| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TypeLocBuilder.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/CommentDiagnostic.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex |
| #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
| #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex |
| #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() |
| #include "clang/Sema/CXXFieldCollector.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/DelayedDiagnostic.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Template.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Triple.h" |
| #include <algorithm> |
| #include <cstring> |
| #include <functional> |
| |
| using namespace clang; |
| using namespace sema; |
| |
| Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { |
| if (OwnedType) { |
| Decl *Group[2] = { OwnedType, Ptr }; |
| return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); |
| } |
| |
| return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); |
| } |
| |
| namespace { |
| |
| class TypeNameValidatorCCC : public CorrectionCandidateCallback { |
| public: |
| TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, |
| bool AllowTemplates = false, |
| bool AllowNonTemplates = true) |
| : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), |
| AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { |
| WantExpressionKeywords = false; |
| WantCXXNamedCasts = false; |
| WantRemainingKeywords = false; |
| } |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| if (NamedDecl *ND = candidate.getCorrectionDecl()) { |
| if (!AllowInvalidDecl && ND->isInvalidDecl()) |
| return false; |
| |
| if (getAsTypeTemplateDecl(ND)) |
| return AllowTemplates; |
| |
| bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); |
| if (!IsType) |
| return false; |
| |
| if (AllowNonTemplates) |
| return true; |
| |
| // An injected-class-name of a class template (specialization) is valid |
| // as a template or as a non-template. |
| if (AllowTemplates) { |
| auto *RD = dyn_cast<CXXRecordDecl>(ND); |
| if (!RD || !RD->isInjectedClassName()) |
| return false; |
| RD = cast<CXXRecordDecl>(RD->getDeclContext()); |
| return RD->getDescribedClassTemplate() || |
| isa<ClassTemplateSpecializationDecl>(RD); |
| } |
| |
| return false; |
| } |
| |
| return !WantClassName && candidate.isKeyword(); |
| } |
| |
| private: |
| bool AllowInvalidDecl; |
| bool WantClassName; |
| bool AllowTemplates; |
| bool AllowNonTemplates; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Determine whether the token kind starts a simple-type-specifier. |
| bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { |
| switch (Kind) { |
| // FIXME: Take into account the current language when deciding whether a |
| // token kind is a valid type specifier |
| case tok::kw_short: |
| case tok::kw_long: |
| case tok::kw___int64: |
| case tok::kw___int128: |
| case tok::kw_signed: |
| case tok::kw_unsigned: |
| case tok::kw_void: |
| case tok::kw_char: |
| case tok::kw_int: |
| case tok::kw_half: |
| case tok::kw_float: |
| case tok::kw_double: |
| case tok::kw__Float16: |
| case tok::kw___float128: |
| case tok::kw_wchar_t: |
| case tok::kw_bool: |
| case tok::kw___underlying_type: |
| case tok::kw___auto_type: |
| return true; |
| |
| case tok::annot_typename: |
| case tok::kw_char16_t: |
| case tok::kw_char32_t: |
| case tok::kw_typeof: |
| case tok::annot_decltype: |
| case tok::kw_decltype: |
| return getLangOpts().CPlusPlus; |
| |
| case tok::kw_char8_t: |
| return getLangOpts().Char8; |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| namespace { |
| enum class UnqualifiedTypeNameLookupResult { |
| NotFound, |
| FoundNonType, |
| FoundType |
| }; |
| } // end anonymous namespace |
| |
| /// Tries to perform unqualified lookup of the type decls in bases for |
| /// dependent class. |
| /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a |
| /// type decl, \a FoundType if only type decls are found. |
| static UnqualifiedTypeNameLookupResult |
| lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, |
| SourceLocation NameLoc, |
| const CXXRecordDecl *RD) { |
| if (!RD->hasDefinition()) |
| return UnqualifiedTypeNameLookupResult::NotFound; |
| // Look for type decls in base classes. |
| UnqualifiedTypeNameLookupResult FoundTypeDecl = |
| UnqualifiedTypeNameLookupResult::NotFound; |
| for (const auto &Base : RD->bases()) { |
| const CXXRecordDecl *BaseRD = nullptr; |
| if (auto *BaseTT = Base.getType()->getAs<TagType>()) |
| BaseRD = BaseTT->getAsCXXRecordDecl(); |
| else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { |
| // Look for type decls in dependent base classes that have known primary |
| // templates. |
| if (!TST || !TST->isDependentType()) |
| continue; |
| auto *TD = TST->getTemplateName().getAsTemplateDecl(); |
| if (!TD) |
| continue; |
| if (auto *BasePrimaryTemplate = |
| dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { |
| if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) |
| BaseRD = BasePrimaryTemplate; |
| else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { |
| if (const ClassTemplatePartialSpecializationDecl *PS = |
| CTD->findPartialSpecialization(Base.getType())) |
| if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) |
| BaseRD = PS; |
| } |
| } |
| } |
| if (BaseRD) { |
| for (NamedDecl *ND : BaseRD->lookup(&II)) { |
| if (!isa<TypeDecl>(ND)) |
| return UnqualifiedTypeNameLookupResult::FoundNonType; |
| FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
| } |
| if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { |
| switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { |
| case UnqualifiedTypeNameLookupResult::FoundNonType: |
| return UnqualifiedTypeNameLookupResult::FoundNonType; |
| case UnqualifiedTypeNameLookupResult::FoundType: |
| FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
| break; |
| case UnqualifiedTypeNameLookupResult::NotFound: |
| break; |
| } |
| } |
| } |
| } |
| |
| return FoundTypeDecl; |
| } |
| |
| static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, |
| const IdentifierInfo &II, |
| SourceLocation NameLoc) { |
| // Lookup in the parent class template context, if any. |
| const CXXRecordDecl *RD = nullptr; |
| UnqualifiedTypeNameLookupResult FoundTypeDecl = |
| UnqualifiedTypeNameLookupResult::NotFound; |
| for (DeclContext *DC = S.CurContext; |
| DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; |
| DC = DC->getParent()) { |
| // Look for type decls in dependent base classes that have known primary |
| // templates. |
| RD = dyn_cast<CXXRecordDecl>(DC); |
| if (RD && RD->getDescribedClassTemplate()) |
| FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); |
| } |
| if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) |
| return nullptr; |
| |
| // We found some types in dependent base classes. Recover as if the user |
| // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the |
| // lookup during template instantiation. |
| S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; |
| |
| ASTContext &Context = S.Context; |
| auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, |
| cast<Type>(Context.getRecordType(RD))); |
| QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); |
| |
| CXXScopeSpec SS; |
| SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
| |
| TypeLocBuilder Builder; |
| DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
| DepTL.setNameLoc(NameLoc); |
| DepTL.setElaboratedKeywordLoc(SourceLocation()); |
| DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
| } |
| |
| /// If the identifier refers to a type name within this scope, |
| /// return the declaration of that type. |
| /// |
| /// This routine performs ordinary name lookup of the identifier II |
| /// within the given scope, with optional C++ scope specifier SS, to |
| /// determine whether the name refers to a type. If so, returns an |
| /// opaque pointer (actually a QualType) corresponding to that |
| /// type. Otherwise, returns NULL. |
| ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, |
| Scope *S, CXXScopeSpec *SS, |
| bool isClassName, bool HasTrailingDot, |
| ParsedType ObjectTypePtr, |
| bool IsCtorOrDtorName, |
| bool WantNontrivialTypeSourceInfo, |
| bool IsClassTemplateDeductionContext, |
| IdentifierInfo **CorrectedII) { |
| // FIXME: Consider allowing this outside C++1z mode as an extension. |
| bool AllowDeducedTemplate = IsClassTemplateDeductionContext && |
| getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && |
| !isClassName && !HasTrailingDot; |
| |
| // Determine where we will perform name lookup. |
| DeclContext *LookupCtx = nullptr; |
| if (ObjectTypePtr) { |
| QualType ObjectType = ObjectTypePtr.get(); |
| if (ObjectType->isRecordType()) |
| LookupCtx = computeDeclContext(ObjectType); |
| } else if (SS && SS->isNotEmpty()) { |
| LookupCtx = computeDeclContext(*SS, false); |
| |
| if (!LookupCtx) { |
| if (isDependentScopeSpecifier(*SS)) { |
| // C++ [temp.res]p3: |
| // A qualified-id that refers to a type and in which the |
| // nested-name-specifier depends on a template-parameter (14.6.2) |
| // shall be prefixed by the keyword typename to indicate that the |
| // qualified-id denotes a type, forming an |
| // elaborated-type-specifier (7.1.5.3). |
| // |
| // We therefore do not perform any name lookup if the result would |
| // refer to a member of an unknown specialization. |
| if (!isClassName && !IsCtorOrDtorName) |
| return nullptr; |
| |
| // We know from the grammar that this name refers to a type, |
| // so build a dependent node to describe the type. |
| if (WantNontrivialTypeSourceInfo) |
| return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); |
| |
| NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); |
| QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, |
| II, NameLoc); |
| return ParsedType::make(T); |
| } |
| |
| return nullptr; |
| } |
| |
| if (!LookupCtx->isDependentContext() && |
| RequireCompleteDeclContext(*SS, LookupCtx)) |
| return nullptr; |
| } |
| |
| // FIXME: LookupNestedNameSpecifierName isn't the right kind of |
| // lookup for class-names. |
| LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : |
| LookupOrdinaryName; |
| LookupResult Result(*this, &II, NameLoc, Kind); |
| if (LookupCtx) { |
| // Perform "qualified" name lookup into the declaration context we |
| // computed, which is either the type of the base of a member access |
| // expression or the declaration context associated with a prior |
| // nested-name-specifier. |
| LookupQualifiedName(Result, LookupCtx); |
| |
| if (ObjectTypePtr && Result.empty()) { |
| // C++ [basic.lookup.classref]p3: |
| // If the unqualified-id is ~type-name, the type-name is looked up |
| // in the context of the entire postfix-expression. If the type T of |
| // the object expression is of a class type C, the type-name is also |
| // looked up in the scope of class C. At least one of the lookups shall |
| // find a name that refers to (possibly cv-qualified) T. |
| LookupName(Result, S); |
| } |
| } else { |
| // Perform unqualified name lookup. |
| LookupName(Result, S); |
| |
| // For unqualified lookup in a class template in MSVC mode, look into |
| // dependent base classes where the primary class template is known. |
| if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { |
| if (ParsedType TypeInBase = |
| recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) |
| return TypeInBase; |
| } |
| } |
| |
| NamedDecl *IIDecl = nullptr; |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| if (CorrectedII) { |
| TypoCorrection Correction = |
| CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS, |
| llvm::make_unique<TypeNameValidatorCCC>( |
| true, isClassName, AllowDeducedTemplate), |
| CTK_ErrorRecovery); |
| IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); |
| TemplateTy Template; |
| bool MemberOfUnknownSpecialization; |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(NewII, NameLoc); |
| NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); |
| CXXScopeSpec NewSS, *NewSSPtr = SS; |
| if (SS && NNS) { |
| NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
| NewSSPtr = &NewSS; |
| } |
| if (Correction && (NNS || NewII != &II) && |
| // Ignore a correction to a template type as the to-be-corrected |
| // identifier is not a template (typo correction for template names |
| // is handled elsewhere). |
| !(getLangOpts().CPlusPlus && NewSSPtr && |
| isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, |
| Template, MemberOfUnknownSpecialization))) { |
| ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, |
| isClassName, HasTrailingDot, ObjectTypePtr, |
| IsCtorOrDtorName, |
| WantNontrivialTypeSourceInfo, |
| IsClassTemplateDeductionContext); |
| if (Ty) { |
| diagnoseTypo(Correction, |
| PDiag(diag::err_unknown_type_or_class_name_suggest) |
| << Result.getLookupName() << isClassName); |
| if (SS && NNS) |
| SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
| *CorrectedII = NewII; |
| return Ty; |
| } |
| } |
| } |
| // If typo correction failed or was not performed, fall through |
| LLVM_FALLTHROUGH; |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: |
| Result.suppressDiagnostics(); |
| return nullptr; |
| |
| case LookupResult::Ambiguous: |
| // Recover from type-hiding ambiguities by hiding the type. We'll |
| // do the lookup again when looking for an object, and we can |
| // diagnose the error then. If we don't do this, then the error |
| // about hiding the type will be immediately followed by an error |
| // that only makes sense if the identifier was treated like a type. |
| if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { |
| Result.suppressDiagnostics(); |
| return nullptr; |
| } |
| |
| // Look to see if we have a type anywhere in the list of results. |
| for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); |
| Res != ResEnd; ++Res) { |
| if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) || |
| (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) { |
| if (!IIDecl || |
| (*Res)->getLocation().getRawEncoding() < |
| IIDecl->getLocation().getRawEncoding()) |
| IIDecl = *Res; |
| } |
| } |
| |
| if (!IIDecl) { |
| // None of the entities we found is a type, so there is no way |
| // to even assume that the result is a type. In this case, don't |
| // complain about the ambiguity. The parser will either try to |
| // perform this lookup again (e.g., as an object name), which |
| // will produce the ambiguity, or will complain that it expected |
| // a type name. |
| Result.suppressDiagnostics(); |
| return nullptr; |
| } |
| |
| // We found a type within the ambiguous lookup; diagnose the |
| // ambiguity and then return that type. This might be the right |
| // answer, or it might not be, but it suppresses any attempt to |
| // perform the name lookup again. |
| break; |
| |
| case LookupResult::Found: |
| IIDecl = Result.getFoundDecl(); |
| break; |
| } |
| |
| assert(IIDecl && "Didn't find decl"); |
| |
| QualType T; |
| if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { |
| // C++ [class.qual]p2: A lookup that would find the injected-class-name |
| // instead names the constructors of the class, except when naming a class. |
| // This is ill-formed when we're not actually forming a ctor or dtor name. |
| auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); |
| auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); |
| if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && |
| FoundRD->isInjectedClassName() && |
| declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) |
| Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) |
| << &II << /*Type*/1; |
| |
| DiagnoseUseOfDecl(IIDecl, NameLoc); |
| |
| T = Context.getTypeDeclType(TD); |
| MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); |
| } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { |
| (void)DiagnoseUseOfDecl(IDecl, NameLoc); |
| if (!HasTrailingDot) |
| T = Context.getObjCInterfaceType(IDecl); |
| } else if (AllowDeducedTemplate) { |
| if (auto *TD = getAsTypeTemplateDecl(IIDecl)) |
| T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), |
| QualType(), false); |
| } |
| |
| if (T.isNull()) { |
| // If it's not plausibly a type, suppress diagnostics. |
| Result.suppressDiagnostics(); |
| return nullptr; |
| } |
| |
| // NOTE: avoid constructing an ElaboratedType(Loc) if this is a |
| // constructor or destructor name (in such a case, the scope specifier |
| // will be attached to the enclosing Expr or Decl node). |
| if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && |
| !isa<ObjCInterfaceDecl>(IIDecl)) { |
| if (WantNontrivialTypeSourceInfo) { |
| // Construct a type with type-source information. |
| TypeLocBuilder Builder; |
| Builder.pushTypeSpec(T).setNameLoc(NameLoc); |
| |
| T = getElaboratedType(ETK_None, *SS, T); |
| ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); |
| ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
| ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); |
| return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
| } else { |
| T = getElaboratedType(ETK_None, *SS, T); |
| } |
| } |
| |
| return ParsedType::make(T); |
| } |
| |
| // Builds a fake NNS for the given decl context. |
| static NestedNameSpecifier * |
| synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { |
| for (;; DC = DC->getLookupParent()) { |
| DC = DC->getPrimaryContext(); |
| auto *ND = dyn_cast<NamespaceDecl>(DC); |
| if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) |
| return NestedNameSpecifier::Create(Context, nullptr, ND); |
| else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) |
| return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), |
| RD->getTypeForDecl()); |
| else if (isa<TranslationUnitDecl>(DC)) |
| return NestedNameSpecifier::GlobalSpecifier(Context); |
| } |
| llvm_unreachable("something isn't in TU scope?"); |
| } |
| |
| /// Find the parent class with dependent bases of the innermost enclosing method |
| /// context. Do not look for enclosing CXXRecordDecls directly, or we will end |
| /// up allowing unqualified dependent type names at class-level, which MSVC |
| /// correctly rejects. |
| static const CXXRecordDecl * |
| findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { |
| for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { |
| DC = DC->getPrimaryContext(); |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) |
| if (MD->getParent()->hasAnyDependentBases()) |
| return MD->getParent(); |
| } |
| return nullptr; |
| } |
| |
| ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, |
| SourceLocation NameLoc, |
| bool IsTemplateTypeArg) { |
| assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); |
| |
| NestedNameSpecifier *NNS = nullptr; |
| if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { |
| // If we weren't able to parse a default template argument, delay lookup |
| // until instantiation time by making a non-dependent DependentTypeName. We |
| // pretend we saw a NestedNameSpecifier referring to the current scope, and |
| // lookup is retried. |
| // FIXME: This hurts our diagnostic quality, since we get errors like "no |
| // type named 'Foo' in 'current_namespace'" when the user didn't write any |
| // name specifiers. |
| NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); |
| Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; |
| } else if (const CXXRecordDecl *RD = |
| findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { |
| // Build a DependentNameType that will perform lookup into RD at |
| // instantiation time. |
| NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), |
| RD->getTypeForDecl()); |
| |
| // Diagnose that this identifier was undeclared, and retry the lookup during |
| // template instantiation. |
| Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II |
| << RD; |
| } else { |
| // This is not a situation that we should recover from. |
| return ParsedType(); |
| } |
| |
| QualType T = Context.getDependentNameType(ETK_None, NNS, &II); |
| |
| // Build type location information. We synthesized the qualifier, so we have |
| // to build a fake NestedNameSpecifierLoc. |
| NestedNameSpecifierLocBuilder NNSLocBuilder; |
| NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
| NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); |
| |
| TypeLocBuilder Builder; |
| DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
| DepTL.setNameLoc(NameLoc); |
| DepTL.setElaboratedKeywordLoc(SourceLocation()); |
| DepTL.setQualifierLoc(QualifierLoc); |
| return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
| } |
| |
| /// isTagName() - This method is called *for error recovery purposes only* |
| /// to determine if the specified name is a valid tag name ("struct foo"). If |
| /// so, this returns the TST for the tag corresponding to it (TST_enum, |
| /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose |
| /// cases in C where the user forgot to specify the tag. |
| DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { |
| // Do a tag name lookup in this scope. |
| LookupResult R(*this, &II, SourceLocation(), LookupTagName); |
| LookupName(R, S, false); |
| R.suppressDiagnostics(); |
| if (R.getResultKind() == LookupResult::Found) |
| if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { |
| switch (TD->getTagKind()) { |
| case TTK_Struct: return DeclSpec::TST_struct; |
| case TTK_Interface: return DeclSpec::TST_interface; |
| case TTK_Union: return DeclSpec::TST_union; |
| case TTK_Class: return DeclSpec::TST_class; |
| case TTK_Enum: return DeclSpec::TST_enum; |
| } |
| } |
| |
| return DeclSpec::TST_unspecified; |
| } |
| |
| /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, |
| /// if a CXXScopeSpec's type is equal to the type of one of the base classes |
| /// then downgrade the missing typename error to a warning. |
| /// This is needed for MSVC compatibility; Example: |
| /// @code |
| /// template<class T> class A { |
| /// public: |
| /// typedef int TYPE; |
| /// }; |
| /// template<class T> class B : public A<T> { |
| /// public: |
| /// A<T>::TYPE a; // no typename required because A<T> is a base class. |
| /// }; |
| /// @endcode |
| bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { |
| if (CurContext->isRecord()) { |
| if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) |
| return true; |
| |
| const Type *Ty = SS->getScopeRep()->getAsType(); |
| |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); |
| for (const auto &Base : RD->bases()) |
| if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) |
| return true; |
| return S->isFunctionPrototypeScope(); |
| } |
| return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); |
| } |
| |
| void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, |
| SourceLocation IILoc, |
| Scope *S, |
| CXXScopeSpec *SS, |
| ParsedType &SuggestedType, |
| bool IsTemplateName) { |
| // Don't report typename errors for editor placeholders. |
| if (II->isEditorPlaceholder()) |
| return; |
| // We don't have anything to suggest (yet). |
| SuggestedType = nullptr; |
| |
| // There may have been a typo in the name of the type. Look up typo |
| // results, in case we have something that we can suggest. |
| if (TypoCorrection Corrected = |
| CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, |
| llvm::make_unique<TypeNameValidatorCCC>( |
| false, false, IsTemplateName, !IsTemplateName), |
| CTK_ErrorRecovery)) { |
| // FIXME: Support error recovery for the template-name case. |
| bool CanRecover = !IsTemplateName; |
| if (Corrected.isKeyword()) { |
| // We corrected to a keyword. |
| diagnoseTypo(Corrected, |
| PDiag(IsTemplateName ? diag::err_no_template_suggest |
| : diag::err_unknown_typename_suggest) |
| << II); |
| II = Corrected.getCorrectionAsIdentifierInfo(); |
| } else { |
| // We found a similarly-named type or interface; suggest that. |
| if (!SS || !SS->isSet()) { |
| diagnoseTypo(Corrected, |
| PDiag(IsTemplateName ? diag::err_no_template_suggest |
| : diag::err_unknown_typename_suggest) |
| << II, CanRecover); |
| } else if (DeclContext *DC = computeDeclContext(*SS, false)) { |
| std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
| bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
| II->getName().equals(CorrectedStr); |
| diagnoseTypo(Corrected, |
| PDiag(IsTemplateName |
| ? diag::err_no_member_template_suggest |
| : diag::err_unknown_nested_typename_suggest) |
| << II << DC << DroppedSpecifier << SS->getRange(), |
| CanRecover); |
| } else { |
| llvm_unreachable("could not have corrected a typo here"); |
| } |
| |
| if (!CanRecover) |
| return; |
| |
| CXXScopeSpec tmpSS; |
| if (Corrected.getCorrectionSpecifier()) |
| tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), |
| SourceRange(IILoc)); |
| // FIXME: Support class template argument deduction here. |
| SuggestedType = |
| getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, |
| tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, |
| /*IsCtorOrDtorName=*/false, |
| /*NonTrivialTypeSourceInfo=*/true); |
| } |
| return; |
| } |
| |
| if (getLangOpts().CPlusPlus && !IsTemplateName) { |
| // See if II is a class template that the user forgot to pass arguments to. |
| UnqualifiedId Name; |
| Name.setIdentifier(II, IILoc); |
| CXXScopeSpec EmptySS; |
| TemplateTy TemplateResult; |
| bool MemberOfUnknownSpecialization; |
| if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, |
| Name, nullptr, true, TemplateResult, |
| MemberOfUnknownSpecialization) == TNK_Type_template) { |
| diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); |
| return; |
| } |
| } |
| |
| // FIXME: Should we move the logic that tries to recover from a missing tag |
| // (struct, union, enum) from Parser::ParseImplicitInt here, instead? |
| |
| if (!SS || (!SS->isSet() && !SS->isInvalid())) |
| Diag(IILoc, IsTemplateName ? diag::err_no_template |
| : diag::err_unknown_typename) |
| << II; |
| else if (DeclContext *DC = computeDeclContext(*SS, false)) |
| Diag(IILoc, IsTemplateName ? diag::err_no_member_template |
| : diag::err_typename_nested_not_found) |
| << II << DC << SS->getRange(); |
| else if (isDependentScopeSpecifier(*SS)) { |
| unsigned DiagID = diag::err_typename_missing; |
| if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) |
| DiagID = diag::ext_typename_missing; |
| |
| Diag(SS->getRange().getBegin(), DiagID) |
| << SS->getScopeRep() << II->getName() |
| << SourceRange(SS->getRange().getBegin(), IILoc) |
| << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); |
| SuggestedType = ActOnTypenameType(S, SourceLocation(), |
| *SS, *II, IILoc).get(); |
| } else { |
| assert(SS && SS->isInvalid() && |
| "Invalid scope specifier has already been diagnosed"); |
| } |
| } |
| |
| /// Determine whether the given result set contains either a type name |
| /// or |
| static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { |
| bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && |
| NextToken.is(tok::less); |
| |
| for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { |
| if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) |
| return true; |
| |
| if (CheckTemplate && isa<TemplateDecl>(*I)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, |
| Scope *S, CXXScopeSpec &SS, |
| IdentifierInfo *&Name, |
| SourceLocation NameLoc) { |
| LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); |
| SemaRef.LookupParsedName(R, S, &SS); |
| if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { |
| StringRef FixItTagName; |
| switch (Tag->getTagKind()) { |
| case TTK_Class: |
| FixItTagName = "class "; |
| break; |
| |
| case TTK_Enum: |
| FixItTagName = "enum "; |
| break; |
| |
| case TTK_Struct: |
| FixItTagName = "struct "; |
| break; |
| |
| case TTK_Interface: |
| FixItTagName = "__interface "; |
| break; |
| |
| case TTK_Union: |
| FixItTagName = "union "; |
| break; |
| } |
| |
| StringRef TagName = FixItTagName.drop_back(); |
| SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) |
| << Name << TagName << SemaRef.getLangOpts().CPlusPlus |
| << FixItHint::CreateInsertion(NameLoc, FixItTagName); |
| |
| for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); |
| I != IEnd; ++I) |
| SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) |
| << Name << TagName; |
| |
| // Replace lookup results with just the tag decl. |
| Result.clear(Sema::LookupTagName); |
| SemaRef.LookupParsedName(Result, S, &SS); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. |
| static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, |
| QualType T, SourceLocation NameLoc) { |
| ASTContext &Context = S.Context; |
| |
| TypeLocBuilder Builder; |
| Builder.pushTypeSpec(T).setNameLoc(NameLoc); |
| |
| T = S.getElaboratedType(ETK_None, SS, T); |
| ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); |
| ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
| ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
| } |
| |
| Sema::NameClassification |
| Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, |
| SourceLocation NameLoc, const Token &NextToken, |
| bool IsAddressOfOperand, |
| std::unique_ptr<CorrectionCandidateCallback> CCC) { |
| DeclarationNameInfo NameInfo(Name, NameLoc); |
| ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
| |
| if (NextToken.is(tok::coloncolon)) { |
| NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation()); |
| BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false); |
| } else if (getLangOpts().CPlusPlus && SS.isSet() && |
| isCurrentClassName(*Name, S, &SS)) { |
| // Per [class.qual]p2, this names the constructors of SS, not the |
| // injected-class-name. We don't have a classification for that. |
| // There's not much point caching this result, since the parser |
| // will reject it later. |
| return NameClassification::Unknown(); |
| } |
| |
| LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
| LookupParsedName(Result, S, &SS, !CurMethod); |
| |
| // For unqualified lookup in a class template in MSVC mode, look into |
| // dependent base classes where the primary class template is known. |
| if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { |
| if (ParsedType TypeInBase = |
| recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) |
| return TypeInBase; |
| } |
| |
| // Perform lookup for Objective-C instance variables (including automatically |
| // synthesized instance variables), if we're in an Objective-C method. |
| // FIXME: This lookup really, really needs to be folded in to the normal |
| // unqualified lookup mechanism. |
| if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { |
| ExprResult E = LookupInObjCMethod(Result, S, Name, true); |
| if (E.get() || E.isInvalid()) |
| return E; |
| } |
| |
| bool SecondTry = false; |
| bool IsFilteredTemplateName = false; |
| |
| Corrected: |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| // If an unqualified-id is followed by a '(', then we have a function |
| // call. |
| if (!SS.isSet() && NextToken.is(tok::l_paren)) { |
| // In C++, this is an ADL-only call. |
| // FIXME: Reference? |
| if (getLangOpts().CPlusPlus) |
| return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); |
| |
| // C90 6.3.2.2: |
| // If the expression that precedes the parenthesized argument list in a |
| // function call consists solely of an identifier, and if no |
| // declaration is visible for this identifier, the identifier is |
| // implicitly declared exactly as if, in the innermost block containing |
| // the function call, the declaration |
| // |
| // extern int identifier (); |
| // |
| // appeared. |
| // |
| // We also allow this in C99 as an extension. |
| if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) { |
| Result.addDecl(D); |
| Result.resolveKind(); |
| return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false); |
| } |
| } |
| |
| // In C, we first see whether there is a tag type by the same name, in |
| // which case it's likely that the user just forgot to write "enum", |
| // "struct", or "union". |
| if (!getLangOpts().CPlusPlus && !SecondTry && |
| isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { |
| break; |
| } |
| |
| // Perform typo correction to determine if there is another name that is |
| // close to this name. |
| if (!SecondTry && CCC) { |
| SecondTry = true; |
| if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), |
| Result.getLookupKind(), S, |
| &SS, std::move(CCC), |
| CTK_ErrorRecovery)) { |
| unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; |
| unsigned QualifiedDiag = diag::err_no_member_suggest; |
| |
| NamedDecl *FirstDecl = Corrected.getFoundDecl(); |
| NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); |
| if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
| UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { |
| UnqualifiedDiag = diag::err_no_template_suggest; |
| QualifiedDiag = diag::err_no_member_template_suggest; |
| } else if (UnderlyingFirstDecl && |
| (isa<TypeDecl>(UnderlyingFirstDecl) || |
| isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || |
| isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { |
| UnqualifiedDiag = diag::err_unknown_typename_suggest; |
| QualifiedDiag = diag::err_unknown_nested_typename_suggest; |
| } |
| |
| if (SS.isEmpty()) { |
| diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); |
| } else {// FIXME: is this even reachable? Test it. |
| std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
| bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
| Name->getName().equals(CorrectedStr); |
| diagnoseTypo(Corrected, PDiag(QualifiedDiag) |
| << Name << computeDeclContext(SS, false) |
| << DroppedSpecifier << SS.getRange()); |
| } |
| |
| // Update the name, so that the caller has the new name. |
| Name = Corrected.getCorrectionAsIdentifierInfo(); |
| |
| // Typo correction corrected to a keyword. |
| if (Corrected.isKeyword()) |
| return Name; |
| |
| // Also update the LookupResult... |
| // FIXME: This should probably go away at some point |
| Result.clear(); |
| Result.setLookupName(Corrected.getCorrection()); |
| if (FirstDecl) |
| Result.addDecl(FirstDecl); |
| |
| // If we found an Objective-C instance variable, let |
| // LookupInObjCMethod build the appropriate expression to |
| // reference the ivar. |
| // FIXME: This is a gross hack. |
| if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { |
| Result.clear(); |
| ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier())); |
| return E; |
| } |
| |
| goto Corrected; |
| } |
| } |
| |
| // We failed to correct; just fall through and let the parser deal with it. |
| Result.suppressDiagnostics(); |
| return NameClassification::Unknown(); |
| |
| case LookupResult::NotFoundInCurrentInstantiation: { |
| // We performed name lookup into the current instantiation, and there were |
| // dependent bases, so we treat this result the same way as any other |
| // dependent nested-name-specifier. |
| |
| // C++ [temp.res]p2: |
| // A name used in a template declaration or definition and that is |
| // dependent on a template-parameter is assumed not to name a type |
| // unless the applicable name lookup finds a type name or the name is |
| // qualified by the keyword typename. |
| // |
| // FIXME: If the next token is '<', we might want to ask the parser to |
| // perform some heroics to see if we actually have a |
| // template-argument-list, which would indicate a missing 'template' |
| // keyword here. |
| return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), |
| NameInfo, IsAddressOfOperand, |
| /*TemplateArgs=*/nullptr); |
| } |
| |
| case LookupResult::Found: |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: |
| break; |
| |
| case LookupResult::Ambiguous: |
| if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
| hasAnyAcceptableTemplateNames(Result)) { |
| // C++ [temp.local]p3: |
| // A lookup that finds an injected-class-name (10.2) can result in an |
| // ambiguity in certain cases (for example, if it is found in more than |
| // one base class). If all of the injected-class-names that are found |
| // refer to specializations of the same class template, and if the name |
| // is followed by a template-argument-list, the reference refers to the |
| // class template itself and not a specialization thereof, and is not |
| // ambiguous. |
| // |
| // This filtering can make an ambiguous result into an unambiguous one, |
| // so try again after filtering out template names. |
| FilterAcceptableTemplateNames(Result); |
| if (!Result.isAmbiguous()) { |
| IsFilteredTemplateName = true; |
| break; |
| } |
| } |
| |
| // Diagnose the ambiguity and return an error. |
| return NameClassification::Error(); |
| } |
| |
| if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
| (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) { |
| // C++ [temp.names]p3: |
| // After name lookup (3.4) finds that a name is a template-name or that |
| // an operator-function-id or a literal- operator-id refers to a set of |
| // overloaded functions any member of which is a function template if |
| // this is followed by a <, the < is always taken as the delimiter of a |
| // template-argument-list and never as the less-than operator. |
| if (!IsFilteredTemplateName) |
| FilterAcceptableTemplateNames(Result); |
| |
| if (!Result.empty()) { |
| bool IsFunctionTemplate; |
| bool IsVarTemplate; |
| TemplateName Template; |
| if (Result.end() - Result.begin() > 1) { |
| IsFunctionTemplate = true; |
| Template = Context.getOverloadedTemplateName(Result.begin(), |
| Result.end()); |
| } else { |
| TemplateDecl *TD |
| = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl()); |
| IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); |
| IsVarTemplate = isa<VarTemplateDecl>(TD); |
| |
| if (SS.isSet() && !SS.isInvalid()) |
| Template = Context.getQualifiedTemplateName(SS.getScopeRep(), |
| /*TemplateKeyword=*/false, |
| TD); |
| else |
| Template = TemplateName(TD); |
| } |
| |
| if (IsFunctionTemplate) { |
| // Function templates always go through overload resolution, at which |
| // point we'll perform the various checks (e.g., accessibility) we need |
| // to based on which function we selected. |
| Result.suppressDiagnostics(); |
| |
| return NameClassification::FunctionTemplate(Template); |
| } |
| |
| return IsVarTemplate ? NameClassification::VarTemplate(Template) |
| : NameClassification::TypeTemplate(Template); |
| } |
| } |
| |
| NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); |
| if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { |
| DiagnoseUseOfDecl(Type, NameLoc); |
| MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); |
| QualType T = Context.getTypeDeclType(Type); |
| if (SS.isNotEmpty()) |
| return buildNestedType(*this, SS, T, NameLoc); |
| return ParsedType::make(T); |
| } |
| |
| ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); |
| if (!Class) { |
| // FIXME: It's unfortunate that we don't have a Type node for handling this. |
| if (ObjCCompatibleAliasDecl *Alias = |
| dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) |
| Class = Alias->getClassInterface(); |
| } |
| |
| if (Class) { |
| DiagnoseUseOfDecl(Class, NameLoc); |
| |
| if (NextToken.is(tok::period)) { |
| // Interface. <something> is parsed as a property reference expression. |
| // Just return "unknown" as a fall-through for now. |
| Result.suppressDiagnostics(); |
| return NameClassification::Unknown(); |
| } |
| |
| QualType T = Context.getObjCInterfaceType(Class); |
| return ParsedType::make(T); |
| } |
| |
| // We can have a type template here if we're classifying a template argument. |
| if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && |
| !isa<VarTemplateDecl>(FirstDecl)) |
| return NameClassification::TypeTemplate( |
| TemplateName(cast<TemplateDecl>(FirstDecl))); |
| |
| // Check for a tag type hidden by a non-type decl in a few cases where it |
| // seems likely a type is wanted instead of the non-type that was found. |
| bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); |
| if ((NextToken.is(tok::identifier) || |
| (NextIsOp && |
| FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && |
| isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { |
| TypeDecl *Type = Result.getAsSingle<TypeDecl>(); |
| DiagnoseUseOfDecl(Type, NameLoc); |
| QualType T = Context.getTypeDeclType(Type); |
| if (SS.isNotEmpty()) |
| return buildNestedType(*this, SS, T, NameLoc); |
| return ParsedType::make(T); |
| } |
| |
| if (FirstDecl->isCXXClassMember()) |
| return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, |
| nullptr, S); |
| |
| bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); |
| return BuildDeclarationNameExpr(SS, Result, ADL); |
| } |
| |
| Sema::TemplateNameKindForDiagnostics |
| Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { |
| auto *TD = Name.getAsTemplateDecl(); |
| if (!TD) |
| return TemplateNameKindForDiagnostics::DependentTemplate; |
| if (isa<ClassTemplateDecl>(TD)) |
| return TemplateNameKindForDiagnostics::ClassTemplate; |
| if (isa<FunctionTemplateDecl>(TD)) |
| return TemplateNameKindForDiagnostics::FunctionTemplate; |
| if (isa<VarTemplateDecl>(TD)) |
| return TemplateNameKindForDiagnostics::VarTemplate; |
| if (isa<TypeAliasTemplateDecl>(TD)) |
| return TemplateNameKindForDiagnostics::AliasTemplate; |
| if (isa<TemplateTemplateParmDecl>(TD)) |
| return TemplateNameKindForDiagnostics::TemplateTemplateParam; |
| return TemplateNameKindForDiagnostics::DependentTemplate; |
| } |
| |
| // Determines the context to return to after temporarily entering a |
| // context. This depends in an unnecessarily complicated way on the |
| // exact ordering of callbacks from the parser. |
| DeclContext *Sema::getContainingDC(DeclContext *DC) { |
| |
| // Functions defined inline within classes aren't parsed until we've |
| // finished parsing the top-level class, so the top-level class is |
| // the context we'll need to return to. |
| // A Lambda call operator whose parent is a class must not be treated |
| // as an inline member function. A Lambda can be used legally |
| // either as an in-class member initializer or a default argument. These |
| // are parsed once the class has been marked complete and so the containing |
| // context would be the nested class (when the lambda is defined in one); |
| // If the class is not complete, then the lambda is being used in an |
| // ill-formed fashion (such as to specify the width of a bit-field, or |
| // in an array-bound) - in which case we still want to return the |
| // lexically containing DC (which could be a nested class). |
| if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) { |
| DC = DC->getLexicalParent(); |
| |
| // A function not defined within a class will always return to its |
| // lexical context. |
| if (!isa<CXXRecordDecl>(DC)) |
| return DC; |
| |
| // A C++ inline method/friend is parsed *after* the topmost class |
| // it was declared in is fully parsed ("complete"); the topmost |
| // class is the context we need to return to. |
| while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) |
| DC = RD; |
| |
| // Return the declaration context of the topmost class the inline method is |
| // declared in. |
| return DC; |
| } |
| |
| return DC->getLexicalParent(); |
| } |
| |
| void Sema::PushDeclContext(Scope *S, DeclContext *DC) { |
| assert(getContainingDC(DC) == CurContext && |
| "The next DeclContext should be lexically contained in the current one."); |
| CurContext = DC; |
| S->setEntity(DC); |
| } |
| |
| void Sema::PopDeclContext() { |
| assert(CurContext && "DeclContext imbalance!"); |
| |
| CurContext = getContainingDC(CurContext); |
| assert(CurContext && "Popped translation unit!"); |
| } |
| |
| Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, |
| Decl *D) { |
| // Unlike PushDeclContext, the context to which we return is not necessarily |
| // the containing DC of TD, because the new context will be some pre-existing |
| // TagDecl definition instead of a fresh one. |
| auto Result = static_cast<SkippedDefinitionContext>(CurContext); |
| CurContext = cast<TagDecl>(D)->getDefinition(); |
| assert(CurContext && "skipping definition of undefined tag"); |
| // Start lookups from the parent of the current context; we don't want to look |
| // into the pre-existing complete definition. |
| S->setEntity(CurContext->getLookupParent()); |
| return Result; |
| } |
| |
| void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { |
| CurContext = static_cast<decltype(CurContext)>(Context); |
| } |
| |
| /// EnterDeclaratorContext - Used when we must lookup names in the context |
| /// of a declarator's nested name specifier. |
| /// |
| void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { |
| // C++0x [basic.lookup.unqual]p13: |
| // A name used in the definition of a static data member of class |
| // X (after the qualified-id of the static member) is looked up as |
| // if the name was used in a member function of X. |
| // C++0x [basic.lookup.unqual]p14: |
| // If a variable member of a namespace is defined outside of the |
| // scope of its namespace then any name used in the definition of |
| // the variable member (after the declarator-id) is looked up as |
| // if the definition of the variable member occurred in its |
| // namespace. |
| // Both of these imply that we should push a scope whose context |
| // is the semantic context of the declaration. We can't use |
| // PushDeclContext here because that context is not necessarily |
| // lexically contained in the current context. Fortunately, |
| // the containing scope should have the appropriate information. |
| |
| assert(!S->getEntity() && "scope already has entity"); |
| |
| #ifndef NDEBUG |
| Scope *Ancestor = S->getParent(); |
| while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
| assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); |
| #endif |
| |
| CurContext = DC; |
| S->setEntity(DC); |
| } |
| |
| void Sema::ExitDeclaratorContext(Scope *S) { |
| assert(S->getEntity() == CurContext && "Context imbalance!"); |
| |
| // Switch back to the lexical context. The safety of this is |
| // enforced by an assert in EnterDeclaratorContext. |
| Scope *Ancestor = S->getParent(); |
| while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
| CurContext = Ancestor->getEntity(); |
| |
| // We don't need to do anything with the scope, which is going to |
| // disappear. |
| } |
| |
| void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { |
| // We assume that the caller has already called |
| // ActOnReenterTemplateScope so getTemplatedDecl() works. |
| FunctionDecl *FD = D->getAsFunction(); |
| if (!FD) |
| return; |
| |
| // Same implementation as PushDeclContext, but enters the context |
| // from the lexical parent, rather than the top-level class. |
| assert(CurContext == FD->getLexicalParent() && |
| "The next DeclContext should be lexically contained in the current one."); |
| CurContext = FD; |
| S->setEntity(CurContext); |
| |
| for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { |
| ParmVarDecl *Param = FD->getParamDecl(P); |
| // If the parameter has an identifier, then add it to the scope |
| if (Param->getIdentifier()) { |
| S->AddDecl(Param); |
| IdResolver.AddDecl(Param); |
| } |
| } |
| } |
| |
| void Sema::ActOnExitFunctionContext() { |
| // Same implementation as PopDeclContext, but returns to the lexical parent, |
| // rather than the top-level class. |
| assert(CurContext && "DeclContext imbalance!"); |
| CurContext = CurContext->getLexicalParent(); |
| assert(CurContext && "Popped translation unit!"); |
| } |
| |
| /// Determine whether we allow overloading of the function |
| /// PrevDecl with another declaration. |
| /// |
| /// This routine determines whether overloading is possible, not |
| /// whether some new function is actually an overload. It will return |
| /// true in C++ (where we can always provide overloads) or, as an |
| /// extension, in C when the previous function is already an |
| /// overloaded function declaration or has the "overloadable" |
| /// attribute. |
| static bool AllowOverloadingOfFunction(LookupResult &Previous, |
| ASTContext &Context, |
| const FunctionDecl *New) { |
| if (Context.getLangOpts().CPlusPlus) |
| return true; |
| |
| if (Previous.getResultKind() == LookupResult::FoundOverloaded) |
| return true; |
| |
| return Previous.getResultKind() == LookupResult::Found && |
| (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || |
| New->hasAttr<OverloadableAttr>()); |
| } |
| |
| /// Add this decl to the scope shadowed decl chains. |
| void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { |
| // Move up the scope chain until we find the nearest enclosing |
| // non-transparent context. The declaration will be introduced into this |
| // scope. |
| while (S->getEntity() && S->getEntity()->isTransparentContext()) |
| S = S->getParent(); |
| |
| // Add scoped declarations into their context, so that they can be |
| // found later. Declarations without a context won't be inserted |
| // into any context. |
| if (AddToContext) |
| CurContext->addDecl(D); |
| |
| // Out-of-line definitions shouldn't be pushed into scope in C++, unless they |
| // are function-local declarations. |
| if (getLangOpts().CPlusPlus && D->isOutOfLine() && |
| !D->getDeclContext()->getRedeclContext()->Equals( |
| D->getLexicalDeclContext()->getRedeclContext()) && |
| !D->getLexicalDeclContext()->isFunctionOrMethod()) |
| return; |
| |
| // Template instantiations should also not be pushed into scope. |
| if (isa<FunctionDecl>(D) && |
| cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) |
| return; |
| |
| // If this replaces anything in the current scope, |
| IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), |
| IEnd = IdResolver.end(); |
| for (; I != IEnd; ++I) { |
| if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { |
| S->RemoveDecl(*I); |
| IdResolver.RemoveDecl(*I); |
| |
| // Should only need to replace one decl. |
| break; |
| } |
| } |
| |
| S->AddDecl(D); |
| |
| if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { |
| // Implicitly-generated labels may end up getting generated in an order that |
| // isn't strictly lexical, which breaks name lookup. Be careful to insert |
| // the label at the appropriate place in the identifier chain. |
| for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { |
| DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); |
