fSideBuffer.popi(); |
| addPreceding(position, positionStatusIdx, UpdateCachePosition); |
| success = TRUE; |
| } |
| |
| while (!fSideBuffer.isEmpty()) { |
| positionStatusIdx = fSideBuffer.popi(); |
| position = fSideBuffer.popi(); |
| if (!addPreceding(position, positionStatusIdx, RetainCachePosition)) { |
| // No space in circular buffer to hold a new preceding result while |
| // also retaining the current cache (iteration) position. |
| // Bailing out is safe; the cache will refill again if needed. |
| break; |
| } |
| } |
| |
| return success; |
| } |
| |
| |
| void RuleBasedBreakIterator::BreakCache::addFollowing(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) { |
| U_ASSERT(position > fBoundaries[fEndBufIdx]); |
| U_ASSERT(ruleStatusIdx <= UINT16_MAX); |
| int32_t nextIdx = modChunkSize(fEndBufIdx + 1); |
| if (nextIdx == fStartBufIdx) { |
| fStartBufIdx = modChunkSize(fStartBufIdx + 6); // TODO: experiment. Probably revert to 1. |
| } |
| fBoundaries[nextIdx] = position; |
| fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx); |
| fEndBufIdx = nextIdx; |
| if (update == UpdateCachePosition) { |
| // Set current position to the newly added boundary. |
| fBufIdx = nextIdx; |
| fTextIdx = position; |
| } else { |
| // Retaining the original cache position. |
| // Check if the added boundary wraps around the buffer, and would over-write the original position. |
| // It's the responsibility of callers of this function to not add too many. |
| U_ASSERT(nextIdx != fBufIdx); |
| } |
| } |
| |
| bool RuleBasedBreakIterator::BreakCache::addPreceding(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) { |
| U_ASSERT(position < fBoundaries[fStartBufIdx]); |
| U_ASSERT(ruleStatusIdx <= UINT16_MAX); |
| int32_t nextIdx = modChunkSize(fStartBufIdx - 1); |
| if (nextIdx == fEndBufIdx) { |
| if (fBufIdx == fEndBufIdx && update == RetainCachePosition) { |
| // Failure. The insertion of the new boundary would claim the buffer position that is the |
| // current iteration position. And we also want to retain the current iteration position. |
| // (The buffer is already completely full of entries that precede the iteration position.) |
| return false; |
| } |
| fEndBufIdx = modChunkSize(fEndBufIdx - 1); |
| } |
| fBoundaries[nextIdx] = position; |
| fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx); |
| fStartBufIdx = nextIdx; |
| if (update == UpdateCachePosition) { |
| fBufIdx = nextIdx; |
| fTextIdx = position; |
| } |
| return true; |
| } |
| |
| |
| void RuleBasedBreakIterator::BreakCache::dumpCache() { |
| #ifdef RBBI_DEBUG |
| RBBIDebugPrintf("fTextIdx:%d fBufIdx:%d\n", fTextIdx, fBufIdx); |
| for (int32_t i=fStartBufIdx; ; i=modChunkSize(i+1)) { |
| RBBIDebugPrintf("%d %d\n", i, fBoundaries[i]); |
| if (i == fEndBufIdx) { |
| break; |
| } |
| } |
| #endif |
| } |
| |
| U_NAMESPACE_END |
| |
| #endif // #if !UCONFIG_NO_BREAK_ITERATION |