| if (IDC == CurContext) { |
| if (!S->isDeclScope(*I)) |
| continue; |
| } else if (IDC->Encloses(CurContext)) |
| break; |
| } |
| |
| IdResolver.InsertDeclAfter(I, D); |
| } else { |
| IdResolver.AddDecl(D); |
| } |
| } |
| |
| void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) { |
| if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope) |
| TUScope->AddDecl(D); |
| } |
| |
| bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, |
| bool AllowInlineNamespace) { |
| return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); |
| } |
| |
| Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { |
| DeclContext *TargetDC = DC->getPrimaryContext(); |
| do { |
| if (DeclContext *ScopeDC = S->getEntity()) |
| if (ScopeDC->getPrimaryContext() == TargetDC) |
| return S; |
| } while ((S = S->getParent())); |
| |
| return nullptr; |
| } |
| |
| static bool isOutOfScopePreviousDeclaration(NamedDecl *, |
| DeclContext*, |
| ASTContext&); |
| |
| /// Filters out lookup results that don't fall within the given scope |
| /// as determined by isDeclInScope. |
| void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, |
| bool ConsiderLinkage, |
| bool AllowInlineNamespace) { |
| LookupResult::Filter F = R.makeFilter(); |
| while (F.hasNext()) { |
| NamedDecl *D = F.next(); |
| |
| if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) |
| continue; |
| |
| if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) |
| continue; |
| |
| F.erase(); |
| } |
| |
| F.done(); |
| } |
| |
| /// We've determined that \p New is a redeclaration of \p Old. Check that they |
| /// have compatible owning modules. |
| bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { |
| // FIXME: The Modules TS is not clear about how friend declarations are |
| // to be treated. It's not meaningful to have different owning modules for |
| // linkage in redeclarations of the same entity, so for now allow the |
| // redeclaration and change the owning modules to match. |
| if (New->getFriendObjectKind() && |
| Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { |
| New->setLocalOwningModule(Old->getOwningModule()); |
| makeMergedDefinitionVisible(New); |
| return false; |
| } |
| |
| Module *NewM = New->getOwningModule(); |
| Module *OldM = Old->getOwningModule(); |
| if (NewM == OldM) |
| return false; |
| |
| // FIXME: Check proclaimed-ownership-declarations here too. |
| bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit; |
| bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit; |
| if (NewIsModuleInterface || OldIsModuleInterface) { |
| // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: |
| // if a declaration of D [...] appears in the purview of a module, all |
| // other such declarations shall appear in the purview of the same module |
| Diag(New->getLocation(), diag::err_mismatched_owning_module) |
| << New |
| << NewIsModuleInterface |
| << (NewIsModuleInterface ? NewM->getFullModuleName() : "") |
| << OldIsModuleInterface |
| << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| New->setInvalidDecl(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isUsingDecl(NamedDecl *D) { |
| return isa<UsingShadowDecl>(D) || |
| isa<UnresolvedUsingTypenameDecl>(D) || |
| isa<UnresolvedUsingValueDecl>(D); |
| } |
| |
| /// Removes using shadow declarations from the lookup results. |
| static void RemoveUsingDecls(LookupResult &R) { |
| LookupResult::Filter F = R.makeFilter(); |
| while (F.hasNext()) |
| if (isUsingDecl(F.next())) |
| F.erase(); |
| |
| F.done(); |
| } |
| |
| /// Check for this common pattern: |
| /// @code |
| /// class S { |
| /// S(const S&); // DO NOT IMPLEMENT |
| /// void operator=(const S&); // DO NOT IMPLEMENT |
| /// }; |
| /// @endcode |
| static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { |
| // FIXME: Should check for private access too but access is set after we get |
| // the decl here. |
| if (D->doesThisDeclarationHaveABody()) |
| return false; |
| |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) |
| return CD->isCopyConstructor(); |
| return D->isCopyAssignmentOperator(); |
| } |
| |
| // We need this to handle |
| // |
| // typedef struct { |
| // void *foo() { return 0; } |
| // } A; |
| // |
| // When we see foo we don't know if after the typedef we will get 'A' or '*A' |
| // for example. If 'A', foo will have external linkage. If we have '*A', |
| // foo will have no linkage. Since we can't know until we get to the end |
| // of the typedef, this function finds out if D might have non-external linkage. |
| // Callers should verify at the end of the TU if it D has external linkage or |
| // not. |
| bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { |
| const DeclContext *DC = D->getDeclContext(); |
| while (!DC->isTranslationUnit()) { |
| if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ |
| if (!RD->hasNameForLinkage()) |
| return true; |
| } |
| DC = DC->getParent(); |
| } |
| |
| return !D->isExternallyVisible(); |
| } |
| |
| // FIXME: This needs to be refactored; some other isInMainFile users want |
| // these semantics. |
| static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { |
| if (S.TUKind != TU_Complete) |
| return false; |
| return S.SourceMgr.isInMainFile(Loc); |
| } |
| |
| bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { |
| assert(D); |
| |
| if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) |
| return false; |
| |
| // Ignore all entities declared within templates, and out-of-line definitions |
| // of members of class templates. |
| if (D->getDeclContext()->isDependentContext() || |
| D->getLexicalDeclContext()->isDependentContext()) |
| return false; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return false; |
| // A non-out-of-line declaration of a member specialization was implicitly |
| // instantiated; it's the out-of-line declaration that we're interested in. |
| if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
| FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) |
| return false; |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) |
| return false; |
| } else { |
| // 'static inline' functions are defined in headers; don't warn. |
| if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) |
| return false; |
| } |
| |
| if (FD->doesThisDeclarationHaveABody() && |
| Context.DeclMustBeEmitted(FD)) |
| return false; |
| } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| // Constants and utility variables are defined in headers with internal |
| // linkage; don't warn. (Unlike functions, there isn't a convenient marker |
| // like "inline".) |
| if (!isMainFileLoc(*this, VD->getLocation())) |
| return false; |
| |
| if (Context.DeclMustBeEmitted(VD)) |
| return false; |
| |
| if (VD->isStaticDataMember() && |
| VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| return false; |
| if (VD->isStaticDataMember() && |
| VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
| VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) |
| return false; |
| |
| if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) |
| return false; |
| } else { |
| return false; |
| } |
| |
| // Only warn for unused decls internal to the translation unit. |
| // FIXME: This seems like a bogus check; it suppresses -Wunused-function |
| // for inline functions defined in the main source file, for instance. |
| return mightHaveNonExternalLinkage(D); |
| } |
| |
| void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { |
| if (!D) |
| return; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| const FunctionDecl *First = FD->getFirstDecl(); |
| if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
| return; // First should already be in the vector. |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| const VarDecl *First = VD->getFirstDecl(); |
| if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
| return; // First should already be in the vector. |
| } |
| |
| if (ShouldWarnIfUnusedFileScopedDecl(D)) |
| UnusedFileScopedDecls.push_back(D); |
| } |
| |
| static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { |
| if (D->isInvalidDecl()) |
| return false; |
| |
| bool Referenced = false; |
| if (auto *DD = dyn_cast<DecompositionDecl>(D)) { |
| // For a decomposition declaration, warn if none of the bindings are |
| // referenced, instead of if the variable itself is referenced (which |
| // it is, by the bindings' expressions). |
| for (auto *BD : DD->bindings()) { |
| if (BD->isReferenced()) { |
| Referenced = true; |
| break; |
| } |
| } |
| } else if (!D->getDeclName()) { |
| return false; |
| } else if (D->isReferenced() || D->isUsed()) { |
| Referenced = true; |
| } |
| |
| if (Referenced || D->hasAttr<UnusedAttr>() || |
| D->hasAttr<ObjCPreciseLifetimeAttr>()) |
| return false; |
| |
| if (isa<LabelDecl>(D)) |
| return true; |
| |
| // Except for labels, we only care about unused decls that are local to |
| // functions. |
| bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); |
| if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) |
| // For dependent types, the diagnostic is deferred. |
| WithinFunction = |
| WithinFunction || (R->isLocalClass() && !R->isDependentType()); |
| if (!WithinFunction) |
| return false; |
| |
| if (isa<TypedefNameDecl>(D)) |
| return true; |
| |
| // White-list anything that isn't a local variable. |
| if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) |
| return false; |
| |
| // Types of valid local variables should be complete, so this should succeed. |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| |
| // White-list anything with an __attribute__((unused)) type. |
| const auto *Ty = VD->getType().getTypePtr(); |
| |
| // Only look at the outermost level of typedef. |
| if (const TypedefType *TT = Ty->getAs<TypedefType>()) { |
| if (TT->getDecl()->hasAttr<UnusedAttr>()) |
| return false; |
| } |
| |
| // If we failed to complete the type for some reason, or if the type is |
| // dependent, don't diagnose the variable. |
| if (Ty->isIncompleteType() || Ty->isDependentType()) |
| return false; |
| |
| // Look at the element type to ensure that the warning behaviour is |
| // consistent for both scalars and arrays. |
| Ty = Ty->getBaseElementTypeUnsafe(); |
| |
| if (const TagType *TT = Ty->getAs<TagType>()) { |
| const TagDecl *Tag = TT->getDecl(); |
| if (Tag->hasAttr<UnusedAttr>()) |
| return false; |
| |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { |
| if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) |
| return false; |
| |
| if (const Expr *Init = VD->getInit()) { |
| if (const ExprWithCleanups *Cleanups = |
| dyn_cast<ExprWithCleanups>(Init)) |
| Init = Cleanups->getSubExpr(); |
| const CXXConstructExpr *Construct = |
| dyn_cast<CXXConstructExpr>(Init); |
| if (Construct && !Construct->isElidable()) { |
| CXXConstructorDecl *CD = Construct->getConstructor(); |
| if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && |
| (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
| return false; |
| } |
| } |
| } |
| } |
| |
| // TODO: __attribute__((unused)) templates? |
| } |
| |
| return true; |
| } |
| |
| static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, |
| FixItHint &Hint) { |
| if (isa<LabelDecl>(D)) { |
| SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(), |
| tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true); |
| if (AfterColon.isInvalid()) |
| return; |
| Hint = FixItHint::CreateRemoval(CharSourceRange:: |
| getCharRange(D->getLocStart(), AfterColon)); |
| } |
| } |
| |
| void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { |
| if (D->getTypeForDecl()->isDependentType()) |
| return; |
| |
| for (auto *TmpD : D->decls()) { |
| if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) |
| DiagnoseUnusedDecl(T); |
| else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) |
| DiagnoseUnusedNestedTypedefs(R); |
| } |
| } |
| |
| /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used |
| /// unless they are marked attr(unused). |
| void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { |
| if (!ShouldDiagnoseUnusedDecl(D)) |
| return; |
| |
| if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
| // typedefs can be referenced later on, so the diagnostics are emitted |
| // at end-of-translation-unit. |
| UnusedLocalTypedefNameCandidates.insert(TD); |
| return; |
| } |
| |
| FixItHint Hint; |
| GenerateFixForUnusedDecl(D, Context, Hint); |
| |
| unsigned DiagID; |
| if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) |
| DiagID = diag::warn_unused_exception_param; |
| else if (isa<LabelDecl>(D)) |
| DiagID = diag::warn_unused_label; |
| else |
| DiagID = diag::warn_unused_variable; |
| |
| Diag(D->getLocation(), DiagID) << D << Hint; |
| } |
| |
| static void CheckPoppedLabel(LabelDecl *L, Sema &S) { |
| // Verify that we have no forward references left. If so, there was a goto |
| // or address of a label taken, but no definition of it. Label fwd |
| // definitions are indicated with a null substmt which is also not a resolved |
| // MS inline assembly label name. |
| bool Diagnose = false; |
| if (L->isMSAsmLabel()) |
| Diagnose = !L->isResolvedMSAsmLabel(); |
| else |
| Diagnose = L->getStmt() == nullptr; |
| if (Diagnose) |
| S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); |
| } |
| |
| void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
| S->mergeNRVOIntoParent(); |
| |
| if (S->decl_empty()) return; |
| assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && |
| "Scope shouldn't contain decls!"); |
| |
| for (auto *TmpD : S->decls()) { |
| assert(TmpD && "This decl didn't get pushed??"); |
| |
| assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); |
| NamedDecl *D = cast<NamedDecl>(TmpD); |
| |
| // Diagnose unused variables in this scope. |
| if (!S->hasUnrecoverableErrorOccurred()) { |
| DiagnoseUnusedDecl(D); |
| if (const auto *RD = dyn_cast<RecordDecl>(D)) |
| DiagnoseUnusedNestedTypedefs(RD); |
| } |
| |
| if (!D->getDeclName()) continue; |
| |
| // If this was a forward reference to a label, verify it was defined. |
| if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) |
| CheckPoppedLabel(LD, *this); |
| |
| // Remove this name from our lexical scope, and warn on it if we haven't |
| // already. |
| IdResolver.RemoveDecl(D); |
| auto ShadowI = ShadowingDecls.find(D); |
| if (ShadowI != ShadowingDecls.end()) { |
| if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { |
| Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) |
| << D << FD << FD->getParent(); |
| Diag(FD->getLocation(), diag::note_previous_declaration); |
| } |
| ShadowingDecls.erase(ShadowI); |
| } |
| } |
| } |
| |
| /// Look for an Objective-C class in the translation unit. |
| /// |
| /// \param Id The name of the Objective-C class we're looking for. If |
| /// typo-correction fixes this name, the Id will be updated |
| /// to the fixed name. |
| /// |
| /// \param IdLoc The location of the name in the translation unit. |
| /// |
| /// \param DoTypoCorrection If true, this routine will attempt typo correction |
| /// if there is no class with the given name. |
| /// |
| /// \returns The declaration of the named Objective-C class, or NULL if the |
| /// class could not be found. |
| ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, |
| SourceLocation IdLoc, |
| bool DoTypoCorrection) { |
| // The third "scope" argument is 0 since we aren't enabling lazy built-in |
| // creation from this context. |
| NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); |
| |
| if (!IDecl && DoTypoCorrection) { |
| // Perform typo correction at the given location, but only if we |
| // find an Objective-C class name. |
| if (TypoCorrection C = CorrectTypo( |
| DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr, |
| llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(), |
| CTK_ErrorRecovery)) { |
| diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); |
| IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
| Id = IDecl->getIdentifier(); |
| } |
| } |
| ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); |
| // This routine must always return a class definition, if any. |
| if (Def && Def->getDefinition()) |
| Def = Def->getDefinition(); |
| return Def; |
| } |
| |
| /// getNonFieldDeclScope - Retrieves the innermost scope, starting |
| /// from S, where a non-field would be declared. This routine copes |
| /// with the difference between C and C++ scoping rules in structs and |
| /// unions. For example, the following code is well-formed in C but |
| /// ill-formed in C++: |
| /// @code |
| /// struct S6 { |
| /// enum { BAR } e; |
| /// }; |
| /// |
| /// void test_S6() { |
| /// struct S6 a; |
| /// a.e = BAR; |
| /// } |
| /// @endcode |
| /// For the declaration of BAR, this routine will return a different |
| /// scope. The scope S will be the scope of the unnamed enumeration |
| /// within S6. In C++, this routine will return the scope associated |
| /// with S6, because the enumeration's scope is a transparent |
| /// context but structures can contain non-field names. In C, this |
| /// routine will return the translation unit scope, since the |
| /// enumeration's scope is a transparent context and structures cannot |
| /// contain non-field names. |
| Scope *Sema::getNonFieldDeclScope(Scope *S) { |
| while (((S->getFlags() & Scope::DeclScope) == 0) || |
| (S->getEntity() && S->getEntity()->isTransparentContext()) || |
| (S->isClassScope() && !getLangOpts().CPlusPlus)) |
| S = S->getParent(); |
| return S; |
| } |
| |
| /// Looks up the declaration of "struct objc_super" and |
| /// saves it for later use in building builtin declaration of |
| /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such |
| /// pre-existing declaration exists no action takes place. |
| static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, |
| IdentifierInfo *II) { |
| if (!II->isStr("objc_msgSendSuper")) |
| return; |
| ASTContext &Context = ThisSema.Context; |
| |
| LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), |
| SourceLocation(), Sema::LookupTagName); |
| ThisSema.LookupName(Result, S); |
| if (Result.getResultKind() == LookupResult::Found) |
| if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) |
| Context.setObjCSuperType(Context.getTagDeclType(TD)); |
| } |
| |
| static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) { |
| switch (Error) { |
| case ASTContext::GE_None: |
| return ""; |
| case ASTContext::GE_Missing_stdio: |
| return "stdio.h"; |
| case ASTContext::GE_Missing_setjmp: |
| return "setjmp.h"; |
| case ASTContext::GE_Missing_ucontext: |
| return "ucontext.h"; |
| } |
| llvm_unreachable("unhandled error kind"); |
| } |
| |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at |
| /// file scope. lazily create a decl for it. ForRedeclaration is true |
| /// if we're creating this built-in in anticipation of redeclaring the |
| /// built-in. |
| NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, |
| Scope *S, bool ForRedeclaration, |
| SourceLocation Loc) { |
| LookupPredefedObjCSuperType(*this, S, II); |
| |
| ASTContext::GetBuiltinTypeError Error; |
| QualType R = Context.GetBuiltinType(ID, Error); |
| if (Error) { |
| if (ForRedeclaration) |
| Diag(Loc, diag::warn_implicit_decl_requires_sysheader) |
| << getHeaderName(Error) << Context.BuiltinInfo.getName(ID); |
| return nullptr; |
| } |
| |
| if (!ForRedeclaration && |
| (Context.BuiltinInfo.isPredefinedLibFunction(ID) || |
| Context.BuiltinInfo.isHeaderDependentFunction(ID))) { |
| Diag(Loc, diag::ext_implicit_lib_function_decl) |
| << Context.BuiltinInfo.getName(ID) << R; |
| if (Context.BuiltinInfo.getHeaderName(ID) && |
| !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) |
| Diag(Loc, diag::note_include_header_or_declare) |
| << Context.BuiltinInfo.getHeaderName(ID) |
| << Context.BuiltinInfo.getName(ID); |
| } |
| |
| if (R.isNull()) |
| return nullptr; |
| |
| DeclContext *Parent = Context.getTranslationUnitDecl(); |
| if (getLangOpts().CPlusPlus) { |
| LinkageSpecDecl *CLinkageDecl = |
| LinkageSpecDecl::Create(Context, Parent, Loc, Loc, |
| LinkageSpecDecl::lang_c, false); |
| CLinkageDecl->setImplicit(); |
| Parent->addDecl(CLinkageDecl); |
| Parent = CLinkageDecl; |
| } |
| |
| FunctionDecl *New = FunctionDecl::Create(Context, |
| Parent, |
| Loc, Loc, II, R, /*TInfo=*/nullptr, |
| SC_Extern, |
| false, |
| R->isFunctionProtoType()); |
| New->setImplicit(); |
| |
| // Create Decl objects for each parameter, adding them to the |
| // FunctionDecl. |
| if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { |
| SmallVector<ParmVarDecl*, 16> Params; |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
| ParmVarDecl *parm = |
| ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(), |
| nullptr, FT->getParamType(i), /*TInfo=*/nullptr, |
| SC_None, nullptr); |
| parm->setScopeInfo(0, i); |
| Params.push_back(parm); |
| } |
| New->setParams(Params); |
| } |
| |
| AddKnownFunctionAttributes(New); |
| RegisterLocallyScopedExternCDecl(New, S); |
| |
| // TUScope is the translation-unit scope to insert this function into. |
| // FIXME: This is hideous. We need to teach PushOnScopeChains to |
| // relate Scopes to DeclContexts, and probably eliminate CurContext |
| // entirely, but we're not there yet. |
| DeclContext *SavedContext = CurContext; |
| CurContext = Parent; |
| PushOnScopeChains(New, TUScope); |
| CurContext = SavedContext; |
| return New; |
| } |
| |
| /// Typedef declarations don't have linkage, but they still denote the same |
| /// entity if their types are the same. |
| /// FIXME: This is notionally doing the same thing as ASTReaderDecl's |
| /// isSameEntity. |
| static void filterNonConflictingPreviousTypedefDecls(Sema &S, |
| TypedefNameDecl *Decl, |
| LookupResult &Previous) { |
| // This is only interesting when modules are enabled. |
| if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) |
| return; |
| |
| // Empty sets are uninteresting. |
| if (Previous.empty()) |
| return; |
| |
| LookupResult::Filter Filter = Previous.makeFilter(); |
| while (Filter.hasNext()) { |
| NamedDecl *Old = Filter.next(); |
| |
| // Non-hidden declarations are never ignored. |
| if (S.isVisible(Old)) |
| continue; |
| |
| // Declarations of the same entity are not ignored, even if they have |
| // different linkages. |
| if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { |
| if (S.Context.hasSameType(OldTD->getUnderlyingType(), |
| Decl->getUnderlyingType())) |
| continue; |
| |
| // If both declarations give a tag declaration a typedef name for linkage |
| // purposes, then they declare the same entity. |
| if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && |
| Decl->getAnonDeclWithTypedefName()) |
| continue; |
| } |
| |
| Filter.erase(); |
| } |
| |
| Filter.done(); |
| } |
| |
| bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { |
| QualType OldType; |
| if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) |
| OldType = OldTypedef->getUnderlyingType(); |
| else |
| OldType = Context.getTypeDeclType(Old); |
| QualType NewType = New->getUnderlyingType(); |
| |
| if (NewType->isVariablyModifiedType()) { |
| // Must not redefine a typedef with a variably-modified type. |
| int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; |
| Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) |
| << Kind << NewType; |
| if (Old->getLocation().isValid()) |
| notePreviousDefinition(Old, New->getLocation()); |
| New->setInvalidDecl(); |
| return true; |
| } |
| |
| if (OldType != NewType && |
| !OldType->isDependentType() && |
| !NewType->isDependentType() && |
| !Context.hasSameType(OldType, NewType)) { |
| int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; |
| Diag(New->getLocation(), diag::err_redefinition_different_typedef) |
| << Kind << NewType << OldType; |
| if (Old->getLocation().isValid()) |
| notePreviousDefinition(Old, New->getLocation()); |
| New->setInvalidDecl(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the |
| /// same name and scope as a previous declaration 'Old'. Figure out |
| /// how to resolve this situation, merging decls or emitting |
| /// diagnostics as appropriate. If there was an error, set New to be invalid. |
| /// |
| void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, |
| LookupResult &OldDecls) { |
| // If the new decl is known invalid already, don't bother doing any |
| // merging checks. |
| if (New->isInvalidDecl()) return; |
| |
| // Allow multiple definitions for ObjC built-in typedefs. |
| // FIXME: Verify the underlying types are equivalent! |
| if (getLangOpts().ObjC1) { |
| const IdentifierInfo *TypeID = New->getIdentifier(); |
| switch (TypeID->getLength()) { |
| default: break; |
| case 2: |
| { |
| if (!TypeID->isStr("id")) |
| break; |
| QualType T = New->getUnderlyingType(); |
| if (!T->isPointerType()) |
| break; |
| if (!T->isVoidPointerType()) { |
| QualType PT = T->getAs<PointerType>()->getPointeeType(); |
| if (!PT->isStructureType()) |
| break; |
| } |
| Context.setObjCIdRedefinitionType(T); |
| // Install the built-in type for 'id', ignoring the current definition. |
| New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); |
| return; |
| } |
| case 5: |
| if (!TypeID->isStr("Class")) |
| break; |
| Context.setObjCClassRedefinitionType(New->getUnderlyingType()); |
| // Install the built-in type for 'Class', ignoring the current definition. |
| New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); |
| return; |
| case 3: |
| if (!TypeID->isStr("SEL")) |
| break; |
| Context.setObjCSelRedefinitionType(New->getUnderlyingType()); |
| // Install the built-in type for 'SEL', ignoring the current definition. |
| New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); |
| return; |
| } |
| // Fall through - the typedef name was not a builtin type. |
| } |
| |
| // Verify the old decl was also a type. |
| TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| |
| NamedDecl *OldD = OldDecls.getRepresentativeDecl(); |
| if (OldD->getLocation().isValid()) |
| notePreviousDefinition(OldD, New->getLocation()); |
| |
| return New->setInvalidDecl(); |
| } |
| |
| // If the old declaration is invalid, just give up here. |
| if (Old->isInvalidDecl()) |
| return New->setInvalidDecl(); |
| |
| if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { |
| auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); |
| auto *NewTag = New->getAnonDeclWithTypedefName(); |
| NamedDecl *Hidden = nullptr; |
| if (OldTag && NewTag && |
| OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && |
| !hasVisibleDefinition(OldTag, &Hidden)) { |
| // There is a definition of this tag, but it is not visible. Use it |
| // instead of our tag. |
| New->setTypeForDecl(OldTD->getTypeForDecl()); |
| if (OldTD->isModed()) |
| New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), |
| OldTD->getUnderlyingType()); |
| else |
| New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); |
| |
| // Make the old tag definition visible. |
| makeMergedDefinitionVisible(Hidden); |
| |
| // If this was an unscoped enumeration, yank all of its enumerators |
| // out of the scope. |
| if (isa<EnumDecl>(NewTag)) { |
| Scope *EnumScope = getNonFieldDeclScope(S); |
| for (auto *D : NewTag->decls()) { |
| auto *ED = cast<EnumConstantDecl>(D); |
| assert(EnumScope->isDeclScope(ED)); |
| EnumScope->RemoveDecl(ED); |
| IdResolver.RemoveDecl(ED); |
| ED->getLexicalDeclContext()->removeDecl(ED); |
| } |
| } |
| } |
| } |
| |
| // If the typedef types are not identical, reject them in all languages and |
| // with any extensions enabled. |
| if (isIncompatibleTypedef(Old, New)) |
| return; |
| |
| // The types match. Link up the redeclaration chain and merge attributes if |
| // the old declaration was a typedef. |
| if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { |
| New->setPreviousDecl(Typedef); |
| mergeDeclAttributes(New, Old); |
| } |
| |
| if (getLangOpts().MicrosoftExt) |
| return; |
| |
| if (getLangOpts().CPlusPlus) { |
| // C++ [dcl.typedef]p2: |
| // In a given non-class scope, a typedef specifier can be used to |
| // redefine the name of any type declared in that scope to refer |
| // to the type to which it already refers. |
| if (!isa<CXXRecordDecl>(CurContext)) |
| return; |
| |
| // C++0x [dcl.typedef]p4: |
| // In a given class scope, a typedef specifier can be used to redefine |
| // any class-name declared in that scope that is not also a typedef-name |
| // to refer to the type to which it already refers. |
| // |
| // This wording came in via DR424, which was a correction to the |
| // wording in DR56, which accidentally banned code like: |
| // |
| // struct S { |
| // typedef struct A { } A; |
| // }; |
| // |
| // in the C++03 standard. We implement the C++0x semantics, which |
| // allow the above but disallow |
| // |
| // struct S { |
| // typedef int I; |
| // typedef int I; |
| // }; |
| // |
| // since that was the intent of DR56. |
| if (!isa<TypedefNameDecl>(Old)) |
| return; |
| |
| Diag(New->getLocation(), diag::err_redefinition) |
| << New->getDeclName(); |
| notePreviousDefinition(Old, New->getLocation()); |
| return New->setInvalidDecl(); |
| } |
| |
| // Modules always permit redefinition of typedefs, as does C11. |
| if (getLangOpts().Modules || getLangOpts().C11) |
| return; |
| |
| // If we have a redefinition of a typedef in C, emit a warning. This warning |
| // is normally mapped to an error, but can be controlled with |
| // -Wtypedef-redefinition. If either the original or the redefinition is |
| // in a system header, don't emit this for compatibility with GCC. |
| if (getDiagnostics().getSuppressSystemWarnings() && |
| // Some standard types are defined implicitly in Clang (e.g. OpenCL). |
| (Old->isImplicit() || |
| Context.getSourceManager().isInSystemHeader(Old->getLocation()) || |
| Context.getSourceManager().isInSystemHeader(New->getLocation()))) |
| return; |
| |
| Diag(New->getLocation(), diag::ext_redefinition_of_typedef) |
| << New->getDeclName(); |
| notePreviousDefinition(Old, New->getLocation()); |
| } |
| |
| /// DeclhasAttr - returns true if decl Declaration already has the target |
| /// attribute. |
| static bool DeclHasAttr(const Decl *D, const Attr *A) { |
| const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); |
| const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); |
| for (const auto *i : D->attrs()) |
| if (i->getKind() == A->getKind()) { |
| if (Ann) { |
| if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) |
| return true; |
| continue; |
| } |
| // FIXME: Don't hardcode this check |
| if (OA && isa<OwnershipAttr>(i)) |
| return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isAttributeTargetADefinition(Decl *D) { |
| if (VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VD->isThisDeclarationADefinition(); |
| if (TagDecl *TD = dyn_cast<TagDecl>(D)) |
| return TD->isCompleteDefinition() || TD->isBeingDefined(); |
| return true; |
| } |
| |
| /// Merge alignment attributes from \p Old to \p New, taking into account the |
| /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. |
| /// |
| /// \return \c true if any attributes were added to \p New. |
| static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { |
| // Look for alignas attributes on Old, and pick out whichever attribute |
| // specifies the strictest alignment requirement. |
| AlignedAttr *OldAlignasAttr = nullptr; |
| AlignedAttr *OldStrictestAlignAttr = nullptr; |
| unsigned OldAlign = 0; |
| for (auto *I : Old->specific_attrs<AlignedAttr>()) { |
| // FIXME: We have no way of representing inherited dependent alignments |
| // in a case like: |
| // template<int A, int B> struct alignas(A) X; |
| // template<int A, int B> struct alignas(B) X {}; |
| // For now, we just ignore any alignas attributes which are not on the |
| // definition in such a case. |
| if (I->isAlignmentDependent()) |
| return false; |
| |
| if (I->isAlignas()) |
| OldAlignasAttr = I; |
| |
| unsigned Align = I->getAlignment(S.Context); |
| if (Align > OldAlign) { |
| OldAlign = Align; |
| OldStrictestAlignAttr = I; |
| } |
| } |
| |
| // Look for alignas attributes on New. |
| AlignedAttr *NewAlignasAttr = nullptr; |
| unsigned NewAlign = 0; |
| for (auto *I : New->specific_attrs<AlignedAttr>()) { |
| if (I->isAlignmentDependent()) |
| return false; |
| |
| if (I->isAlignas()) |
| NewAlignasAttr = I; |
| |
| unsigned Align = I->getAlignment(S.Context); |
| if (Align > NewAlign) |
| NewAlign = Align; |
| } |
| |
| if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { |
| // Both declarations have 'alignas' attributes. We require them to match. |
| // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but |
| // fall short. (If two declarations both have alignas, they must both match |
| // every definition, and so must match each other if there is a definition.) |
| |
| // If either declaration only contains 'alignas(0)' specifiers, then it |
| // specifies the natural alignment for the type. |
| if (OldAlign == 0 || NewAlign == 0) { |
| QualType Ty; |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) |
| Ty = VD->getType(); |
| else |
| Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); |
| |
| if (OldAlign == 0) |
| OldAlign = S.Context.getTypeAlign(Ty); |
| if (NewAlign == 0) |
| NewAlign = S.Context.getTypeAlign(Ty); |
| } |
| |
| if (OldAlign != NewAlign) { |
| S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) |
| << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() |
| << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); |
| S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| |
| if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { |
| // C++11 [dcl.align]p6: |
| // if any declaration of an entity has an alignment-specifier, |
| // every defining declaration of that entity shall specify an |
| // equivalent alignment. |
| // C11 6.7.5/7: |
| // If the definition of an object does not have an alignment |
| // specifier, any other declaration of that object shall also |
| // have no alignment specifier. |
| S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) |
| << OldAlignasAttr; |
| S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) |
| << OldAlignasAttr; |
| } |
| |
| bool AnyAdded = false; |
| |
| // Ensure we have an attribute representing the strictest alignment. |
| if (OldAlign > NewAlign) { |
| AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); |
| Clone->setInherited(true); |
| New->addAttr(Clone); |
| AnyAdded = true; |
| } |
| |
| // Ensure we have an alignas attribute if the old declaration had one. |
| if (OldAlignasAttr && !NewAlignasAttr && |
| !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { |
| AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); |
| Clone->setInherited(true); |
| New->addAttr(Clone); |
| AnyAdded = true; |
| } |
| |
| return AnyAdded; |
| } |
| |
| static bool mergeDeclAttribute(Sema &S, NamedDecl *D, |
| const InheritableAttr *Attr, |
| Sema::AvailabilityMergeKind AMK) { |
| // This function copies an attribute Attr from a previous declaration to the |
| // new declaration D if the new declaration doesn't itself have that attribute |
| // yet or if that attribute allows duplicates. |
| // If you're adding a new attribute that requires logic different from |
| // "use explicit attribute on decl if present, else use attribute from |
| // previous decl", for example if the attribute needs to be consistent |
| // between redeclarations, you need to call a custom merge function here. |
| InheritableAttr *NewAttr = nullptr; |
| unsigned AttrSpellingListIndex = Attr->getSpellingListIndex(); |
| if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) |
| NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(), |
| AA->isImplicit(), AA->getIntroduced(), |
| AA->getDeprecated(), |
| AA->getObsoleted(), AA->getUnavailable(), |
| AA->getMessage(), AA->getStrict(), |
| AA->getReplacement(), AMK, |
| AttrSpellingListIndex); |
| else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) |
| NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), |
| AttrSpellingListIndex); |
| else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) |
| NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), |
| AttrSpellingListIndex); |
| else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) |
| NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(), |
| AttrSpellingListIndex); |
| else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) |
| NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(), |
| AttrSpellingListIndex); |
| else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) |
| NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(), |
| FA->getFormatIdx(), FA->getFirstArg(), |
| AttrSpellingListIndex); |
| else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) |
| NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(), |
| AttrSpellingListIndex); |
| else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) |
| NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(), |
| AttrSpellingListIndex); |
| else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) |
| NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(), |
| AttrSpellingListIndex, |
| IA->getSemanticSpelling()); |
| else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) |
| NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(), |
| &S.Context.Idents.get(AA->getSpelling()), |
| AttrSpellingListIndex); |
| else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && |
| (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || |
| isa<CUDAGlobalAttr>(Attr))) { |
| // CUDA target attributes are part of function signature for |
| // overloading purposes and must not be merged. |
| return false; |
| } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) |
| NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex); |
| else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) |
| NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex); |
| else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) |
| NewAttr = S.mergeInternalLinkageAttr( |
| D, InternalLinkageA->getRange(), |
| &S.Context.Idents.get(InternalLinkageA->getSpelling()), |
| AttrSpellingListIndex); |
| else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr)) |
| NewAttr = S.mergeCommonAttr(D, CommonA->getRange(), |
| &S.Context.Idents.get(CommonA->getSpelling()), |
| AttrSpellingListIndex); |
| else if (isa<AlignedAttr>(Attr)) |
| // AlignedAttrs are handled separately, because we need to handle all |
| // such attributes on a declaration at the same time. |
| NewAttr = nullptr; |
| else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && |
| (AMK == Sema::AMK_Override || |
| AMK == Sema::AMK_ProtocolImplementation)) |
| NewAttr = nullptr; |
| else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) |
| NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex, |
| UA->getGuid()); |
| else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) |
| NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); |
| |
| if (NewAttr) { |
| NewAttr->setInherited(true); |
| D->addAttr(NewAttr); |
| if (isa<MSInheritanceAttr>(NewAttr)) |
| S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static const NamedDecl *getDefinition(const Decl *D) { |
| if (const TagDecl *TD = dyn_cast<TagDecl>(D)) |
| return TD->getDefinition(); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| const VarDecl *Def = VD->getDefinition(); |
| if (Def) |
| return Def; |
| return VD->getActingDefinition(); |
| } |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| return FD->getDefinition(); |
| return nullptr; |
| } |
| |
| static bool hasAttribute(const Decl *D, attr::Kind Kind) { |
| for (const auto *Attribute : D->attrs()) |
| if (Attribute->getKind() == Kind) |
| return true; |
| return false; |
| } |
| |
| /// checkNewAttributesAfterDef - If we already have a definition, check that |
| /// there are no new attributes in this declaration. |
| static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { |
| if (!New->hasAttrs()) |
| return; |
| |
| const NamedDecl *Def = getDefinition(Old); |
| if (!Def || Def == New) |
| return; |
| |
| AttrVec &NewAttributes = New->getAttrs(); |
| for (unsigned I = 0, E = NewAttributes.size(); I != E;) { |
| const Attr *NewAttribute = NewAttributes[I]; |
| |
| if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { |
| Sema::SkipBodyInfo SkipBody; |
| S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); |
| |
| // If we're skipping this definition, drop the "alias" attribute. |
| if (SkipBody.ShouldSkip) { |
| NewAttributes.erase(NewAttributes.begin() + I); |
| --E; |
| continue; |
| } |
| } else { |
| VarDecl *VD = cast<VarDecl>(New); |
| unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == |
| VarDecl::TentativeDefinition |
| ? diag::err_alias_after_tentative |
| : diag::err_redefinition; |
| S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); |
| if (Diag == diag::err_redefinition) |
| S.notePreviousDefinition(Def, VD->getLocation()); |
| else |
| S.Diag(Def->getLocation(), diag::note_previous_definition); |
| VD->setInvalidDecl(); |
| } |
| ++I; |
| continue; |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { |
| // Tentative definitions are only interesting for the alias check above. |
| if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { |
| ++I; |
| continue; |
| } |
| } |
| |
| if (hasAttribute(Def, NewAttribute->getKind())) { |
| ++I; |
| continue; // regular attr merging will take care of validating this. |
| } |
| |
| if (isa<C11NoReturnAttr>(NewAttribute)) { |
| // C's _Noreturn is allowed to be added to a function after it is defined. |
| ++I; |
| continue; |
| } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { |
| if (AA->isAlignas()) { |
| // C++11 [dcl.align]p6: |
| // if any declaration of an entity has an alignment-specifier, |
| // every defining declaration of that entity shall specify an |
| // equivalent alignment. |
| // C11 6.7.5/7: |
| // If the definition of an object does not have an alignment |
| // specifier, any other declaration of that object shall also |
| // have no alignment specifier. |
| S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) |
| << AA; |
| S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) |
| << AA; |
| NewAttributes.erase(NewAttributes.begin() + I); |
| --E; |
| continue; |
| } |
| } |
| |
| S.Diag(NewAttribute->getLocation(), |
| diag::warn_attribute_precede_definition); |
| S.Diag(Def->getLocation(), diag::note_previous_definition); |
| NewAttributes.erase(NewAttributes.begin() + I); |
| --E; |
| } |
| } |
| |
| /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. |
| void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, |
| AvailabilityMergeKind AMK) { |
| if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { |
| UsedAttr *NewAttr = OldAttr->clone(Context); |
| NewAttr->setInherited(true); |
| New->addAttr(NewAttr); |
| } |
| |
| if (!Old->hasAttrs() && !New->hasAttrs()) |
| return; |
| |
| // Attributes declared post-definition are currently ignored. |
| checkNewAttributesAfterDef(*this, New, Old); |
| |
| if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { |
| if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { |
| if (OldA->getLabel() != NewA->getLabel()) { |
| // This redeclaration changes __asm__ label. |
| Diag(New->getLocation(), diag::err_different_asm_label); |
| Diag(OldA->getLocation(), diag::note_previous_declaration); |
| } |
| } else if (Old->isUsed()) { |
| // This redeclaration adds an __asm__ label to a declaration that has |
| // already been ODR-used. |
| Diag(New->getLocation(), diag::err_late_asm_label_name) |
| << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); |
| } |
| } |
| |
| // Re-declaration cannot add abi_tag's. |
| if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { |
| if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { |
| for (const auto &NewTag : NewAbiTagAttr->tags()) { |
| if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(), |
| NewTag) == OldAbiTagAttr->tags_end()) { |
| Diag(NewAbiTagAttr->getLocation(), |
| diag::err_new_abi_tag_on_redeclaration) |
| << NewTag; |
| Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| } else { |
| Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| |
| // This redeclaration adds a section attribute. |
| if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { |
| if (auto *VD = dyn_cast<VarDecl>(New)) { |
| if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { |
| Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| } |
| |
| // Redeclaration adds code-seg attribute. |
| const auto *NewCSA = New->getAttr<CodeSegAttr>(); |
| if (NewCSA && !Old->hasAttr<CodeSegAttr>() && |
| !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { |
| Diag(New->getLocation(), diag::warn_mismatched_section) |
| << 0 /*codeseg*/; |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| } |
| |
| if (!Old->hasAttrs()) |
| return; |
| |
| bool foundAny = New->hasAttrs(); |
| |
| // Ensure that any moving of objects within the allocated map is done before |
| // we process them. |
| if (!foundAny) New->setAttrs(AttrVec()); |
| |
| for (auto *I : Old->specific_attrs<InheritableAttr>()) { |
| // Ignore deprecated/unavailable/availability attributes if requested. |
| AvailabilityMergeKind LocalAMK = AMK_None; |
| if (isa<DeprecatedAttr>(I) || |
| isa<UnavailableAttr>(I) || |
| isa<AvailabilityAttr>(I)) { |
| switch (AMK) { |
| case AMK_None: |
| continue; |
| |
| case AMK_Redeclaration: |
| case AMK_Override: |
| case AMK_ProtocolImplementation: |
| LocalAMK = AMK; |
| break; |
| } |
| } |
| |
| // Already handled. |
| if (isa<UsedAttr>(I)) |
| continue; |
| |
| if (mergeDeclAttribute(*this, New, I, LocalAMK)) |
| foundAny = true; |
| } |
| |
| if (mergeAlignedAttrs(*this, New, Old)) |
| foundAny = true; |
| |
| if (!foundAny) New->dropAttrs(); |
| } |
| |
| /// mergeParamDeclAttributes - Copy attributes from the old parameter |
| /// to the new one. |
| static void mergeParamDeclAttributes(ParmVarDecl *newDecl, |
| const ParmVarDecl *oldDecl, |
| Sema &S) { |
| // C++11 [dcl.attr.depend]p2: |
| // The first declaration of a function shall specify the |
| // carries_dependency attribute for its declarator-id if any declaration |
| // of the function specifies the carries_dependency attribute. |
| const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); |
| if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { |
| S.Diag(CDA->getLocation(), |
| diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; |
| // Find the first declaration of the parameter. |
| // FIXME: Should we build redeclaration chains for function parameters? |
| const FunctionDecl *FirstFD = |
| cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); |
| const ParmVarDecl *FirstVD = |
| FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); |
| S.Diag(FirstVD->getLocation(), |
| diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; |
| } |
| |
| if (!oldDecl->hasAttrs()) |
| return; |
| |
| bool foundAny = newDecl->hasAttrs(); |
| |
| // Ensure that any moving of objects within the allocated map is |
| // done before we process them. |
| if (!foundAny) newDecl->setAttrs(AttrVec()); |
| |
| for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { |
| if (!DeclHasAttr(newDecl, I)) { |
| InheritableAttr *newAttr = |
| cast<InheritableParamAttr>(I->clone(S.Context)); |
| newAttr->setInherited(true); |
| newDecl->addAttr(newAttr); |
| foundAny = true; |
| } |
| } |
| |
| if (!foundAny) newDecl->dropAttrs(); |
| } |
| |
| static void mergeParamDeclTypes(ParmVarDecl *NewParam, |
| const ParmVarDecl *OldParam, |
| Sema &S) { |
| if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { |
| if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { |
| if (*Oldnullability != *Newnullability) { |
| S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) |
| << DiagNullabilityKind( |
| *Newnullability, |
| ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| != 0)) |
| << DiagNullabilityKind( |
| *Oldnullability, |
| ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| != 0)); |
| S.Diag(OldParam->getLocation(), diag::note_previous_declaration); |
| } |
| } else { |
| QualType NewT = NewParam->getType(); |
| NewT = S.Context.getAttributedType( |
| AttributedType::getNullabilityAttrKind(*Oldnullability), |
| NewT, NewT); |
| NewParam->setType(NewT); |
| } |
| } |
| } |
| |
| namespace { |
| |
| /// Used in MergeFunctionDecl to keep track of function parameters in |
| /// C. |
| struct GNUCompatibleParamWarning { |
| ParmVarDecl *OldParm; |
| ParmVarDecl *NewParm; |
| QualType PromotedType; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// getSpecialMember - get the special member enum for a method. |
| Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { |
| if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { |
| if (Ctor->isDefaultConstructor()) |
| return Sema::CXXDefaultConstructor; |
| |
| if (Ctor->isCopyConstructor()) |
| return Sema::CXXCopyConstructor; |
| |
| if (Ctor->isMoveConstructor()) |
| return Sema::CXXMoveConstructor; |
| } else if (isa<CXXDestructorDecl>(MD)) { |
| return Sema::CXXDestructor; |
| } else if (MD->isCopyAssignmentOperator()) { |
| return Sema::CXXCopyAssignment; |
| } else if (MD->isMoveAssignmentOperator()) { |
| return Sema::CXXMoveAssignment; |
| } |
| |
| return Sema::CXXInvalid; |
| } |
| |
| // Determine whether the previous declaration was a definition, implicit |
| // declaration, or a declaration. |
| template <typename T> |
| static std::pair<diag::kind, SourceLocation> |
| getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { |
| diag::kind PrevDiag; |
| SourceLocation OldLocation = Old->getLocation(); |
| if (Old->isThisDeclarationADefinition()) |
| PrevDiag = diag::note_previous_definition; |
| else if (Old->isImplicit()) { |
| PrevDiag = diag::note_previous_implicit_declaration; |
| if (OldLocation.isInvalid()) |
| OldLocation = New->getLocation(); |
| } else |
| PrevDiag = diag::note_previous_declaration; |
| return std::make_pair(PrevDiag, OldLocation); |
| } |
| |
| /// canRedefineFunction - checks if a function can be redefined. Currently, |
| /// only extern inline functions can be redefined, and even then only in |
| /// GNU89 mode. |
| static bool canRedefineFunction(const FunctionDecl *FD, |
| const LangOptions& LangOpts) { |
| return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && |
| !LangOpts.CPlusPlus && |
| FD->isInlineSpecified() && |
| FD->getStorageClass() == SC_Extern); |
| } |
| |
| const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { |
| const AttributedType *AT = T->getAs<AttributedType>(); |
| while (AT && !AT->isCallingConv()) |
| AT = AT->getModifiedType()->getAs<AttributedType>(); |
| return AT; |
| } |
| |
| template <typename T> |
| static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { |
| const DeclContext *DC = Old->getDeclContext(); |
| if (DC->isRecord()) |
| return false; |
| |
| LanguageLinkage OldLinkage = Old->getLanguageLinkage(); |
| if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) |
| return true; |
| if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) |
| return true; |
| return false; |
| } |
| |
| template<typename T> static bool isExternC(T *D) { return D->isExternC(); } |
| static bool isExternC(VarTemplateDecl *) { return false; } |
| |
| /// Check whether a redeclaration of an entity introduced by a |
| /// using-declaration is valid, given that we know it's not an overload |
| /// (nor a hidden tag declaration). |
| template<typename ExpectedDecl> |
| static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, |
| ExpectedDecl *New) { |
| // C++11 [basic.scope.declarative]p4: |
| // Given a set of declarations in a single declarative region, each of |
| // which specifies the same unqualified name, |
| // -- they shall all refer to the same entity, or all refer to functions |
| // and function templates; or |
| // -- exactly one declaration shall declare a class name or enumeration |
| // name that is not a typedef name and the other declarations shall all |
| // refer to the same variable or enumerator, or all refer to functions |
| // and function templates; in this case the class name or enumeration |
| // name is hidden (3.3.10). |
| |
| // C++11 [namespace.udecl]p14: |
| // If a function declaration in namespace scope or block scope has the |
| // same name and the same parameter-type-list as a function introduced |
| // by a using-declaration, and the declarations do not declare the same |
| // function, the program is ill-formed. |
| |
| auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); |
| if (Old && |
| !Old->getDeclContext()->getRedeclContext()->Equals( |
| New->getDeclContext()->getRedeclContext()) && |
| !(isExternC(Old) && isExternC(New))) |
| Old = nullptr; |
| |
| if (!Old) { |
| S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); |
| S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); |
| S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; |
| return true; |
| } |
| return false; |
| } |
| |
| static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, |
| const FunctionDecl *B) { |
| assert(A->getNumParams() == B->getNumParams()); |
| |
| auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { |
| const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); |
| const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); |
| if (AttrA == AttrB) |
| return true; |
| return AttrA && AttrB && AttrA->getType() == AttrB->getType(); |
| }; |
| |
| return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); |
| } |
| |
| /// If necessary, adjust the semantic declaration context for a qualified |
| /// declaration to name the correct inline namespace within the qualifier. |
| static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, |
| DeclaratorDecl *OldD) { |
| // The only case where we need to update the DeclContext is when |
| // redeclaration lookup for a qualified name finds a declaration |
| // in an inline namespace within the context named by the qualifier: |
| // |
| // inline namespace N { int f(); } |
| // int ::f(); // Sema DC needs adjusting from :: to N::. |
| // |
| // For unqualified declarations, the semantic context *can* change |
| // along the redeclaration chain (for local extern declarations, |
| // extern "C" declarations, and friend declarations in particular). |
| if (!NewD->getQualifier()) |
| return; |
| |
| // NewD is probably already in the right context. |
| auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); |
| auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); |
| if (NamedDC->Equals(SemaDC)) |
| return; |
| |
| assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || |
| NewD->isInvalidDecl() || OldD->isInvalidDecl()) && |
| "unexpected context for redeclaration"); |
| |
| auto *LexDC = NewD->getLexicalDeclContext(); |
| auto FixSemaDC = [=](NamedDecl *D) { |
| if (!D) |
| return; |
| D->setDeclContext(SemaDC); |
| D->setLexicalDeclContext(LexDC); |
| }; |
| |
| FixSemaDC(NewD); |
| if (auto *FD = dyn_cast<FunctionDecl>(NewD)) |
| FixSemaDC(FD->getDescribedFunctionTemplate()); |
| else if (auto *VD = dyn_cast<VarDecl>(NewD)) |
| FixSemaDC(VD->getDescribedVarTemplate()); |
| } |
| |
| /// MergeFunctionDecl - We just parsed a function 'New' from |
| /// declarator D which has the same name and scope as a previous |
| /// declaration 'Old'. Figure out how to resolve this situation, |
| /// merging decls or emitting diagnostics as appropriate. |
| /// |
| /// In C++, New and Old must be declarations that are not |
| /// overloaded. Use IsOverload to determine whether New and Old are |
| /// overloaded, and to select the Old declaration that New should be |
| /// merged with. |
| /// |
| /// Returns true if there was an error, false otherwise. |
| bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, |
| Scope *S, bool MergeTypeWithOld) { |
| // Verify the old decl was also a function. |
| FunctionDecl *Old = OldD->getAsFunction(); |
| if (!Old) { |
| if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { |
| if (New->getFriendObjectKind()) { |
| Diag(New->getLocation(), diag::err_using_decl_friend); |
| Diag(Shadow->getTargetDecl()->getLocation(), |
| diag::note_using_decl_target); |
| Diag(Shadow->getUsingDecl()->getLocation(), |
| diag::note_using_decl) << 0; |
| return true; |
| } |
| |
| // Check whether the two declarations might declare the same function. |
| if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) |
| return true; |
| OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); |
| } else { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| notePreviousDefinition(OldD, New->getLocation()); |
| return true; |
| } |
| } |
| |
| // If the old declaration is invalid, just give up here. |
| if (Old->isInvalidDecl()) |
| return true; |
| |
| // Disallow redeclaration of some builtins. |
| if (!getASTContext().canBuiltinBeRedeclared(Old)) { |
| Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_builtin_declaration) |
| << Old << Old->getType(); |
| return true; |
| } |
| |
| diag::kind PrevDiag; |
| SourceLocation OldLocation; |
| std::tie(PrevDiag, OldLocation) = |
| getNoteDiagForInvalidRedeclaration(Old, New); |
| |
| // Don't complain about this if we're in GNU89 mode and the old function |
| // is an extern inline function. |
| // Don't complain about specializations. They are not supposed to have |
| // storage classes. |
| if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && |
| New->getStorageClass() == SC_Static && |
| Old->hasExternalFormalLinkage() && |
| !New->getTemplateSpecializationInfo() && |
| !canRedefineFunction(Old, getLangOpts())) { |
| if (getLangOpts().MicrosoftExt) { |
| Diag(New->getLocation(), diag::ext_static_non_static) << New; |
| Diag(OldLocation, PrevDiag); |
| } else { |
| Diag(New->getLocation(), diag::err_static_non_static) << New; |
| Diag(OldLocation, PrevDiag); |
| return true; |
| } |
| } |
| |
| if (New->hasAttr<InternalLinkageAttr>() && |
| !Old->hasAttr<InternalLinkageAttr>()) { |
| Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) |
| << New->getDeclName(); |
| notePreviousDefinition(Old, New->getLocation()); |
| New->dropAttr<InternalLinkageAttr>(); |
| } |
| |
| if (CheckRedeclarationModuleOwnership(New, Old)) |
| return true; |
| |
| if (!getLangOpts().CPlusPlus) { |
| bool OldOvl = Old->hasAttr<OverloadableAttr>(); |
| if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { |
| Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) |
| << New << OldOvl; |
| |
| // Try our best to find a decl that actually has the overloadable |
| // attribute for the note. In most cases (e.g. programs with only one |
| // broken declaration/definition), this won't matter. |
| // |
| // FIXME: We could do this if we juggled some extra state in |
| // OverloadableAttr, rather than just removing it. |
| const Decl *DiagOld = Old; |
| if (OldOvl) { |
| auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { |
| const auto *A = D->getAttr<OverloadableAttr>(); |
| return A && !A->isImplicit(); |
| }); |
| // If we've implicitly added *all* of the overloadable attrs to this |
| // chain, emitting a "previous redecl" note is pointless. |
| DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; |
| } |
| |
| if (DiagOld) |
| Diag(DiagOld->getLocation(), |
| diag::note_attribute_overloadable_prev_overload) |
| << OldOvl; |
| |
| if (OldOvl) |
| New->addAttr(OverloadableAttr::CreateImplicit(Context)); |
| else |
| New->dropAttr<OverloadableAttr>(); |
| } |
| } |
| |
| // If a function is first declared with a calling convention, but is later |
| // declared or defined without one, all following decls assume the calling |
| // convention of the first. |
| // |
| // It's OK if a function is first declared without a calling convention, |
| // but is later declared or defined with the default calling convention. |
| // |
| // To test if either decl has an explicit calling convention, we look for |
| // AttributedType sugar nodes on the type as written. If they are missing or |
| // were canonicalized away, we assume the calling convention was implicit. |
| // |
| // Note also that we DO NOT return at this point, because we still have |
| // other tests to run. |
| QualType OldQType = Context.getCanonicalType(Old->getType()); |
| QualType NewQType = Context.getCanonicalType(New->getType()); |
| const FunctionType *OldType = cast<FunctionType>(OldQType); |
| const FunctionType *NewType = cast<FunctionType>(NewQType); |
| FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
| FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
| bool RequiresAdjustment = false; |
| |
| if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { |
| FunctionDecl *First = Old->getFirstDecl(); |
| const FunctionType *FT = |
| First->getType().getCanonicalType()->castAs<FunctionType>(); |
| FunctionType::ExtInfo FI = FT->getExtInfo(); |
| bool NewCCExplicit = getCallingConvAttributedType(New->getType()); |
| if (!NewCCExplicit) { |
| // Inherit the CC from the previous declaration if it was specified |
| // there but not here. |
| NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); |
| RequiresAdjustment = true; |
| } else { |
| // Calling conventions aren't compatible, so complain. |
| bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); |
| Diag(New->getLocation(), diag::err_cconv_change) |
| << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
| << !FirstCCExplicit |
| << (!FirstCCExplicit ? "" : |
| FunctionType::getNameForCallConv(FI.getCC())); |
| |
| // Put the note on the first decl, since it is the one that matters. |
| Diag(First->getLocation(), diag::note_previous_declaration); |
| return true; |
| } |
| } |
| |
| // FIXME: diagnose the other way around? |
| if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { |
| NewTypeInfo = NewTypeInfo.withNoReturn(true); |
| RequiresAdjustment = true; |
| } |
| |
| // Merge regparm attribute. |
| if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || |
| OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { |
| if (NewTypeInfo.getHasRegParm()) { |
| Diag(New->getLocation(), diag::err_regparm_mismatch) |
| << NewType->getRegParmType() |
| << OldType->getRegParmType(); |
| Diag(OldLocation, diag::note_previous_declaration); |
| return true; |
| } |
| |
| NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); |
| RequiresAdjustment = true; |
| } |
| |
| // Merge ns_returns_retained attribute. |
| if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { |
| if (NewTypeInfo.getProducesResult()) { |
| Diag(New->getLocation(), diag::err_function_attribute_mismatch) |
| << "'ns_returns_retained'"; |
| Diag(OldLocation, diag::note_previous_declaration); |
| return true; |
| } |
| |
| NewTypeInfo = NewTypeInfo.withProducesResult(true); |
| RequiresAdjustment = true; |
| } |
| |
| if (OldTypeInfo.getNoCallerSavedRegs() != |
| NewTypeInfo.getNoCallerSavedRegs()) { |
| if (NewTypeInfo.getNoCallerSavedRegs()) { |
| AnyX86NoCallerSavedRegistersAttr *Attr = |
| New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); |
| Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; |
| Diag(OldLocation, diag::note_previous_declaration); |
| return true; |
| } |
| |
| NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); |
| RequiresAdjustment = true; |
| } |
| |
| if (RequiresAdjustment) { |
| const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); |
| AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); |
| New->setType(QualType(AdjustedType, 0)); |
| NewQType = Context.getCanonicalType(New->getType()); |
| NewType = cast<FunctionType>(NewQType); |
| } |
| |
| // If this redeclaration makes the function inline, we may need to add it to |
| // UndefinedButUsed. |
| if (!Old->isInlined() && New->isInlined() && |
| !New->hasAttr<GNUInlineAttr>() && |
| !getLangOpts().GNUInline && |
| Old->isUsed(false) && |
| !Old->isDefined() && !New->isThisDeclarationADefinition()) |
| UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), |
| SourceLocation())); |
| |
| // If this redeclaration makes it newly gnu_inline, we don't want to warn |
| // about it. |
| if (New->hasAttr<GNUInlineAttr>() && |
| Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { |
| UndefinedButUsed.erase(Old->getCanonicalDecl()); |
| } |
| |
| // If pass_object_size params don't match up perfectly, this isn't a valid |
| // redeclaration. |
| if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && |
| !hasIdenticalPassObjectSizeAttrs(Old, New)) { |
| Diag(New->getLocation(), diag::err_different_pass_object_size_params) |
| << New->getDeclName(); |
| Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| return true; |
| } |
| |
| if (getLangOpts().CPlusPlus) { |
| // C++1z [over.load]p2 |
| // Certain function declarations cannot be overloaded: |
| // -- Function declarations that differ only in the return type, |
| // the exception specification, or both cannot be overloaded. |
| |
| // Check the exception specifications match. This may recompute the type of |
| // both Old and New if it resolved exception specifications, so grab the |
| // types again after this. Because this updates the type, we do this before |
| // any of the other checks below, which may update the "de facto" NewQType |
| // but do not necessarily update the type of New. |
| if (CheckEquivalentExceptionSpec(Old, New)) |
| return true; |
| OldQType = Context.getCanonicalType(Old->getType()); |
| NewQType = Context.getCanonicalType(New->getType()); |
| |
| // Go back to the type source info to compare the declared return types, |
| // per C++1y [dcl.type.auto]p13: |
| // Redeclarations or specializations of a function or function template |
| // with a declared return type that uses a placeholder type shall also |
| // use that placeholder, not a deduced type. |
| QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); |
| QualType NewDeclaredReturnType = New->getDeclaredReturnType(); |
| if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && |
| canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, |
| OldDeclaredReturnType)) { |
| QualType ResQT; |
| if (NewDeclaredReturnType->isObjCObjectPointerType() && |
| OldDeclaredReturnType->isObjCObjectPointerType()) |
| // FIXME: This does the wrong thing for a deduced return type. |
| ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); |
| if (ResQT.isNull()) { |
| if (New->isCXXClassMember() && New->isOutOfLine()) |
| Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) |
| << New << New->getReturnTypeSourceRange(); |
| else |
| Diag(New->getLocation(), diag::err_ovl_diff_return_type) |
| << New->getReturnTypeSourceRange(); |
| Diag(OldLocation, PrevDiag) << Old << Old->getType() |
| << Old->getReturnTypeSourceRange(); |
| return true; |
| } |
| else |
| NewQType = ResQT; |
| } |
| |
| QualType OldReturnType = OldType->getReturnType(); |
| QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); |
| if (OldReturnType != NewReturnType) { |
| // If this function has a deduced return type and has already been |
| // defined, copy the deduced value from the old declaration. |
| AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); |
| if (OldAT && OldAT->isDeduced()) { |
| New->setType( |
| SubstAutoType(New->getType(), |
| OldAT->isDependentType() ? Context.DependentTy |
| : OldAT->getDeducedType())); |
| NewQType = Context.getCanonicalType( |
| SubstAutoType(NewQType, |
| OldAT->isDependentType() ? Context.DependentTy |
| : OldAT->getDeducedType())); |
| } |
| } |
| |
| const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); |
| CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); |
| if (OldMethod && NewMethod) { |
| // Preserve triviality. |
| NewMethod->setTrivial(OldMethod->isTrivial()); |
| |
| // MSVC allows explicit template specialization at class scope: |
| // 2 CXXMethodDecls referring to the same function will be injected. |
| // We don't want a redeclaration error. |
| bool IsClassScopeExplicitSpecialization = |
| OldMethod->isFunctionTemplateSpecialization() && |
| NewMethod->isFunctionTemplateSpecialization(); |
| bool isFriend = NewMethod->getFriendObjectKind(); |
| |
| if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && |
| !IsClassScopeExplicitSpecialization) { |
| // -- Member function declarations with the same name and the |
| // same parameter types cannot be overloaded if any of them |
| // is a static member function declaration. |
| if (OldMethod->isStatic() != NewMethod->isStatic()) { |
| Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); |
| Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| return true; |
| } |
| |
| // C++ [class.mem]p1: |
| // [...] A member shall not be declared twice in the |
| // member-specification, except that a nested class or member |
| // class template can be declared and then later defined. |
| if (!inTemplateInstantiation()) { |
| unsigned NewDiag; |
| if (isa<CXXConstructorDecl>(OldMethod)) |
| NewDiag = diag::err_constructor_redeclared; |
| else if (isa<CXXDestructorDecl>(NewMethod)) |
| NewDiag = diag::err_destructor_redeclared; |
| else if (isa<CXXConversionDecl>(NewMethod)) |
| NewDiag = diag::err_conv_function_redeclared; |
| else |
| NewDiag = diag::err_member_redeclared; |
| |
| Diag(New->getLocation(), NewDiag); |
| } else { |
| Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) |
| << New << New->getType(); |
| } |
| Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| return true; |
| |
| // Complain if this is an explicit declaration of a special |
| // member that was initially declared implicitly. |
| // |
| // As an exception, it's okay to befriend such methods in order |
| // to permit the implicit constructor/destructor/operator calls. |
| } else if (OldMethod->isImplicit()) { |
| if (isFriend) { |
| NewMethod->setImplicit(); |
| } else { |
| Diag(NewMethod->getLocation(), |
| diag::err_definition_of_implicitly_declared_member) |
| << New << getSpecialMember(OldMethod); |
| return true; |
| } |
| } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { |
| Diag(NewMethod->getLocation(), |
| diag::err_definition_of_explicitly_defaulted_member) |
| << getSpecialMember(OldMethod); |
| return true; |
| } |
| } |
| |
| // C++11 [dcl.attr.noreturn]p1: |
| // The first declaration of a function shall specify the noreturn |
| // attribute if any declaration of that function specifies the noreturn |
| // attribute. |
| const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); |
| if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { |
| Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); |
| Diag(Old->getFirstDecl()->getLocation(), |
| diag::note_noreturn_missing_first_decl); |
| } |
| |
| // C++11 [dcl.attr.depend]p2: |
| // The first declaration of a function shall specify the |
| // carries_dependency attribute for its declarator-id if any declaration |
| // of the function specifies the carries_dependency attribute. |
| const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); |
| if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { |
| Diag(CDA->getLocation(), |
| diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; |
| Diag(Old->getFirstDecl()->getLocation(), |
| diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; |
| } |
| |
| // (C++98 8.3.5p3): |
| // All declarations for a function shall agree exactly in both the |
| // return type and the parameter-type-list. |
| // We also want to respect all the extended bits except noreturn. |
| |
| // noreturn should now match unless the old type info didn't have it. |
| QualType OldQTypeForComparison = OldQType; |
| if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { |
| auto *OldType = OldQType->castAs<FunctionProtoType>(); |
| const FunctionType *OldTypeForComparison |
| = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); |
| OldQTypeForComparison = QualType(OldTypeForComparison, 0); |
| assert(OldQTypeForComparison.isCanonical()); |
| } |
| |
| if (haveIncompatibleLanguageLinkages(Old, New)) { |
| // As a special case, retain the language linkage from previous |
| // declarations of a friend function as an extension. |
| // |
| // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC |
| // and is useful because there's otherwise no way to specify language |
| // linkage within class scope. |
| // |
| // Check cautiously as the friend object kind isn't yet complete. |
| if (New->getFriendObjectKind() != Decl::FOK_None) { |
| Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; |
| Diag(OldLocation, PrevDiag); |
| } else { |
| Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
| Diag(OldLocation, PrevDiag); |
| return true; |
| } |
| } |
| |
| if (OldQTypeForComparison == NewQType) |
| return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
| |
| // If the types are imprecise (due to dependent constructs in friends or |
| // local extern declarations), it's OK if they differ. We'll check again |
| // during instantiation. |
| if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) |
| return false; |
| |
| // Fall through for conflicting redeclarations and redefinitions. |
| } |
| |
| // C: Function types need to be compatible, not identical. This handles |
| // duplicate function decls like "void f(int); void f(enum X);" properly. |
| if (!getLangOpts().CPlusPlus && |
| Context.typesAreCompatible(OldQType, NewQType)) { |
| const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); |
| const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); |
| const FunctionProtoType *OldProto = nullptr; |
| if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && |
| (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { |
| // The old declaration provided a function prototype, but the |
| // new declaration does not. Merge in the prototype. |
| assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); |
| SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); |
| NewQType = |
| Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, |
| OldProto->getExtProtoInfo()); |
| New->setType(NewQType); |
| New->setHasInheritedPrototype(); |
| |
| // Synthesize parameters with the same types. |
| SmallVector<ParmVarDecl*, 16> Params; |
| for (const auto &ParamType : OldProto->param_types()) { |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), |
| SourceLocation(), nullptr, |
| ParamType, /*TInfo=*/nullptr, |
| SC_None, nullptr); |
| Param->setScopeInfo(0, Params.size()); |
| Param->setImplicit(); |
| Params.push_back(Param); |
| } |
| |
| New->setParams(Params); |
| } |
| |
| return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
| } |
| |
| // GNU C permits a K&R definition to follow a prototype declaration |
| // if the declared types of the parameters in the K&R definition |
| // match the types in the prototype declaration, even when the |
| // promoted types of the parameters from the K&R definition differ |
| // from the types in the prototype. GCC then keeps the types from |
| // the prototype. |
| // |
| // If a variadic prototype is followed by a non-variadic K&R definition, |
| // the K&R definition becomes variadic. This is sort of an edge case, but |
| // it's legal per the standard depending on how you read C99 6.7.5.3p15 and |
| // C99 6.9.1p8. |
| if (!getLangOpts().CPlusPlus && |
| Old->hasPrototype() && !New->hasPrototype() && |
| New->getType()->getAs<FunctionProtoType>() && |
| Old->getNumParams() == New->getNumParams()) { |
| SmallVector<QualType, 16> ArgTypes; |
| SmallVector<GNUCompatibleParamWarning, 16> Warnings; |
| const FunctionProtoType *OldProto |
| = Old->getType()->getAs<FunctionProtoType>(); |
| const FunctionProtoType *NewProto |
| = New->getType()->getAs<FunctionProtoType>(); |
| |
| // Determine whether this is the GNU C extension. |
| QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), |
| NewProto->getReturnType()); |
| bool LooseCompatible = !MergedReturn.isNull(); |
| for (unsigned Idx = 0, End = Old->getNumParams(); |
| LooseCompatible && Idx != End; ++Idx) { |
| ParmVarDecl *OldParm = Old->getParamDecl(Idx); |
| ParmVarDecl *NewParm = New->getParamDecl(Idx); |
| if (Context.typesAreCompatible(OldParm->getType(), |
| NewProto->getParamType(Idx))) { |
| ArgTypes.push_back(NewParm->getType()); |
| } else if (Context.typesAreCompatible(OldParm->getType(), |
| NewParm->getType(), |
| /*CompareUnqualified=*/true)) { |
| GNUCompatibleParamWarning Warn = { OldParm, NewParm, |
| NewProto->getParamType(Idx) }; |
| Warnings.push_back(Warn); |
| ArgTypes.push_back(NewParm->getType()); |
| } else |
| LooseCompatible = false; |
| } |
| |
| if (LooseCompatible) { |
| for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { |
| Diag(Warnings[Warn].NewParm->getLocation(), |
| diag::ext_param_promoted_not_compatible_with_prototype) |
| << Warnings[Warn].PromotedType |
| << Warnings[Warn].OldParm->getType(); |
| if (Warnings[Warn].OldParm->getLocation().isValid()) |
| Diag(Warnings[Warn].OldParm->getLocation(), |
| diag::note_previous_declaration); |
| } |
| |
| if (MergeTypeWithOld) |
| New->setType(Context.getFunctionType(MergedReturn, ArgTypes, |
| OldProto->getExtProtoInfo())); |
| return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
| } |
| |
| // Fall through to diagnose conflicting types. |
| } |
| |
| // A function that has already been declared has been redeclared or |
| // defined with a different type; show an appropriate diagnostic. |
| |
| // If the previous declaration was an implicitly-generated builtin |
| // declaration, then at the very least we should use a specialized note. |
| unsigned BuiltinID; |
| if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { |
| // If it's actually a library-defined builtin function like 'malloc' |
| // or 'printf', just warn about the incompatible redeclaration. |
| if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { |
| Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; |
| Diag(OldLocation, diag::note_previous_builtin_declaration) |
| << Old << Old->getType(); |
| |
| // If this is a global redeclaration, just forget hereafter |
| // about the "builtin-ness" of the function. |
| // |
| // Doing this for local extern declarations is problematic. If |
| // the builtin declaration remains visible, a second invalid |
| // local declaration will produce a hard error; if it doesn't |
| // remain visible, a single bogus local redeclaration (which is |
| // actually only a warning) could break all the downstream code. |
| if (!New->getLexicalDeclContext()->isFunctionOrMethod()) |
| New->getIdentifier()->revertBuiltin(); |
| |
| return false; |
| } |
| |
| PrevDiag = diag::note_previous_builtin_declaration; |
| } |
| |
| Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); |
| Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| return true; |
| } |
| |
| /// Completes the merge of two function declarations that are |
| /// known to be compatible. |
| /// |
| /// This routine handles the merging of attributes and other |
| /// properties of function declarations from the old declaration to |
| /// the new declaration, once we know that New is in fact a |
| /// redeclaration of Old. |
| /// |
| /// \returns false |
| bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, |
| Scope *S, bool MergeTypeWithOld) { |
| // Merge the attributes |
| mergeDeclAttributes(New, Old); |
| |
| // Merge "pure" flag. |
| if (Old->isPure()) |
| New->setPure(); |
| |
| // Merge "used" flag. |
| if (Old->getMostRecentDecl()->isUsed(false)) |
| New->setIsUsed(); |
| |
| // Merge attributes from the parameters. These can mismatch with K&R |
| // declarations. |
| if (New->getNumParams() == Old->getNumParams()) |
| for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { |
| ParmVarDecl *NewParam = New->getParamDecl(i); |
| ParmVarDecl *OldParam = Old->getParamDecl(i); |
| mergeParamDeclAttributes(NewParam, OldParam, *this); |
| mergeParamDeclTypes(NewParam, OldParam, *this); |
| } |
| |
| if (getLangOpts().CPlusPlus) |
| return MergeCXXFunctionDecl(New, Old, S); |
| |
| // Merge the function types so the we get the composite types for the return |
| // and argument types. Per C11 6.2.7/4, only update the type if the old decl |
| // was visible. |
| QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); |
| if (!Merged.isNull() && MergeTypeWithOld) |
| New->setType(Merged); |
| |
| return false; |
| } |
| |
| void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, |
| ObjCMethodDecl *oldMethod) { |
| // Merge the attributes, including deprecated/unavailable |
| AvailabilityMergeKind MergeKind = |
| isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) |
| ? AMK_ProtocolImplementation |
| : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration |
| : AMK_Override; |
| |
| mergeDeclAttributes(newMethod, oldMethod, MergeKind); |
| |
| // Merge attributes from the parameters. |
| ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), |
| oe = oldMethod->param_end(); |
| for (ObjCMethodDecl::param_iterator |
| ni = newMethod->param_begin(), ne = newMethod->param_end(); |
| ni != ne && oi != oe; ++ni, ++oi) |
| mergeParamDeclAttributes(*ni, *oi, *this); |
| |
| CheckObjCMethodOverride(newMethod, oldMethod); |
| } |
| |
| static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { |
| assert(!S.Context.hasSameType(New->getType(), Old->getType())); |
| |
| S.Diag(New->getLocation(), New->isThisDeclarationADefinition() |
| ? diag::err_redefinition_different_type |
| : diag::err_redeclaration_different_type) |
| << New->getDeclName() << New->getType() << Old->getType(); |
| |
| diag::kind PrevDiag; |
| SourceLocation OldLocation; |
| std::tie(PrevDiag, OldLocation) |
| = getNoteDiagForInvalidRedeclaration(Old, New); |
| S.Diag(OldLocation, PrevDiag); |
| New->setInvalidDecl(); |
| } |
| |
| /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and |
| /// scope as a previous declaration 'Old'. Figure out how to merge their types, |
| /// emitting diagnostics as appropriate. |
| /// |
| /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back |
| /// to here in AddInitializerToDecl. We can't check them before the initializer |
| /// is attached. |
| void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, |
| bool MergeTypeWithOld) { |
| if (New->isInvalidDecl() || Old->isInvalidDecl()) |
| return; |
| |
| QualType MergedT; |
| if (getLangOpts().CPlusPlus) { |
| if (New->getType()->isUndeducedType()) { |
| // We don't know what the new type is until the initializer is attached. |
| return; |
| } else if (Context.hasSameType(New->getType(), Old->getType())) { |
| // These could still be something that needs exception specs checked. |
| return MergeVarDeclExceptionSpecs(New, Old); |
| } |
| // C++ [basic.link]p10: |
| // [...] the types specified by all declarations referring to a given |
| // object or function shall be identical, except that declarations for an |
| // array object can specify array types that differ by the presence or |
| // absence of a major array bound (8.3.4). |
| else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { |
| const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); |
| const ArrayType *NewArray = Context.getAsArrayType(New->getType()); |
| |
| // We are merging a variable declaration New into Old. If it has an array |
| // bound, and that bound differs from Old's bound, we should diagnose the |
| // mismatch. |
| if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { |
| for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; |
| PrevVD = PrevVD->getPreviousDecl()) { |
| const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType()); |
| if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) |
| continue; |
| |
| if (!Context.hasSameType(NewArray, PrevVDTy)) |
| return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); |
| } |
| } |
| |
| if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { |
| if (Context.hasSameType(OldArray->getElementType(), |
| NewArray->getElementType())) |
| MergedT = New->getType(); |
| } |
| // FIXME: Check visibility. New is hidden but has a complete type. If New |
| // has no array bound, it should not inherit one from Old, if Old is not |
| // visible. |
| else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { |
| if (Context.hasSameType(OldArray->getElementType(), |
| NewArray->getElementType())) |
| MergedT = Old->getType(); |
| } |
| } |
| else if (New->getType()->isObjCObjectPointerType() && |
| Old->getType()->isObjCObjectPointerType()) { |
| MergedT = Context.mergeObjCGCQualifiers(New->getType(), |
| Old->getType()); |
| } |
| } else { |
| // C 6.2.7p2: |
| // All declarations that refer to the same object or function shall have |
| // compatible type. |
| MergedT = Context.mergeTypes(New->getType(), Old->getType()); |
| } |
| if (MergedT.isNull()) { |
| // It's OK if we couldn't merge types if either type is dependent, for a |
| // block-scope variable. In other cases (static data members of class |
| // templates, variable templates, ...), we require the types to be |
| // equivalent. |
| // FIXME: The C++ standard doesn't say anything about this. |
| if ((New->getType()->isDependentType() || |
| Old->getType()->isDependentType()) && New->isLocalVarDecl()) { |
| // If the old type was dependent, we can't merge with it, so the new type |
| // becomes dependent for now. We'll reproduce the original type when we |
| // instantiate the TypeSourceInfo for the variable. |
| if (!New->getType()->isDependentType() && MergeTypeWithOld) |
| New->setType(Context.DependentTy); |
| return; |
| } |
| return diagnoseVarDeclTypeMismatch(*this, New, Old); |
| } |
| |
| // Don't actually update the type on the new declaration if the old |
| // declaration was an extern declaration in a different scope. |
| if (MergeTypeWithOld) |
| New->setType(MergedT); |
| } |
| |
| static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, |
| LookupResult &Previous) { |
| // C11 6.2.7p4: |
| // For an identifier with internal or external linkage declared |
| // in a scope in which a prior declaration of that identifier is |
| // visible, if the prior declaration specifies internal or |
| // external linkage, the type of the identifier at the later |
| // declaration becomes the composite type. |
| // |
| // If the variable isn't visible, we do not merge with its type. |
| if (Previous.isShadowed()) |
| return false; |
| |
| if (S.getLangOpts().CPlusPlus) { |
| // C++11 [dcl.array]p3: |
| // If there is a preceding declaration of the entity in the same |
| // scope in which the bound was specified, an omitted array bound |
| // is taken to be the same as in that earlier declaration. |
| return NewVD->isPreviousDeclInSameBlockScope() || |
| (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && |
| !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); |
| } else { |
| // If the old declaration was function-local, don't merge with its |
| // type unless we're in the same function. |
| return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || |
| OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); |
| } |
| } |
| |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| /// Tentative definition rules (C99 6.9.2p2) are checked by |
| /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative |
| /// definitions here, since the initializer hasn't been attached. |
| /// |
| void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { |
| // If the new decl is already invalid, don't do any other checking. |
| if (New->isInvalidDecl()) |
| return; |
| |
| if (!shouldLinkPossiblyHiddenDecl(Previous, New)) |
| return; |
| |
| VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); |
| |
| // Verify the old decl was also a variable or variable template. |
| VarDecl *Old = nullptr; |
| VarTemplateDecl *OldTemplate = nullptr; |
| if (Previous.isSingleResult()) { |
| if (NewTemplate) { |
| OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); |
| Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; |
| |
| if (auto *Shadow = |
| dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) |
| if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) |
| return New->setInvalidDecl(); |
| } else { |
| Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); |
| |
| if (auto *Shadow = |
| dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) |
| if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) |
| return New->setInvalidDecl(); |
| } |
| } |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| << New->getDeclName(); |
| notePreviousDefinition(Previous.getRepresentativeDecl(), |
| New->getLocation()); |
| return New->setInvalidDecl(); |
| } |
| |
| // Ensure the template parameters are compatible. |
| if (NewTemplate && |
| !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
| OldTemplate->getTemplateParameters(), |
| /*Complain=*/true, TPL_TemplateMatch)) |
| return New->setInvalidDecl(); |
| |
| // C++ [class.mem]p1: |
| // A member shall not be declared twice in the member-specification [...] |
| // |
| // Here, we need only consider static data members. |
| if (Old->isStaticDataMember() && !New->isOutOfLine()) { |
| Diag(New->getLocation(), diag::err_duplicate_member) |
| << New->getIdentifier(); |
| Diag(Old->getLocation(), diag::note_previous_declaration); |
| New->setInvalidDecl(); |
| } |
| |
| mergeDeclAttributes(New, Old); |
| // Warn if an already-declared variable is made a weak_import in a subsequent |
| // declaration |
| if (New->hasAttr<WeakImportAttr>() && |
| Old->getStorageClass() == SC_None && |
| !Old->hasAttr<WeakImportAttr>()) { |
| Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); |
| notePreviousDefinition(Old, New->getLocation()); |
| // Remove weak_import attribute on new declaration. |
| New->dropAttr<WeakImportAttr>(); |
| } |
| |
| if (New->hasAttr<InternalLinkageAttr>() && |
| !Old->hasAttr<InternalLinkageAttr>()) { |
| Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) |
| << New->getDeclName(); |
| notePreviousDefinition(Old, New->getLocation()); |
| New->dropAttr<InternalLinkageAttr>(); |
| } |
| |
| // Merge the types. |
| VarDecl *MostRecent = Old->getMostRecentDecl(); |
| if (MostRecent != Old) { |
| MergeVarDeclTypes(New, MostRecent, |
| mergeTypeWithPrevious(*this, New, MostRecent, Previous)); |
| if (New->isInvalidDecl()) |
| return; |
| } |
| |
| MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); |
| if (New->isInvalidDecl()) |
| return; |
| |
| diag::kind PrevDiag; |
| SourceLocation OldLocation; |
| std::tie(PrevDiag, OldLocation) = |
| getNoteDiagForInvalidRedeclaration(Old, New); |
| |
| // [dcl.stc]p8: Check if we have a non-static decl followed by a static. |
| if (New->getStorageClass() == SC_Static && |
| !New->isStaticDataMember() && |
| Old->hasExternalFormalLinkage()) { |
| if (getLangOpts().MicrosoftExt) { |
| Diag(New->getLocation(), diag::ext_static_non_static) |
| << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| } else { |
| Diag(New->getLocation(), diag::err_static_non_static) |
| << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| return New->setInvalidDecl(); |
| } |
| } |
| // C99 6.2.2p4: |
| // For an identifier declared with the storage-class specifier |
| // extern in a scope in which a prior declaration of that |
| // identifier is visible,23) if the prior declaration specifies |
| // internal or external linkage, the linkage of the identifier at |
| // the later declaration is the same as the linkage specified at |
| // the prior declaration. If no prior declaration is visible, or |
| // if the prior declaration specifies no linkage, then the |
| // identifier has external linkage. |
| if (New->hasExternalStorage() && Old->hasLinkage()) |
| /* Okay */; |
| else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && |
| !New->isStaticDataMember() && |
| Old->getCanonicalDecl()->getStorageClass() == SC_Static) { |
| Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| return New->setInvalidDecl(); |
| } |
| |
| // Check if extern is followed by non-extern and vice-versa. |
| if (New->hasExternalStorage() && |
| !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { |
| Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| return New->setInvalidDecl(); |
| } |
| if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && |
| !New->hasExternalStorage()) { |
| Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| return New->setInvalidDecl(); |
| } |
| |
| if (CheckRedeclarationModuleOwnership(New, Old)) |
| return; |
| |
| // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. |
| |
| // FIXME: The test for external storage here seems wrong? We still |
| // need to check for mismatches. |
| if (!New->hasExternalStorage() && !New->isFileVarDecl() && |
| // Don't complain about out-of-line definitions of static members. |
| !(Old->getLexicalDeclContext()->isRecord() && |
| !New->getLexicalDeclContext()->isRecord())) { |
| Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| return New->setInvalidDecl(); |
| } |
| |
| if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { |
| if (VarDecl *Def = Old->getDefinition()) { |
| // C++1z [dcl.fcn.spec]p4: |
| // If the definition of a variable appears in a translation unit before |
| // its first declaration as inline, the program is ill-formed. |
| Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| } |
| } |
| |
| // If this redeclaration makes the variable inline, we may need to add it to |
| // UndefinedButUsed. |
| if (!Old->isInline() && New->isInline() && Old->isUsed(false) && |
| !Old->getDefinition() && !New->isThisDeclarationADefinition()) |
| UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), |
| SourceLocation())); |
| |
| if (New->getTLSKind() != Old->getTLSKind()) { |
| if (!Old->getTLSKind()) { |
| Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| } else if (!New->getTLSKind()) { |
| Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); |
| Diag(OldLocation, PrevDiag); |
| } else { |
| // Do not allow redeclaration to change the variable between requiring |
| // static and dynamic initialization. |
| // FIXME: GCC allows this, but uses the TLS keyword on the first |
| // declaration to determine the kind. Do we need to be compatible here? |
| Diag(New->getLocation(), diag::err_thread_thread_different_kind) |
| << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); |
| Diag(OldLocation, PrevDiag); |
| } |
| } |
| |
| // C++ doesn't have tentative definitions, so go right ahead and check here. |
| if (getLangOpts().CPlusPlus && |
| New->isThisDeclarationADefinition() == VarDecl::Definition) { |
| if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && |
| Old->getCanonicalDecl()->isConstexpr()) { |
| // This definition won't be a definition any more once it's been merged. |
| Diag(New->getLocation(), |
| diag::warn_deprecated_redundant_constexpr_static_def); |
| } else if (VarDecl *Def = Old->getDefinition()) { |
| if (checkVarDeclRedefinition(Def, New)) |
| return; |
| } |
| } |
| |
| if (haveIncompatibleLanguageLinkages(Old, New)) { |
| Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
| Diag(OldLocation, PrevDiag); |
| New->setInvalidDecl(); |
| return; |
| } |
| |
| // Merge "used" flag. |
| if (Old->getMostRecentDecl()->isUsed(false)) |
| New->setIsUsed(); |
| |
| // Keep a chain of previous declarations. |
| New->setPreviousDecl(Old); |
| if (NewTemplate) |
| NewTemplate->setPreviousDecl(OldTemplate); |
| adjustDeclContextForDeclaratorDecl(New, Old); |
| |
| // Inherit access appropriately. |
| New->setAccess(Old->getAccess()); |
| if (NewTemplate) |
| NewTemplate->setAccess(New->getAccess()); |
| |
| if (Old->isInline()) |
| New->setImplicitlyInline(); |
| } |
| |
| void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { |
| SourceManager &SrcMgr = getSourceManager(); |
| auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); |
| auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); |
| auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); |
| auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); |
| auto &HSI = PP.getHeaderSearchInfo(); |
| StringRef HdrFilename = |
| SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); |
| |
| auto noteFromModuleOrInclude = [&](Module *Mod, |
| SourceLocation IncLoc) -> bool { |
| // Redefinition errors with modules are common with non modular mapped |
| // headers, example: a non-modular header H in module A that also gets |
| // included directly in a TU. Pointing twice to the same header/definition |
| // is confusing, try to get better diagnostics when modules is on. |
| if (IncLoc.isValid()) { |
| if (Mod) { |
| Diag(IncLoc, diag::note_redefinition_modules_same_file) |
| << HdrFilename.str() << Mod->getFullModuleName(); |
| if (!Mod->DefinitionLoc.isInvalid()) |
| Diag(Mod->DefinitionLoc, diag::note_defined_here) |
| << Mod->getFullModuleName(); |
| } else { |
| Diag(IncLoc, diag::note_redefinition_include_same_file) |
| << HdrFilename.str(); |
| } |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| // Is it the same file and same offset? Provide more information on why |
| // this leads to a redefinition error. |
| bool EmittedDiag = false; |
| if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { |
| SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); |
| SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); |
| EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); |
| EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); |
| |
| // If the header has no guards, emit a note suggesting one. |
| if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) |
| Diag(Old->getLocation(), diag::note_use_ifdef_guards); |
| |
| if (EmittedDiag) |
| return; |
| } |
| |
| // Redefinition coming from different files or couldn't do better above. |
| if (Old->getLocation().isValid()) |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| } |
| |
| /// We've just determined that \p Old and \p New both appear to be definitions |
| /// of the same variable. Either diagnose or fix the problem. |
| bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { |
| if (!hasVisibleDefinition(Old) && |
| (New->getFormalLinkage() == InternalLinkage || |
| New->isInline() || |
| New->getDescribedVarTemplate() || |
| New->getNumTemplateParameterLists() || |
| New->getDeclContext()->isDependentContext())) { |
| // The previous definition is hidden, and multiple definitions are |
| // permitted (in separate TUs). Demote this to a declaration. |
| New->demoteThisDefinitionToDeclaration(); |
| |
| // Make the canonical definition visible. |
| if (auto *OldTD = Old->getDescribedVarTemplate()) |
| makeMergedDefinitionVisible(OldTD); |
| makeMergedDefinitionVisible(Old); |
| return false; |
| } else { |
| Diag(New->getLocation(), diag::err_redefinition) << New; |
| notePreviousDefinition(Old, New->getLocation()); |
| New->setInvalidDecl(); |
| return true; |
| } |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. |
| Decl * |
| Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, |
| RecordDecl *&AnonRecord) { |
| return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, |
| AnonRecord); |
| } |
| |
| // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to |
| // disambiguate entities defined in different scopes. |
| // While the VS2015 ABI fixes potential miscompiles, it is also breaks |
| // compatibility. |
| // We will pick our mangling number depending on which version of MSVC is being |
| // targeted. |
| static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { |
| return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) |
| ? S->getMSCurManglingNumber() |
| : S->getMSLastManglingNumber(); |
| } |
| |
| void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { |
| if (!Context.getLangOpts().CPlusPlus) |
| return; |
| |
| if (isa<CXXRecordDecl>(Tag->getParent())) { |
| // If this tag is the direct child of a class, number it if |
| // it is anonymous. |
| if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) |
| return; |
| MangleNumberingContext &MCtx = |
| Context.getManglingNumberContext(Tag->getParent()); |
| Context.setManglingNumber( |
| Tag, MCtx.getManglingNumber( |
| Tag, getMSManglingNumber(getLangOpts(), TagScope))); |
| return; |
| } |
| |
| // If this tag isn't a direct child of a class, number it if it is local. |
| Decl *ManglingContextDecl; |
| if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( |
| Tag->getDeclContext(), ManglingContextDecl)) { |
| Context.setManglingNumber( |
| Tag, MCtx->getManglingNumber( |
| Tag, getMSManglingNumber(getLangOpts(), TagScope))); |
| } |
| } |
| |
| void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, |
| TypedefNameDecl *NewTD) { |
| if (TagFromDeclSpec->isInvalidDecl()) |
| return; |
| |
| // Do nothing if the tag already has a name for linkage purposes. |
| if (TagFromDeclSpec->hasNameForLinkage()) |
| return; |
| |
| // A well-formed anonymous tag must always be a TUK_Definition. |
| assert(TagFromDeclSpec->isThisDeclarationADefinition()); |
| |
| // The type must match the tag exactly; no qualifiers allowed. |
| if (!Context.hasSameType(NewTD->getUnderlyingType(), |
| Context.getTagDeclType(TagFromDeclSpec))) { |
| if (getLangOpts().CPlusPlus) |
| Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); |
| return; |
| } |
| |
| // If we've already computed linkage for the anonymous tag, then |
| // adding a typedef name for the anonymous decl can change that |
| // linkage, which might be a serious problem. Diagnose this as |
| // unsupported and ignore the typedef name. TODO: we should |
| // pursue this as a language defect and establish a formal rule |
| // for how to handle it. |
| if (TagFromDeclSpec->hasLinkageBeenComputed()) { |
| Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage); |
| |
| SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart(); |
| tagLoc = getLocForEndOfToken(tagLoc); |
| |
| llvm::SmallString<40> textToInsert; |
| textToInsert += ' '; |
| textToInsert += NewTD->getIdentifier()->getName(); |
| Diag(tagLoc, diag::note_typedef_changes_linkage) |
| << FixItHint::CreateInsertion(tagLoc, textToInsert); |
| return; |
| } |
| |
| // Otherwise, set this is the anon-decl typedef for the tag. |
| TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); |
| } |
| |
| static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { |
| switch (T) { |
| case DeclSpec::TST_class: |
| return 0; |
| case DeclSpec::TST_struct: |
| return 1; |
| case DeclSpec::TST_interface: |
| return 2; |
| case DeclSpec::TST_union: |
| return 3; |
| case DeclSpec::TST_enum: |
| return 4; |
| default: |
| llvm_unreachable("unexpected type specifier"); |
| } |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. It also accepts template |
| /// parameters to cope with template friend declarations. |
| Decl * |
| Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, |
| MultiTemplateParamsArg TemplateParams, |
| bool IsExplicitInstantiation, |
| RecordDecl *&AnonRecord) { |
| Decl *TagD = nullptr; |
| TagDecl *Tag = nullptr; |
| if (DS.getTypeSpecType() == DeclSpec::TST_class || |
| DS.getTypeSpecType() == DeclSpec::TST_struct || |
| DS.getTypeSpecType() == DeclSpec::TST_interface || |
| DS.getTypeSpecType() == DeclSpec::TST_union || |
| DS.getTypeSpecType() == DeclSpec::TST_enum) { |
| TagD = DS.getRepAsDecl(); |
| |
| if (!TagD) // We probably had an error |
| return nullptr; |
| |
| // Note that the above type specs guarantee that the |
| // type rep is a Decl, whereas in many of the others |
| // it's a Type. |
| if (isa<TagDecl>(TagD)) |
| Tag = cast<TagDecl>(TagD); |
| else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) |
| Tag = CTD->getTemplatedDecl(); |
| } |
| |
| if (Tag) { |
| handleTagNumbering(Tag, S); |
| Tag->setFreeStanding(); |
| if (Tag->isInvalidDecl()) |
| return Tag; |
| } |
| |
| if (unsigned TypeQuals = DS.getTypeQualifiers()) { |
| // Enforce C99 6.7.3p2: "Types other than pointer types derived from object |
| // or incomplete types shall not be restrict-qualified." |
| if (TypeQuals & DeclSpec::TQ_restrict) |
| Diag(DS.getRestrictSpecLoc(), |
| diag::err_typecheck_invalid_restrict_not_pointer_noarg) |
| << DS.getSourceRange(); |
| } |
| |
| if (DS.isInlineSpecified()) |
| Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
| << getLangOpts().CPlusPlus17; |
| |
| if (DS.isConstexprSpecified()) { |
| // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations |
| // and definitions of functions and variables. |
| if (Tag) |
| Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) |
| << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()); |
| else |
| Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators); |
| // Don't emit warnings after this error. |
| return TagD; |
| } |
| |
| DiagnoseFunctionSpecifiers(DS); |
| |
| if (DS.isFriendSpecified()) { |
| // If we're dealing with a decl but not a TagDecl, assume that |
| // whatever routines created it handled the friendship aspect. |
| if (TagD && !Tag) |
| return nullptr; |
| return ActOnFriendTypeDecl(S, DS, TemplateParams); |
| } |
| |
| const CXXScopeSpec &SS = DS.getTypeSpecScope(); |
| bool IsExplicitSpecialization = |
| !TemplateParams.empty() && TemplateParams.back()->size() == 0; |
| if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && |
| !IsExplicitInstantiation && !IsExplicitSpecialization && |
| !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { |
| // Per C++ [dcl.type.elab]p1, a class declaration cannot have a |
| // nested-name-specifier unless it is an explicit instantiation |
| // or an explicit specialization. |
| // |
| // FIXME: We allow class template partial specializations here too, per the |
| // obvious intent of DR1819. |
| // |
| // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. |
| Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) |
| << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); |
| return nullptr; |
| } |
| |
| // Track whether this decl-specifier declares anything. |
| bool DeclaresAnything = true; |
| |
| // Handle anonymous struct definitions. |
| if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { |
| if (!Record->getDeclName() && Record->isCompleteDefinition() && |
| DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { |
| if (getLangOpts().CPlusPlus || |
| Record->getDeclContext()->isRecord()) { |
| // If CurContext is a DeclContext that can contain statements, |
| // RecursiveASTVisitor won't visit the decls that |
| // BuildAnonymousStructOrUnion() will put into CurContext. |
| // Also store them here so that they can be part of the |
| // DeclStmt that gets created in this case. |
| // FIXME: Also return the IndirectFieldDecls created by |
| // BuildAnonymousStructOr union, for the same reason? |
| if (CurContext->isFunctionOrMethod()) |
| AnonRecord = Record; |
| return BuildAnonymousStructOrUnion(S, DS, AS, Record, |
| Context.getPrintingPolicy()); |
| } |
| |
| DeclaresAnything = false; |
| } |
| } |
| |
| // C11 6.7.2.1p2: |
| // A struct-declaration that does not declare an anonymous structure or |
| // anonymous union shall contain a struct-declarator-list. |
| // |
| // This rule also existed in C89 and C99; the grammar for struct-declaration |
| // did not permit a struct-declaration without a struct-declarator-list. |
| if (!getLangOpts().CPlusPlus && CurContext->isRecord() && |
| DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { |
| // Check for Microsoft C extension: anonymous struct/union member. |
| // Handle 2 kinds of anonymous struct/union: |
| // struct STRUCT; |
| // union UNION; |
| // and |
| // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. |
| // UNION_TYPE; <- where UNION_TYPE is a typedef union. |
| if ((Tag && Tag->getDeclName()) || |
| DS.getTypeSpecType() == DeclSpec::TST_typename) { |
| RecordDecl *Record = nullptr; |
| if (Tag) |
| Record = dyn_cast<RecordDecl>(Tag); |
| else if (const RecordType *RT = |
| DS.getRepAsType().get()->getAsStructureType()) |
| Record = RT->getDecl(); |
| else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) |
| Record = UT->getDecl(); |
| |
| if (Record && getLangOpts().MicrosoftExt) { |
| Diag(DS.getLocStart(), diag::ext_ms_anonymous_record) |
| << Record->isUnion() << DS.getSourceRange(); |
| return BuildMicrosoftCAnonymousStruct(S, DS, Record); |
| } |
| |
| DeclaresAnything = false; |
| } |
| } |
| |
| // Skip all the checks below if we have a type error. |
| if (DS.getTypeSpecType() == DeclSpec::TST_error || |
| (TagD && TagD->isInvalidDecl())) |
| return TagD; |
| |
| if (getLangOpts().CPlusPlus && |
| DS.getStorageClassSpec() != DeclSpec::SCS_typedef) |
| if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) |
| if (Enum->enumerator_begin() == Enum->enumerator_end() && |
| !Enum->getIdentifier() && !Enum->isInvalidDecl()) |
| DeclaresAnything = false; |
| |
| if (!DS.isMissingDeclaratorOk()) { |
| // Customize diagnostic for a typedef missing a name. |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) |
| Diag(DS.getLocStart(), diag::ext_typedef_without_a_name) |
| << DS.getSourceRange(); |
| else |
| DeclaresAnything = false; |
| } |
| |
| if (DS.isModulePrivateSpecified() && |
| Tag && Tag->getDeclContext()->isFunctionOrMethod()) |
| Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) |
| << Tag->getTagKind() |
| << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); |
| |
| ActOnDocumentableDecl(TagD); |
| |
| // C 6.7/2: |
| // A declaration [...] shall declare at least a declarator [...], a tag, |
| // or the members of an enumeration. |
| // C++ [dcl.dcl]p3: |
| // [If there are no declarators], and except for the declaration of an |
| // unnamed bit-field, the decl-specifier-seq shall introduce one or more |
| // names into the program, or shall redeclare a name introduced by a |
| // previous declaration. |
| if (!DeclaresAnything) { |
| // In C, we allow this as a (popular) extension / bug. Don't bother |
| // producing further diagnostics for redundant qualifiers after this. |
| Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange(); |
| return TagD; |
| } |
| |
| // C++ [dcl.stc]p1: |
| // If a storage-class-specifier appears in a decl-specifier-seq, [...] the |
| // init-declarator-list of the declaration shall not be empty. |
| // C++ [dcl.fct.spec]p1: |
| // If a cv-qualifier appears in a decl-specifier-seq, the |
| // init-declarator-list of the declaration shall not be empty. |
| // |
| // Spurious qualifiers here appear to be valid in C. |
| unsigned DiagID = diag::warn_standalone_specifier; |
| if (getLangOpts().CPlusPlus) |
| DiagID = diag::ext_standalone_specifier; |
| |
| // Note that a linkage-specification sets a storage class, but |
| // 'extern "C" struct foo;' is actually valid and not theoretically |
| // useless. |
| if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
| if (SCS == DeclSpec::SCS_mutable) |
| // Since mutable is not a viable storage class specifier in C, there is |
| // no reason to treat it as an extension. Instead, diagnose as an error. |
| Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); |
| else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) |
| Diag(DS.getStorageClassSpecLoc(), DiagID) |
| << DeclSpec::getSpecifierName(SCS); |
| } |
| |
| if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) |
| Diag(DS.getThreadStorageClassSpecLoc(), DiagID) |
| << DeclSpec::getSpecifierName(TSCS); |
| if (DS.getTypeQualifiers()) { |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
| Diag(DS.getConstSpecLoc(), DiagID) << "const"; |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
| Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; |
| // Restrict is covered above. |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
| Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
| Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; |
| } |
| |
| // Warn about ignored type attributes, for example: |
| // __attribute__((aligned)) struct A; |
| // Attributes should be placed after tag to apply to type declaration. |
| if (!DS.getAttributes().empty()) { |
| DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); |
| if (TypeSpecType == DeclSpec::TST_class || |
| TypeSpecType == DeclSpec::TST_struct || |
| TypeSpecType == DeclSpec::TST_interface || |
| TypeSpecType == DeclSpec::TST_union || |
| TypeSpecType == DeclSpec::TST_enum) { |
| for (const ParsedAttr &AL : DS.getAttributes()) |
| Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) |
| << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType); |
| } |
| } |
| |
| return TagD; |
| } |
| |
| /// We are trying to inject an anonymous member into the given scope; |
| /// check if there's an existing declaration that can't be overloaded. |
| /// |
| /// \return true if this is a forbidden redeclaration |
| static bool CheckAnonMemberRedeclaration(Sema &SemaRef, |
| Scope *S, |
| DeclContext *Owner, |
| DeclarationName Name, |
| SourceLocation NameLoc, |
| bool IsUnion) { |
| LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, |
| Sema::ForVisibleRedeclaration); |
| if (!SemaRef.LookupName(R, S)) return false; |
| |
| // Pick a representative declaration. |
| NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); |
| assert(PrevDecl && "Expected a non-null Decl"); |
| |
| if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) |
| return false; |
| |
| SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) |
| << IsUnion << Name; |
| SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| |
| return true; |
| } |
| |
| /// InjectAnonymousStructOrUnionMembers - Inject the members of the |
| /// anonymous struct or union AnonRecord into the owning context Owner |
| /// and scope S. This routine will be invoked just after we realize |
| /// that an unnamed union or struct is actually an anonymous union or |
| /// struct, e.g., |
| /// |
| /// @code |
| /// union { |
| /// int i; |
| /// float f; |
| /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and |
| /// // f into the surrounding scope.x |
| /// @endcode |
| /// |
| /// This routine is recursive, injecting the names of nested anonymous |
| /// structs/unions into the owning context and scope as well. |
| static bool |
| InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, |
| RecordDecl *AnonRecord, AccessSpecifier AS, |
| SmallVectorImpl<NamedDecl *> &Chaining) { |
| bool Invalid = false; |
| |
| // Look every FieldDecl and IndirectFieldDecl with a name. |
| for (auto *D : AnonRecord->decls()) { |
| if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && |
| cast<NamedDecl>(D)->getDeclName()) { |
| ValueDecl *VD = cast<ValueDecl>(D); |
| if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), |
| VD->getLocation(), |
| AnonRecord->isUnion())) { |
| // C++ [class.union]p2: |
| // The names of the members of an anonymous union shall be |
| // distinct from the names of any other entity in the |
| // scope in which the anonymous union is declared. |
| Invalid = true; |
| } else { |
| // C++ [class.union]p2: |
| // For the purpose of name lookup, after the anonymous union |
| // definition, the members of the anonymous union are |
| // considered to have been defined in the scope in which the |
| // anonymous union is declared. |
| unsigned OldChainingSize = Chaining.size(); |
| if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) |
| Chaining.append(IF->chain_begin(), IF->chain_end()); |
| else |
| Chaining.push_back(VD); |
| |
| assert(Chaining.size() >= 2); |
| NamedDecl **NamedChain = |
| new (SemaRef.Context)NamedDecl*[Chaining.size()]; |
| for (unsigned i = 0; i < Chaining.size(); i++) |
| NamedChain[i] = Chaining[i]; |
| |
| IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( |
| SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), |
| VD->getType(), {NamedChain, Chaining.size()}); |
| |
| for (const auto *Attr : VD->attrs()) |
| IndirectField->addAttr(Attr->clone(SemaRef.Context)); |
| |
| IndirectField->setAccess(AS); |
| IndirectField->setImplicit(); |
| SemaRef.PushOnScopeChains(IndirectField, S); |
| |
| // That includes picking up the appropriate access specifier. |
| if (AS != AS_none) IndirectField->setAccess(AS); |
| |
| Chaining.resize(OldChainingSize); |
| } |
| } |
| } |
| |
| return Invalid; |
| } |
| |
| /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to |
| /// a VarDecl::StorageClass. Any error reporting is up to the caller: |
| /// illegal input values are mapped to SC_None. |
| static StorageClass |
| StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { |
| DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); |
| assert(StorageClassSpec != DeclSpec::SCS_typedef && |
| "Parser allowed 'typedef' as storage class VarDecl."); |
| switch (StorageClassSpec) { |
| case DeclSpec::SCS_unspecified: return SC_None; |
| case DeclSpec::SCS_extern: |
| if (DS.isExternInLinkageSpec()) |
| return SC_None; |
| return SC_Extern; |
| case DeclSpec::SCS_static: return SC_Static; |
| case DeclSpec::SCS_auto: return SC_Auto; |
| case DeclSpec::SCS_register: return SC_Register; |
| case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
| // Illegal SCSs map to None: error reporting is up to the caller. |
| case DeclSpec::SCS_mutable: // Fall through. |
| case DeclSpec::SCS_typedef: return SC_None; |
| } |
| llvm_unreachable("unknown storage class specifier"); |
| } |
| |
| static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { |
| assert(Record->hasInClassInitializer()); |
| |
| for (const auto *I : Record->decls()) { |
| const auto *FD = dyn_cast<FieldDecl>(I); |
| if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) |
| FD = IFD->getAnonField(); |
| if (FD && FD->hasInClassInitializer()) |
| return FD->getLocation(); |
| } |
| |
| llvm_unreachable("couldn't find in-class initializer"); |
| } |
| |
| static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
| SourceLocation DefaultInitLoc) { |
| if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
| return; |
| |
| S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); |
| S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; |
| } |
| |
| static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
| CXXRecordDecl *AnonUnion) { |
| if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
| return; |
| |
| checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); |
| } |
| |
| /// BuildAnonymousStructOrUnion - Handle the declaration of an |
| /// anonymous structure or union. Anonymous unions are a C++ feature |
| /// (C++ [class.union]) and a C11 feature; anonymous structures |
| /// are a C11 feature and GNU C++ extension. |
| Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, |
| AccessSpecifier AS, |
| RecordDecl *Record, |
| const PrintingPolicy &Policy) { |
| DeclContext *Owner = Record->getDeclContext(); |
| |
| // Diagnose whether this anonymous struct/union is an extension. |
| if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) |
| Diag(Record->getLocation(), diag::ext_anonymous_union); |
| else if (!Record->isUnion() && getLangOpts().CPlusPlus) |
| Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); |
| else if (!Record->isUnion() && !getLangOpts().C11) |
| Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); |
| |
| // C and C++ require different kinds of checks for anonymous |
| // structs/unions. |
| bool Invalid = false; |
| if (getLangOpts().CPlusPlus) { |
| const char *PrevSpec = nullptr; |
| unsigned DiagID; |
| if (Record->isUnion()) { |
| // C++ [class.union]p6: |
| // C++17 [class.union.anon]p2: |
| // Anonymous unions declared in a named namespace or in the |
| // global namespace shall be declared static. |
| DeclContext *OwnerScope = Owner->getRedeclContext(); |
| if (DS.getStorageClassSpec() != DeclSpec::SCS_static && |
| (OwnerScope->isTranslationUnit() || |
| (OwnerScope->isNamespace() && |
| !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { |
| Diag(Record->getLocation(), diag::err_anonymous_union_not_static) |
| << FixItHint::CreateInsertion(Record->getLocation(), "static "); |
| |
| // Recover by adding 'static'. |
| DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), |
| PrevSpec, DiagID, Policy); |
| } |
| // C++ [class.union]p6: |
| // A storage class is not allowed in a declaration of an |
| // anonymous union in a class scope. |
| else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && |
| isa<RecordDecl>(Owner)) { |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_anonymous_union_with_storage_spec) |
| << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
| |
| // Recover by removing the storage specifier. |
| DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, |
| SourceLocation(), |
| PrevSpec, DiagID, Context.getPrintingPolicy()); |
| } |
| } |
| |
| // Ignore const/volatile/restrict qualifiers. |
| if (DS.getTypeQualifiers()) { |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
| Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) |
| << Record->isUnion() << "const" |
| << FixItHint::CreateRemoval(DS.getConstSpecLoc()); |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
| Diag(DS.getVolatileSpecLoc(), |
| diag::ext_anonymous_struct_union_qualified) |
| << Record->isUnion() << "volatile" |
| << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) |
| Diag(DS.getRestrictSpecLoc(), |
| diag::ext_anonymous_struct_union_qualified) |
| << Record->isUnion() << "restrict" |
| << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
| Diag(DS.getAtomicSpecLoc(), |
| diag::ext_anonymous_struct_union_qualified) |
| << Record->isUnion() << "_Atomic" |
| << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); |
| if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
| Diag(DS.getUnalignedSpecLoc(), |
| diag::ext_anonymous_struct_union_qualified) |
| << Record->isUnion() << "__unaligned" |
| << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); |
| |
| DS.ClearTypeQualifiers(); |
| } |
| |
| // C++ [class.union]p2: |
| // The member-specification of an anonymous union shall only |
| // define non-static data members. [Note: nested types and |
| // functions cannot be declared within an anonymous union. ] |
| for (auto *Mem : Record->decls()) { |
| if (auto *FD = dyn_cast<FieldDecl>(Mem)) { |
| // C++ [class.union]p3: |
| // An anonymous union shall not have private or protected |
| // members (clause 11). |
| assert(FD->getAccess() != AS_none); |
| if (FD->getAccess() != AS_public) { |
| Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) |
| << Record->isUnion() << (FD->getAccess() == AS_protected); |
| Invalid = true; |
| } |
| |
| // C++ [class.union]p1 |
| // An object of a class with a non-trivial constructor, a non-trivial |
| // copy constructor, a non-trivial destructor, or a non-trivial copy |
| // assignment operator cannot be a member of a union, nor can an |
| // array of such objects. |
| if (CheckNontrivialField(FD)) |
| Invalid = true; |
| } else if (Mem->isImplicit()) { |
| // Any implicit members are fine. |
| } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { |
| // This is a type that showed up in an |
| // elaborated-type-specifier inside the anonymous struct or |
| // union, but which actually declares a type outside of the |
| // anonymous struct or union. It's okay. |
| } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { |
| if (!MemRecord->isAnonymousStructOrUnion() && |
| MemRecord->getDeclName()) { |
| // Visual C++ allows type definition in anonymous struct or union. |
| if (getLangOpts().MicrosoftExt) |
| Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) |
| << Record->isUnion(); |
| else { |
| // This is a nested type declaration. |
| Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) |
| << Record->isUnion(); |
| Invalid = true; |
| } |
| } else { |
| // This is an anonymous type definition within another anonymous type. |
| // This is a popular extension, provided by Plan9, MSVC and GCC, but |
| // not part of standard C++. |
| Diag(MemRecord->getLocation(), |
| diag::ext_anonymous_record_with_anonymous_type) |
| << Record->isUnion(); |
| } |
| } else if (isa<AccessSpecDecl>(Mem)) { |
| // Any access specifier is fine. |
| } else if (isa<StaticAssertDecl>(Mem)) { |
| // In C++1z, static_assert declarations are also fine. |
| } else { |
| // We have something that isn't a non-static data |
| // member. Complain about it. |
| unsigned DK = diag::err_anonymous_record_bad_member; |
| if (isa<TypeDecl>(Mem)) |
| DK = diag::err_anonymous_record_with_type; |
| else if (isa<FunctionDecl>(Mem)) |
| DK = diag::err_anonymous_record_with_function; |
| else if (isa<VarDecl>(Mem)) |
| DK = diag::err_anonymous_record_with_static; |
| |
| // Visual C++ allows type definition in anonymous struct or union. |
| if (getLangOpts().MicrosoftExt && |
| DK == diag::err_anonymous_record_with_type) |
| Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) |
| << Record->isUnion(); |
| else { |
| Diag(Mem->getLocation(), DK) << Record->isUnion(); |
| Invalid = true; |
| } |
| } |
| } |
| |
| // C++11 [class.union]p8 (DR1460): |
| // At most one variant member of a union may have a |
| // brace-or-equal-initializer. |
| if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && |
| Owner->isRecord()) |
| checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), |
| cast<CXXRecordDecl>(Record)); |
| } |
| |
| if (!Record->isUnion() && !Owner->isRecord()) { |
| Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) |
| << getLangOpts().CPlusPlus; |
| Invalid = true; |
| } |
| |
| // Mock up a declarator. |
| Declarator Dc(DS, DeclaratorContext::MemberContext); |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
| assert(TInfo && "couldn't build declarator info for anonymous struct/union"); |
| |
| // Create a declaration for this anonymous struct/union. |
| NamedDecl *Anon = nullptr; |
| if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { |
| Anon = FieldDecl::Create(Context, OwningClass, |
| DS.getLocStart(), |
| Record->getLocation(), |
| /*IdentifierInfo=*/nullptr, |
| Context.getTypeDeclType(Record), |
| TInfo, |
| /*BitWidth=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Anon->setAccess(AS); |
| if (getLangOpts().CPlusPlus) |
| FieldCollector->Add(cast<FieldDecl>(Anon)); |
| } else { |
| DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); |
| StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); |
| if (SCSpec == DeclSpec::SCS_mutable) { |
| // mutable can only appear on non-static class members, so it's always |
| // an error here |
| Diag(Record->getLocation(), diag::err_mutable_nonmember); |
| Invalid = true; |
| SC = SC_None; |
| } |
| |
| Anon = VarDecl::Create(Context, Owner, |
| DS.getLocStart(), |
| Record->getLocation(), /*IdentifierInfo=*/nullptr, |
| Context.getTypeDeclType(Record), |
| TInfo, SC); |
| |
| // Default-initialize the implicit variable. This initialization will be |
| // trivial in almost all cases, except if a union member has an in-class |
| // initializer: |
| // union { int n = 0; }; |
| ActOnUninitializedDecl(Anon); |
| } |
| Anon->setImplicit(); |
| |
| // Mark this as an anonymous struct/union type. |
| Record->setAnonymousStructOrUnion(true); |
| |
| // Add the anonymous struct/union object to the current |
| // context. We'll be referencing this object when we refer to one of |
| // its members. |
| Owner->addDecl(Anon); |
| |
| // Inject the members of the anonymous struct/union into the owning |
| // context and into the identifier resolver chain for name lookup |
| // purposes. |
| SmallVector<NamedDecl*, 2> Chain; |
| Chain.push_back(Anon); |
| |
| if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) |
| Invalid = true; |
| |
| if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { |
| if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { |
| Decl *ManglingContextDecl; |
| if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( |
| NewVD->getDeclContext(), ManglingContextDecl)) { |
| Context.setManglingNumber( |
| NewVD, MCtx->getManglingNumber( |
| NewVD, getMSManglingNumber(getLangOpts(), S))); |
| Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); |
| } |
| } |
| } |
| |
| if (Invalid) |
| Anon->setInvalidDecl(); |
| |
| return Anon; |
| } |
| |
| /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an |
| /// Microsoft C anonymous structure. |
| /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx |
| /// Example: |
| /// |
| /// struct A { int a; }; |
| /// struct B { struct A; int b; }; |
| /// |
| /// void foo() { |
| /// B var; |
| /// var.a = 3; |
| /// } |
| /// |
| Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, |
| RecordDecl *Record) { |
| assert(Record && "expected a record!"); |
| |
| // Mock up a declarator. |
| Declarator Dc(DS, DeclaratorContext::TypeNameContext); |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
| assert(TInfo && "couldn't build declarator info for anonymous struct"); |
| |
| auto *ParentDecl = cast<RecordDecl>(CurContext); |
| QualType RecTy = Context.getTypeDeclType(Record); |
| |
| // Create a declaration for this anonymous struct. |
| NamedDecl *Anon = FieldDecl::Create(Context, |
| ParentDecl, |
| DS.getLocStart(), |
| DS.getLocStart(), |
| /*IdentifierInfo=*/nullptr, |
| RecTy, |
| TInfo, |
| /*BitWidth=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Anon->setImplicit(); |
| |
| // Add the anonymous struct object to the current context. |
| CurContext->addDecl(Anon); |
| |
| // Inject the members of the anonymous struct into the current |
| // context and into the identifier resolver chain for name lookup |
| // purposes. |
| SmallVector<NamedDecl*, 2> Chain; |
| Chain.push_back(Anon); |
| |
| RecordDecl *RecordDef = Record->getDefinition(); |
| if (RequireCompleteType(Anon->getLocation(), RecTy, |
| diag::err_field_incomplete) || |
| InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, |
| AS_none, Chain)) { |
| Anon->setInvalidDecl(); |
| ParentDecl->setInvalidDecl(); |
| } |
| |
| return Anon; |
| } |
| |
| /// GetNameForDeclarator - Determine the full declaration name for the |
| /// given Declarator. |
| DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { |
| return GetNameFromUnqualifiedId(D.getName()); |
| } |
| |
| /// Retrieves the declaration name from a parsed unqualified-id. |
| DeclarationNameInfo |
| Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { |
| DeclarationNameInfo NameInfo; |
| NameInfo.setLoc(Name.StartLocation); |
| |
| switch (Name.getKind()) { |
| |
| case UnqualifiedIdKind::IK_ImplicitSelfParam: |
| case UnqualifiedIdKind::IK_Identifier: |
| NameInfo.setName(Name.Identifier); |
| NameInfo.setLoc(Name.StartLocation); |
| return NameInfo; |
| |
| case UnqualifiedIdKind::IK_DeductionGuideName: { |
| // C++ [temp.deduct.guide]p3: |
| // The simple-template-id shall name a class template specialization. |
| // The template-name shall be the same identifier as the template-name |
| // of the simple-template-id. |
| // These together intend to imply that the template-name shall name a |
| // class template. |
| // FIXME: template<typename T> struct X {}; |
| // template<typename T> using Y = X<T>; |
| // Y(int) -> Y<int>; |
| // satisfies these rules but does not name a class template. |
| TemplateName TN = Name.TemplateName.get().get(); |
| auto *Template = TN.getAsTemplateDecl(); |
| if (!Template || !isa<ClassTemplateDecl>(Template)) { |
| Diag(Name.StartLocation, |
| diag::err_deduction_guide_name_not_class_template) |
| << (int)getTemplateNameKindForDiagnostics(TN) << TN; |
| if (Template) |
| Diag(Template->getLocation(), diag::note_template_decl_here); |
| return DeclarationNameInfo(); |
| } |
| |
| NameInfo.setName( |
| Context.DeclarationNames.getCXXDeductionGuideName(Template)); |
| NameInfo.setLoc(Name.StartLocation); |
| return NameInfo; |
| } |
| |
| case UnqualifiedIdKind::IK_OperatorFunctionId: |
| NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( |
| Name.OperatorFunctionId.Operator)); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc |
| = Name.OperatorFunctionId.SymbolLocations[0]; |
| NameInfo.getInfo().CXXOperatorName.EndOpNameLoc |
| = Name.EndLocation.getRawEncoding(); |
| return NameInfo; |
| |
| case UnqualifiedIdKind::IK_LiteralOperatorId: |
| NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( |
| Name.Identifier)); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); |
| return NameInfo; |
| |
| case UnqualifiedIdKind::IK_ConversionFunctionId: { |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); |
| if (Ty.isNull()) |
| return DeclarationNameInfo(); |
| NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( |
| Context.getCanonicalType(Ty))); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setNamedTypeInfo(TInfo); |
| return NameInfo; |
| } |
| |
| case UnqualifiedIdKind::IK_ConstructorName: { |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); |
| if (Ty.isNull()) |
| return DeclarationNameInfo(); |
| NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(Ty))); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setNamedTypeInfo(TInfo); |
| return NameInfo; |
| } |
| |
| case UnqualifiedIdKind::IK_ConstructorTemplateId: { |
| // In well-formed code, we can only have a constructor |
| // template-id that refers to the current context, so go there |
| // to find the actual type being constructed. |
| CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); |
| if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) |
| return DeclarationNameInfo(); |
| |
| // Determine the type of the class being constructed. |
| QualType CurClassType = Context.getTypeDeclType(CurClass); |
| |
| // FIXME: Check two things: that the template-id names the same type as |
| // CurClassType, and that the template-id does not occur when the name |
| // was qualified. |
| |
| NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(CurClassType))); |
| NameInfo.setLoc(Name.StartLocation); |
| // FIXME: should we retrieve TypeSourceInfo? |
| NameInfo.setNamedTypeInfo(nullptr); |
| return NameInfo; |
| } |
| |
| case UnqualifiedIdKind::IK_DestructorName: { |
| TypeSourceInfo *TInfo; |
| QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); |
| if (Ty.isNull()) |
| return DeclarationNameInfo(); |
| NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( |
| Context.getCanonicalType(Ty))); |
| NameInfo.setLoc(Name.StartLocation); |
| NameInfo.setNamedTypeInfo(TInfo); |
| return NameInfo; |
| } |
| |
| case UnqualifiedIdKind::IK_TemplateId: { |
| TemplateName TName = Name.TemplateId->Template.get(); |
| SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; |
| return Context.getNameForTemplate(TName, TNameLoc); |
| } |
| |
| } // switch (Name.getKind()) |
| |
| llvm_unreachable("Unknown name kind"); |
| } |
| |
| static QualType getCoreType(QualType Ty) { |
| do { |
| if (Ty->isPointerType() || Ty->isReferenceType()) |
| Ty = Ty->getPointeeType(); |
| else if (Ty->isArrayType()) |
| Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); |
| else |
| return Ty.withoutLocalFastQualifiers(); |
| } while (true); |
| } |
| |
| /// hasSimilarParameters - Determine whether the C++ functions Declaration |
| /// and Definition have "nearly" matching parameters. This heuristic is |
| /// used to improve diagnostics in the case where an out-of-line function |
| /// definition doesn't match any declaration within the class or namespace. |
| /// Also sets Params to the list of indices to the parameters that differ |
| /// between the declaration and the definition. If hasSimilarParameters |
| /// returns true and Params is empty, then all of the parameters match. |
| static bool hasSimilarParameters(ASTContext &Context, |
| FunctionDecl *Declaration, |
| FunctionDecl *Definition, |
| SmallVectorImpl<unsigned> &Params) { |
| Params.clear(); |
| if (Declaration->param_size() != Definition->param_size()) |
| return false; |
| for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { |
| QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); |
| QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); |
| |
| // The parameter types are identical |
| if (Context.hasSameType(DefParamTy, DeclParamTy)) |
| continue; |
| |
| QualType DeclParamBaseTy = getCoreType(DeclParamTy); |
| QualType DefParamBaseTy = getCoreType(DefParamTy); |
| const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); |
| const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); |
| |
| if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || |
| (DeclTyName && DeclTyName == DefTyName)) |
| Params.push_back(Idx); |
| else // The two parameters aren't even close |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// NeedsRebuildingInCurrentInstantiation - Checks whether the given |
| /// declarator needs to be rebuilt in the current instantiation. |
| /// Any bits of declarator which appear before the name are valid for |
| /// consideration here. That's specifically the type in the decl spec |
| /// and the base type in any member-pointer chunks. |
| static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, |
| DeclarationName Name) { |
| // The types we specifically need to rebuild are: |
| // - typenames, typeofs, and decltypes |
| // - types which will become injected class names |
| // Of course, we also need to rebuild any type referencing such a |
| // type. It's safest to just say "dependent", but we call out a |
| // few cases here. |
| |
| DeclSpec &DS = D.getMutableDeclSpec(); |
| switch (DS.getTypeSpecType()) { |
| case DeclSpec::TST_typename: |
| case DeclSpec::TST_typeofType: |
| case DeclSpec::TST_underlyingType: |
| case DeclSpec::TST_atomic: { |
| // Grab the type from the parser. |
| TypeSourceInfo *TSI = nullptr; |
| QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); |
| if (T.isNull() || !T->isDependentType()) break; |
| |
| // Make sure there's a type source info. This isn't really much |
| // of a waste; most dependent types should have type source info |
| // attached already. |
| if (!TSI) |
| TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); |
| |
| // Rebuild the type in the current instantiation. |
| TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); |
| if (!TSI) return true; |
| |
| // Store the new type back in the decl spec. |
| ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); |
| DS.UpdateTypeRep(LocType); |
| break; |
| } |
| |
| case DeclSpec::TST_decltype: |
| case DeclSpec::TST_typeofExpr: { |
| Expr *E = DS.getRepAsExpr(); |
| ExprResult Result = S.RebuildExprInCurrentInstantiation(E); |
| if (Result.isInvalid()) return true; |
| DS.UpdateExprRep(Result.get()); |
| break; |
| } |
| |
| default: |
| // Nothing to do for these decl specs. |
| break; |
| } |
| |
| // It doesn't matter what order we do this in. |
| for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { |
| DeclaratorChunk &Chunk = D.getTypeObject(I); |
| |
| // The only type information in the declarator which can come |
| // before the declaration name is the base type of a member |
| // pointer. |
| if (Chunk.Kind != DeclaratorChunk::MemberPointer) |
| continue; |
| |
| // Rebuild the scope specifier in-place. |
| CXXScopeSpec &SS = Chunk.Mem.Scope(); |
| if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { |
| D.setFunctionDefinitionKind(FDK_Declaration); |
| Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); |
| |
| if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && |
| Dcl && Dcl->getDeclContext()->isFileContext()) |
| Dcl->setTopLevelDeclInObjCContainer(); |
| |
| if (getLangOpts().OpenCL) |
| setCurrentOpenCLExtensionForDecl(Dcl); |
| |
| return Dcl; |
| } |
| |
| /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: |
| /// If T is the name of a class, then each of the following shall have a |
| /// name different from T: |
| /// - every static data member of class T; |
| /// - every member function of class T |
| /// - every member of class T that is itself a type; |
| /// \returns true if the declaration name violates these rules. |
| bool Sema::DiagnoseClassNameShadow(DeclContext *DC, |
| DeclarationNameInfo NameInfo) { |
| DeclarationName Name = NameInfo.getName(); |
| |
| CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); |
| while (Record && Record->isAnonymousStructOrUnion()) |
| Record = dyn_cast<CXXRecordDecl>(Record->getParent()); |
| if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { |
| Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Diagnose a declaration whose declarator-id has the given |
| /// nested-name-specifier. |
| /// |
| /// \param SS The nested-name-specifier of the declarator-id. |
| /// |
| /// \param DC The declaration context to which the nested-name-specifier |
| /// resolves. |
| /// |
| /// \param Name The name of the entity being declared. |
| /// |
| /// \param Loc The location of the name of the entity being declared. |
| /// |
| /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus |
| /// we're declaring an explicit / partial specialization / instantiation. |
| /// |
| /// \returns true if we cannot safely recover from this error, false otherwise. |
| bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, |
| DeclarationName Name, |
| SourceLocation Loc, bool IsTemplateId) { |
| DeclContext *Cur = CurContext; |
| while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) |
| Cur = Cur->getParent(); |
| |
| // If the user provided a superfluous scope specifier that refers back to the |
| // class in which the entity is already declared, diagnose and ignore it. |
| // |
| // class X { |
| // void X::f(); |
| // }; |
| // |
| // Note, it was once ill-formed to give redundant qualification in all |
| // contexts, but that rule was removed by DR482. |
| if (Cur->Equals(DC)) { |
| if (Cur->isRecord()) { |
| Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification |
| : diag::err_member_extra_qualification) |
| << Name << FixItHint::CreateRemoval(SS.getRange()); |
| SS.clear(); |
| } else { |
| Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; |
| } |
| return false; |
| } |
| |
| // Check whether the qualifying scope encloses the scope of the original |
| // declaration. For a template-id, we perform the checks in |
| // CheckTemplateSpecializationScope. |
| if (!Cur->Encloses(DC) && !IsTemplateId) { |
| if (Cur->isRecord()) |
| Diag(Loc, diag::err_member_qualification) |
| << Name << SS.getRange(); |
| else if (isa<TranslationUnitDecl>(DC)) |
| Diag(Loc, diag::err_invalid_declarator_global_scope) |
| << Name << SS.getRange(); |
| else if (isa<FunctionDecl>(Cur)) |
| Diag(Loc, diag::err_invalid_declarator_in_function) |
| << Name << SS.getRange(); |
| else if (isa<BlockDecl>(Cur)) |
| Diag(Loc, diag::err_invalid_declarator_in_block) |
| << Name << SS.getRange(); |
| else |
| Diag(Loc, diag::err_invalid_declarator_scope) |
| << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); |
| |
| return true; |
| } |
| |
| if (Cur->isRecord()) { |
| // Cannot qualify members within a class. |
| Diag(Loc, diag::err_member_qualification) |
| << Name << SS.getRange(); |
| SS.clear(); |
| |
| // C++ constructors and destructors with incorrect scopes can break |
| // our AST invariants by having the wrong underlying types. If |
| // that's the case, then drop this declaration entirely. |
| if ((Name.getNameKind() == DeclarationName::CXXConstructorName || |
| Name.getNameKind() == DeclarationName::CXXDestructorName) && |
| !Context.hasSameType(Name.getCXXNameType(), |
| Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) |
| return true; |
| |
| return false; |
| } |
| |
| // C++11 [dcl.meaning]p1: |
| // [...] "The nested-name-specifier of the qualified declarator-id shall |
| // not begin with a decltype-specifer" |
| NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); |
| while (SpecLoc.getPrefix()) |
| SpecLoc = SpecLoc.getPrefix(); |
| if (dyn_cast_or_null<DecltypeType>( |
| SpecLoc.getNestedNameSpecifier()->getAsType())) |
| Diag(Loc, diag::err_decltype_in_declarator) |
| << SpecLoc.getTypeLoc().getSourceRange(); |
| |
| return false; |
| } |
| |
| NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, |
| MultiTemplateParamsArg TemplateParamLists) { |
| // TODO: consider using NameInfo for diagnostic. |
| DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| |
| // All of these full declarators require an identifier. If it doesn't have |
| // one, the ParsedFreeStandingDeclSpec action should be used. |
| if (D.isDecompositionDeclarator()) { |
| return ActOnDecompositionDeclarator(S, D, TemplateParamLists); |
| } else if (!Name) { |
| if (!D.isInvalidType()) // Reject this if we think it is valid. |
| Diag(D.getDeclSpec().getLocStart(), |
| diag::err_declarator_need_ident) |
| << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
| return nullptr; |
| } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) |
| return nullptr; |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0 || |
| (S->getFlags() & Scope::TemplateParamScope) != 0) |
| S = S->getParent(); |
| |
| DeclContext *DC = CurContext; |
| if (D.getCXXScopeSpec().isInvalid()) |
| D.setInvalidType(); |
| else if (D.getCXXScopeSpec().isSet()) { |
| if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), |
| UPPC_DeclarationQualifier)) |
| return nullptr; |
| |
| bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); |
| DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); |
| if (!DC || isa<EnumDecl>(DC)) { |
| // If we could not compute the declaration context, it's because the |
| // declaration context is dependent but does not refer to a class, |
| // class template, or class template partial specialization. Complain |
| // and return early, to avoid the coming semantic disaster. |
| Diag(D.getIdentifierLoc(), |
| diag::err_template_qualified_declarator_no_match) |
| << D.getCXXScopeSpec().getScopeRep() |
| << D.getCXXScopeSpec().getRange(); |
| return nullptr; |
| } |
| bool IsDependentContext = DC->isDependentContext(); |
| |
| if (!IsDependentContext && |
| RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) |
| return nullptr; |
| |
| // If a class is incomplete, do not parse entities inside it. |
| if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_member_def_undefined_record) |
| << Name << DC << D.getCXXScopeSpec().getRange(); |
| return nullptr; |
| } |
| if (!D.getDeclSpec().isFriendSpecified()) { |
| if (diagnoseQualifiedDeclaration( |
| D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), |
| D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { |
| if (DC->isRecord()) |
| return nullptr; |
| |
| D.setInvalidType(); |
| } |
| } |
| |
| // Check whether we need to rebuild the type of the given |
| // declaration in the current instantiation. |
| if (EnteringContext && IsDependentContext && |
| TemplateParamLists.size() != 0) { |
| ContextRAII SavedContext(*this, DC); |
| if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) |
| D.setInvalidType(); |
| } |
| } |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType R = TInfo->getType(); |
| |
| if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
| UPPC_DeclarationType)) |
| D.setInvalidType(); |
| |
| LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| |
| // See if this is a redefinition of a variable in the same scope. |
| if (!D.getCXXScopeSpec().isSet()) { |
| bool IsLinkageLookup = false; |
| bool CreateBuiltins = false; |
| |
| // If the declaration we're planning to build will be a function |
| // or object with linkage, then look for another declaration with |
| // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). |
| // |
| // If the declaration we're planning to build will be declared with |
| // external linkage in the translation unit, create any builtin with |
| // the same name. |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) |
| /* Do nothing*/; |
| else if (CurContext->isFunctionOrMethod() && |
| (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || |
| R->isFunctionType())) { |
| IsLinkageLookup = true; |
| CreateBuiltins = |
| CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); |
| } else if (CurContext->getRedeclContext()->isTranslationUnit() && |
| D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) |
| CreateBuiltins = true; |
| |
| if (IsLinkageLookup) { |
| Previous.clear(LookupRedeclarationWithLinkage); |
| Previous.setRedeclarationKind(ForExternalRedeclaration); |
| } |
| |
| LookupName(Previous, S, CreateBuiltins); |
| } else { // Something like "int foo::x;" |
| LookupQualifiedName(Previous, DC); |
| |
| // C++ [dcl.meaning]p1: |
| // When the declarator-id is qualified, the declaration shall refer to a |
| // previously declared member of the class or namespace to which the |
| // qualifier refers (or, in the case of a namespace, of an element of the |
| // inline namespace set of that namespace (7.3.1)) or to a specialization |
| // thereof; [...] |
| // |
| // Note that we already checked the context above, and that we do not have |
| // enough information to make sure that Previous contains the declaration |
| // we want to match. For example, given: |
| // |
| // class X { |
| // void f(); |
| // void f(float); |
| // }; |
| // |
| // void X::f(int) { } // ill-formed |
| // |
| // In this case, Previous will point to the overload set |
| // containing the two f's declared in X, but neither of them |
| // matches. |
| |
| // C++ [dcl.meaning]p1: |
| // [...] the member shall not merely have been introduced by a |
| // using-declaration in the scope of the class or namespace nominated by |
| // the nested-name-specifier of the declarator-id. |
| RemoveUsingDecls(Previous); |
| } |
| |
| if (Previous.isSingleResult() && |
| Previous.getFoundDecl()->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| if (!D.isInvalidType()) |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), |
| Previous.getFoundDecl()); |
| |
| // Just pretend that we didn't see the previous declaration. |
| Previous.clear(); |
| } |
| |
| if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) |
| // Forget that the previous declaration is the injected-class-name. |
| Previous.clear(); |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this applies to functions, function templates, and |
| // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. |
| if (Previous.isSingleTagDecl() && |
| D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
| (TemplateParamLists.size() == 0 || R->isFunctionType())) |
| Previous.clear(); |
| |
| // Check that there are no default arguments other than in the parameters |
| // of a function declaration (C++ only). |
| if (getLangOpts().CPlusPlus) |
| CheckExtraCXXDefaultArguments(D); |
| |
| NamedDecl *New; |
| |
| bool AddToScope = true; |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| if (TemplateParamLists.size()) { |
| Diag(D.getIdentifierLoc(), diag::err_template_typedef); |
| return nullptr; |
| } |
| |
| New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); |
| } else if (R->isFunctionType()) { |
| New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, |
| TemplateParamLists, |
| AddToScope); |
| } else { |
| New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, |
| AddToScope); |
| } |
| |
| if (!New) |
| return nullptr; |
| |
| // If this has an identifier and is not a function template specialization, |
| // add it to the scope stack. |
| if (New->getDeclName() && AddToScope) { |
| // Only make a locally-scoped extern declaration visible if it is the first |
| // declaration of this entity. Qualified lookup for such an entity should |
| // only find this declaration if there is no visible declaration of it. |
| bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl(); |
| PushOnScopeChains(New, S, AddToContext); |
| if (!AddToContext) |
| CurContext->addHiddenDecl(New); |
| } |
| |
| if (isInOpenMPDeclareTargetContext()) |
| checkDeclIsAllowedInOpenMPTarget(nullptr, New); |
| |
| return New; |
| } |
| |
| /// Helper method to turn variable array types into constant array |
| /// types in certain situations which would otherwise be errors (for |
| /// GCC compatibility). |
| static QualType TryToFixInvalidVariablyModifiedType(QualType T, |
| ASTContext &Context, |
| bool &SizeIsNegative, |
| llvm::APSInt &Oversized) { |
| // This method tries to turn a variable array into a constant |
| // array even when the size isn't an ICE. This is necessary |
| // for compatibility with code that depends on gcc's buggy |
| // constant expression folding, like struct {char x[(int)(char*)2];} |
| SizeIsNegative = false; |
| Oversized = 0; |
| |
| if (T->isDependentType()) |
| return QualType(); |
| |
| QualifierCollector Qs; |
| const Type *Ty = Qs.strip(T); |
| |
| if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { |
| QualType Pointee = PTy->getPointeeType(); |
| QualType FixedType = |
| TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, |
| Oversized); |
| if (FixedType.isNull()) return FixedType; |
| FixedType = Context.getPointerType(FixedType); |
| return Qs.apply(Context, FixedType); |
| } |
| if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { |
| QualType Inner = PTy->getInnerType(); |
| QualType FixedType = |
| TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, |
| Oversized); |
| if (FixedType.isNull()) return FixedType; |
| FixedType = Context.getParenType(FixedType); |
| return Qs.apply(Context, FixedType); |
| } |
| |
| const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); |
| if (!VLATy) |
| return QualType(); |
| // FIXME: We should probably handle this case |
| if (VLATy->getElementType()->isVariablyModifiedType()) |
| return QualType(); |
| |
| llvm::APSInt Res; |
| if (!VLATy->getSizeExpr() || |
| !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context)) |
| return QualType(); |
| |
| // Check whether the array size is negative. |
| if (Res.isSigned() && Res.isNegative()) { |
| SizeIsNegative = true; |
| return QualType(); |
| } |
| |
| // Check whether the array is too large to be addressed. |
| unsigned ActiveSizeBits |
| = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), |
| Res); |
| if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { |
| Oversized = Res; |
| return QualType(); |
| } |
| |
| return Context.getConstantArrayType(VLATy->getElementType(), |
| Res, ArrayType::Normal, 0); |
| } |
| |
| static void |
| FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { |
| SrcTL = SrcTL.getUnqualifiedLoc(); |
| DstTL = DstTL.getUnqualifiedLoc(); |
| if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { |
| PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); |
| FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), |
| DstPTL.getPointeeLoc()); |
| DstPTL.setStarLoc(SrcPTL.getStarLoc()); |
| return; |
| } |
| if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { |
| ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); |
| FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), |
| DstPTL.getInnerLoc()); |
| DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); |
| DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); |
| return; |
| } |
| ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); |
| ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); |
| TypeLoc SrcElemTL = SrcATL.getElementLoc(); |
| TypeLoc DstElemTL = DstATL.getElementLoc(); |
| DstElemTL.initializeFullCopy(SrcElemTL); |
| DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); |
| DstATL.setSizeExpr(SrcATL.getSizeExpr()); |
| DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); |
| } |
| |
| /// Helper method to turn variable array types into constant array |
| /// types in certain situations which would otherwise be errors (for |
| /// GCC compatibility). |
| static TypeSourceInfo* |
| TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, |
| ASTContext &Context, |
| bool &SizeIsNegative, |
| llvm::APSInt &Oversized) { |
| QualType FixedTy |
| = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, |
| SizeIsNegative, Oversized); |
| if (FixedTy.isNull()) |
| return nullptr; |
| TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); |
| FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), |
| FixedTInfo->getTypeLoc()); |
| return FixedTInfo; |
| } |
| |
| /// Register the given locally-scoped extern "C" declaration so |
| /// that it can be found later for redeclarations. We include any extern "C" |
| /// declaration that is not visible in the translation unit here, not just |
| /// function-scope declarations. |
| void |
| Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { |
| if (!getLangOpts().CPlusPlus && |
| ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) |
| // Don't need to track declarations in the TU in C. |
| return; |
| |
| // Note that we have a locally-scoped external with this name. |
| Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); |
| } |
| |
| NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { |
| // FIXME: We can have multiple results via __attribute__((overloadable)). |
| auto Result = Context.getExternCContextDecl()->lookup(Name); |
| return Result.empty() ? nullptr : *Result.begin(); |
| } |
| |
| /// Diagnose function specifiers on a declaration of an identifier that |
| /// does not identify a function. |
| void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { |
| // FIXME: We should probably indicate the identifier in question to avoid |
| // confusion for constructs like "virtual int a(), b;" |
| if (DS.isVirtualSpecified()) |
| Diag(DS.getVirtualSpecLoc(), |
| diag::err_virtual_non_function); |
| |
| if (DS.isExplicitSpecified()) |
| Diag(DS.getExplicitSpecLoc(), |
| diag::err_explicit_non_function); |
| |
| if (DS.isNoreturnSpecified()) |
| Diag(DS.getNoreturnSpecLoc(), |
| diag::err_noreturn_non_function); |
| } |
| |
| NamedDecl* |
| Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
| TypeSourceInfo *TInfo, LookupResult &Previous) { |
| // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| D.setInvalidType(); |
| // Pretend we didn't see the scope specifier. |
| DC = CurContext; |
| Previous.clear(); |
| } |
| |
| DiagnoseFunctionSpecifiers(D.getDeclSpec()); |
| |
| if (D.getDeclSpec().isInlineSpecified()) |
| Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
| << getLangOpts().CPlusPlus17; |
| if (D.getDeclSpec().isConstexprSpecified()) |
| Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) |
| << 1; |
| |
| if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { |
| if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) |
| Diag(D.getName().StartLocation, |
| diag::err_deduction_guide_invalid_specifier) |
| << "typedef"; |
| else |
| Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) |
| << D.getName().getSourceRange(); |
| return nullptr; |
| } |
| |
| TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); |
| if (!NewTD) return nullptr; |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(S, NewTD, D); |
| |
| CheckTypedefForVariablyModifiedType(S, NewTD); |
| |
| bool Redeclaration = D.isRedeclaration(); |
| NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); |
| D.setRedeclaration(Redeclaration); |
| return ND; |
| } |
| |
| void |
| Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { |
| // C99 6.7.7p2: If a typedef name specifies a variably modified type |
| // then it shall have block scope. |
| // Note that variably modified types must be fixed before merging the decl so |
| // that redeclarations will match. |
| TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); |
| QualType T = TInfo->getType(); |
| if (T->isVariablyModifiedType()) { |
| setFunctionHasBranchProtectedScope(); |
| |
| if (S->getFnParent() == nullptr) { |
| bool SizeIsNegative; |
| llvm::APSInt Oversized; |
| TypeSourceInfo *FixedTInfo = |
| TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, |
| SizeIsNegative, |
| Oversized); |
| if (FixedTInfo) { |
| Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); |
| NewTD->setTypeSourceInfo(FixedTInfo); |
| } else { |
| if (SizeIsNegative) |
| Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); |
| else if (T->isVariableArrayType()) |
| Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); |
| else if (Oversized.getBoolValue()) |
| Diag(NewTD->getLocation(), diag::err_array_too_large) |
| << Oversized.toString(10); |
| else |
| Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); |
| NewTD->setInvalidDecl(); |
| } |
| } |
| } |
| } |
| |
| /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which |
| /// declares a typedef-name, either using the 'typedef' type specifier or via |
| /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. |
| NamedDecl* |
| Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, |
| LookupResult &Previous, bool &Redeclaration) { |
| |
| // Find the shadowed declaration before filtering for scope. |
| NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); |
| |
| // Merge the decl with the existing one if appropriate. If the decl is |
| // in an outer scope, it isn't the same thing. |
| FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, |
| /*AllowInlineNamespace*/false); |
| filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); |
| if (!Previous.empty()) { |
| Redeclaration = true; |
| MergeTypedefNameDecl(S, NewTD, Previous); |
| } |
| |
| if (ShadowedDecl && !Redeclaration) |
| CheckShadow(NewTD, ShadowedDecl, Previous); |
| |
| // If this is the C FILE type, notify the AST context. |
| if (IdentifierInfo *II = NewTD->getIdentifier()) |
| if (!NewTD->isInvalidDecl() && |
| NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
| if (II->isStr("FILE")) |
| Context.setFILEDecl(NewTD); |
| else if (II->isStr("jmp_buf")) |
| Context.setjmp_bufDecl(NewTD); |
| else if (II->isStr("sigjmp_buf")) |
| Context.setsigjmp_bufDecl(NewTD); |
| else if (II->isStr("ucontext_t")) |
| Context.setucontext_tDecl(NewTD); |
| } |
| |
| return NewTD; |
| } |
| |
| /// Determines whether the given declaration is an out-of-scope |
| /// previous declaration. |
| /// |
| /// This routine should be invoked when name lookup has found a |
| /// previous declaration (PrevDecl) that is not in the scope where a |
| /// new declaration by the same name is being introduced. If the new |
| /// declaration occurs in a local scope, previous declarations with |
| /// linkage may still be considered previous declarations (C99 |
| /// 6.2.2p4-5, C++ [basic.link]p6). |
| /// |
| /// \param PrevDecl the previous declaration found by name |
| /// lookup |
| /// |
| /// \param DC the context in which the new declaration is being |
| /// declared. |
| /// |
| /// \returns true if PrevDecl is an out-of-scope previous declaration |
| /// for a new delcaration with the same name. |
| static bool |
| isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, |
| ASTContext &Context) { |
| if (!PrevDecl) |
| return false; |
| |
| if (!PrevDecl->hasLinkage()) |
| return false; |
| |
| if (Context.getLangOpts().CPlusPlus) { |
| // C++ [basic.link]p6: |
| // If there is a visible declaration of an entity with linkage |
| // having the same name and type, ignoring entities declared |
| // outside the innermost enclosing namespace scope, the block |
| // scope declaration declares that same entity and receives the |
| // linkage of the previous declaration. |
| DeclContext *OuterContext = DC->getRedeclContext(); |
| if (!OuterContext->isFunctionOrMethod()) |
| // This rule only applies to block-scope declarations. |
| return false; |
| |
| DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); |
| if (PrevOuterContext->isRecord()) |
| // We found a member function: ignore it. |
| return false; |
| |
| // Find the innermost enclosing namespace for the new and |
| // previous declarations. |
| OuterContext = OuterContext->getEnclosingNamespaceContext(); |
| PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); |
| |
| // The previous declaration is in a different namespace, so it |
| // isn't the same function. |
| if (!OuterContext->Equals(PrevOuterContext)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) { |
| CXXScopeSpec &SS = D.getCXXScopeSpec(); |
| if (!SS.isSet()) return; |
| DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext())); |
| } |
| |
| bool Sema::inferObjCARCLifetime(ValueDecl *decl) { |
| QualType type = decl->getType(); |
| Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); |
| if (lifetime == Qualifiers::OCL_Autoreleasing) { |
| // Various kinds of declaration aren't allowed to be __autoreleasing. |
| unsigned kind = -1U; |
| if (VarDecl *var = dyn_cast<VarDecl>(decl)) { |
| if (var->hasAttr<BlocksAttr>()) |
| kind = 0; // __block |
| else if (!var->hasLocalStorage()) |
| kind = 1; // global |
| } else if (isa<ObjCIvarDecl>(decl)) { |
| kind = 3; // ivar |
| } else if (isa<FieldDecl>(decl)) { |
| kind = 2; // field |
| } |
| |
| if (kind != -1U) { |
| Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) |
| << kind; |
| } |
| } else if (lifetime == Qualifiers::OCL_None) { |
| // Try to infer lifetime. |
| if (!type->isObjCLifetimeType()) |
| return false; |
| |
| lifetime = type->getObjCARCImplicitLifetime(); |
| type = Context.getLifetimeQualifiedType(type, lifetime); |
| decl->setType(type); |
| } |
| |
| if (VarDecl *var = dyn_cast<VarDecl>(decl)) { |
| // Thread-local variables cannot have lifetime. |
| if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && |
| var->getTLSKind()) { |
| Diag(var->getLocation(), diag::err_arc_thread_ownership) |
| << var->getType(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { |
| // Ensure that an auto decl is deduced otherwise the checks below might cache |
| // the wrong linkage. |
| assert(S.ParsingInitForAutoVars.count(&ND) == 0); |
| |
| // 'weak' only applies to declarations with external linkage. |
| if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { |
| if (!ND.isExternallyVisible()) { |
| S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); |
| ND.dropAttr<WeakAttr>(); |
| } |
| } |
| if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { |
| if (ND.isExternallyVisible()) { |
| S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); |
| ND.dropAttr<WeakRefAttr>(); |
| ND.dropAttr<AliasAttr>(); |
| } |
| } |
| |
| if (auto *VD = dyn_cast<VarDecl>(&ND)) { |
| if (VD->hasInit()) { |
| if (const auto *Attr = VD->getAttr<AliasAttr>()) { |
| assert(VD->isThisDeclarationADefinition() && |
| !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); |
| S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; |
| VD->dropAttr<AliasAttr>(); |
| } |
| } |
| } |
| |
| // 'selectany' only applies to externally visible variable declarations. |
| // It does not apply to functions. |
| if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { |
| if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { |
| S.Diag(Attr->getLocation(), |
| diag::err_attribute_selectany_non_extern_data); |
| ND.dropAttr<SelectAnyAttr>(); |
| } |
| } |
| |
| if (const InheritableAttr *Attr = getDLLAttr(&ND)) { |
| // dll attributes require external linkage. Static locals may have external |
| // linkage but still cannot be explicitly imported or exported. |
| auto *VD = dyn_cast<VarDecl>(&ND); |
| if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) { |
| S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) |
| << &ND << Attr; |
| ND.setInvalidDecl(); |
| } |
| } |
| |
| // Virtual functions cannot be marked as 'notail'. |
| if (auto *Attr = ND.getAttr<NotTailCalledAttr>()) |
| if (auto *MD = dyn_cast<CXXMethodDecl>(&ND)) |
| if (MD->isVirtual()) { |
| S.Diag(ND.getLocation(), |
| diag::err_invalid_attribute_on_virtual_function) |
| << Attr; |
| ND.dropAttr<NotTailCalledAttr>(); |
| } |
| |
| // Check the attributes on the function type, if any. |
| if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { |
| // Don't declare this variable in the second operand of the for-statement; |
| // GCC miscompiles that by ending its lifetime before evaluating the |
| // third operand. See gcc.gnu.org/PR86769. |
| AttributedTypeLoc ATL; |
| for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); |
| (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
| TL = ATL.getModifiedLoc()) { |
| // The [[lifetimebound]] attribute can be applied to the implicit object |
| // parameter of a non-static member function (other than a ctor or dtor) |
| // by applying it to the function type. |
| if (ATL.getAttrKind() == AttributedType::attr_lifetimebound) { |
| const auto *MD = dyn_cast<CXXMethodDecl>(FD); |
| if (!MD || MD->isStatic()) { |
| S.Diag(ATL.getAttrNameLoc(), diag::err_lifetimebound_no_object_param) |
| << !MD << ATL.getLocalSourceRange(); |
| } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { |
| S.Diag(ATL.getAttrNameLoc(), diag::err_lifetimebound_ctor_dtor) |
| << isa<CXXDestructorDecl>(MD) << ATL.getLocalSourceRange(); |
| } |
| } |
| } |
| } |
| } |
| |
| static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, |
| NamedDecl *NewDecl, |
| bool IsSpecialization, |
| bool IsDefinition) { |
| if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) |
| return; |
| |
| bool IsTemplate = false; |
| if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { |
| OldDecl = OldTD->getTemplatedDecl(); |
| IsTemplate = true; |
| if (!IsSpecialization) |
| IsDefinition = false; |
| } |
| if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { |
| NewDecl = NewTD->getTemplatedDecl(); |
| IsTemplate = true; |
| } |
| |
| if (!OldDecl || !NewDecl) |
| return; |
| |
| const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); |
| const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); |
| const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); |
| const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); |
| |
| // dllimport and dllexport are inheritable attributes so we have to exclude |
| // inherited attribute instances. |
| bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || |
| (NewExportAttr && !NewExportAttr->isInherited()); |
| |
| // A redeclaration is not allowed to add a dllimport or dllexport attribute, |
| // the only exception being explicit specializations. |
| // Implicitly generated declarations are also excluded for now because there |
| // is no other way to switch these to use dllimport or dllexport. |
| bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; |
| |
| if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { |
| // Allow with a warning for free functions and global variables. |
| bool JustWarn = false; |
| if (!OldDecl->isCXXClassMember()) { |
| auto *VD = dyn_cast<VarDecl>(OldDecl); |
| if (VD && !VD->getDescribedVarTemplate()) |
| JustWarn = true; |
| auto *FD = dyn_cast<FunctionDecl>(OldDecl); |
| if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) |
| JustWarn = true; |
| } |
| |
| // We cannot change a declaration that's been used because IR has already |
| // been emitted. Dllimported functions will still work though (modulo |
| // address equality) as they can use the thunk. |
| if (OldDecl->isUsed()) |
| if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) |
| JustWarn = false; |
| |
| unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration |
| : diag::err_attribute_dll_redeclaration; |
| S.Diag(NewDecl->getLocation(), DiagID) |
| << NewDecl |
| << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); |
| S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
| if (!JustWarn) { |
| NewDecl->setInvalidDecl(); |
| return; |
| } |
| } |
| |
| // A redeclaration is not allowed to drop a dllimport attribute, the only |
| // exceptions being inline function definitions (except for function |
| // templates), local extern declarations, qualified friend declarations or |
| // special MSVC extension: in the last case, the declaration is treated as if |
| // it were marked dllexport. |
| bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; |
| bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); |
| if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { |
| // Ignore static data because out-of-line definitions are diagnosed |
| // separately. |
| IsStaticDataMember = VD->isStaticDataMember(); |
| IsDefinition = VD->isThisDeclarationADefinition(S.Context) != |
| VarDecl::DeclarationOnly; |
| } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { |
| IsInline = FD->isInlined(); |
| IsQualifiedFriend = FD->getQualifier() && |
| FD->getFriendObjectKind() == Decl::FOK_Declared; |
| } |
| |
| if (OldImportAttr && !HasNewAttr && |
| (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember && |
| !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { |
| if (IsMicrosoft && IsDefinition) { |
| S.Diag(NewDecl->getLocation(), |
| diag::warn_redeclaration_without_import_attribute) |
| << NewDecl; |
| S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
| NewDecl->dropAttr<DLLImportAttr>(); |
| NewDecl->addAttr(::new (S.Context) DLLExportAttr( |
| NewImportAttr->getRange(), S.Context, |
| NewImportAttr->getSpellingListIndex())); |
| } else { |
| S.Diag(NewDecl->getLocation(), |
| diag::warn_redeclaration_without_attribute_prev_attribute_ignored) |
| << NewDecl << OldImportAttr; |
| S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
| S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); |
| OldDecl->dropAttr<DLLImportAttr>(); |
| NewDecl->dropAttr<DLLImportAttr>(); |
| } |
| } else if (IsInline && OldImportAttr && !IsMicrosoft) { |
| // In MinGW, seeing a function declared inline drops the dllimport |
| // attribute. |
| OldDecl->dropAttr<DLLImportAttr>(); |
| NewDecl->dropAttr<DLLImportAttr>(); |
| S.Diag(NewDecl->getLocation(), |
| diag::warn_dllimport_dropped_from_inline_function) |
| << NewDecl << OldImportAttr; |
| } |
| |
| // A specialization of a class template member function is processed here |
| // since it's a redeclaration. If the parent class is dllexport, the |
| // specialization inherits that attribute. This doesn't happen automatically |
| // since the parent class isn't instantiated until later. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { |
| if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && |
| !NewImportAttr && !NewExportAttr) { |
| if (const DLLExportAttr *ParentExportAttr = |
| MD->getParent()->getAttr<DLLExportAttr>()) { |
| DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); |
| NewAttr->setInherited(true); |
| NewDecl->addAttr(NewAttr); |
| } |
| } |
| } |
| } |
| |
| /// Given that we are within the definition of the given function, |
| /// will that definition behave like C99's 'inline', where the |
| /// definition is discarded except for optimization purposes? |
| static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { |
| // Try to avoid calling GetGVALinkageForFunction. |
| |
| // All cases of this require the 'inline' keyword. |
| if (!FD->isInlined()) return false; |
| |
| // This is only possible in C++ with the gnu_inline attribute. |
| if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) |
| return false; |
| |
| // Okay, go ahead and call the relatively-more-expensive function. |
| return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; |
| } |
| |
| /// Determine whether a variable is extern "C" prior to attaching |
| /// an initializer. We can't just call isExternC() here, because that |
| /// will also compute and cache whether the declaration is externally |
| /// visible, which might change when we attach the initializer. |
| /// |
| /// This can only be used if the declaration is known to not be a |
| /// redeclaration of an internal linkage declaration. |
| /// |
| /// For instance: |
| /// |
| /// auto x = []{}; |
| /// |
| /// Attaching the initializer here makes this declaration not externally |
| /// visible, because its type has internal linkage. |
| /// |
| /// FIXME: This is a hack. |
| template<typename T> |
| static bool isIncompleteDeclExternC(Sema &S, const T *D) { |
| if (S.getLangOpts().CPlusPlus) { |
| // In C++, the overloadable attribute negates the effects of extern "C". |
| if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) |
| return false; |
| |
| // So do CUDA's host/device attributes. |
| if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || |
| D->template hasAttr<CUDAHostAttr>())) |
| return false; |
| } |
| return D->isExternC(); |
| } |
| |
| static bool shouldConsiderLinkage(const VarDecl *VD) { |
| const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); |
| if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC)) |
| return VD->hasExternalStorage(); |
| if (DC->isFileContext()) |
| return true; |
| if (DC->isRecord()) |
| return false; |
| llvm_unreachable("Unexpected context"); |
| } |
| |
| static bool shouldConsiderLinkage(const FunctionDecl *FD) { |
| const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); |
| if (DC->isFileContext() || DC->isFunctionOrMethod() || |
| isa<OMPDeclareReductionDecl>(DC)) |
| return true; |
| if (DC->isRecord()) |
| return false; |
| llvm_unreachable("Unexpected context"); |
| } |
| |
| static bool hasParsedAttr(Scope *S, const Declarator &PD, |
| ParsedAttr::Kind Kind) { |
| // Check decl attributes on the DeclSpec. |
| if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) |
| return true; |
| |
| // Walk the declarator structure, checking decl attributes that were in a type |
| // position to the decl itself. |
| for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { |
| if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) |
| return true; |
| } |
| |
| // Finally, check attributes on the decl itself. |
| return PD.getAttributes().hasAttribute(Kind); |
| } |
| |
| /// Adjust the \c DeclContext for a function or variable that might be a |
| /// function-local external declaration. |
| bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { |
| if (!DC->isFunctionOrMethod()) |
| return false; |
| |
| // If this is a local extern function or variable declared within a function |
| // template, don't add it into the enclosing namespace scope until it is |
| // instantiated; it might have a dependent type right now. |
| if (DC->isDependentContext()) |
| return true; |
| |
| // C++11 [basic.link]p7: |
| // When a block scope declaration of an entity with linkage is not found to |
| // refer to some other declaration, then that entity is a member of the |
| // innermost enclosing namespace. |
| // |
| // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a |
| // semantically-enclosing namespace, not a lexically-enclosing one. |
| while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) |
| DC = DC->getParent(); |
| return true; |
| } |
| |
| /// Returns true if given declaration has external C language linkage. |
| static bool isDeclExternC(const Decl *D) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| return FD->isExternC(); |
| if (const auto *VD = dyn_cast<VarDecl>(D)) |
| return VD->isExternC(); |
| |
| llvm_unreachable("Unknown type of decl!"); |
| } |
| |
| NamedDecl *Sema::ActOnVariableDeclarator( |
| Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, |
| LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, |
| bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { |
| QualType R = TInfo->getType(); |
| DeclarationName Name = GetNameForDeclarator(D).getName(); |
| |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| |
| if (D.isDecompositionDeclarator()) { |
| // Take the name of the first declarator as our name for diagnostic |
| // purposes. |
| auto &Decomp = D.getDecompositionDeclarator(); |
| if (!Decomp.bindings().empty()) { |
| II = Decomp.bindings()[0].Name; |
| Name = II; |
| } |
| } else if (!II) { |
| Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; |
| return nullptr; |
| } |
| |
| if (getLangOpts().OpenCL) { |
| // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. |
| // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function |
| // argument. |
| if (R->isImageType() || R->isPipeType()) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_opencl_type_can_only_be_used_as_function_parameter) |
| << R; |
| D.setInvalidType(); |
| return nullptr; |
| } |
| |
| // OpenCL v1.2 s6.9.r: |
| // The event type cannot be used to declare a program scope variable. |
| // OpenCL v2.0 s6.9.q: |
| // The clk_event_t and reserve_id_t types cannot be declared in program scope. |
| if (NULL == S->getParent()) { |
| if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_invalid_type_for_program_scope_var) << R; |
| D.setInvalidType(); |
| return nullptr; |
| } |
| } |
| |
| // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. |
| QualType NR = R; |
| while (NR->isPointerType()) { |
| if (NR->isFunctionPointerType()) { |
| Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer); |
| D.setInvalidType(); |
| break; |
| } |
| NR = NR->getPointeeType(); |
| } |
| |
| if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) { |
| // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and |
| // half array type (unless the cl_khr_fp16 extension is enabled). |
| if (Context.getBaseElementType(R)->isHalfType()) { |
| Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; |
| D.setInvalidType(); |
| } |
| } |
| |
| if (R->isSamplerT()) { |
| // OpenCL v1.2 s6.9.b p4: |
| // The sampler type cannot be used with the __local and __global address |
| // space qualifiers. |
| if (R.getAddressSpace() == LangAS::opencl_local || |
| R.getAddressSpace() == LangAS::opencl_global) { |
| Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); |
| } |
| |
| // OpenCL v1.2 s6.12.14.1: |
| // A global sampler must be declared with either the constant address |
| // space qualifier or with the const qualifier. |
| if (DC->isTranslationUnit() && |
| !(R.getAddressSpace() == LangAS::opencl_constant || |
| R.isConstQualified())) { |
| Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler); |
| D.setInvalidType(); |
| } |
| } |
| |
| // OpenCL v1.2 s6.9.r: |
| // The event type cannot be used with the __local, __constant and __global |
| // address space qualifiers. |
| if (R->isEventT()) { |
| if (R.getAddressSpace() != LangAS::opencl_private) { |
| Diag(D.getLocStart(), diag::err_event_t_addr_space_qual); |
| D.setInvalidType(); |
| } |
| } |
| |
| // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not |
| // supported. OpenCL C does not support thread_local either, and |
| // also reject all other thread storage class specifiers. |
| DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); |
| if (TSC != TSCS_unspecified) { |
| bool IsCXX = getLangOpts().OpenCLCPlusPlus; |
| Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| diag::err_opencl_unknown_type_specifier) |
| << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString() |
| << DeclSpec::getSpecifierName(TSC) << 1; |
| D.setInvalidType(); |
| return nullptr; |
| } |
| } |
| |
| DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); |
| StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); |
| |
| // dllimport globals without explicit storage class are treated as extern. We |
| // have to change the storage class this early to get the right DeclContext. |
| if (SC == SC_None && !DC->isRecord() && |
| hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && |
| !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) |
| SC = SC_Extern; |
| |
| DeclContext *OriginalDC = DC; |
| bool IsLocalExternDecl = SC == SC_Extern && |
| adjustContextForLocalExternDecl(DC); |
| |
| if (SCSpec == DeclSpec::SCS_mutable) { |
| // mutable can only appear on non-static class members, so it's always |
| // an error here |
| Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); |
| D.setInvalidType(); |
| SC = SC_None; |
| } |
| |
| if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && |
| !D.getAsmLabel() && !getSourceManager().isInSystemMacro( |
| D.getDeclSpec().getStorageClassSpecLoc())) { |
| // In C++11, the 'register' storage class specifier is deprecated. |
| // Suppress the warning in system macros, it's used in macros in some |
| // popular C system headers, such as in glibc's htonl() macro. |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class |
| : diag::warn_deprecated_register) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| } |
| |
| DiagnoseFunctionSpecifiers(D.getDeclSpec()); |
| |
| if (!DC->isRecord() && S->getFnParent() == nullptr) { |
| // C99 6.9p2: The storage-class specifiers auto and register shall not |
| // appear in the declaration specifiers in an external declaration. |
| // Global Register+Asm is a GNU extension we support. |
| if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); |
| D.setInvalidType(); |
| } |
| } |
| |
| bool IsMemberSpecialization = false; |
| bool IsVariableTemplateSpecialization = false; |
| bool IsPartialSpecialization = false; |
| bool IsVariableTemplate = false; |
| VarDecl *NewVD = nullptr; |
| VarTemplateDecl *NewTemplate = nullptr; |
| TemplateParameterList *TemplateParams = nullptr; |
| if (!getLangOpts().CPlusPlus) { |
| NewVD = VarDecl::Create(Context, DC, D.getLocStart(), |
| D.getIdentifierLoc(), II, |
| R, TInfo, SC); |
| |
| if (R->getContainedDeducedType()) |
| ParsingInitForAutoVars.insert(NewVD); |
| |
| if (D.isInvalidType()) |
| NewVD->setInvalidDecl(); |
| } else { |
| bool Invalid = false; |
| |
| if (DC->isRecord() && !CurContext->isRecord()) { |
| // This is an out-of-line definition of a static data member. |
| switch (SC) { |
| case SC_None: |
| break; |
| case SC_Static: |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_static_out_of_line) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| break; |
| case SC_Auto: |
| case SC_Register: |
| case SC_Extern: |
| // [dcl.stc] p2: The auto or register specifiers shall be applied only |
| // to names of variables declared in a block or to function parameters. |
| // [dcl.stc] p6: The extern specifier cannot be used in the declaration |
| // of class members |
| |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_storage_class_for_static_member) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| break; |
| case SC_PrivateExtern: |
| llvm_unreachable("C storage class in c++!"); |
| } |
| } |
| |
| if (SC == SC_Static && CurContext->isRecord()) { |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { |
| if (RD->isLocalClass()) |
| Diag(D.getIdentifierLoc(), |
| diag::err_static_data_member_not_allowed_in_local_class) |
| << Name << RD->getDeclName(); |
| |
| // C++98 [class.union]p1: If a union contains a static data member, |
| // the program is ill-formed. C++11 drops this restriction. |
| if (RD->isUnion()) |
| Diag(D.getIdentifierLoc(), |
| getLangOpts().CPlusPlus11 |
| ? diag::warn_cxx98_compat_static_data_member_in_union |
| : diag::ext_static_data_member_in_union) << Name; |
| // We conservatively disallow static data members in anonymous structs. |
| else if (!RD->getDeclName()) |
| Diag(D.getIdentifierLoc(), |
| diag::err_static_data_member_not_allowed_in_anon_struct) |
| << Name << RD->isUnion(); |
| } |
| } |
| |
| // Match up the template parameter lists with the scope specifier, then |
| // determine whether we have a template or a template specialization. |
| TemplateParams = MatchTemplateParametersToScopeSpecifier( |
| D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), |
| D.getCXXScopeSpec(), |
| D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
| ? D.getName().TemplateId |
| : nullptr, |
| TemplateParamLists, |
| /*never a friend*/ false, IsMemberSpecialization, Invalid); |
| |
| if (TemplateParams) { |
| if (!TemplateParams->size() && |
| D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
| // There is an extraneous 'template<>' for this variable. Complain |
| // about it, but allow the declaration of the variable. |
| Diag(TemplateParams->getTemplateLoc(), |
| diag::err_template_variable_noparams) |
| << II |
| << SourceRange(TemplateParams->getTemplateLoc(), |
| TemplateParams->getRAngleLoc()); |
| TemplateParams = nullptr; |
| } else { |
| if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
| // This is an explicit specialization or a partial specialization. |
| // FIXME: Check that we can declare a specialization here. |
| IsVariableTemplateSpecialization = true; |
| IsPartialSpecialization = TemplateParams->size() > 0; |
| } else { // if (TemplateParams->size() > 0) |
| // This is a template declaration. |
| IsVariableTemplate = true; |
| |
| // Check that we can declare a template here. |
| if (CheckTemplateDeclScope(S, TemplateParams)) |
| return nullptr; |
| |
| // Only C++1y supports variable templates (N3651). |
| Diag(D.getIdentifierLoc(), |
| getLangOpts().CPlusPlus14 |
| ? diag::warn_cxx11_compat_variable_template |
| : diag::ext_variable_template); |
| } |
| } |
| } else { |
| assert((Invalid || |
| D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && |
| "should have a 'template<>' for this decl"); |
| } |
| |
| if (IsVariableTemplateSpecialization) { |
| SourceLocation TemplateKWLoc = |
| TemplateParamLists.size() > 0 |
| ? TemplateParamLists[0]->getTemplateLoc() |
| : SourceLocation(); |
| DeclResult Res = ActOnVarTemplateSpecialization( |
| S, D, TInfo, TemplateKWLoc, TemplateParams, SC, |
| IsPartialSpecialization); |
| if (Res.isInvalid()) |
| return nullptr; |
| NewVD = cast<VarDecl>(Res.get()); |
| AddToScope = false; |
| } else if (D.isDecompositionDeclarator()) { |
| NewVD = DecompositionDecl::Create(Context, DC, D.getLocStart(), |
| D.getIdentifierLoc(), R, TInfo, SC, |
| Bindings); |
| } else |
| NewVD = VarDecl::Create(Context, DC, D.getLocStart(), |
| D.getIdentifierLoc(), II, R, TInfo, SC); |
| |
| // If this is supposed to be a variable template, create it as such. |
| if (IsVariableTemplate) { |
| NewTemplate = |
| VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, |
| TemplateParams, NewVD); |
| NewVD->setDescribedVarTemplate(NewTemplate); |
| } |
| |
| // If this decl has an auto type in need of deduction, make a note of the |
| // Decl so we can diagnose uses of it in its own initializer. |
| if (R->getContainedDeducedType()) |
| ParsingInitForAutoVars.insert(NewVD); |
| |
| if (D.isInvalidType() || Invalid) { |
| NewVD->setInvalidDecl(); |
| if (NewTemplate) |
| NewTemplate->setInvalidDecl(); |
| } |
| |
| SetNestedNameSpecifier(NewVD, D); |
| |
| // If we have any template parameter lists that don't directly belong to |
| // the variable (matching the scope specifier), store them. |
| unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; |
| if (TemplateParamLists.size() > VDTemplateParamLists) |
| NewVD->setTemplateParameterListsInfo( |
| Context, TemplateParamLists.drop_back(VDTemplateParamLists)); |
| |
| if (D.getDeclSpec().isConstexprSpecified()) { |
| NewVD->setConstexpr(true); |
| // C++1z [dcl.spec.constexpr]p1: |
| // A static data member declared with the constexpr specifier is |
| // implicitly an inline variable. |
| if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17) |
| NewVD->setImplicitlyInline(); |
| } |
| } |
| |
| if (D.getDeclSpec().isInlineSpecified()) { |
| if (!getLangOpts().CPlusPlus) { |
| Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
| << 0; |
| } else if (CurContext->isFunctionOrMethod()) { |
| // 'inline' is not allowed on block scope variable declaration. |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| diag::err_inline_declaration_block_scope) << Name |
| << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
| } else { |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable |
| : diag::ext_inline_variable); |
| NewVD->setInlineSpecified(); |
| } |
| } |
| |
| // Set the lexical context. If the declarator has a C++ scope specifier, the |
| // lexical context will be different from the semantic context. |
| NewVD->setLexicalDeclContext(CurContext); |
| if (NewTemplate) |
| NewTemplate->setLexicalDeclContext(CurContext); |
| |
| if (IsLocalExternDecl) { |
| if (D.isDecompositionDeclarator()) |
| for (auto *B : Bindings) |
| B->setLocalExternDecl(); |
| else |
| NewVD->setLocalExternDecl(); |
| } |
| |
| bool EmitTLSUnsupportedError = false; |
| if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { |
| // C++11 [dcl.stc]p4: |
| // When thread_local is applied to a variable of block scope the |
| // storage-class-specifier static is implied if it does not appear |
| // explicitly. |
| // Core issue: 'static' is not implied if the variable is declared |
| // 'extern'. |
| if (NewVD->hasLocalStorage() && |
| (SCSpec != DeclSpec::SCS_unspecified || |
| TSCS != DeclSpec::TSCS_thread_local || |
| !DC->isFunctionOrMethod())) |
| Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| diag::err_thread_non_global) |
| << DeclSpec::getSpecifierName(TSCS); |
| else if (!Context.getTargetInfo().isTLSSupported()) { |
| if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { |
| // Postpone error emission until we've collected attributes required to |
| // figure out whether it's a host or device variable and whether the |
| // error should be ignored. |
| EmitTLSUnsupportedError = true; |
| // We still need to mark the variable as TLS so it shows up in AST with |
| // proper storage class for other tools to use even if we're not going |
| // to emit any code for it. |
| NewVD->setTSCSpec(TSCS); |
| } else |
| Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| diag::err_thread_unsupported); |
| } else |
| NewVD->setTSCSpec(TSCS); |
| } |
| |
| // C99 6.7.4p3 |
| // An inline definition of a function with external linkage shall |
| // not contain a definition of a modifiable object with static or |
| // thread storage duration... |
| // We only apply this when the function is required to be defined |
| // elsewhere, i.e. when the function is not 'extern inline'. Note |
| // that a local variable with thread storage duration still has to |
| // be marked 'static'. Also note that it's possible to get these |
| // semantics in C++ using __attribute__((gnu_inline)). |
| if (SC == SC_Static && S->getFnParent() != nullptr && |
| !NewVD->getType().isConstQualified()) { |
| FunctionDecl *CurFD = getCurFunctionDecl(); |
| if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::warn_static_local_in_extern_inline); |
| MaybeSuggestAddingStaticToDecl(CurFD); |
| } |
| } |
| |
| if (D.getDeclSpec().isModulePrivateSpecified()) { |
| if (IsVariableTemplateSpecialization) |
| Diag(NewVD->getLocation(), diag::err_module_private_specialization) |
| << (IsPartialSpecialization ? 1 : 0) |
| << FixItHint::CreateRemoval( |
| D.getDeclSpec().getModulePrivateSpecLoc()); |
| else if (IsMemberSpecialization) |
| Diag(NewVD->getLocation(), diag::err_module_private_specialization) |
| << 2 |
| << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
| else if (NewVD->hasLocalStorage()) |
| Diag(NewVD->getLocation(), diag::err_module_private_local) |
| << 0 << NewVD->getDeclName() |
| << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
| else { |
| NewVD->setModulePrivate(); |
| if (NewTemplate) |
| NewTemplate->setModulePrivate(); |
| for (auto *B : Bindings) |
| B->setModulePrivate(); |
| } |
| } |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| ProcessDeclAttributes(S, NewVD, D); |
| |
| if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { |
| if (EmitTLSUnsupportedError && |
| ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || |
| (getLangOpts().OpenMPIsDevice && |
| NewVD->hasAttr<OMPDeclareTargetDeclAttr>()))) |
| Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| diag::err_thread_unsupported); |
| // CUDA B.2.5: "__shared__ and __constant__ variables have implied static |
| // storage [duration]." |
| if (SC == SC_None && S->getFnParent() != nullptr && |
| (NewVD->hasAttr<CUDASharedAttr>() || |
| NewVD->hasAttr<CUDAConstantAttr>())) { |
| NewVD->setStorageClass(SC_Static); |
| } |
| } |
| |
| // Ensure that dllimport globals without explicit storage class are treated as |
| // extern. The storage class is set above using parsed attributes. Now we can |
| // check the VarDecl itself. |
| assert(!NewVD->hasAttr<DLLImportAttr>() || |
| NewVD->getAttr<DLLImportAttr>()->isInherited() || |
| NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); |
| |
| // In auto-retain/release, infer strong retension for variables of |
| // retainable type. |
| if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) |
| NewVD->setInvalidDecl(); |
| |
| // Handle GNU asm-label extension (encoded as an attribute). |
| if (Expr *E = (Expr*)D.getAsmLabel()) { |
| // The parser guarantees this is a string. |
| StringLiteral *SE = cast<StringLiteral>(E); |
| StringRef Label = SE->getString(); |
| if (S->getFnParent() != nullptr) { |
| switch (SC) { |
| case SC_None: |
| case SC_Auto: |
| Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; |
| break; |
| case SC_Register: |
| // Local Named register |
| if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && |
| DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) |
| Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; |
| break; |
| case SC_Static: |
| case SC_Extern: |
| case SC_PrivateExtern: |
| break; |
| } |
| } else if (SC == SC_Register) { |
| // Global Named register |
| if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { |
| const auto &TI = Context.getTargetInfo(); |
| bool HasSizeMismatch; |
| |
| if (!TI.isValidGCCRegisterName(Label)) |
| Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; |
| else if (!TI.validateGlobalRegisterVariable(Label, |
| Context.getTypeSize(R), |
| HasSizeMismatch)) |
| Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; |
| else if (HasSizeMismatch) |
| Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; |
| } |
| |
| if (!R->isIntegralType(Context) && !R->isPointerType()) { |
| Diag(D.getLocStart(), diag::err_asm_bad_register_type); |
| NewVD->setInvalidDecl(true); |
| } |
| } |
| |
| NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), |
| Context, Label, 0)); |
| } else if (!ExtnameUndeclaredIdentifiers.empty()) { |
| llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = |
| ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); |
| if (I != ExtnameUndeclaredIdentifiers.end()) { |
| if (isDeclExternC(NewVD)) { |
| NewVD->addAttr(I->second); |
| ExtnameUndeclaredIdentifiers.erase(I); |
| } else |
| Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) |
| << /*Variable*/1 << NewVD; |
| } |
| } |
| |
| // Find the shadowed declaration before filtering for scope. |
| NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() |
| ? getShadowedDeclaration(NewVD, Previous) |
| : nullptr; |
| |
| // Don't consider existing declarations that are in a different |
| // scope and are out-of-semantic-context declarations (if the new |
| // declaration has linkage). |
| FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), |
| D.getCXXScopeSpec().isNotEmpty() || |
| IsMemberSpecialization || |
| IsVariableTemplateSpecialization); |
| |
| // Check whether the previous declaration is in the same block scope. This |
| // affects whether we merge types with it, per C++11 [dcl.array]p3. |
| if (getLangOpts().CPlusPlus && |
| NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) |
| NewVD->setPreviousDeclInSameBlockScope( |
| Previous.isSingleResult() && !Previous.isShadowed() && |
| isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); |
| |
| if (!getLangOpts().CPlusPlus) { |
| D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); |
| } else { |
| // If this is an explicit specialization of a static data member, check it. |
| if (IsMemberSpecialization && !NewVD->isInvalidDecl() && |
| CheckMemberSpecialization(NewVD, Previous)) |
| NewVD->setInvalidDecl(); |
| |
| // Merge the decl with the existing one if appropriate. |
| if (!Previous.empty()) { |
| if (Previous.isSingleResult() && |
| isa<FieldDecl>(Previous.getFoundDecl()) && |
| D.getCXXScopeSpec().isSet()) { |
| // The user tried to define a non-static data member |
| // out-of-line (C++ [dcl.meaning]p1). |
| Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) |
| << D.getCXXScopeSpec().getRange(); |
| Previous.clear(); |
| NewVD->setInvalidDecl(); |
| } |
| } else if (D.getCXXScopeSpec().isSet()) { |
| // No previous declaration in the qualifying scope. |
| Diag(D.getIdentifierLoc(), diag::err_no_member) |
| << Name << computeDeclContext(D.getCXXScopeSpec(), true) |
| << D.getCXXScopeSpec().getRange(); |
| NewVD->setInvalidDecl(); |
| } |
| |
| if (!IsVariableTemplateSpecialization) |
| D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); |
| |
| if (NewTemplate) { |
| VarTemplateDecl *PrevVarTemplate = |
| NewVD->getPreviousDecl() |
| ? NewVD->getPreviousDecl()->getDescribedVarTemplate() |
| : nullptr; |
| |
| // Check the template parameter list of this declaration, possibly |
| // merging in the template parameter list from the previous variable |
| // template declaration. |
| if (CheckTemplateParameterList( |
| TemplateParams, |
| PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() |
| : nullptr, |
| (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && |
| DC->isDependentContext()) |
| ? TPC_ClassTemplateMember |
| : TPC_VarTemplate)) |
| NewVD->setInvalidDecl(); |
| |
| // If we are providing an explicit specialization of a static variable |
| // template, make a note of that. |
| if (PrevVarTemplate && |
| PrevVarTemplate->getInstantiatedFromMemberTemplate()) |
| PrevVarTemplate->setMemberSpecialization(); |
| } |
| } |
| |
| // Diagnose shadowed variables iff this isn't a redeclaration. |
| if (ShadowedDecl && !D.isRedeclaration()) |
| CheckShadow(NewVD, ShadowedDecl, Previous); |
| |
| ProcessPragmaWeak(S, NewVD); |
| |
| // If this is the first declaration of an extern C variable, update |
| // the map of such variables. |
| if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && |
| isIncompleteDeclExternC(*this, NewVD)) |
| RegisterLocallyScopedExternCDecl(NewVD, S); |
| |
| if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { |
| Decl *ManglingContextDecl; |
| if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( |
| NewVD->getDeclContext(), ManglingContextDecl)) { |
| Context.setManglingNumber( |
| NewVD, MCtx->getManglingNumber( |
| NewVD, getMSManglingNumber(getLangOpts(), S))); |
| Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); |
| } |
| } |
| |
| // Special handling of variable named 'main'. |
| if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && |
| NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && |
| !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { |
| |
| // C++ [basic.start.main]p3 |
| // A program that declares a variable main at global scope is ill-formed. |
| if (getLangOpts().CPlusPlus) |
| Diag(D.getLocStart(), diag::err_main_global_variable); |
| |
| // In C, and external-linkage variable named main results in undefined |
| // behavior. |
| else if (NewVD->hasExternalFormalLinkage()) |
| Diag(D.getLocStart(), diag::warn_main_redefined); |
| } |
| |
| if (D.isRedeclaration() && !Previous.empty()) { |
| NamedDecl *Prev = Previous.getRepresentativeDecl(); |
| checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, |
| D.isFunctionDefinition()); |
| } |
| |
| if (NewTemplate) { |
| if (NewVD->isInvalidDecl()) |
| NewTemplate->setInvalidDecl(); |
| ActOnDocumentableDecl(NewTemplate); |
| return NewTemplate; |
| } |
| |
| if (IsMemberSpecialization && !NewVD->isInvalidDecl()) |
| CompleteMemberSpecialization(NewVD, Previous); |
| |
| return NewVD; |
| } |
| |
| /// Enum describing the %select options in diag::warn_decl_shadow. |
| enum ShadowedDeclKind { |
| SDK_Local, |
| SDK_Global, |
| SDK_StaticMember, |
| SDK_Field, |
| SDK_Typedef, |
| SDK_Using |
| }; |
| |
| /// Determine what kind of declaration we're shadowing. |
| static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, |
| const DeclContext *OldDC) { |
| if (isa<TypeAliasDecl>(ShadowedDecl)) |
| return SDK_Using; |
| else if (isa<TypedefDecl>(ShadowedDecl)) |
| return SDK_Typedef; |
| else if (isa<RecordDecl>(OldDC)) |
| return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; |
| |
| return OldDC->isFileContext() ? SDK_Global : SDK_Local; |
| } |
| |
| /// Return the location of the capture if the given lambda captures the given |
| /// variable \p VD, or an invalid source location otherwise. |
| static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, |
| const VarDecl *VD) { |
| for (const Capture &Capture : LSI->Captures) { |
| if (Capture.isVariableCapture() && Capture.getVariable() == VD) |
| return Capture.getLocation(); |
| } |
| return SourceLocation(); |
| } |
| |
| static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, |
| const LookupResult &R) { |
| // Only diagnose if we're shadowing an unambiguous field or variable. |
| if (R.getResultKind() != LookupResult::Found) |
| return false; |
| |
| // Return false if warning is ignored. |
| return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); |
| } |
| |
| /// Return the declaration shadowed by the given variable \p D, or null |
| /// if it doesn't shadow any declaration or shadowing warnings are disabled. |
| NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, |
| const LookupResult &R) { |
| if (!shouldWarnIfShadowedDecl(Diags, R)) |
| return nullptr; |
| |
| // Don't diagnose declarations at file scope. |
| if (D->hasGlobalStorage()) |
| return nullptr; |
| |
| NamedDecl *ShadowedDecl = R.getFoundDecl(); |
| return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl) |
| ? ShadowedDecl |
| : nullptr; |
| } |
| |
| /// Return the declaration shadowed by the given typedef \p D, or null |
| /// if it doesn't shadow any declaration or shadowing warnings are disabled. |
| NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, |
| const LookupResult &R) { |
| // Don't warn if typedef declaration is part of a class |
| if (D->getDeclContext()->isRecord()) |
| return nullptr; |
| |
| if (!shouldWarnIfShadowedDecl(Diags, R)) |
| return nullptr; |
| |
| NamedDecl *ShadowedDecl = R.getFoundDecl(); |
| return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; |
| } |
| |
| /// Diagnose variable or built-in function shadowing. Implements |
| /// -Wshadow. |
| /// |
| /// This method is called whenever a VarDecl is added to a "useful" |
| /// scope. |
| /// |
| /// \param ShadowedDecl the declaration that is shadowed by the given variable |
| /// \param R the lookup of the name |
| /// |
| void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, |
| const LookupResult &R) { |
| DeclContext *NewDC = D->getDeclContext(); |
| |
| if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { |
| // Fields are not shadowed by variables in C++ static methods. |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) |
| if (MD->isStatic()) |
| return; |
| |
| // Fields shadowed by constructor parameters are a special case. Usually |
| // the constructor initializes the field with the parameter. |
| if (isa<CXXConstructorDecl>(NewDC)) |
| if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { |
| // Remember that this was shadowed so we can either warn about its |
| // modification or its existence depending on warning settings. |
| ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); |
| return; |
| } |
| } |
| |
| if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) |
| if (shadowedVar->isExternC()) { |
| // For shadowing external vars, make sure that we point to the global |
| // declaration, not a locally scoped extern declaration. |
| for (auto I : shadowedVar->redecls()) |
| if (I->isFileVarDecl()) { |
| ShadowedDecl = I; |
| break; |
| } |
| } |
| |
| DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); |
| |
| unsigned WarningDiag = diag::warn_decl_shadow; |
| SourceLocation CaptureLoc; |
| if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && |
| isa<CXXMethodDecl>(NewDC)) { |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { |
| if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { |
| if (RD->getLambdaCaptureDefault() == LCD_None) { |
| // Try to avoid warnings for lambdas with an explicit capture list. |
| const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); |
| // Warn only when the lambda captures the shadowed decl explicitly. |
| CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); |
| if (CaptureLoc.isInvalid()) |
| WarningDiag = diag::warn_decl_shadow_uncaptured_local; |
| } else { |
| // Remember that this was shadowed so we can avoid the warning if the |
| // shadowed decl isn't captured and the warning settings allow it. |
| cast<LambdaScopeInfo>(getCurFunction()) |
| ->ShadowingDecls.push_back( |
| {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); |
| return; |
| } |
| } |
| |
| if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { |
| // A variable can't shadow a local variable in an enclosing scope, if |
| // they are separated by a non-capturing declaration context. |
| for (DeclContext *ParentDC = NewDC; |
| ParentDC && !ParentDC->Equals(OldDC); |
| ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { |
| // Only block literals, captured statements, and lambda expressions |
| // can capture; other scopes don't. |
| if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && |
| !isLambdaCallOperator(ParentDC)) { |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| // Only warn about certain kinds of shadowing for class members. |
| if (NewDC && NewDC->isRecord()) { |
| // In particular, don't warn about shadowing non-class members. |
| if (!OldDC->isRecord()) |
| return; |
| |
| // TODO: should we warn about static data members shadowing |
| // static data members from base classes? |
| |
| // TODO: don't diagnose for inaccessible shadowed members. |
| // This is hard to do perfectly because we might friend the |
| // shadowing context, but that's just a false negative. |
| } |
| |
| |
| DeclarationName Name = R.getLookupName(); |
| |
| // Emit warning and note. |
| if (getSourceManager().isInSystemMacro(R.getNameLoc())) |
| return; |
| ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); |
| Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; |
| if (!CaptureLoc.isInvalid()) |
| Diag(CaptureLoc, diag::note_var_explicitly_captured_here) |
| << Name << /*explicitly*/ 1; |
| Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| } |
| |
| /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD |
| /// when these variables are captured by the lambda. |
| void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { |
| for (const auto &Shadow : LSI->ShadowingDecls) { |
| const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; |
| // Try to avoid the warning when the shadowed decl isn't captured. |
| SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); |
| const DeclContext *OldDC = ShadowedDecl->getDeclContext(); |
| Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() |
| ? diag::warn_decl_shadow_uncaptured_local |
| : diag::warn_decl_shadow) |
| << Shadow.VD->getDeclName() |
| << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; |
| if (!CaptureLoc.isInvalid()) |
| Diag(CaptureLoc, diag::note_var_explicitly_captured_here) |
| << Shadow.VD->getDeclName() << /*explicitly*/ 0; |
| Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| } |
| } |
| |
| /// Check -Wshadow without the advantage of a previous lookup. |
| void Sema::CheckShadow(Scope *S, VarDecl *D) { |
| if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) |
| return; |
| |
| LookupResult R(*this, D->getDeclName(), D->getLocation(), |
| Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); |
| LookupName(R, S); |
| if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) |
| CheckShadow(D, ShadowedDecl, R); |
| } |
| |
| /// Check if 'E', which is an expression that is about to be modified, refers |
| /// to a constructor parameter that shadows a field. |
| void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { |
| // Quickly ignore expressions that can't be shadowing ctor parameters. |
| if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) |
| return; |
| E = E->IgnoreParenImpCasts(); |
| auto *DRE = dyn_cast<DeclRefExpr>(E); |
| if (!DRE) |
| return; |
| const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); |
| auto I = ShadowingDecls.find(D); |
| if (I == ShadowingDecls.end()) |
| return; |
| const NamedDecl *ShadowedDecl = I->second; |
| const DeclContext *OldDC = ShadowedDecl->getDeclContext(); |
| Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; |
| Diag(D->getLocation(), diag::note_var_declared_here) << D; |
| Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| |
| // Avoid issuing multiple warnings about the same decl. |
| ShadowingDecls.erase(I); |
| } |
| |
| /// Check for conflict between this global or extern "C" declaration and |
| /// previous global or extern "C" declarations. This is only used in C++. |
| template<typename T> |
| static bool checkGlobalOrExternCConflict( |
| Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { |
| assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); |
| NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); |
| |
| if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { |
| // The common case: this global doesn't conflict with any extern "C" |
| // declaration. |
| return false; |
| } |
| |
| if (Prev) { |
| if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { |
| // Both the old and new declarations have C language linkage. This is a |
| // redeclaration. |
| Previous.clear(); |
| Previous.addDecl(Prev); |
| return true; |
| } |
| |
| // This is a global, non-extern "C" declaration, and there is a previous |
| // non-global extern "C" declaration. Diagnose if this is a variable |
| // declaration. |
| if (!isa<VarDecl>(ND)) |
| return false; |
| } else { |
| // The declaration is extern "C". Check for any declaration in the |
| // translation unit which might conflict. |
| if (IsGlobal) { |
| // We have already performed the lookup into the translation unit. |
| IsGlobal = false; |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) { |
| if (isa<VarDecl>(*I)) { |
| Prev = *I; |
| break; |
| } |
| } |
| } else { |
| DeclContext::lookup_result R = |
| S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); |
| for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); |
| I != E; ++I) { |
| if (isa<VarDecl>(*I)) { |
| Prev = *I; |
| break; |
| } |
| // FIXME: If we have any other entity with this name in global scope, |
| // the declaration is ill-formed, but that is a defect: it breaks the |
| // 'stat' hack, for instance. Only variables can have mangled name |
| // clashes with extern "C" declarations, so only they deserve a |
| // diagnostic. |
| } |
| } |
| |
| if (!Prev) |
| return false; |
| } |
| |
| // Use the first declaration's location to ensure we point at something which |
| // is lexically inside an extern "C" linkage-spec. |
| assert(Prev && "should have found a previous declaration to diagnose"); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) |
| Prev = FD->getFirstDecl(); |
| else |
| Prev = cast<VarDecl>(Prev)->getFirstDecl(); |
| |
| S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) |
| << IsGlobal << ND; |
| S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) |
| << IsGlobal; |
| return false; |
| } |
| |
| /// Apply special rules for handling extern "C" declarations. Returns \c true |
| /// if we have found that this is a redeclaration of some prior entity. |
| /// |
| /// Per C++ [dcl.link]p6: |
| /// Two declarations [for a function or variable] with C language linkage |
| /// with the same name that appear in different scopes refer to the same |
| /// [entity]. An entity with C language linkage shall not be declared with |
| /// the same name as an entity in global scope. |
| template<typename T> |
| static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, |
| LookupResult &Previous) { |
| if (!S.getLangOpts().CPlusPlus) { |
| // In C, when declaring a global variable, look for a corresponding 'extern' |
| // variable declared in function scope. We don't need this in C++, because |
| // we find local extern decls in the surrounding file-scope DeclContext. |
| if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
| if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { |
| Previous.clear(); |
| Previous.addDecl(Prev); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // A declaration in the translation unit can conflict with an extern "C" |
| // declaration. |
| if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) |
| return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); |
| |
| // An extern "C" declaration can conflict with a declaration in the |
| // translation unit or can be a redeclaration of an extern "C" declaration |
| // in another scope. |
| if (isIncompleteDeclExternC(S,ND)) |
| return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); |
| |
| // Neither global nor extern "C": nothing to do. |
| return false; |
| } |
| |
| void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { |
| // If the decl is already known invalid, don't check it. |
| if (NewVD->isInvalidDecl()) |
| return; |
| |
| QualType T = NewVD->getType(); |
| |
| // Defer checking an 'auto' type until its initializer is attached. |
| if (T->isUndeducedType()) |
| return; |
| |
| if (NewVD->hasAttrs()) |
| CheckAlignasUnderalignment(NewVD); |
| |
| if (T->isObjCObjectType()) { |
| Diag(NewVD->getLocation(), diag::err_statically_allocated_object) |
| << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); |
| T = Context.getObjCObjectPointerType(T); |
| NewVD->setType(T); |
| } |
| |
| // Emit an error if an address space was applied to decl with local storage. |
| // This includes arrays of objects with address space qualifiers, but not |
| // automatic variables that point to other address spaces. |
| // ISO/IEC TR 18037 S5.1.2 |
| if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && |
| T.getAddressSpace() != LangAS::Default) { |
| Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| |
| // OpenCL v1.2 s6.8 - The static qualifier is valid only in program |
| // scope. |
| if (getLangOpts().OpenCLVersion == 120 && |
| !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") && |
| NewVD->isStaticLocal()) { |
| Diag(NewVD->getLocation(), diag::err_static_function_scope); |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| |
| if (getLangOpts().OpenCL) { |
| // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. |
| if (NewVD->hasAttr<BlocksAttr>()) { |
| Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); |
| return; |
| } |
| |
| if (T->isBlockPointerType()) { |
| // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and |
| // can't use 'extern' storage class. |
| if (!T.isConstQualified()) { |
| Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) |
| << 0 /*const*/; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| if (NewVD->hasExternalStorage()) { |
| Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| } |
| // OpenCL v1.2 s6.5 - All program scope variables must be declared in the |
| // __constant address space. |
| // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static |
| // variables inside a function can also be declared in the global |
| // address space. |
| if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || |
| NewVD->hasExternalStorage()) { |
| if (!T->isSamplerT() && |
| !(T.getAddressSpace() == LangAS::opencl_constant || |
| (T.getAddressSpace() == LangAS::opencl_global && |
| getLangOpts().OpenCLVersion == 200))) { |
| int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; |
| if (getLangOpts().OpenCLVersion == 200) |
| Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) |
| << Scope << "global or constant"; |
| else |
| Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) |
| << Scope << "constant"; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| } else { |
| if (T.getAddressSpace() == LangAS::opencl_global) { |
| Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
| << 1 /*is any function*/ << "global"; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| if (T.getAddressSpace() == LangAS::opencl_constant || |
| T.getAddressSpace() == LangAS::opencl_local) { |
| FunctionDecl *FD = getCurFunctionDecl(); |
| // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables |
| // in functions. |
| if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { |
| if (T.getAddressSpace() == LangAS::opencl_constant) |
| Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
| << 0 /*non-kernel only*/ << "constant"; |
| else |
| Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
| << 0 /*non-kernel only*/ << "local"; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be |
| // in the outermost scope of a kernel function. |
| if (FD && FD->hasAttr<OpenCLKernelAttr>()) { |
| if (!getCurScope()->isFunctionScope()) { |
| if (T.getAddressSpace() == LangAS::opencl_constant) |
| Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) |
| << "constant"; |
| else |
| Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) |
| << "local"; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| } |
| } else if (T.getAddressSpace() != LangAS::opencl_private) { |
| // Do not allow other address spaces on automatic variable. |
| Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| } |
| } |
| |
| if (NewVD->hasLocalStorage() && T.isObjCGCWeak() |
| && !NewVD->hasAttr<BlocksAttr>()) { |
| if (getLangOpts().getGC() != LangOptions::NonGC) |
| Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); |
| else { |
| assert(!getLangOpts().ObjCAutoRefCount); |
| Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); |
| } |
| } |
| |
| bool isVM = T->isVariablyModifiedType(); |
| if (isVM || NewVD->hasAttr<CleanupAttr>() || |
| NewVD->hasAttr<BlocksAttr>()) |
| setFunctionHasBranchProtectedScope(); |
| |
| if ((isVM && NewVD->hasLinkage()) || |
| (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { |
| bool SizeIsNegative; |
| llvm::APSInt Oversized; |
| TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( |
| NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); |
| QualType FixedT; |
| if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) |
| FixedT = FixedTInfo->getType(); |
| else if (FixedTInfo) { |
| // Type and type-as-written are canonically different. We need to fix up |
| // both types separately. |
| FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, |
| Oversized); |
| } |
| if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { |
| const VariableArrayType *VAT = Context.getAsVariableArrayType(T); |
| // FIXME: This won't give the correct result for |
| // int a[10][n]; |
| SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); |
| |
| if (NewVD->isFileVarDecl()) |
| Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) |
| << SizeRange; |
| else if (NewVD->isStaticLocal()) |
| Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) |
| << SizeRange; |
| else |
| Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) |
| << SizeRange; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| |
| if (!FixedTInfo) { |
| if (NewVD->isFileVarDecl()) |
| Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); |
| else |
| Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| |
| Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); |
| NewVD->setType(FixedT); |
| NewVD->setTypeSourceInfo(FixedTInfo); |
| } |
| |
| if (T->isVoidType()) { |
| // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names |
| // of objects and functions. |
| if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { |
| Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) |
| << T; |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| } |
| |
| if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { |
| Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| |
| if (isVM && NewVD->hasAttr<BlocksAttr>()) { |
| Diag(NewVD->getLocation(), diag::err_block_on_vm); |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| |
| if (NewVD->isConstexpr() && !T->isDependentType() && |
| RequireLiteralType(NewVD->getLocation(), T, |
| diag::err_constexpr_var_non_literal)) { |
| NewVD->setInvalidDecl(); |
| return; |
| } |
| } |
| |
| /// Perform semantic checking on a newly-created variable |
| /// declaration. |
| /// |
| /// This routine performs all of the type-checking required for a |
| /// variable declaration once it has been built. It is used both to |
| /// check variables after they have been parsed and their declarators |
| /// have been translated into a declaration, and to check variables |
| /// that have been instantiated from a template. |
| /// |
| /// Sets NewVD->isInvalidDecl() if an error was encountered. |
| /// |
| /// Returns true if the variable declaration is a redeclaration. |
| bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { |
| CheckVariableDeclarationType(NewVD); |
| |
| // If the decl is already known invalid, don't check it. |
| if (NewVD->isInvalidDecl()) |
| return false; |
| |
| // If we did not find anything by this name, look for a non-visible |
| // extern "C" declaration with the same name. |
| if (Previous.empty() && |
| checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) |
| Previous.setShadowed(); |
| |
| if (!Previous.empty()) { |
| MergeVarDecl(NewVD, Previous); |
| return true; |
| } |
| return false; |
| } |
| |
| namespace { |
| struct FindOverriddenMethod { |
| Sema *S; |
| CXXMethodDecl *Method; |
| |
| /// Member lookup function that determines whether a given C++ |
| /// method overrides a method in a base class, to be used with |
| /// CXXRecordDecl::lookupInBases(). |
| bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { |
| RecordDecl *BaseRecord = |
| Specifier->getType()->getAs<RecordType>()->getDecl(); |
| |
| DeclarationName Name = Method->getDeclName(); |
| |
| // FIXME: Do we care about other names here too? |
| if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| // We really want to find the base class destructor here. |
| QualType T = S->Context.getTypeDeclType(BaseRecord); |
| CanQualType CT = S->Context.getCanonicalType(T); |
| |
| Name = S->Context.DeclarationNames.getCXXDestructorName(CT); |
| } |
| |
| for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); |
| Path.Decls = Path.Decls.slice(1)) { |
| NamedDecl *D = Path.Decls.front(); |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if (MD->isVirtual() && !S->IsOverload(Method, MD, false)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| }; |
| |
| enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted }; |
| } // end anonymous namespace |
| |
| /// Report an error regarding overriding, along with any relevant |
| /// overridden methods. |
| /// |
| /// \param DiagID the primary error to report. |
| /// \param MD the overriding method. |
| /// \param OEK which overrides to include as notes. |
| static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD, |
| OverrideErrorKind OEK = OEK_All) { |
| S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); |
| for (const CXXMethodDecl *O : MD->overridden_methods()) { |
| // This check (& the OEK parameter) could be replaced by a predicate, but |
| // without lambdas that would be overkill. This is still nicer than writing |
| // out the diag loop 3 times. |
| if ((OEK == OEK_All) || |
| (OEK == OEK_NonDeleted && !O->isDeleted()) || |
| (OEK == OEK_Deleted && O->isDeleted())) |
| S.Diag(O->getLocation(), diag::note_overridden_virtual_function); |
| } |
| } |
| |
| /// AddOverriddenMethods - See if a method overrides any in the base classes, |
| /// and if so, check that it's a valid override and remember it. |
| bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { |
| // Look for methods in base classes that this method might override. |
| CXXBasePaths Paths; |
| FindOverriddenMethod FOM; |
| FOM.Method = MD; |
| FOM.S = this; |
| bool hasDeletedOverridenMethods = false; |
| bool hasNonDeletedOverridenMethods = false; |
| bool AddedAny = false; |
| if (DC->lookupInBases(FOM, Paths)) { |
| for (auto *I : Paths.found_decls()) { |
| if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { |
| MD->addOverriddenMethod(OldMD->getCanonicalDecl()); |
| if (!CheckOverridingFunctionReturnType(MD, OldMD) && |
| !CheckOverridingFunctionAttributes(MD, OldMD) && |
| !CheckOverridingFunctionExceptionSpec(MD, OldMD) && |
| !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { |
| hasDeletedOverridenMethods |= OldMD->isDeleted(); |
| hasNonDeletedOverridenMethods |= !OldMD->isDeleted(); |
| AddedAny = true; |
| } |
| } |
| } |
| } |
| |
| if (hasDeletedOverridenMethods && !MD->isDeleted()) { |
| ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted); |
| } |
| if (hasNonDeletedOverridenMethods && MD->isDeleted()) { |
| ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted); |
| } |
| |
| return AddedAny; |
| } |
| |
| namespace { |
| // Struct for holding all of the extra arguments needed by |
| // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. |
| struct ActOnFDArgs { |
| Scope *S; |
| Declarator &D; |
| MultiTemplateParamsArg TemplateParamLists; |
| bool AddToScope; |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| |
| // Callback to only accept typo corrections that have a non-zero edit distance. |
| // Also only accept corrections that have the same parent decl. |
| class DifferentNameValidatorCCC : public CorrectionCandidateCallback { |
| public: |
| DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, |
| CXXRecordDecl *Parent) |
| : Context(Context), OriginalFD(TypoFD), |
| ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| if (candidate.getEditDistance() == 0) |
| return false; |
| |
| SmallVector<unsigned, 1> MismatchedParams; |
| for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), |
| CDeclEnd = candidate.end(); |
| CDecl != CDeclEnd; ++CDecl) { |
| FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); |
| |
| if (FD && !FD->hasBody() && |
| hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| CXXRecordDecl *Parent = MD->getParent(); |
| if (Parent && Parent->getCanonicalDecl() == ExpectedParent) |
| return true; |
| } else if (!ExpectedParent) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| private: |
| ASTContext &Context; |
| FunctionDecl *OriginalFD; |
| CXXRecordDecl *ExpectedParent; |
| }; |
| |
| } // end anonymous namespace |
| |
| void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { |
| TypoCorrectedFunctionDefinitions.insert(F); |
| } |
| |
| /// Generate diagnostics for an invalid function redeclaration. |
| /// |
| /// This routine handles generating the diagnostic messages for an invalid |
| /// function redeclaration, including finding possible similar declarations |
| /// or performing typo correction if there are no previous declarations with |
| /// the same name. |
| /// |
| /// Returns a NamedDecl iff typo correction was performed and substituting in |
| /// the new declaration name does not cause new errors. |
| static NamedDecl *DiagnoseInvalidRedeclaration( |
| Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, |
| ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { |
| DeclarationName Name = NewFD->getDeclName(); |
| DeclContext *NewDC = NewFD->getDeclContext(); |
| SmallVector<unsigned, 1> MismatchedParams; |
| SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; |
| TypoCorrection Correction; |
| bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); |
| unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend |
| : diag::err_member_decl_does_not_match; |
| LookupResult Prev(SemaRef, Name, NewFD->getLocation(), |
| IsLocalFriend ? Sema::LookupLocalFriendName |
| : Sema::LookupOrdinaryName, |
| Sema::ForVisibleRedeclaration); |
| |
| NewFD->setInvalidDecl(); |
| if (IsLocalFriend) |
| SemaRef.LookupName(Prev, S); |
| else |
| SemaRef.LookupQualifiedName(Prev, NewDC); |
| assert(!Prev.isAmbiguous() && |
| "Cannot have an ambiguity in previous-declaration lookup"); |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); |
| if (!Prev.empty()) { |
| for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); |
| Func != FuncEnd; ++Func) { |
| FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); |
| if (FD && |
| hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { |
| // Add 1 to the index so that 0 can mean the mismatch didn't |
| // involve a parameter |
| unsigned ParamNum = |
| MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; |
| NearMatches.push_back(std::make_pair(FD, ParamNum)); |
| } |
| } |
| // If the qualified name lookup yielded nothing, try typo correction |
| } else if ((Correction = SemaRef.CorrectTypo( |
| Prev.getLookupNameInfo(), Prev.getLookupKind(), S, |
| &ExtraArgs.D.getCXXScopeSpec(), |
| llvm::make_unique<DifferentNameValidatorCCC>( |
| SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr), |
| Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) { |
| // Set up everything for the call to ActOnFunctionDeclarator |
| ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), |
| ExtraArgs.D.getIdentifierLoc()); |
| Previous.clear(); |
| Previous.setLookupName(Correction.getCorrection()); |
| for (TypoCorrection::decl_iterator CDecl = Correction.begin(), |
| CDeclEnd = Correction.end(); |
| CDecl != CDeclEnd; ++CDecl) { |
| FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); |
| if (FD && !FD->hasBody() && |
| hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { |
| Previous.addDecl(FD); |
| } |
| } |
| bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); |
| |
| NamedDecl *Result; |
| // Retry building the function declaration with the new previous |
| // declarations, and with errors suppressed. |
| { |
| // Trap errors. |
| Sema::SFINAETrap Trap(SemaRef); |
| |
| // TODO: Refactor ActOnFunctionDeclarator so that we can call only the |
| // pieces need to verify the typo-corrected C++ declaration and hopefully |
| // eliminate the need for the parameter pack ExtraArgs. |
| Result = SemaRef.ActOnFunctionDeclarator( |
| ExtraArgs.S, ExtraArgs.D, |
| Correction.getCorrectionDecl()->getDeclContext(), |
| NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, |
| ExtraArgs.AddToScope); |
| |
| if (Trap.hasErrorOccurred()) |
| Result = nullptr; |
| } |
| |
| if (Result) { |
| // Determine which correction we picked. |
| Decl *Canonical = Result->getCanonicalDecl(); |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) |
| if ((*I)->getCanonicalDecl() == Canonical) |
| Correction.setCorrectionDecl(*I); |
| |
| // Let Sema know about the correction. |
| SemaRef.MarkTypoCorrectedFunctionDefinition(Result); |
| SemaRef.diagnoseTypo( |
| Correction, |
| SemaRef.PDiag(IsLocalFriend |
| ? diag::err_no_matching_local_friend_suggest |
| : diag::err_member_decl_does_not_match_suggest) |
| << Name << NewDC << IsDefinition); |
| return Result; |
| } |
| |
| // Pretend the typo correction never occurred |
| ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), |
| ExtraArgs.D.getIdentifierLoc()); |
| ExtraArgs.D.setRedeclaration(wasRedeclaration); |
| Previous.clear(); |
| Previous.setLookupName(Name); |
| } |
| |
| SemaRef.Diag(NewFD->getLocation(), DiagMsg) |
| << Name << NewDC << IsDefinition << NewFD->getLocation(); |
| |
| bool NewFDisConst = false; |
| if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) |
| NewFDisConst = NewMD->isConst(); |
| |
| for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator |
| NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); |
| NearMatch != NearMatchEnd; ++NearMatch) { |
| FunctionDecl *FD = NearMatch->first; |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| bool FDisConst = MD && MD->isConst(); |
| bool IsMember = MD || !IsLocalFriend; |
| |
| // FIXME: These notes are poorly worded for the local friend case. |
| if (unsigned Idx = NearMatch->second) { |
| ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); |
| SourceLocation Loc = FDParam->getTypeSpecStartLoc(); |
| if (Loc.isInvalid()) Loc = FD->getLocation(); |
| SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match |
| : diag::note_local_decl_close_param_match) |
| << Idx << FDParam->getType() |
| << NewFD->getParamDecl(Idx - 1)->getType(); |
| } else if (FDisConst != NewFDisConst) { |
| SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) |
| << NewFDisConst << FD->getSourceRange().getEnd(); |
| } else |
| SemaRef.Diag(FD->getLocation(), |
| IsMember ? diag::note_member_def_close_match |
| : diag::note_local_decl_close_match); |
| } |
| return nullptr; |
| } |
| |
| static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: llvm_unreachable("Unknown storage class!"); |
| case DeclSpec::SCS_auto: |
| case DeclSpec::SCS_register: |
| case DeclSpec::SCS_mutable: |
| SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_typecheck_sclass_func); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| D.setInvalidType(); |
| break; |
| case DeclSpec::SCS_unspecified: break; |
| case DeclSpec::SCS_extern: |
| if (D.getDeclSpec().isExternInLinkageSpec()) |
| return SC_None; |
| return SC_Extern; |
| case DeclSpec::SCS_static: { |
| if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { |
| // C99 6.7.1p5: |
| // The declaration of an identifier for a function that has |
| // block scope shall have no explicit storage-class specifier |
| // other than extern |
| // See also (C++ [dcl.stc]p4). |
| SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_static_block_func); |
| break; |
| } else |
| return SC_Static; |
| } |
| case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
| } |
| |
| // No explicit storage class has already been returned |
| return SC_None; |
| } |
| |
| static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, |
| DeclContext *DC, QualType &R, |
| TypeSourceInfo *TInfo, |
| StorageClass SC, |
| bool &IsVirtualOkay) { |
| DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| |
| FunctionDecl *NewFD = nullptr; |
| bool isInline = D.getDeclSpec().isInlineSpecified(); |
| |
| if (!SemaRef.getLangOpts().CPlusPlus) { |
| // Determine whether the function was written with a |
| // prototype. This true when: |
| // - there is a prototype in the declarator, or |
| // - the type R of the function is some kind of typedef or other non- |
| // attributed reference to a type name (which eventually refers to a |
| // function type). |
| bool HasPrototype = |
| (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || |
| (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); |
| |
| NewFD = FunctionDecl::Create(SemaRef.Context, DC, |
| D.getLocStart(), NameInfo, R, |
| TInfo, SC, isInline, |
| HasPrototype, false); |
| if (D.isInvalidType()) |
| NewFD->setInvalidDecl(); |
| |
| return NewFD; |
| } |
| |
| bool isExplicit = D.getDeclSpec().isExplicitSpecified(); |
| bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); |
| |
| // Check that the return type is not an abstract class type. |
| // For record types, this is done by the AbstractClassUsageDiagnoser once |
| // the class has been completely parsed. |
| if (!DC->isRecord() && |
| SemaRef.RequireNonAbstractType( |
| D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(), |
| diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) |
| D.setInvalidType(); |
| |
| if (Name.getNameKind() == DeclarationName::CXXConstructorName) { |
| // This is a C++ constructor declaration. |
| assert(DC->isRecord() && |
| "Constructors can only be declared in a member context"); |
| |
| R = SemaRef.CheckConstructorDeclarator(D, R, SC); |
| return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), |
| D.getLocStart(), NameInfo, |
| R, TInfo, isExplicit, isInline, |
| /*isImplicitlyDeclared=*/false, |
| isConstexpr); |
| |
| } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| // This is a C++ destructor declaration. |
| if (DC->isRecord()) { |
| R = SemaRef.CheckDestructorDeclarator(D, R, SC); |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( |
| SemaRef.Context, Record, |
| D.getLocStart(), |
| NameInfo, R, TInfo, isInline, |
| /*isImplicitlyDeclared=*/false); |
| |
| // If the class is complete, then we now create the implicit exception |
| // specification. If the class is incomplete or dependent, we can't do |
| // it yet. |
| if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() && |
| Record->getDefinition() && !Record->isBeingDefined() && |
| R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) { |
| SemaRef.AdjustDestructorExceptionSpec(Record, NewDD); |
| } |
| |
| IsVirtualOkay = true; |
| return NewDD; |
| |
| } else { |
| SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); |
| D.setInvalidType(); |
| |
| // Create a FunctionDecl to satisfy the function definition parsing |
| // code path. |
| return FunctionDecl::Create(SemaRef.Context, DC, |
| D.getLocStart(), |
| D.getIdentifierLoc(), Name, R, TInfo, |
| SC, isInline, |
| /*hasPrototype=*/true, isConstexpr); |
| } |
| |
| } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
| if (!DC->isRecord()) { |
| SemaRef.Diag(D.getIdentifierLoc(), |
| diag::err_conv_function_not_member); |
| return nullptr; |
| } |
| |
| SemaRef.CheckConversionDeclarator(D, R, SC); |
| IsVirtualOkay = true; |
| return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC), |
| D.getLocStart(), NameInfo, |
| R, TInfo, isInline, isExplicit, |
| isConstexpr, SourceLocation()); |
| |
| } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { |
| SemaRef.CheckDeductionGuideDeclarator(D, R, SC); |
| |
| return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getLocStart(), |
| isExplicit, NameInfo, R, TInfo, |
| D.getLocEnd()); |
| } else if (DC->isRecord()) { |
| // If the name of the function is the same as the name of the record, |
| // then this must be an invalid constructor that has a return type. |
| // (The parser checks for a return type and makes the declarator a |
| // constructor if it has no return type). |
| if (Name.getAsIdentifierInfo() && |
| Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ |
| SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) |
| << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| << SourceRange(D.getIdentifierLoc()); |
| return nullptr; |
| } |
| |
| // This is a C++ method declaration. |
| CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context, |
| cast<CXXRecordDecl>(DC), |
| D.getLocStart(), NameInfo, R, |
| TInfo, SC, isInline, |
| isConstexpr, SourceLocation()); |
| IsVirtualOkay = !Ret->isStatic(); |
| return Ret; |
| } else { |
| bool isFriend = |
| SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); |
| if (!isFriend && SemaRef.CurContext->isRecord()) |
| return nullptr; |
| |
| // Determine whether the function was written with a |
| // prototype. This true when: |
| // - we're in C++ (where every function has a prototype), |
| return FunctionDecl::Create(SemaRef.Context, DC, |
| D.getLocStart(), |
| NameInfo, R, TInfo, SC, isInline, |
| true/*HasPrototype*/, isConstexpr); |
| } |
| } |
| |
| enum OpenCLParamType { |
| ValidKernelParam, |
| PtrPtrKernelParam, |
| PtrKernelParam, |
| InvalidAddrSpacePtrKernelParam, |
| InvalidKernelParam, |
| RecordKernelParam |
| }; |
| |
| static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { |
| // Size dependent types are just typedefs to normal integer types |
| // (e.g. unsigned long), so we cannot distinguish them from other typedefs to |
| // integers other than by their names. |
| StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; |
| |
| // Remove typedefs one by one until we reach a typedef |
| // for a size dependent type. |
| QualType DesugaredTy = Ty; |
| do { |
| ArrayRef<StringRef> Names(SizeTypeNames); |
| auto Match = |
| std::find(Names.begin(), Names.end(), DesugaredTy.getAsString()); |
| if (Names.end() != Match) |
| return true; |
| |
| Ty = DesugaredTy; |
| DesugaredTy = Ty.getSingleStepDesugaredType(C); |
| } while (DesugaredTy != Ty); |
| |
| return false; |
| } |
| |
| static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { |
| if (PT->isPointerType()) { |
| QualType PointeeType = PT->getPointeeType(); |
| if (PointeeType->isPointerType()) |
| return PtrPtrKernelParam; |
| if (PointeeType.getAddressSpace() == LangAS::opencl_generic || |
| PointeeType.getAddressSpace() == LangAS::opencl_private || |
| PointeeType.getAddressSpace() == LangAS::Default) |
| return InvalidAddrSpacePtrKernelParam; |
| return PtrKernelParam; |
| } |
| |
| // OpenCL v1.2 s6.9.k: |
| // Arguments to kernel functions in a program cannot be declared with the |
| // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and |
| // uintptr_t or a struct and/or union that contain fields declared to be one |
| // of these built-in scalar types. |
| if (isOpenCLSizeDependentType(S.getASTContext(), PT)) |
| return InvalidKernelParam; |
| |
| if (PT->isImageType()) |
| return PtrKernelParam; |
| |
| if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) |
| return InvalidKernelParam; |
| |
| // OpenCL extension spec v1.2 s9.5: |
| // This extension adds support for half scalar and vector types as built-in |
| // types that can be used for arithmetic operations, conversions etc. |
| if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType()) |
| return InvalidKernelParam; |
| |
| if (PT->isRecordType()) |
| return RecordKernelParam; |
| |
| // Look into an array argument to check if it has a forbidden type. |
| if (PT->isArrayType()) { |
| const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); |
| // Call ourself to check an underlying type of an array. Since the |
| // getPointeeOrArrayElementType returns an innermost type which is not an |
| // array, this recusive call only happens once. |
| return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); |
| } |
| |
| return ValidKernelParam; |
| } |
| |
| static void checkIsValidOpenCLKernelParameter( |
| Sema &S, |
| Declarator &D, |
| ParmVarDecl *Param, |
| llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { |
| QualType PT = Param->getType(); |
| |
| // Cache the valid types we encounter to avoid rechecking structs that are |
| // used again |
| if (ValidTypes.count(PT.getTypePtr())) |
| return; |
| |
| switch (getOpenCLKernelParameterType(S, PT)) { |
| case PtrPtrKernelParam: |
| // OpenCL v1.2 s6.9.a: |
| // A kernel function argument cannot be declared as a |
| // pointer to a pointer type. |
| S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); |
| D.setInvalidType(); |
| return; |
| |
| case InvalidAddrSpacePtrKernelParam: |
| // OpenCL v1.0 s6.5: |
| // __kernel function arguments declared to be a pointer of a type can point |
| // to one of the following address spaces only : __global, __local or |
| // __constant. |
| S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); |
| D.setInvalidType(); |
| return; |
| |
| // OpenCL v1.2 s6.9.k: |
| // Arguments to kernel functions in a program cannot be declared with the |
| // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and |
| // uintptr_t or a struct and/or union that contain fields declared to be |
| // one of these built-in scalar types. |
| |
| case InvalidKernelParam: |
| // OpenCL v1.2 s6.8 n: |
| // A kernel function argument cannot be declared |
| // of event_t type. |
| // Do not diagnose half type since it is diagnosed as invalid argument |
| // type for any function elsewhere. |
| if (!PT->isHalfType()) { |
| S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; |
| |
| // Explain what typedefs are involved. |
| const TypedefType *Typedef = nullptr; |
| while ((Typedef = PT->getAs<TypedefType>())) { |
| SourceLocation Loc = Typedef->getDecl()->getLocation(); |
| // SourceLocation may be invalid for a built-in type. |
| if (Loc.isValid()) |
| S.Diag(Loc, diag::note_entity_declared_at) << PT; |
| PT = Typedef->desugar(); |
| } |
| } |
| |
| D.setInvalidType(); |
| return; |
| |
| case PtrKernelParam: |
| case ValidKernelParam: |
| ValidTypes.insert(PT.getTypePtr()); |
| return; |
| |
| case RecordKernelParam: |
| break; |
| } |
| |
| // Track nested structs we will inspect |
| SmallVector<const Decl *, 4> VisitStack; |
| |
| // Track where we are in the nested structs. Items will migrate from |
| // VisitStack to HistoryStack as we do the DFS for bad field. |
| SmallVector<const FieldDecl *, 4> HistoryStack; |
| HistoryStack.push_back(nullptr); |
| |
| // At this point we already handled everything except of a RecordType or |
| // an ArrayType of a RecordType. |
| assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); |
| const RecordType *RecTy = |
| PT->getPointeeOrArrayElementType()->getAs<RecordType>(); |
| const RecordDecl *OrigRecDecl = RecTy->getDecl(); |
| |
| VisitStack.push_back(RecTy->getDecl()); |
| assert(VisitStack.back() && "First decl null?"); |
| |
| do { |
| const Decl *Next = VisitStack.pop_back_val(); |
| if (!Next) { |
| assert(!HistoryStack.empty()); |
| // Found a marker, we have gone up a level |
| if (const FieldDecl *Hist = HistoryStack.pop_back_val()) |
| ValidTypes.insert(Hist->getType().getTypePtr()); |
| |
| continue; |
| } |
| |
| // Adds everything except the original parameter declaration (which is not a |
| // field itself) to the history stack. |
| const RecordDecl *RD; |
| if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { |
| HistoryStack.push_back(Field); |
| |
| QualType FieldTy = Field->getType(); |
| // Other field types (known to be valid or invalid) are handled while we |
| // walk around RecordDecl::fields(). |
| assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && |
| "Unexpected type."); |
| const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); |
| |
| RD = FieldRecTy->castAs<RecordType>()->getDecl(); |
| } else { |
| RD = cast<RecordDecl>(Next); |
| } |
| |
| // Add a null marker so we know when we've gone back up a level |
| VisitStack.push_back(nullptr); |
| |
| for (const auto *FD : RD->fields()) { |
| QualType QT = FD->getType(); |
| |
| if (ValidTypes.count(QT.getTypePtr())) |
| continue; |
| |
| OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); |
| if (ParamType == ValidKernelParam) |
| continue; |
| |
| if (ParamType == RecordKernelParam) { |
| VisitStack.push_back(FD); |
| continue; |
| } |
| |
| // OpenCL v1.2 s6.9.p: |
| // Arguments to kernel functions that are declared to be a struct or union |
| // do not allow OpenCL objects to be passed as elements of the struct or |
| // union. |
| if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || |
| ParamType == InvalidAddrSpacePtrKernelParam) { |
| S.Diag(Param->getLocation(), |
| diag::err_record_with_pointers_kernel_param) |
| << PT->isUnionType() |
| << PT; |
| } else { |
| S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; |
| } |
| |
| S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) |
| << OrigRecDecl->getDeclName(); |
| |
| // We have an error, now let's go back up through history and show where |
| // the offending field came from |
| for (ArrayRef<const FieldDecl *>::const_iterator |
| I = HistoryStack.begin() + 1, |
| E = HistoryStack.end(); |
| I != E; ++I) { |
| const FieldDecl *OuterField = *I; |
| S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) |
| << OuterField->getType(); |
| } |
| |
| S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) |
| << QT->isPointerType() |
| << QT; |
| D.setInvalidType(); |
| return; |
| } |
| } while (!VisitStack.empty()); |
| } |
| |
| /// Find the DeclContext in which a tag is implicitly declared if we see an |
| /// elaborated type specifier in the specified context, and lookup finds |
| /// nothing. |
| static DeclContext *getTagInjectionContext(DeclContext *DC) { |
| while (!DC->isFileContext() && !DC->isFunctionOrMethod()) |
| DC = DC->getParent(); |
| return DC; |
| } |
| |
| /// Find the Scope in which a tag is implicitly declared if we see an |
| /// elaborated type specifier in the specified context, and lookup finds |
| /// nothing. |
| static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { |
| while (S->isClassScope() || |
| (LangOpts.CPlusPlus && |
| S->isFunctionPrototypeScope()) || |
| ((S->getFlags() & Scope::DeclScope) == 0) || |
| (S->getEntity() && S->getEntity()->isTransparentContext())) |
| S = S->getParent(); |
| return S; |
| } |
| |
| NamedDecl* |
| Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, |
| TypeSourceInfo *TInfo, LookupResult &Previous, |
| MultiTemplateParamsArg TemplateParamLists, |
| bool &AddToScope) { |
| QualType R = TInfo->getType(); |
| |
| assert(R->isFunctionType()); |
| |
| // TODO: consider using NameInfo for diagnostic. |
| DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| StorageClass SC = getFunctionStorageClass(*this, D); |
| |
| if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
| Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| diag::err_invalid_thread) |
| << DeclSpec::getSpecifierName(TSCS); |
| |
| if (D.isFirstDeclarationOfMember()) |
| adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), |
| D.getIdentifierLoc()); |
| |
| bool isFriend = false; |
| FunctionTemplateDecl *FunctionTemplate = nullptr; |
| bool isMemberSpecialization = false; |
| bool isFunctionTemplateSpecialization = false; |
| |
| bool isDependentClassScopeExplicitSpecialization = false; |
| bool HasExplicitTemplateArgs = false; |
| TemplateArgumentListInfo TemplateArgs; |
| |
| bool isVirtualOkay = false; |
| |
| DeclContext *OriginalDC = DC; |
| bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); |
| |
| FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, |
| isVirtualOkay); |
| if (!NewFD) return nullptr; |
| |
| if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) |
| NewFD->setTopLevelDeclInObjCContainer(); |
| |
| // Set the lexical context. If this is a function-scope declaration, or has a |
| // C++ scope specifier, or is the object of a friend declaration, the lexical |
| // context will be different from the semantic context. |
| NewFD->setLexicalDeclContext(CurContext); |
| |
| if (IsLocalExternDecl) |
| NewFD->setLocalExternDecl(); |
| |
| if (getLangOpts().CPlusPlus) { |
| bool isInline = D.getDeclSpec().isInlineSpecified(); |
| bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| bool isExplicit = D.getDeclSpec().isExplicitSpecified(); |
| bool isConstexpr = D.getDeclSpec().isConstexprSpecified(); |
| isFriend = D.getDeclSpec().isFriendSpecified(); |
| if (isFriend && !isInline && D.isFunctionDefinition()) { |
| // C++ [class.friend]p5 |
| // A function can be defined in a friend declaration of a |
| // class . . . . Such a function is implicitly inline. |
| NewFD->setImplicitlyInline(); |
| } |
| |
| // If this is a method defined in an __interface, and is not a constructor |
| // or an overloaded operator, then set the pure flag (isVirtual will already |
| // return true). |
| if (const CXXRecordDecl *Parent = |
| dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { |
| if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) |
| NewFD->setPure(true); |
| |
| // C++ [class.union]p2 |
| // A union can have member functions, but not virtual functions. |
| if (isVirtual && Parent->isUnion()) |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); |
| } |
| |
| SetNestedNameSpecifier(NewFD, D); |
| isMemberSpecialization = false; |
| isFunctionTemplateSpecialization = false; |
| if (D.isInvalidType()) |
| NewFD->setInvalidDecl(); |
| |
| // Match up the template parameter lists with the scope specifier, then |
| // determine whether we have a template or a template specialization. |
| bool Invalid = false; |
| if (TemplateParameterList *TemplateParams = |
| MatchTemplateParametersToScopeSpecifier( |
| D.getDeclSpec().getLocStart(), D.getIdentifierLoc(), |
| D.getCXXScopeSpec(), |
| D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
| ? D.getName().TemplateId |
| : nullptr, |
| TemplateParamLists, isFriend, isMemberSpecialization, |
| Invalid)) { |
| if (TemplateParams->size() > 0) { |
| // This is a function template |
| |
| // Check that we can declare a template here. |
| if (CheckTemplateDeclScope(S, TemplateParams)) |
| NewFD->setInvalidDecl(); |
| |
| // A destructor cannot be a template. |
| if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| Diag(NewFD->getLocation(), diag::err_destructor_template); |
| NewFD->setInvalidDecl(); |
| } |
| |
| // If we're adding a template to a dependent context, we may need to |
| // rebuilding some of the types used within the template parameter list, |
| // now that we know what the current instantiation is. |
| if (DC->isDependentContext()) { |
| ContextRAII SavedContext(*this, DC); |
| if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) |
| Invalid = true; |
| } |
| |
| FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, |
| NewFD->getLocation(), |
| Name, TemplateParams, |
| NewFD); |
| FunctionTemplate->setLexicalDeclContext(CurContext); |
| NewFD->setDescribedFunctionTemplate(FunctionTemplate); |
| |
| // For source fidelity, store the other template param lists. |
| if (TemplateParamLists.size() > 1) { |
| NewFD->setTemplateParameterListsInfo(Context, |
| TemplateParamLists.drop_back(1)); |
| } |
| } else { |
| // This is a function template specialization. |
| isFunctionTemplateSpecialization = true; |
| // For source fidelity, store all the template param lists. |
| if (TemplateParamLists.size() > 0) |
| NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); |
| |
| // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". |
| if (isFriend) { |
| // We want to remove the "template<>", found here. |
| SourceRange RemoveRange = TemplateParams->getSourceRange(); |
| |
| // If we remove the template<> and the name is not a |
| // template-id, we're actually silently creating a problem: |
| // the friend declaration will refer to an untemplated decl, |
| // and clearly the user wants a template specialization. So |
| // we need to insert '<>' after the name. |
| SourceLocation InsertLoc; |
| if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
| InsertLoc = D.getName().getSourceRange().getEnd(); |
| InsertLoc = getLocForEndOfToken(InsertLoc); |
| } |
| |
| Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) |
| << Name << RemoveRange |
| << FixItHint::CreateRemoval(RemoveRange) |
| << FixItHint::CreateInsertion(InsertLoc, "<>"); |
| } |
| } |
| } |
| else { |
| // All template param lists were matched against the scope specifier: |
| // this is NOT (an explicit specialization of) a template. |
| if (TemplateParamLists.size() > 0) |
| // For source fidelity, store all the template param lists. |
| NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); |
| } |
| |
| if (Invalid) { |
| NewFD->setInvalidDecl(); |
| if (FunctionTemplate) |
| FunctionTemplate->setInvalidDecl(); |
| } |
| |
| // C++ [dcl.fct.spec]p5: |
| // The virtual specifier shall only be used in declarations of |
| // nonstatic class member functions that appear within a |
| // member-specification of a class declaration; see 10.3. |
| // |
| if (isVirtual && !NewFD->isInvalidDecl()) { |
| if (!isVirtualOkay) { |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| diag::err_virtual_non_function); |
| } else if (!CurContext->isRecord()) { |
| // 'virtual' was specified outside of the class. |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| diag::err_virtual_out_of_class) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); |
| } else if (NewFD->getDescribedFunctionTemplate()) { |
| // C++ [temp.mem]p3: |
| // A member function template shall not be virtual. |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| diag::err_virtual_member_function_template) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); |
| } else { |
| // Okay: Add virtual to the method. |
| NewFD->setVirtualAsWritten(true); |
| } |
| |
| if (getLangOpts().CPlusPlus14 && |
| NewFD->getReturnType()->isUndeducedType()) |
| Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); |
| } |
| |
| if (getLangOpts().CPlusPlus14 && |
| (NewFD->isDependentContext() || |
| (isFriend && CurContext->isDependentContext())) && |
| NewFD->getReturnType()->isUndeducedType()) { |
| // If the function template is referenced directly (for instance, as a |
| // member of the current instantiation), pretend it has a dependent type. |
| // This is not really justified by the standard, but is the only sane |
| // thing to do. |
| // FIXME: For a friend function, we have not marked the function as being |
| // a friend yet, so 'isDependentContext' on the FD doesn't work. |
| const FunctionProtoType *FPT = |
| NewFD->getType()->castAs<FunctionProtoType>(); |
| QualType Result = |
| SubstAutoType(FPT->getReturnType(), Context.DependentTy); |
| NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), |
| FPT->getExtProtoInfo())); |
| } |
| |
| // C++ [dcl.fct.spec]p3: |
| // The inline specifier shall not appear on a block scope function |
| // declaration. |
| if (isInline && !NewFD->isInvalidDecl()) { |
| if (CurContext->isFunctionOrMethod()) { |
| // 'inline' is not allowed on block scope function declaration. |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| diag::err_inline_declaration_block_scope) << Name |
| << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
| } |
| } |
| |
| // C++ [dcl.fct.spec]p6: |
| // The explicit specifier shall be used only in the declaration of a |
| // constructor or conversion function within its class definition; |
| // see 12.3.1 and 12.3.2. |
| if (isExplicit && !NewFD->isInvalidDecl() && |
| !isa<CXXDeductionGuideDecl>(NewFD)) { |
| if (!CurContext->isRecord()) { |
| // 'explicit' was specified outside of the class. |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::err_explicit_out_of_class) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); |
| } else if (!isa<CXXConstructorDecl>(NewFD) && |
| !isa<CXXConversionDecl>(NewFD)) { |
| // 'explicit' was specified on a function that wasn't a constructor |
| // or conversion function. |
| Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| diag::err_explicit_non_ctor_or_conv_function) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc()); |
| } |
| } |
| |
| if (isConstexpr) { |
| // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors |
| // are implicitly inline. |
| NewFD->setImplicitlyInline(); |
| |
| // C++11 [dcl.constexpr]p3: functions declared constexpr are required to |
| // be either constructors or to return a literal type. Therefore, |
| // destructors cannot be declared constexpr. |
| if (isa<CXXDestructorDecl>(NewFD)) |
| Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor); |
| } |
| |
| // If __module_private__ was specified, mark the function accordingly. |
| if (D.getDeclSpec().isModulePrivateSpecified()) { |
| if (isFunctionTemplateSpecialization) { |
| SourceLocation ModulePrivateLoc |
| = D.getDeclSpec().getModulePrivateSpecLoc(); |
| Diag(ModulePrivateLoc, diag::err_module_private_specialization) |
| << 0 |
| << FixItHint::CreateRemoval(ModulePrivateLoc); |
| } else { |
| NewFD->setModulePrivate(); |
| if (FunctionTemplate) |
| FunctionTemplate->setModulePrivate(); |
| } |
| } |
| |
| if (isFriend) { |
| if (FunctionTemplate) { |
| FunctionTemplate->setObjectOfFriendDecl(); |
| FunctionTemplate->setAccess(AS_public); |
| } |
| NewFD->setObjectOfFriendDecl(); |
| NewFD->setAccess(AS_public); |
| } |
| |
| // If a function is defined as defaulted or deleted, mark it as such now. |
| // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function |
| // definition kind to FDK_Definition. |
| switch (D.getFunctionDefinitionKind()) { |
| case FDK_Declaration: |
| case FDK_Definition: |
| break; |
| |
| case FDK_Defaulted: |
| NewFD->setDefaulted(); |
| break; |
| |
| case FDK_Deleted: |
| NewFD->setDeletedAsWritten(); |
| break; |
| } |
| |
| if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && |
| D.isFunctionDefinition()) { |
| // C++ [class.mfct]p2: |
| // A member function may be defined (8.4) in its class definition, in |
| // which case it is an inline member function (7.1.2) |
| NewFD->setImplicitlyInline(); |
| } |
| |
| if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && |
| !CurContext->isRecord()) { |
| // C++ [class.static]p1: |
| // A data or function member of a class may be declared static |
| // in a class definition, in which case it is a static member of |
| // the class. |
| |
| // Complain about the 'static' specifier if it's on an out-of-line |
| // member function definition. |
| Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| diag::err_static_out_of_line) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| } |
| |
| // C++11 [except.spec]p15: |
| // A deallocation function with no exception-specification is treated |
| // as if it were specified with noexcept(true). |
| const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); |
| if ((Name.getCXXOverloadedOperator() == OO_Delete || |
| Name.getCXXOverloadedOperator() == OO_Array_Delete) && |
| getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) |
| NewFD->setType(Context.getFunctionType( |
| FPT->getReturnType(), FPT->getParamTypes(), |
| FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); |
| } |
| |
| // Filter out previous declarations that don't match the scope. |
| FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), |
| D.getCXXScopeSpec().isNotEmpty() || |
| isMemberSpecialization || |
| isFunctionTemplateSpecialization); |
| |
| // Handle GNU asm-label extension (encoded as an attribute). |
| if (Expr *E = (Expr*) D.getAsmLabel()) { |
| // The parser guarantees this is a string. |
| StringLiteral *SE = cast<StringLiteral>(E); |
| NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, |
| SE->getString(), 0)); |
| } else if (!ExtnameUndeclaredIdentifiers.empty()) { |
| llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = |
| ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); |
| if (I != ExtnameUndeclaredIdentifiers.end()) { |
| if (isDeclExternC(NewFD)) { |
| NewFD->addAttr(I->second); |
| ExtnameUndeclaredIdentifiers.erase(I); |
| } else |
| Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) |
| << /*Variable*/0 << NewFD; |
| } |
| } |
| |
| // Copy the parameter declarations from the declarator D to the function |
| // declaration NewFD, if they are available. First scavenge them into Params. |
| SmallVector<ParmVarDecl*, 16> Params; |
| unsigned FTIIdx; |
| if (D.isFunctionDeclarator(FTIIdx)) { |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs |
| // function that takes no arguments, not a function that takes a |
| // single void argument. |
| // We let through "const void" here because Sema::GetTypeForDeclarator |
| // already checks for that case. |
| if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { |
| for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { |
| ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); |
| assert(Param->getDeclContext() != NewFD && "Was set before ?"); |
| Param->setDeclContext(NewFD); |
| Params.push_back(Param); |
| |
| if (Param->isInvalidDecl()) |
| NewFD->setInvalidDecl(); |
| } |
| } |
| |
| if (!getLangOpts().CPlusPlus) { |
| // In C, find all the tag declarations from the prototype and move them |
| // into the function DeclContext. Remove them from the surrounding tag |
| // injection context of the function, which is typically but not always |
| // the TU. |
| DeclContext *PrototypeTagContext = |
| getTagInjectionContext(NewFD->getLexicalDeclContext()); |
| for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { |
| auto *TD = dyn_cast<TagDecl>(NonParmDecl); |
| |
| // We don't want to reparent enumerators. Look at their parent enum |
| // instead. |
| if (!TD) { |
| if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) |
| TD = cast<EnumDecl>(ECD->getDeclContext()); |
| } |
| if (!TD) |
| continue; |
| DeclContext *TagDC = TD->getLexicalDeclContext(); |
| if (!TagDC->containsDecl(TD)) |
| continue; |
| TagDC->removeDecl(TD); |
| TD->setDeclContext(NewFD); |
| NewFD->addDecl(TD); |
| |
| // Preserve the lexical DeclContext if it is not the surrounding tag |
| // injection context of the FD. In this example, the semantic context of |
| // E will be f and the lexical context will be S, while both the |
| // semantic and lexical contexts of S will be f: |
| // void f(struct S { enum E { a } f; } s); |
| if (TagDC != PrototypeTagContext) |
| TD->setLexicalDeclContext(TagDC); |
| } |
| } |
| } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { |
| // When we're declaring a function with a typedef, typeof, etc as in the |
| // following example, we'll need to synthesize (unnamed) |
| // parameters for use in the declaration. |
| // |
| // @code |
| // typedef void fn(int); |
| // fn f; |
| // @endcode |
| |
| // Synthesize a parameter for each argument type. |
| for (const auto &AI : FT->param_types()) { |
| ParmVarDecl *Param = |
| BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); |
| Param->setScopeInfo(0, Params.size()); |
| Params.push_back(Param); |
| } |
| } else { |
| assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && |
| "Should not need args for typedef of non-prototype fn"); |
| } |
| |
| // Finally, we know we have the right number of parameters, install them. |
| NewFD->setParams(Params); |
| |
| if (D.getDeclSpec().isNoreturnSpecified()) |
| NewFD->addAttr( |
| ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(), |
| Context, 0)); |
| |
| // Functions returning a variably modified type violate C99 6.7.5.2p2 |
| // because all functions have linkage. |
| if (!NewFD->isInvalidDecl() && |
| NewFD->getReturnType()->isVariablyModifiedType()) { |
| Diag(NewFD->getLocation(), diag::err_vm_func_decl); |
| NewFD->setInvalidDecl(); |
| } |
| |
| // Apply an implicit SectionAttr if '#pragma clang section text' is active |
| if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && |
| !NewFD->hasAttr<SectionAttr>()) { |
| NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context, |
| PragmaClangTextSection.SectionName, |
| PragmaClangTextSection.PragmaLocation)); |
| } |
| |
| // Apply an implicit SectionAttr if #pragma code_seg is active. |
| if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && |
| !NewFD->hasAttr<SectionAttr>()) { |
| NewFD->addAttr( |
| SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, |
| CodeSegStack.CurrentValue->getString(), |
| CodeSegStack.CurrentPragmaLocation)); |
| if (UnifySection(CodeSegStack.CurrentValue->getString(), |
| ASTContext::PSF_Implicit | ASTContext::PSF_Execute | |
| ASTContext::PSF_Read, |
| NewFD)) |
| NewFD->dropAttr<SectionAttr>(); |
| } |
| |
| // Apply an implicit CodeSegAttr from class declspec or |
| // apply an implicit SectionAttr from #pragma code_seg if active. |
| if (!NewFD->hasAttr<CodeSegAttr>()) { |
| if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, |
| D.isFunctionDefinition())) { |
| NewFD->addAttr(SAttr); |
| } |
| } |
| |
| // Handle attributes. |
| ProcessDeclAttributes(S, NewFD, D); |
| |
| if (getLangOpts().OpenCL) { |
| // OpenCL v1.1 s6.5: Using an address space qualifier in a function return |
| // type declaration will generate a compilation error. |
| LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); |
| if (AddressSpace != LangAS::Default) { |
| Diag(NewFD->getLocation(), |
| diag::err_opencl_return_value_with_address_space); |
| NewFD->setInvalidDecl(); |
| } |
| } |
| |
| if (!getLangOpts().CPlusPlus) { |
| // Perform semantic checking on the function declaration. |
| if (!NewFD->isInvalidDecl() && NewFD->isMain()) |
| CheckMain(NewFD, D.getDeclSpec()); |
| |
| if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) |
| CheckMSVCRTEntryPoint(NewFD); |
| |
| if (!NewFD->isInvalidDecl()) |
| D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, |
| isMemberSpecialization)); |
| else if (!Previous.empty()) |
| // Recover gracefully from an invalid redeclaration. |
| D.setRedeclaration(true); |
| assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || |
| Previous.getResultKind() != LookupResult::FoundOverloaded) && |
| "previous declaration set still overloaded"); |
| |
| // Diagnose no-prototype function declarations with calling conventions that |
| // don't support variadic calls. Only do this in C and do it after merging |
| // possibly prototyped redeclarations. |
| const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); |
| if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { |
| CallingConv CC = FT->getExtInfo().getCC(); |
| if (!supportsVariadicCall(CC)) { |
| // Windows system headers sometimes accidentally use stdcall without |
| // (void) parameters, so we relax this to a warning. |
| int DiagID = |
| CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; |
| Diag(NewFD->getLocation(), DiagID) |
| << FunctionType::getNameForCallConv(CC); |
| } |
| } |
| } else { |
| // C++11 [replacement.functions]p3: |
| // The program's definitions shall not be specified as inline. |
| // |
| // N.B. We diagnose declarations instead of definitions per LWG issue 2340. |
| // |
| // Suppress the diagnostic if the function is __attribute__((used)), since |
| // that forces an external definition to be emitted. |
| if (D.getDeclSpec().isInlineSpecified() && |
| NewFD->isReplaceableGlobalAllocationFunction() && |
| !NewFD->hasAttr<UsedAttr>()) |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| diag::ext_operator_new_delete_declared_inline) |
| << NewFD->getDeclName(); |
| |
| // If the declarator is a template-id, translate the parser's template |
| // argument list into our AST format. |
| if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
| TemplateIdAnnotation *TemplateId = D.getName().TemplateId; |
| TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); |
| TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); |
| ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| translateTemplateArguments(TemplateArgsPtr, |
| TemplateArgs); |
| |
| HasExplicitTemplateArgs = true; |
| |
| if (NewFD->isInvalidDecl()) { |
| HasExplicitTemplateArgs = false; |
| } else if (FunctionTemplate) { |
| // Function template with explicit template arguments. |
| Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) |
| << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); |
| |
| HasExplicitTemplateArgs = false; |
| } else { |
| assert((isFunctionTemplateSpecialization || |
| D.getDeclSpec().isFriendSpecified()) && |
| "should have a 'template<>' for this decl"); |
| // "friend void foo<>(int);" is an implicit specialization decl. |
| isFunctionTemplateSpecialization = true; |
| } |
| } else if (isFriend && isFunctionTemplateSpecialization) { |
| // This combination is only possible in a recovery case; the user |
| // wrote something like: |
| // template <> friend void foo(int); |
| // which we're recovering from as if the user had written: |
| // friend void foo<>(int); |
| // Go ahead and fake up a template id. |
| HasExplicitTemplateArgs = true; |
| TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); |
| TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); |
| } |
| |
| // We do not add HD attributes to specializations here because |
| // they may have different constexpr-ness compared to their |
| // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, |
| // may end up with different effective targets. Instead, a |
| // specialization inherits its target attributes from its template |
| // in the CheckFunctionTemplateSpecialization() call below. |
| if (getLangOpts().CUDA & !isFunctionTemplateSpecialization) |
| maybeAddCUDAHostDeviceAttrs(NewFD, Previous); |
| |
| // If it's a friend (and only if it's a friend), it's possible |
| // that either the specialized function type or the specialized |
| // template is dependent, and therefore matching will fail. In |
| // this case, don't check the specialization yet. |
| bool InstantiationDependent = false; |
| if (isFunctionTemplateSpecialization && isFriend && |
| (NewFD->getType()->isDependentType() || DC->isDependentContext() || |
| TemplateSpecializationType::anyDependentTemplateArguments( |
| TemplateArgs, |
| InstantiationDependent))) { |
| assert(HasExplicitTemplateArgs && |
| "friend function specialization without template args"); |
| if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, |
| Previous)) |
| NewFD->setInvalidDecl(); |
| } else if (isFunctionTemplateSpecialization) { |
| if (CurContext->isDependentContext() && CurContext->isRecord() |
| && !isFriend) { |
| isDependentClassScopeExplicitSpecialization = true; |
| } else if (!NewFD->isInvalidDecl() && |
| CheckFunctionTemplateSpecialization( |
| NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), |
| Previous)) |
| NewFD->setInvalidDecl(); |
| |
| // C++ [dcl.stc]p1: |
| // A storage-class-specifier shall not be specified in an explicit |
| // specialization (14.7.3) |
| FunctionTemplateSpecializationInfo *Info = |
| NewFD->getTemplateSpecializationInfo(); |
| if (Info && SC != SC_None) { |
| if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) |
| Diag(NewFD->getLocation(), |
| diag::err_explicit_specialization_inconsistent_storage_class) |
| << SC |
| << FixItHint::CreateRemoval( |
| D.getDeclSpec().getStorageClassSpecLoc()); |
| |
| else |
| Diag(NewFD->getLocation(), |
| diag::ext_explicit_specialization_storage_class) |
| << FixItHint::CreateRemoval( |
| D.getDeclSpec().getStorageClassSpecLoc()); |
| } |
| } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { |
| if (CheckMemberSpecialization(NewFD, Previous)) |
| NewFD->setInvalidDecl(); |
| } |
| |
| // Perform semantic checking on the function declaration. |
| if (!isDependentClassScopeExplicitSpecialization) { |
| if (!NewFD->isInvalidDecl() && NewFD->isMain()) |
| CheckMain(NewFD, D.getDeclSpec()); |
| |
| if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) |
| CheckMSVCRTEntryPoint(NewFD); |
| |
| if (!NewFD->isInvalidDecl()) |
| D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, |
| isMemberSpecialization)); |
| else if (!Previous.empty()) |
| // Recover gracefully from an invalid redeclaration. |
| D.setRedeclaration(true); |
| } |
| |
| assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || |
| Previous.getResultKind() != LookupResult::FoundOverloaded) && |
| "previous declaration set still overloaded"); |
| |
| NamedDecl *PrincipalDecl = (FunctionTemplate |
| ? cast<NamedDecl>(FunctionTemplate) |
| : NewFD); |
| |
| if (isFriend && NewFD->getPreviousDecl()) { |
| AccessSpecifier Access = AS_public; |
| if (!NewFD->isInvalidDecl()) |
| Access = NewFD->getPreviousDecl()->getAccess(); |
| |
| NewFD->setAccess(Access); |
| if (FunctionTemplate) FunctionTemplate->setAccess(Access); |
| } |
| |
| if (NewFD->isOverloadedOperator() && !DC->isRecord() && |
| PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) |
| PrincipalDecl->setNonMemberOperator(); |
| |
| // If we have a function template, check the template parameter |
| // list. This will check and merge default template arguments. |
| if (FunctionTemplate) { |
| FunctionTemplateDecl *PrevTemplate = |
| FunctionTemplate->getPreviousDecl(); |
| CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), |
| PrevTemplate ? PrevTemplate->getTemplateParameters() |
| : nullptr, |
| D.getDeclSpec().isFriendSpecified() |
| ? (D.isFunctionDefinition() |
| ? TPC_FriendFunctionTemplateDefinition |
| : TPC_FriendFunctionTemplate) |
| : (D.getCXXScopeSpec().isSet() && |
| DC && DC->isRecord() && |
| DC->isDependentContext()) |
| ? TPC_ClassTemplateMember |
| : TPC_FunctionTemplate); |
| } |
| |
| if (NewFD->isInvalidDecl()) { |
| // Ignore all the rest of this. |
| } else if (!D.isRedeclaration()) { |
| struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, |
| AddToScope }; |
| // Fake up an access specifier if it's supposed to be a class member. |
| if (isa<CXXRecordDecl>(NewFD->getDeclContext())) |
| NewFD->setAccess(AS_public); |
| |
| // Qualified decls generally require a previous declaration. |
| if (D.getCXXScopeSpec().isSet()) { |
| // ...with the major exception of templated-scope or |
| // dependent-scope friend declarations. |
| |
| // TODO: we currently also suppress this check in dependent |
| // contexts because (1) the parameter depth will be off when |
| // matching friend templates and (2) we might actually be |
| // selecting a friend based on a dependent factor. But there |
| // are situations where these conditions don't apply and we |
| // can actually do this check immediately. |
| if (isFriend && |
| (TemplateParamLists.size() || |
| D.getCXXScopeSpec().getScopeRep()->isDependent() || |
| CurContext->isDependentContext())) { |
| // ignore these |
| } else { |
| // The user tried to provide an out-of-line definition for a |
| // function that is a member of a class or namespace, but there |
| // was no such member function declared (C++ [class.mfct]p2, |
| // C++ [namespace.memdef]p2). For example: |
| // |
| // class X { |
| // void f() const; |
| // }; |
| // |
| // void X::f() { } // ill-formed |
| // |
| // Complain about this problem, and attempt to suggest close |
| // matches (e.g., those that differ only in cv-qualifiers and |
| // whether the parameter types are references). |
| |
| if (NamedDecl *Result = DiagnoseInvalidRedeclaration( |
| *this, Previous, NewFD, ExtraArgs, false, nullptr)) { |
| AddToScope = ExtraArgs.AddToScope; |
| return Result; |
| } |
| } |
| |
| // Unqualified local friend declarations are required to resolve |
| // to something. |
| } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { |
| if (NamedDecl *Result = DiagnoseInvalidRedeclaration( |
| *this, Previous, NewFD, ExtraArgs, true, S)) { |
| AddToScope = ExtraArgs.AddToScope; |
| return Result; |
| } |
| } |
| } else if (!D.isFunctionDefinition() && |
| isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && |
| !isFriend && !isFunctionTemplateSpecialization && |
| !isMemberSpecialization) { |
| // An out-of-line member function declaration must also be a |
| // definition (C++ [class.mfct]p2). |
| // Note that this is not the case for explicit specializations of |
| // function templates or member functions of class templates, per |
| // C++ [temp.expl.spec]p2. We also allow these declarations as an |
| // extension for compatibility with old SWIG code which likes to |
| // generate them. |
| Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) |
| << D.getCXXScopeSpec().getRange(); |
| } |
| } |
| |
| ProcessPragmaWeak(S, NewFD); |
| checkAttributesAfterMerging(*this, *NewFD); |
| |
| AddKnownFunctionAttributes(NewFD); |
| |
| if (NewFD->hasAttr<OverloadableAttr>() && |
| !NewFD->getType()->getAs<FunctionProtoType>()) { |
| Diag(NewFD->getLocation(), |
| diag::err_attribute_overloadable_no_prototype) |
| << NewFD; |
| |
| // Turn this into a variadic function with no parameters. |
| const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); |
| FunctionProtoType::ExtProtoInfo EPI( |
| Context.getDefaultCallingConvention(true, false)); |
| EPI.Variadic = true; |
| EPI.ExtInfo = FT->getExtInfo(); |
| |
| QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); |
| NewFD->setType(R); |
| } |
| |
| // If there's a #pragma GCC visibility in scope, and this isn't a class |
| // member, set the visibility of this function. |
| if (!DC->isRecord() && NewFD->isExternallyVisible()) |
| AddPushedVisibilityAttribute(NewFD); |
| |
| // If there's a #pragma clang arc_cf_code_audited in scope, consider |
| // marking the function. |
| AddCFAuditedAttribute(NewFD); |
| |
| // If this is a function definition, check if we have to apply optnone due to |
| // a pragma. |
| if(D.isFunctionDefinition()) |
| AddRangeBasedOptnone(NewFD); |
| |
| // If this is the first declaration of an extern C variable, update |
| // the map of such variables. |
| if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && |
| isIncompleteDeclExternC(*this, NewFD)) |
| RegisterLocallyScopedExternCDecl(NewFD, S); |
| |
| // Set this FunctionDecl's range up to the right paren. |
| NewFD->setRangeEnd(D.getSourceRange().getEnd()); |
| |
| if (D.isRedeclaration() && !Previous.empty()) { |
| NamedDecl *Prev = Previous.getRepresentativeDecl(); |
| checkDLLAttributeRedeclaration(*this, Prev, NewFD, |
| isMemberSpecialization || |
| isFunctionTemplateSpecialization, |
| D.isFunctionDefinition()); |
| } |
| |
| if (getLangOpts().CUDA) { |
| IdentifierInfo *II = NewFD->getIdentifier(); |
| if (II && |
| II->isStr(getLangOpts().HIP ? "hipConfigureCall" |
| : "cudaConfigureCall") && |
| !NewFD->isInvalidDecl() && |
| NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
| if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) |
| Diag(NewFD->getLocation(), diag::err_config_scalar_return); |
| Context.setcudaConfigureCallDecl(NewFD); |
| } |
| |
| // Variadic functions, other than a *declaration* of printf, are not allowed |
| // in device-side CUDA code, unless someone passed |
| // -fcuda-allow-variadic-functions. |
| if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && |
| (NewFD->hasAttr<CUDADeviceAttr>() || |
| NewFD->hasAttr<CUDAGlobalAttr>()) && |
| !(II && II->isStr("printf") && NewFD->isExternC() && |
| !D.isFunctionDefinition())) { |
| Diag(NewFD->getLocation(), diag::err_variadic_device_fn); |
| } |
| } |
| |
| MarkUnusedFileScopedDecl(NewFD); |
| |
| if (getLangOpts().CPlusPlus) { |
| if (FunctionTemplate) { |
| if (NewFD->isInvalidDecl()) |
| FunctionTemplate->setInvalidDecl(); |
| return FunctionTemplate; |
| } |
| |
| if (isMemberSpecialization && !NewFD->isInvalidDecl()) |
| CompleteMemberSpecialization(NewFD, Previous); |
| } |
| |
| if (NewFD->hasAttr<OpenCLKernelAttr>()) { |
| // OpenCL v1.2 s6.8 static is invalid for kernel functions. |
| if ((getLangOpts().OpenCLVersion >= 120) |
| && (SC == SC_Static)) { |
| Diag(D.getIdentifierLoc(), diag::err_static_kernel); |
| D.setInvalidType(); |
| } |
| |
| // OpenCL v1.2, s6.9 -- Kernels can only have return type void. |
| if (!NewFD->getReturnType()->isVoidType()) { |
| SourceRange RTRange = NewFD->getReturnTypeSourceRange(); |
| Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) |
| << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") |
| : FixItHint()); |
| D.setInvalidType(); |
| } |
| |
| llvm::SmallPtrSet<const Type *, 16> ValidTypes; |
| for (auto Param : NewFD->parameters()) |
| checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); |
| } |
| for (const ParmVarDecl *Param : NewFD->parameters()) { |
| QualType PT = Param->getType(); |
| |
| // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value |
| // types. |
| if (getLangOpts().OpenCLVersion >= 200) { |
| if(const PipeType *PipeTy = PT->getAs<PipeType>()) { |
| QualType ElemTy = PipeTy->getElementType(); |
| if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { |
| Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); |
| D.setInvalidType(); |
| } |
| } |
| } |
| } |
| |
| // Here we have an function template explicit specialization at class scope. |
| // The actual specialization will be postponed to template instatiation |
| // time via the ClassScopeFunctionSpecializationDecl node. |
| if (isDependentClassScopeExplicitSpecialization) { |
| ClassScopeFunctionSpecializationDecl *NewSpec = |
| ClassScopeFunctionSpecializationDecl::Create( |
| Context, CurContext, NewFD->getLocation(), |
| cast<CXXMethodDecl>(NewFD), |
| HasExplicitTemplateArgs, TemplateArgs); |
| CurContext->addDecl(NewSpec); |
| AddToScope = false; |
| } |
| |
| // Diagnose availability attributes. Availability cannot be used on functions |
| // that are run during load/unload. |
| if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { |
| if (NewFD->hasAttr<ConstructorAttr>()) { |
| Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
| << 1; |
| NewFD->dropAttr<AvailabilityAttr>(); |
| } |
| if (NewFD->hasAttr<DestructorAttr>()) { |
| Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
| << 2; |
| NewFD->dropAttr<AvailabilityAttr>(); |
| } |
| } |
| |
| return NewFD; |
| } |
| |
| /// Return a CodeSegAttr from a containing class. The Microsoft docs say |
| /// when __declspec(code_seg) "is applied to a class, all member functions of |
| /// the class and nested classes -- this includes compiler-generated special |
| /// member functions -- are put in the specified segment." |
| /// The actual behavior is a little more complicated. The Microsoft compiler |
| /// won't check outer classes if there is an active value from #pragma code_seg. |
| /// The CodeSeg is always applied from the direct parent but only from outer |
| /// classes when the #pragma code_seg stack is empty. See: |
| /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer |
| /// available since MS has removed the page. |
| static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { |
| const auto *Method = dyn_cast<CXXMethodDecl>(FD); |
| if (!Method) |
| return nullptr; |
| const CXXRecordDecl *Parent = Method->getParent(); |
| if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { |
| Attr *NewAttr = SAttr->clone(S.getASTContext()); |
| NewAttr->setImplicit(true); |
| return NewAttr; |
| } |
| |
| // The Microsoft compiler won't check outer classes for the CodeSeg |
| // when the #pragma code_seg stack is active. |
| if (S.CodeSegStack.CurrentValue) |
| return nullptr; |
| |
| while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { |
| if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { |
| Attr *NewAttr = SAttr->clone(S.getASTContext()); |
| NewAttr->setImplicit(true); |
| return NewAttr; |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a |
| /// containing class. Otherwise it will return implicit SectionAttr if the |
| /// function is a definition and there is an active value on CodeSegStack |
| /// (from the current #pragma code-seg value). |
| /// |
| /// \param FD Function being declared. |
| /// \param IsDefinition Whether it is a definition or just a declarartion. |
| /// \returns A CodeSegAttr or SectionAttr to apply to the function or |
| /// nullptr if no attribute should be added. |
| Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, |
| bool IsDefinition) { |
| if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) |
| return A; |
| if (!FD->hasAttr<SectionAttr>() && IsDefinition && |
| CodeSegStack.CurrentValue) { |
| return SectionAttr::CreateImplicit(getASTContext(), |
| SectionAttr::Declspec_allocate, |
| CodeSegStack.CurrentValue->getString(), |
| CodeSegStack.CurrentPragmaLocation); |
| } |
| return nullptr; |
| } |
| |
| /// Determines if we can perform a correct type check for \p D as a |
| /// redeclaration of \p PrevDecl. If not, we can generally still perform a |
| /// best-effort check. |
| /// |
| /// \param NewD The new declaration. |
| /// \param OldD The old declaration. |
| /// \param NewT The portion of the type of the new declaration to check. |
| /// \param OldT The portion of the type of the old declaration to check. |
| bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, |
| QualType NewT, QualType OldT) { |
| if (!NewD->getLexicalDeclContext()->isDependentContext()) |
| return true; |
| |
| // For dependently-typed local extern declarations and friends, we can't |
| // perform a correct type check in general until instantiation: |
| // |
| // int f(); |
| // template<typename T> void g() { T f(); } |
| // |
| // (valid if g() is only instantiated with T = int). |
| if (NewT->isDependentType() && |
| (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) |
| return false; |
| |
| // Similarly, if the previous declaration was a dependent local extern |
| // declaration, we don't really know its type yet. |
| if (OldT->isDependentType() && OldD->isLocalExternDecl()) |
| return false; |
| |
| return true; |
| } |
| |
| /// Checks if the new declaration declared in dependent context must be |
| /// put in the same redeclaration chain as the specified declaration. |
| /// |
| /// \param D Declaration that is checked. |
| /// \param PrevDecl Previous declaration found with proper lookup method for the |
| /// same declaration name. |
| /// \returns True if D must be added to the redeclaration chain which PrevDecl |
| /// belongs to. |
| /// |
| bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { |
| if (!D->getLexicalDeclContext()->isDependentContext()) |
| return true; |
| |
| // Don't chain dependent friend function definitions until instantiation, to |
| // permit cases like |
| // |
| // void func(); |
| // template<typename T> class C1 { friend void func() {} }; |
| // template<typename T> class C2 { friend void func() {} }; |
| // |
| // ... which is valid if only one of C1 and C2 is ever instantiated. |
| // |
| // FIXME: This need only apply to function definitions. For now, we proxy |
| // this by checking for a file-scope function. We do not want this to apply |
| // to friend declarations nominating member functions, because that gets in |
| // the way of access checks. |
| if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) |
| return false; |
| |
| auto *VD = dyn_cast<ValueDecl>(D); |
| auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); |
| return !VD || !PrevVD || |
| canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), |
| PrevVD->getType()); |
| } |
| |
| namespace MultiVersioning { |
| enum Type { None, Target, CPUSpecific, CPUDispatch}; |
| } // MultiVersionType |
| |
| static MultiVersioning::Type |
| getMultiVersionType(const FunctionDecl *FD) { |
| if (FD->hasAttr<TargetAttr>()) |
| return MultiVersioning::Target; |
| if (FD->hasAttr<CPUDispatchAttr>()) |
| return MultiVersioning::CPUDispatch; |
| if (FD->hasAttr<CPUSpecificAttr>()) |
| return MultiVersioning::CPUSpecific; |
| return MultiVersioning::None; |
| } |
| /// Check the target attribute of the function for MultiVersion |
| /// validity. |
| /// |
| /// Returns true if there was an error, false otherwise. |
| static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { |
| const auto *TA = FD->getAttr<TargetAttr>(); |
| assert(TA && "MultiVersion Candidate requires a target attribute"); |
| TargetAttr::ParsedTargetAttr ParseInfo = TA->parse(); |
| const TargetInfo &TargetInfo = S.Context.getTargetInfo(); |
| enum ErrType { Feature = 0, Architecture = 1 }; |
| |
| if (!ParseInfo.Architecture.empty() && |
| !TargetInfo.validateCpuIs(ParseInfo.Architecture)) { |
| S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
| << Architecture << ParseInfo.Architecture; |
| return true; |
| } |
| |
| for (const auto &Feat : ParseInfo.Features) { |
| auto BareFeat = StringRef{Feat}.substr(1); |
| if (Feat[0] == '-') { |
| S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
| << Feature << ("no-" + BareFeat).str(); |
| return true; |
| } |
| |
| if (!TargetInfo.validateCpuSupports(BareFeat) || |
| !TargetInfo.isValidFeatureName(BareFeat)) { |
| S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
| << Feature << BareFeat; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, |
| const FunctionDecl *NewFD, |
| bool CausesMV, |
| MultiVersioning::Type MVType) { |
| enum DoesntSupport { |
| FuncTemplates = 0, |
| VirtFuncs = 1, |
| DeducedReturn = 2, |
| Constructors = 3, |
| Destructors = 4, |
| DeletedFuncs = 5, |
| DefaultedFuncs = 6, |
| ConstexprFuncs = 7, |
| }; |
| enum Different { |
| CallingConv = 0, |
| ReturnType = 1, |
| ConstexprSpec = 2, |
| InlineSpec = 3, |
| StorageClass = 4, |
| Linkage = 5 |
| }; |
| |
| bool IsCPUSpecificCPUDispatchMVType = |
| MVType == MultiVersioning::CPUDispatch || |
| MVType == MultiVersioning::CPUSpecific; |
| |
| if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) { |
| S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto); |
| S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
| return true; |
| } |
| |
| if (!NewFD->getType()->getAs<FunctionProtoType>()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto); |
| |
| if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); |
| if (OldFD) |
| S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| return true; |
| } |
| |
| // For now, disallow all other attributes. These should be opt-in, but |
| // an analysis of all of them is a future FIXME. |
| if (CausesMV && OldFD && |
| std::distance(OldFD->attr_begin(), OldFD->attr_end()) != 1) { |
| S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs) |
| << IsCPUSpecificCPUDispatchMVType; |
| S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
| return true; |
| } |
| |
| if (std::distance(NewFD->attr_begin(), NewFD->attr_end()) != 1) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs) |
| << IsCPUSpecificCPUDispatchMVType; |
| |
| if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << FuncTemplates; |
| |
| if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { |
| if (NewCXXFD->isVirtual()) |
| return S.Diag(NewCXXFD->getLocation(), |
| diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << VirtFuncs; |
| |
| if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD)) |
| return S.Diag(NewCXXCtor->getLocation(), |
| diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << Constructors; |
| |
| if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD)) |
| return S.Diag(NewCXXDtor->getLocation(), |
| diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << Destructors; |
| } |
| |
| if (NewFD->isDeleted()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << DeletedFuncs; |
| |
| if (NewFD->isDefaulted()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs; |
| |
| if (NewFD->isConstexpr() && (MVType == MultiVersioning::CPUDispatch || |
| MVType == MultiVersioning::CPUSpecific)) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << ConstexprFuncs; |
| |
| QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType()); |
| const auto *NewType = cast<FunctionType>(NewQType); |
| QualType NewReturnType = NewType->getReturnType(); |
| |
| if (NewReturnType->isUndeducedType()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) |
| << IsCPUSpecificCPUDispatchMVType << DeducedReturn; |
| |
| // Only allow transition to MultiVersion if it hasn't been used. |
| if (OldFD && CausesMV && OldFD->isUsed(false)) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); |
| |
| // Ensure the return type is identical. |
| if (OldFD) { |
| QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType()); |
| const auto *OldType = cast<FunctionType>(OldQType); |
| FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
| FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
| |
| if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) |
| << CallingConv; |
| |
| QualType OldReturnType = OldType->getReturnType(); |
| |
| if (OldReturnType != NewReturnType) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) |
| << ReturnType; |
| |
| if (OldFD->isConstexpr() != NewFD->isConstexpr()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) |
| << ConstexprSpec; |
| |
| if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) |
| << InlineSpec; |
| |
| if (OldFD->getStorageClass() != NewFD->getStorageClass()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) |
| << StorageClass; |
| |
| if (OldFD->isExternC() != NewFD->isExternC()) |
| return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) |
| << Linkage; |
| |
| if (S.CheckEquivalentExceptionSpec( |
| OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), |
| NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check the validity of a multiversion function declaration that is the |
| /// first of its kind. Also sets the multiversion'ness' of the function itself. |
| /// |
| /// This sets NewFD->isInvalidDecl() to true if there was an error. |
| /// |
| /// Returns true if there was an error, false otherwise. |
| static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, |
| MultiVersioning::Type MVType, |
| const TargetAttr *TA, |
| const CPUDispatchAttr *CPUDisp, |
| const CPUSpecificAttr *CPUSpec) { |
| assert(MVType != MultiVersioning::None && |
| "Function lacks multiversion attribute"); |
| |
| // Target only causes MV if it is default, otherwise this is a normal |
| // function. |
| if (MVType == MultiVersioning::Target && !TA->isDefaultVersion()) |
| return false; |
| |
| if (MVType == MultiVersioning::Target && CheckMultiVersionValue(S, FD)) { |
| FD->setInvalidDecl(); |
| return true; |
| } |
| |
| if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { |
| FD->setInvalidDecl(); |
| return true; |
| } |
| |
| FD->setIsMultiVersion(); |
| return false; |
| } |
| |
| static bool CheckTargetCausesMultiVersioning( |
| Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, |
| bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, |
| LookupResult &Previous) { |
| const auto *OldTA = OldFD->getAttr<TargetAttr>(); |
| TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse(); |
| // Sort order doesn't matter, it just needs to be consistent. |
| llvm::sort(NewParsed.Features.begin(), NewParsed.Features.end()); |
| |
| // If the old decl is NOT MultiVersioned yet, and we don't cause that |
| // to change, this is a simple redeclaration. |
| if (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()) |
| return false; |
| |
| // Otherwise, this decl causes MultiVersioning. |
| if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); |
| S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, |
| MultiVersioning::Target)) { |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| if (CheckMultiVersionValue(S, NewFD)) { |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| if (CheckMultiVersionValue(S, OldFD)) { |
| S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| TargetAttr::ParsedTargetAttr OldParsed = |
| OldTA->parse(std::less<std::string>()); |
| |
| if (OldParsed == NewParsed) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
| S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| for (const auto *FD : OldFD->redecls()) { |
| const auto *CurTA = FD->getAttr<TargetAttr>(); |
| if (!CurTA || CurTA->isInherited()) { |
| S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) |
| << 0; |
| S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| } |
| |
| OldFD->setIsMultiVersion(); |
| NewFD->setIsMultiVersion(); |
| Redeclaration = false; |
| MergeTypeWithPrevious = false; |
| OldDecl = nullptr; |
| Previous.clear(); |
| return false; |
| } |
| |
| /// Check the validity of a new function declaration being added to an existing |
| /// multiversioned declaration collection. |
| static bool CheckMultiVersionAdditionalDecl( |
| Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, |
| MultiVersioning::Type NewMVType, const TargetAttr *NewTA, |
| const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, |
| bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, |
| LookupResult &Previous) { |
| |
| MultiVersioning::Type OldMVType = getMultiVersionType(OldFD); |
| // Disallow mixing of multiversioning types. |
| if ((OldMVType == MultiVersioning::Target && |
| NewMVType != MultiVersioning::Target) || |
| (NewMVType == MultiVersioning::Target && |
| OldMVType != MultiVersioning::Target)) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); |
| S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| TargetAttr::ParsedTargetAttr NewParsed; |
| if (NewTA) { |
| NewParsed = NewTA->parse(); |
| llvm::sort(NewParsed.Features.begin(), NewParsed.Features.end()); |
| } |
| |
| bool UseMemberUsingDeclRules = |
| S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); |
| |
| // Next, check ALL non-overloads to see if this is a redeclaration of a |
| // previous member of the MultiVersion set. |
| for (NamedDecl *ND : Previous) { |
| FunctionDecl *CurFD = ND->getAsFunction(); |
| if (!CurFD) |
| continue; |
| if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) |
| continue; |
| |
| if (NewMVType == MultiVersioning::Target) { |
| const auto *CurTA = CurFD->getAttr<TargetAttr>(); |
| if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { |
| NewFD->setIsMultiVersion(); |
| Redeclaration = true; |
| OldDecl = ND; |
| return false; |
| } |
| |
| TargetAttr::ParsedTargetAttr CurParsed = |
| CurTA->parse(std::less<std::string>()); |
| if (CurParsed == NewParsed) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
| S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| } else { |
| const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); |
| const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); |
| // Handle CPUDispatch/CPUSpecific versions. |
| // Only 1 CPUDispatch function is allowed, this will make it go through |
| // the redeclaration errors. |
| if (NewMVType == MultiVersioning::CPUDispatch && |
| CurFD->hasAttr<CPUDispatchAttr>()) { |
| if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && |
| std::equal( |
| CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), |
| NewCPUDisp->cpus_begin(), |
| [](const IdentifierInfo *Cur, const IdentifierInfo *New) { |
| return Cur->getName() == New->getName(); |
| })) { |
| NewFD->setIsMultiVersion(); |
| Redeclaration = true; |
| OldDecl = ND; |
| return false; |
| } |
| |
| // If the declarations don't match, this is an error condition. |
| S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); |
| S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| if (NewMVType == MultiVersioning::CPUSpecific && CurCPUSpec) { |
| |
| if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && |
| std::equal( |
| CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), |
| NewCPUSpec->cpus_begin(), |
| [](const IdentifierInfo *Cur, const IdentifierInfo *New) { |
| return Cur->getName() == New->getName(); |
| })) { |
| NewFD->setIsMultiVersion(); |
| Redeclaration = true; |
| OldDecl = ND; |
| return false; |
| } |
| |
| // Only 1 version of CPUSpecific is allowed for each CPU. |
| for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { |
| for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { |
| if (CurII == NewII) { |
| S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) |
| << NewII; |
| S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| } |
| } |
| } |
| // If the two decls aren't the same MVType, there is no possible error |
| // condition. |
| } |
| } |
| |
| // Else, this is simply a non-redecl case. Checking the 'value' is only |
| // necessary in the Target case, since The CPUSpecific/Dispatch cases are |
| // handled in the attribute adding step. |
| if (NewMVType == MultiVersioning::Target && |
| CheckMultiVersionValue(S, NewFD)) { |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, false, NewMVType)) { |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| NewFD->setIsMultiVersion(); |
| Redeclaration = false; |
| MergeTypeWithPrevious = false; |
| OldDecl = nullptr; |
| Previous.clear(); |
| return false; |
| } |
| |
| |
| /// Check the validity of a mulitversion function declaration. |
| /// Also sets the multiversion'ness' of the function itself. |
| /// |
| /// This sets NewFD->isInvalidDecl() to true if there was an error. |
| /// |
| /// Returns true if there was an error, false otherwise. |
| static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, |
| bool &Redeclaration, NamedDecl *&OldDecl, |
| bool &MergeTypeWithPrevious, |
| LookupResult &Previous) { |
| const auto *NewTA = NewFD->getAttr<TargetAttr>(); |
| const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); |
| const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); |
| |
| // Mixing Multiversioning types is prohibited. |
| if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) || |
| (NewCPUDisp && NewCPUSpec)) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| MultiVersioning::Type MVType = getMultiVersionType(NewFD); |
| |
| // Main isn't allowed to become a multiversion function, however it IS |
| // permitted to have 'main' be marked with the 'target' optimization hint. |
| if (NewFD->isMain()) { |
| if ((MVType == MultiVersioning::Target && NewTA->isDefaultVersion()) || |
| MVType == MultiVersioning::CPUDispatch || |
| MVType == MultiVersioning::CPUSpecific) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| return false; |
| } |
| |
| if (!OldDecl || !OldDecl->getAsFunction() || |
| OldDecl->getDeclContext()->getRedeclContext() != |
| NewFD->getDeclContext()->getRedeclContext()) { |
| // If there's no previous declaration, AND this isn't attempting to cause |
| // multiversioning, this isn't an error condition. |
| if (MVType == MultiVersioning::None) |
| return false; |
| return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA, NewCPUDisp, |
| NewCPUSpec); |
| } |
| |
| FunctionDecl *OldFD = OldDecl->getAsFunction(); |
| |
| if (!OldFD->isMultiVersion() && MVType == MultiVersioning::None) |
| return false; |
| |
| if (OldFD->isMultiVersion() && MVType == MultiVersioning::None) { |
| S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) |
| << (getMultiVersionType(OldFD) != MultiVersioning::Target); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| // Handle the target potentially causes multiversioning case. |
| if (!OldFD->isMultiVersion() && MVType == MultiVersioning::Target) |
| return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, |
| Redeclaration, OldDecl, |
| MergeTypeWithPrevious, Previous); |
| // Previous declarations lack CPUDispatch/CPUSpecific. |
| if (!OldFD->isMultiVersion()) { |
| S.Diag(OldFD->getLocation(), diag::err_multiversion_required_in_redecl) |
| << 1; |
| S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
| NewFD->setInvalidDecl(); |
| return true; |
| } |
| |
| // At this point, we have a multiversion function decl (in OldFD) AND an |
| // appropriate attribute in the current function decl. Resolve that these are |
| // still compatible with previous declarations. |
| return CheckMultiVersionAdditionalDecl( |
| S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration, |
| OldDecl, MergeTypeWithPrevious, Previous); |
| } |
| |
| /// Perform semantic checking of a new function declaration. |
| /// |
| /// Performs semantic analysis of the new function declaration |
| /// NewFD. This routine performs all semantic checking that does not |
| /// require the actual declarator involved in the declaration, and is |
| /// used both for the declaration of functions as they are parsed |
| /// (called via ActOnDeclarator) and for the declaration of functions |
| /// that have been instantiated via C++ template instantiation (called |
| /// via InstantiateDecl). |
| /// |
| /// \param IsMemberSpecialization whether this new function declaration is |
| /// a member specialization (that replaces any definition provided by the |
| /// previous declaration). |
| /// |
| /// This sets NewFD->isInvalidDecl() to true if there was an error. |
| /// |
| /// \returns true if the function declaration is a redeclaration. |
| bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, |
| LookupResult &Previous, |
| bool IsMemberSpecialization) { |
| assert(!NewFD->getReturnType()->isVariablyModifiedType() && |
| "Variably modified return types are not handled here"); |
| |
| // Determine whether the type of this function should be merged with |
| // a previous visible declaration. This never happens for functions in C++, |
| // and always happens in C if the previous declaration was visible. |
| bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && |
| !Previous.isShadowed(); |
| |
| bool Redeclaration = false; |
| NamedDecl *OldDecl = nullptr; |
| bool MayNeedOverloadableChecks = false; |
| |
| // Merge or overload the declaration with an existing declaration of |
| // the same name, if appropriate. |
| if (!Previous.empty()) { |
| // Determine whether NewFD is an overload of PrevDecl or |
| // a declaration that requires merging. If it's an overload, |
| // there's no more work to do here; we'll just add the new |
| // function to the scope. |
| if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { |
| NamedDecl *Candidate = Previous.getRepresentativeDecl(); |
| if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { |
| Redeclaration = true; |
| OldDecl = Candidate; |
| } |
| } else { |
| MayNeedOverloadableChecks = true; |
| switch (CheckOverload(S, NewFD, Previous, OldDecl, |
| /*NewIsUsingDecl*/ false)) { |
| case Ovl_Match: |
| Redeclaration = true; |
| break; |
| |
| case Ovl_NonFunction: |
| Redeclaration = true; |
| break; |
| |
| case Ovl_Overload: |
| Redeclaration = false; |
| break; |
| } |
| } |
| } |
| |
| // Check for a previous extern "C" declaration with this name. |
| if (!Redeclaration && |
| checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { |
| if (!Previous.empty()) { |
| // This is an extern "C" declaration with the same name as a previous |
| // declaration, and thus redeclares that entity... |
| Redeclaration = true; |
| OldDecl = Previous.getFoundDecl(); |
| MergeTypeWithPrevious = false; |
| |
| // ... except in the presence of __attribute__((overloadable)). |
| if (OldDecl->hasAttr<OverloadableAttr>() || |
| NewFD->hasAttr<OverloadableAttr>()) { |
| if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { |
| MayNeedOverloadableChecks = true; |
| Redeclaration = false; |
| OldDecl = nullptr; |
| } |
| } |
| } |
| } |
| |
| if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, |
| MergeTypeWithPrevious, Previous)) |
| return Redeclaration; |
| |
| // C++11 [dcl.constexpr]p8: |
| // A constexpr specifier for a non-static member function that is not |
| // a constructor declares that member function to be const. |
| // |
| // This needs to be delayed until we know whether this is an out-of-line |
| // definition of a static member function. |
| // |
| // This rule is not present in C++1y, so we produce a backwards |
| // compatibility warning whenever it happens in C++11. |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); |
| if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && |
| !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && |
| (MD->getTypeQualifiers() & Qualifiers::Const) == 0) { |
| CXXMethodDecl *OldMD = nullptr; |
| if (OldDecl) |
| OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); |
| if (!OldMD || !OldMD->isStatic()) { |
| const FunctionProtoType *FPT = |
| MD->getType()->castAs<FunctionProtoType>(); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.TypeQuals |= Qualifiers::Const; |
| MD->setType(Context.getFunctionType(FPT->getReturnType(), |
| FPT->getParamTypes(), EPI)); |
| |
| // Warn that we did this, if we're not performing template instantiation. |
| // In that case, we'll have warned already when the template was defined. |
| if (!inTemplateInstantiation()) { |
| SourceLocation AddConstLoc; |
| if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() |
| .IgnoreParens().getAs<FunctionTypeLoc>()) |
| AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); |
| |
| Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) |
| << FixItHint::CreateInsertion(AddConstLoc, " const"); |
| } |
| } |
| } |
| |
| if (Redeclaration) { |
| // NewFD and OldDecl represent declarations that need to be |
| // merged. |
| if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { |
| NewFD->setInvalidDecl(); |
| return Redeclaration; |
| } |
| |
| Previous.clear(); |
| Previous.addDecl(OldDecl); |
| |
| if (FunctionTemplateDecl *OldTemplateDecl = |
| dyn_cast<FunctionTemplateDecl>(OldDecl)) { |
| auto *OldFD = OldTemplateDecl->getTemplatedDecl(); |
| NewFD->setPreviousDeclaration(OldFD); |
| adjustDeclContextForDeclaratorDecl(NewFD, OldFD); |
| FunctionTemplateDecl *NewTemplateDecl |
| = NewFD->getDescribedFunctionTemplate(); |
| assert(NewTemplateDecl && "Template/non-template mismatch"); |
| if (NewFD->isCXXClassMember()) { |
| NewFD->setAccess(OldTemplateDecl->getAccess()); |
| NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); |
| } |
| |
| // If this is an explicit specialization of a member that is a function |
| // template, mark it as a member specialization. |
| if (IsMemberSpecialization && |
| NewTemplateDecl->getInstantiatedFromMemberTemplate()) { |
| NewTemplateDecl->setMemberSpecialization(); |
| assert(OldTemplateDecl->isMemberSpecialization()); |
| // Explicit specializations of a member template do not inherit deleted |
| // status from the parent member template that they are specializing. |
| if (OldFD->isDeleted()) { |
| // FIXME: This assert will not hold in the presence of modules. |
| assert(OldFD->getCanonicalDecl() == OldFD); |
| // FIXME: We need an update record for this AST mutation. |
| OldFD->setDeletedAsWritten(false); |
| } |
| } |
| |
| } else { |
| if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { |
| auto *OldFD = cast<FunctionDecl>(OldDecl); |
| // This needs to happen first so that 'inline' propagates. |
| NewFD->setPreviousDeclaration(OldFD); |
| adjustDeclContextForDeclaratorDecl(NewFD, OldFD); |
| if (NewFD->isCXXClassMember()) |
| NewFD->setAccess(OldFD->getAccess()); |
| } |
| } |
| } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && |
| !NewFD->getAttr<OverloadableAttr>()) { |
| assert((Previous.empty() || |
| llvm::any_of(Previous, |
| [](const NamedDecl *ND) { |
| return ND->hasAttr<OverloadableAttr>(); |
| })) && |
| "Non-redecls shouldn't happen without overloadable present"); |
| |
| auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { |
| const auto *FD = dyn_cast<FunctionDecl>(ND); |
| return FD && !FD->hasAttr<OverloadableAttr>(); |
| }); |
| |
| if (OtherUnmarkedIter != Previous.end()) { |
| Diag(NewFD->getLocation(), |
| diag::err_attribute_overloadable_multiple_unmarked_overloads); |
| Diag((*OtherUnmarkedIter)->getLocation(), |
| diag::note_attribute_overloadable_prev_overload) |
| << false; |
| |
| NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); |
| } |
| } |
| |
| // Semantic checking for this function declaration (in isolation). |
| |
| if (getLangOpts().CPlusPlus) { |
| // C++-specific checks. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { |
| CheckConstructor(Constructor); |
| } else if (CXXDestructorDecl *Destructor = |
| dyn_cast<CXXDestructorDecl>(NewFD)) { |
| CXXRecordDecl *Record = Destructor->getParent(); |
| QualType ClassType = Context.getTypeDeclType(Record); |
| |
| // FIXME: Shouldn't we be able to perform this check even when the class |
| // type is dependent? Both gcc and edg can handle that. |
| if (!ClassType->isDependentType()) { |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXDestructorName( |
| Context.getCanonicalType(ClassType)); |
| if (NewFD->getDeclName() != Name) { |
| Diag(NewFD->getLocation(), diag::err_destructor_name); |
| NewFD->setInvalidDecl(); |
| return Redeclaration; |
| } |
| } |
| } else if (CXXConversionDecl *Conversion |
| = dyn_cast<CXXConversionDecl>(NewFD)) { |
| ActOnConversionDeclarator(Conversion); |
| } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { |
| if (auto *TD = Guide->getDescribedFunctionTemplate()) |
| CheckDeductionGuideTemplate(TD); |
| |
| // A deduction guide is not on the list of entities that can be |
| // explicitly specialized. |
| if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) |
| Diag(Guide->getLocStart(), diag::err_deduction_guide_specialized) |
| << /*explicit specialization*/ 1; |
| } |
| |
| // Find any virtual functions that this function overrides. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { |
| if (!Method->isFunctionTemplateSpecialization() && |
| !Method->getDescribedFunctionTemplate() && |
| Method->isCanonicalDecl()) { |
| if (AddOverriddenMethods(Method->getParent(), Method)) { |
| // If the function was marked as "static", we have a problem. |
| if (NewFD->getStorageClass() == SC_Static) { |
| ReportOverrides(*this, diag::err_static_overrides_virtual, Method); |
| } |
| } |
| } |
| |
| if (Method->isStatic()) |
| checkThisInStaticMemberFunctionType(Method); |
| } |
| |
| // Extra checking for C++ overloaded operators (C++ [over.oper]). |
| if (NewFD->isOverloadedOperator() && |
| CheckOverloadedOperatorDeclaration(NewFD)) { |
| NewFD->setInvalidDecl(); |
| return Redeclaration; |
| } |
| |
| // Extra checking for C++0x literal operators (C++0x [over.literal]). |
| if (NewFD->getLiteralIdentifier() && |
| CheckLiteralOperatorDeclaration(NewFD)) { |
| NewFD->setInvalidDecl(); |
| return Redeclaration; |
| } |
| |
| // In C++, check default arguments now that we have merged decls. Unless |
| // the lexical context is the class, because in this case this is done |
| // during delayed parsing anyway. |
| if (!CurContext->isRecord()) |
| CheckCXXDefaultArguments(NewFD); |
| |
| // If this function declares a builtin function, check the type of this |
| // declaration against the expected type for the builtin. |
| if (unsigned BuiltinID = NewFD->getBuiltinID()) { |
| ASTContext::GetBuiltinTypeError Error; |
| LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); |
| QualType T = Context.GetBuiltinType(BuiltinID, Error); |
| // If the type of the builtin differs only in its exception |
| // specification, that's OK. |
| // FIXME: If the types do differ in this way, it would be better to |
| // retain the 'noexcept' form of the type. |
| if (!T.isNull() && |
| !Context.hasSameFunctionTypeIgnoringExceptionSpec(T, |
| NewFD->getType())) |
| // The type of this function differs from the type of the builtin, |
| // so forget about the builtin entirely. |
| Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents); |
| } |
| |
| // If this function is declared as being extern "C", then check to see if |
| // the function returns a UDT (class, struct, or union type) that is not C |
| // compatible, and if it does, warn the user. |
| // But, issue any diagnostic on the first declaration only. |
| if (Previous.empty() && NewFD->isExternC()) { |
| QualType R = NewFD->getReturnType(); |
| if (R->isIncompleteType() && !R->isVoidType()) |
| Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) |
| << NewFD << R; |
| else if (!R.isPODType(Context) && !R->isVoidType() && |
| !R->isObjCObjectPointerType()) |
| Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; |
| } |
| |
| // C++1z [dcl.fct]p6: |
| // [...] whether the function has a non-throwing exception-specification |
| // [is] part of the function type |
| // |
| // This results in an ABI break between C++14 and C++17 for functions whose |
| // declared type includes an exception-specification in a parameter or |
| // return type. (Exception specifications on the function itself are OK in |
| // most cases, and exception specifications are not permitted in most other |
| // contexts where they could make it into a mangling.) |
| if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { |
| auto HasNoexcept = [&](QualType T) -> bool { |
| // Strip off declarator chunks that could be between us and a function |
| // type. We don't need to look far, exception specifications are very |
| // restricted prior to C++17. |
| if (auto *RT = T->getAs<ReferenceType>()) |
| T = RT->getPointeeType(); |
| else if (T->isAnyPointerType()) |
| T = T->getPointeeType(); |
| else if (auto *MPT = T->getAs<MemberPointerType>()) |
| T = MPT->getPointeeType(); |
| if (auto *FPT = T->getAs<FunctionProtoType>()) |
| if (FPT->isNothrow()) |
| return true; |
| return false; |
| }; |
| |
| auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); |
| bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); |
| for (QualType T : FPT->param_types()) |
| AnyNoexcept |= HasNoexcept(T); |
| if (AnyNoexcept) |
| Diag(NewFD->getLocation(), |
| diag::warn_cxx17_compat_exception_spec_in_signature) |
| << NewFD; |
| } |
| |
| if (!Redeclaration && LangOpts.CUDA) |
| checkCUDATargetOverload(NewFD, Previous); |
| } |
| return Redeclaration; |
| } |
| |
| void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { |
| // C++11 [basic.start.main]p3: |
| // A program that [...] declares main to be inline, static or |
| // constexpr is ill-formed. |
| // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall |
| // appear in a declaration of main. |
| // static main is not an error under C99, but we should warn about it. |
| // We accept _Noreturn main as an extension. |
| if (FD->getStorageClass() == SC_Static) |
| Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus |
| ? diag::err_static_main : diag::warn_static_main) |
| << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
| if (FD->isInlineSpecified()) |
| Diag(DS.getInlineSpecLoc(), diag::err_inline_main) |
| << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); |
| if (DS.isNoreturnSpecified()) { |
| SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); |
| SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); |
| Diag(NoreturnLoc, diag::ext_noreturn_main); |
| Diag(NoreturnLoc, diag::note_main_remove_noreturn) |
| << FixItHint::CreateRemoval(NoreturnRange); |
| } |
| if (FD->isConstexpr()) { |
| Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) |
| << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); |
| FD->setConstexpr(false); |
| } |
| |
| if (getLangOpts().OpenCL) { |
| Diag(FD->getLocation(), diag::err_opencl_no_main) |
| << FD->hasAttr<OpenCLKernelAttr>(); |
| FD->setInvalidDecl(); |
| return; |
| } |
| |
| QualType T = FD->getType(); |
| assert(T->isFunctionType() && "function decl is not of function type"); |
| const FunctionType* FT = T->castAs<FunctionType>(); |
| |
| // Set default calling convention for main() |
| if (FT->getCallConv() != CC_C) { |
| FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); |
| FD->setType(QualType(FT, 0)); |
| T = Context.getCanonicalType(FD->getType()); |
| } |
| |
| if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { |
| // In C with GNU extensions we allow main() to have non-integer return |
| // type, but we should warn about the extension, and we disable the |
| // implicit-return-zero rule. |
| |
| // GCC in C mode accepts qualified 'int'. |
| if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) |
| FD->setHasImplicitReturnZero(true); |
| else { |
| Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); |
| SourceRange RTRange = FD->getReturnTypeSourceRange(); |
| if (RTRange.isValid()) |
| Diag(RTRange.getBegin(), diag::note_main_change_return_type) |
| << FixItHint::CreateReplacement(RTRange, "int"); |
| } |
| } else { |
| // In C and C++, main magically returns 0 if you fall off the end; |
| // set the flag which tells us that. |
| // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. |
| |
| // All the standards say that main() should return 'int'. |
| if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) |
| FD->setHasImplicitReturnZero(true); |
| else { |
| // Otherwise, this is just a flat-out error. |
| SourceRange RTRange = FD->getReturnTypeSourceRange(); |
| Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) |
| << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") |
| : FixItHint()); |
| FD->setInvalidDecl(true); |
| } |
| } |
| |
| // Treat protoless main() as nullary. |
| if (isa<FunctionNoProtoType>(FT)) return; |
| |
| const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); |
| unsigned nparams = FTP->getNumParams(); |
| assert(FD->getNumParams() == nparams); |
| |
| bool HasExtraParameters = (nparams > 3); |
| |
| if (FTP->isVariadic()) { |
| Diag(FD->getLocation(), diag::ext_variadic_main); |
| // FIXME: if we had information about the location of the ellipsis, we |
| // could add a FixIt hint to remove it as a parameter. |
| } |
| |
| // Darwin passes an undocumented fourth argument of type char**. If |
| // other platforms start sprouting these, the logic below will start |
| // getting shifty. |
| if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) |
| HasExtraParameters = false; |
| |
| if (HasExtraParameters) { |
| Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; |
| FD->setInvalidDecl(true); |
| nparams = 3; |
| } |
| |
| // FIXME: a lot of the following diagnostics would be improved |
| // if we had some location information about types. |
| |
| QualType CharPP = |
| Context.getPointerType(Context.getPointerType(Context.CharTy)); |
| QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; |
| |
| for (unsigned i = 0; i < nparams; ++i) { |
| QualType AT = FTP->getParamType(i); |
| |
| bool mismatch = true; |
| |
| if (Context.hasSameUnqualifiedType(AT, Expected[i])) |
| mismatch = false; |
| else if (Expected[i] == CharPP) { |
| // As an extension, the following forms are okay: |
| // char const ** |
| // char const * const * |
| // char * const * |
| |
| QualifierCollector qs; |
| const PointerType* PT; |
| if ((PT = qs.strip(AT)->getAs<PointerType>()) && |
| (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && |
| Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), |
| Context.CharTy)) { |
| qs.removeConst(); |
| mismatch = !qs.empty(); |
| } |
| } |
| |
| if (mismatch) { |
| Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; |
| // TODO: suggest replacing given type with expected type |
| FD->setInvalidDecl(true); |
| } |
| } |
| |
| if (nparams == 1 && !FD->isInvalidDecl()) { |
| Diag(FD->getLocation(), diag::warn_main_one_arg); |
| } |
| |
| if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { |
| Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; |
| FD->setInvalidDecl(); |
| } |
| } |
| |
| void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { |
| QualType T = FD->getType(); |
| assert(T->isFunctionType() && "function decl is not of function type"); |
| const FunctionType *FT = T->castAs<FunctionType>(); |
| |
| // Set an implicit return of 'zero' if the function can return some integral, |
| // enumeration, pointer or nullptr type. |
| if (FT->getReturnType()->isIntegralOrEnumerationType() || |
| FT->getReturnType()->isAnyPointerType() || |
| FT->getReturnType()->isNullPtrType()) |
| // DllMain is exempt because a return value of zero means it failed. |
| if (FD->getName() != "DllMain") |
| FD->setHasImplicitReturnZero(true); |
| |
| if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { |
| Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; |
| FD->setInvalidDecl(); |
| } |
| } |
| |
| bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { |
| // FIXME: Need strict checking. In C89, we need to check for |
| // any assignment, increment, decrement, function-calls, or |
| // commas outside of a sizeof. In C99, it's the same list, |
| // except that the aforementioned are allowed in unevaluated |
| // expressions. Everything else falls under the |
| // "may accept other forms of constant expressions" exception. |
| // (We never end up here for C++, so the constant expression |
| // rules there don't matter.) |
| const Expr *Culprit; |
| if (Init->isConstantInitializer(Context, false, &Culprit)) |
| return false; |
| Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) |
| << Culprit->getSourceRange(); |
| return true; |
| } |
| |
| namespace { |
| // Visits an initialization expression to see if OrigDecl is evaluated in |
| // its own initialization and throws a warning if it does. |
| class SelfReferenceChecker |
| : public EvaluatedExprVisitor<SelfReferenceChecker> { |
| Sema &S; |
| Decl *OrigDecl; |
| bool isRecordType; |
| bool isPODType; |
| bool isReferenceType; |
| |
| bool isInitList; |
| llvm::SmallVector<unsigned, 4> InitFieldIndex; |
| |
| public: |
| typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; |
| |
| SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), |
| S(S), OrigDecl(OrigDecl) { |
| isPODType = false; |
| isRecordType = false; |
| isReferenceType = false; |
| isInitList = false; |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { |
| isPODType = VD->getType().isPODType(S.Context); |
| isRecordType = VD->getType()->isRecordType(); |
| isReferenceType = VD->getType()->isReferenceType(); |
| } |
| } |
| |
| // For most expressions, just call the visitor. For initializer lists, |
| // track the index of the field being initialized since fields are |
| // initialized in order allowing use of previously initialized fields. |
| void CheckExpr(Expr *E) { |
| InitListExpr *InitList = dyn_cast<InitListExpr>(E); |
| if (!InitList) { |
| Visit(E); |
| return; |
| } |
| |
| // Track and increment the index here. |
| isInitList = true; |
| InitFieldIndex.push_back(0); |
| for (auto Child : InitList->children()) { |
| CheckExpr(cast<Expr>(Child)); |
| ++InitFieldIndex.back(); |
| } |
| InitFieldIndex.pop_back(); |
| } |
| |
| // Returns true if MemberExpr is checked and no further checking is needed. |
| // Returns false if additional checking is required. |
| bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { |
| llvm::SmallVector<FieldDecl*, 4> Fields; |
| Expr *Base = E; |
| bool ReferenceField = false; |
| |
| // Get the field memebers used. |
| while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { |
| FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); |
| if (!FD) |
| return false; |
| Fields.push_back(FD); |
| if (FD->getType()->isReferenceType()) |
| ReferenceField = true; |
| Base = ME->getBase()->IgnoreParenImpCasts(); |
| } |
| |
| // Keep checking only if the base Decl is the same. |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); |
| if (!DRE || DRE->getDecl() != OrigDecl) |
| return false; |
| |
| // A reference field can be bound to an unininitialized field. |
| if (CheckReference && !ReferenceField) |
| return true; |
| |
| // Convert FieldDecls to their index number. |
| llvm::SmallVector<unsigned, 4> UsedFieldIndex; |
| for (const FieldDecl *I : llvm::reverse(Fields)) |
| UsedFieldIndex.push_back(I->getFieldIndex()); |
| |
| // See if a warning is needed by checking the first difference in index |
| // numbers. If field being used has index less than the field being |
| // initialized, then the use is safe. |
| for (auto UsedIter = UsedFieldIndex.begin(), |
| UsedEnd = UsedFieldIndex.end(), |
| OrigIter = InitFieldIndex.begin(), |
| OrigEnd = InitFieldIndex.end(); |
| UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { |
| if (*UsedIter < *OrigIter) |
| return true; |
| if (*UsedIter > *OrigIter) |
| break; |
| } |
| |
| // TODO: Add a different warning which will print the field names. |
| HandleDeclRefExpr(DRE); |
| return true; |
| } |
| |
| // For most expressions, the cast is directly above the DeclRefExpr. |
| // For conditional operators, the cast can be outside the conditional |
| // operator if both expressions are DeclRefExpr's. |
| void HandleValue(Expr *E) { |
| E = E->IgnoreParens(); |
| if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { |
| HandleDeclRefExpr(DRE); |
| return; |
| } |
| |
| if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { |
| Visit(CO->getCond()); |
| HandleValue(CO->getTrueExpr()); |
| HandleValue(CO->getFalseExpr()); |
| return; |
| } |
| |
| if (BinaryConditionalOperator *BCO = |
| dyn_cast<BinaryConditionalOperator>(E)) { |
| Visit(BCO->getCond()); |
| HandleValue(BCO->getFalseExpr()); |
| return; |
| } |
| |
| if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { |
| HandleValue(OVE->getSourceExpr()); |
| return; |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
| if (BO->getOpcode() == BO_Comma) { |
| Visit(BO->getLHS()); |
| HandleValue(BO->getRHS()); |
| return; |
| } |
| } |
| |
| if (isa<MemberExpr>(E)) { |
| if (isInitList) { |
| if (CheckInitListMemberExpr(cast<MemberExpr>(E), |
| false /*CheckReference*/)) |
| return; |
| } |
| |
| Expr *Base = E->IgnoreParenImpCasts(); |
| while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { |
| // Check for static member variables and don't warn on them. |
| if (!isa<FieldDecl>(ME->getMemberDecl())) |
| return; |
| Base = ME->getBase()->IgnoreParenImpCasts(); |
| } |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) |
| HandleDeclRefExpr(DRE); |
| return; |
| } |
| |
| Visit(E); |
| } |
| |
| // Reference types not handled in HandleValue are handled here since all |
| // uses of references are bad, not just r-value uses. |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| if (isReferenceType) |
| HandleDeclRefExpr(E); |
| } |
| |
| void VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| if (E->getCastKind() == CK_LValueToRValue) { |
| HandleValue(E->getSubExpr()); |
| return; |
| } |
| |
| Inherited::VisitImplicitCastExpr(E); |
| } |
| |
| void VisitMemberExpr(MemberExpr *E) { |
| if (isInitList) { |
| if (CheckInitListMemberExpr(E, true /*CheckReference*/)) |
| return; |
| } |
| |
| // Don't warn on arrays since they can be treated as pointers. |
| if (E->getType()->canDecayToPointerType()) return; |
| |
| // Warn when a non-static method call is followed by non-static member |
| // field accesses, which is followed by a DeclRefExpr. |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); |
| bool Warn = (MD && !MD->isStatic()); |
| Expr *Base = E->getBase()->IgnoreParenImpCasts(); |
| while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { |
| if (!isa<FieldDecl>(ME->getMemberDecl())) |
| Warn = false; |
| Base = ME->getBase()->IgnoreParenImpCasts(); |
| } |
| |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { |
| if (Warn) |
| HandleDeclRefExpr(DRE); |
| return; |
| } |
| |
| // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. |
| // Visit that expression. |
| Visit(Base); |
| } |
| |
| void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
| Expr *Callee = E->getCallee(); |
| |
| if (isa<UnresolvedLookupExpr>(Callee)) |
| return Inherited::VisitCXXOperatorCallExpr(E); |
| |
| Visit(Callee); |
| for (auto Arg: E->arguments()) |
| HandleValue(Arg->IgnoreParenImpCasts()); |
| } |
| |
| void VisitUnaryOperator(UnaryOperator *E) { |
| // For POD record types, addresses of its own members are well-defined. |
| if (E->getOpcode() == UO_AddrOf && isRecordType && |
| isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { |
| if (!isPODType) |
| HandleValue(E->getSubExpr()); |
| return; |
| } |
| |
| if (E->isIncrementDecrementOp()) { |
| HandleValue(E->getSubExpr()); |
| return; |
| } |
| |
| Inherited::VisitUnaryOperator(E); |
| } |
| |
| void VisitObjCMessageExpr(ObjCMessageExpr *E) {} |
| |
| void VisitCXXConstructExpr(CXXConstructExpr *E) { |
| if (E->getConstructor()->isCopyConstructor()) { |
| Expr *ArgExpr = E->getArg(0); |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) |
| if (ILE->getNumInits() == 1) |
| ArgExpr = ILE->getInit(0); |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) |
| if (ICE->getCastKind() == CK_NoOp) |
| ArgExpr = ICE->getSubExpr(); |
| HandleValue(ArgExpr); |
| return; |
| } |
| Inherited::VisitCXXConstructExpr(E); |
| } |
| |
| void VisitCallExpr(CallExpr *E) { |
| // Treat std::move as a use. |
| if (E->isCallToStdMove()) { |
| HandleValue(E->getArg(0)); |
| return; |
| } |
| |
| Inherited::VisitCallExpr(E); |
| } |
| |
| void VisitBinaryOperator(BinaryOperator *E) { |
| if (E->isCompoundAssignmentOp()) { |
| HandleValue(E->getLHS()); |
| Visit(E->getRHS()); |
| return; |
| } |
| |
| Inherited::VisitBinaryOperator(E); |
| } |
| |
| // A custom visitor for BinaryConditionalOperator is needed because the |
| // regular visitor would check the condition and true expression separately |
| // but both point to the same place giving duplicate diagnostics. |
| void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { |
| Visit(E->getCond()); |
| Visit(E->getFalseExpr()); |
| } |
| |
| void HandleDeclRefExpr(DeclRefExpr *DRE) { |
| Decl* ReferenceDecl = DRE->getDecl(); |
| if (OrigDecl != ReferenceDecl) return; |
| unsigned diag; |
| if (isReferenceType) { |
| diag = diag::warn_uninit_self_reference_in_reference_init; |
| } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { |
| diag = diag::warn_static_self_reference_in_init; |
| } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || |
| isa<NamespaceDecl>(OrigDecl->getDeclContext()) || |
| DRE->getDecl()->getType()->isRecordType()) { |
| diag = diag::warn_uninit_self_reference_in_init; |
| } else { |
| // Local variables will be handled by the CFG analysis. |
| return; |
| } |
| |
| S.DiagRuntimeBehavior(DRE->getLocStart(), DRE, |
| S.PDiag(diag) |
| << DRE->getDecl() |
| << OrigDecl->getLocation() |
| << DRE->getSourceRange()); |
| } |
| }; |
| |
| /// CheckSelfReference - Warns if OrigDecl is used in expression E. |
| static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, |
| bool DirectInit) { |
| // Parameters arguments are occassionially constructed with itself, |
| // for instance, in recursive functions. Skip them. |
| if (isa<ParmVarDecl>(OrigDecl)) |
| return; |
| |
| E = E->IgnoreParens(); |
| |
| // Skip checking T a = a where T is not a record or reference type. |
| // Doing so is a way to silence uninitialized warnings. |
| if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| if (ICE->getCastKind() == CK_LValueToRValue) |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) |
| if (DRE->getDecl() == OrigDecl) |
| return; |
| |
| SelfReferenceChecker(S, OrigDecl).CheckExpr(E); |
| } |
| } // end anonymous namespace |
| |
| namespace { |
| // Simple wrapper to add the name of a variable or (if no variable is |
| // available) a DeclarationName into a diagnostic. |
| struct VarDeclOrName { |
| VarDecl *VDecl; |
| DeclarationName Name; |
| |
| friend const Sema::SemaDiagnosticBuilder & |
| operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { |
| return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; |
| } |
| }; |
| } // end anonymous namespace |
| |
| QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, |
| DeclarationName Name, QualType Type, |
| TypeSourceInfo *TSI, |
| SourceRange Range, bool DirectInit, |
| Expr *Init) { |
| bool IsInitCapture = !VDecl; |
| assert((!VDecl || !VDecl->isInitCapture()) && |
| "init captures are expected to be deduced prior to initialization"); |
| |
| VarDeclOrName VN{VDecl, Name}; |
| |
| DeducedType *Deduced = Type->getContainedDeducedType(); |
| assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); |
| |
| // C++11 [dcl.spec.auto]p3 |
| if (!Init) { |
| assert(VDecl && "no init for init capture deduction?"); |
| |
| // Except for class argument deduction, and then for an initializing |
| // declaration only, i.e. no static at class scope or extern. |
| if (!isa<DeducedTemplateSpecializationType>(Deduced) || |
| VDecl->hasExternalStorage() || |
| VDecl->isStaticDataMember()) { |
| Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) |
| << VDecl->getDeclName() << Type; |
| return QualType(); |
| } |
| } |
| |
| ArrayRef<Expr*> DeduceInits; |
| if (Init) |
| DeduceInits = Init; |
| |
| if (DirectInit) { |
| if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) |
| DeduceInits = PL->exprs(); |
| } |
| |
| if (isa<DeducedTemplateSpecializationType>(Deduced)) { |
| assert(VDecl && "non-auto type for init capture deduction?"); |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); |
| InitializationKind Kind = InitializationKind::CreateForInit( |
| VDecl->getLocation(), DirectInit, Init); |
| // FIXME: Initialization should not be taking a mutable list of inits. |
| SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); |
| return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, |
| InitsCopy); |
| } |
| |
| if (DirectInit) { |
| if (auto *IL = dyn_cast<InitListExpr>(Init)) |
| DeduceInits = IL->inits(); |
| } |
| |
| // Deduction only works if we have exactly one source expression. |
| if (DeduceInits.empty()) { |
| // It isn't possible to write this directly, but it is possible to |
| // end up in this situation with "auto x(some_pack...);" |
| Diag(Init->getLocStart(), IsInitCapture |
| ? diag::err_init_capture_no_expression |
| : diag::err_auto_var_init_no_expression) |
| << VN << Type << Range; |
| return QualType(); |
| } |
| |
| if (DeduceInits.size() > 1) { |
| Diag(DeduceInits[1]->getLocStart(), |
| IsInitCapture ? diag::err_init_capture_multiple_expressions |
| : diag::err_auto_var_init_multiple_expressions) |
| << VN << Type << Range; |
| return QualType(); |
| } |
| |
| Expr *DeduceInit = DeduceInits[0]; |
| if (DirectInit && isa<InitListExpr>(DeduceInit)) { |
| Diag(Init->getLocStart(), IsInitCapture |
| ? diag::err_init_capture_paren_braces |
| : diag::err_auto_var_init_paren_braces) |
| << isa<InitListExpr>(Init) << VN << Type << Range; |
| return QualType(); |
| } |
| |
| // Expressions default to 'id' when we're in a debugger. |
| bool DefaultedAnyToId = false; |
| if (getLangOpts().DebuggerCastResultToId && |
| Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { |
| ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); |
| if (Result.isInvalid()) { |
| return QualType(); |
| } |
| Init = Result.get(); |
| DefaultedAnyToId = true; |
| } |
| |
| // C++ [dcl.decomp]p1: |
| // If the assignment-expression [...] has array type A and no ref-qualifier |
| // is present, e has type cv A |
| if (VDecl && isa<DecompositionDecl>(VDecl) && |
| Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && |
| DeduceInit->getType()->isConstantArrayType()) |
| return Context.getQualifiedType(DeduceInit->getType(), |
| Type.getQualifiers()); |
| |
| QualType DeducedType; |
| if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { |
| if (!IsInitCapture) |
| DiagnoseAutoDeductionFailure(VDecl, DeduceInit); |
| else if (isa<InitListExpr>(Init)) |
| Diag(Range.getBegin(), |
| diag::err_init_capture_deduction_failure_from_init_list) |
| << VN |
| << (DeduceInit->getType().isNull() ? TSI->getType() |
| : DeduceInit->getType()) |
| << DeduceInit->getSourceRange(); |
| else |
| Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) |
| << VN << TSI->getType() |
| << (DeduceInit->getType().isNull() ? TSI->getType() |
| : DeduceInit->getType()) |
| << DeduceInit->getSourceRange(); |
| } |
| |
| // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using |
| // 'id' instead of a specific object type prevents most of our usual |
| // checks. |
| // We only want to warn outside of template instantiations, though: |
| // inside a template, the 'id' could have come from a parameter. |
| if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && |
| !DeducedType.isNull() && DeducedType->isObjCIdType()) { |
| SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); |
| Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; |
| } |
| |
| return DeducedType; |
| } |
| |
| bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, |
| Expr *Init) { |
| QualType DeducedType = deduceVarTypeFromInitializer( |
| VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), |
| VDecl->getSourceRange(), DirectInit, Init); |
| if (DeducedType.isNull()) { |
| VDecl->setInvalidDecl(); |
| return true; |
| } |
| |
| VDecl->setType(DeducedType); |
| assert(VDecl->isLinkageValid()); |
| |
| // In ARC, infer lifetime. |
| if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) |
| VDecl->setInvalidDecl(); |
| |
| // If this is a redeclaration, check that the type we just deduced matches |
| // the previously declared type. |
| if (VarDecl *Old = VDecl->getPreviousDecl()) { |
| // We never need to merge the type, because we cannot form an incomplete |
| // array of auto, nor deduce such a type. |
| MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); |
| } |
| |
| // Check the deduced type is valid for a variable declaration. |
| CheckVariableDeclarationType(VDecl); |
| return VDecl->isInvalidDecl(); |
| } |
| |
| /// AddInitializerToDecl - Adds the initializer Init to the |
| /// declaration dcl. If DirectInit is true, this is C++ direct |
| /// initialization rather than copy initialization. |
| void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { |
| // If there is no declaration, there was an error parsing it. Just ignore |
| // the initializer. |
| if (!RealDecl || RealDecl->isInvalidDecl()) { |
| CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); |
| return; |
| } |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { |
| // Pure-specifiers are handled in ActOnPureSpecifier. |
| Diag(Method->getLocation(), diag::err_member_function_initialization) |
| << Method->getDeclName() << Init->getSourceRange(); |
| Method->setInvalidDecl(); |
| return; |
| } |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); |
| Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. |
| if (VDecl->getType()->isUndeducedType()) { |
| // Attempt typo correction early so that the type of the init expression can |
| // be deduced based on the chosen correction if the original init contains a |
| // TypoExpr. |
| ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); |
| if (!Res.isUsable()) { |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| Init = Res.get(); |
| |
| if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) |
| return; |
| } |
| |
| // dllimport cannot be used on variable definitions. |
| if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { |
| Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { |
| // C99 6.7.8p5. C++ has no such restriction, but that is a defect. |
| Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| if (!VDecl->getType()->isDependentType()) { |
| // A definition must end up with a complete type, which means it must be |
| // complete with the restriction that an array type might be completed by |
| // the initializer; note that later code assumes this restriction. |
| QualType BaseDeclType = VDecl->getType(); |
| if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) |
| BaseDeclType = Array->getElementType(); |
| if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, |
| diag::err_typecheck_decl_incomplete_type)) { |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // The variable can not have an abstract class type. |
| if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| VDecl->setInvalidDecl(); |
| } |
| |
| // If adding the initializer will turn this declaration into a definition, |
| // and we already have a definition for this variable, diagnose or otherwise |
| // handle the situation. |
| VarDecl *Def; |
| if ((Def = VDecl->getDefinition()) && Def != VDecl && |
| (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && |
| !VDecl->isThisDeclarationADemotedDefinition() && |
| checkVarDeclRedefinition(Def, VDecl)) |
| return; |
| |
| if (getLangOpts().CPlusPlus) { |
| // C++ [class.static.data]p4 |
| // If a static data member is of const integral or const |
| // enumeration type, its declaration in the class definition can |
| // specify a constant-initializer which shall be an integral |
| // constant expression (5.19). In that case, the member can appear |
| // in integral constant expressions. The member shall still be |
| // defined in a namespace scope if it is used in the program and the |
| // namespace scope definition shall not contain an initializer. |
| // |
| // We already performed a redefinition check above, but for static |
| // data members we also need to check whether there was an in-class |
| // declaration with an initializer. |
| if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { |
| Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) |
| << VDecl->getDeclName(); |
| Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), |
| diag::note_previous_initializer) |
| << 0; |
| return; |
| } |
| |
| if (VDecl->hasLocalStorage()) |
| setFunctionHasBranchProtectedScope(); |
| |
| if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| } |
| |
| // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside |
| // a kernel function cannot be initialized." |
| if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { |
| Diag(VDecl->getLocation(), diag::err_local_cant_init); |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| // Get the decls type and save a reference for later, since |
| // CheckInitializerTypes may change it. |
| QualType DclT = VDecl->getType(), SavT = DclT; |
| |
| // Expressions default to 'id' when we're in a debugger |
| // and we are assigning it to a variable of Objective-C pointer type. |
| if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && |
| Init->getType() == Context.UnknownAnyTy) { |
| ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| Init = Result.get(); |
| } |
| |
| // Perform the initialization. |
| ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); |
| if (!VDecl->isInvalidDecl()) { |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); |
| InitializationKind Kind = InitializationKind::CreateForInit( |
| VDecl->getLocation(), DirectInit, Init); |
| |
| MultiExprArg Args = Init; |
| if (CXXDirectInit) |
| Args = MultiExprArg(CXXDirectInit->getExprs(), |
| CXXDirectInit->getNumExprs()); |
| |
| // Try to correct any TypoExprs in the initialization arguments. |
| for (size_t Idx = 0; Idx < Args.size(); ++Idx) { |
| ExprResult Res = CorrectDelayedTyposInExpr( |
| Args[Idx], VDecl, [this, Entity, Kind](Expr *E) { |
| InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); |
| return Init.Failed() ? ExprError() : E; |
| }); |
| if (Res.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| } else if (Res.get() != Args[Idx]) { |
| Args[Idx] = Res.get(); |
| } |
| } |
| if (VDecl->isInvalidDecl()) |
| return; |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, Args, |
| /*TopLevelOfInitList=*/false, |
| /*TreatUnavailableAsInvalid=*/false); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| |
| Init = Result.getAs<Expr>(); |
| } |
| |
| // Check for self-references within variable initializers. |
| // Variables declared within a function/method body (except for references) |
| // are handled by a dataflow analysis. |
| if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || |
| VDecl->getType()->isReferenceType()) { |
| CheckSelfReference(*this, RealDecl, Init, DirectInit); |
| } |
| |
| // If the type changed, it means we had an incomplete type that was |
| // completed by the initializer. For example: |
| // int ary[] = { 1, 3, 5 }; |
| // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. |
| if (!VDecl->isInvalidDecl() && (DclT != SavT)) |
| VDecl->setType(DclT); |
| |
| if (!VDecl->isInvalidDecl()) { |
| checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); |
| |
| if (VDecl->hasAttr<BlocksAttr>()) |
| checkRetainCycles(VDecl, Init); |
| |
| // It is safe to assign a weak reference into a strong variable. |
| // Although this code can still have problems: |
| // id x = self.weakProp; |
| // id y = self.weakProp; |
| // we do not warn to warn spuriously when 'x' and 'y' are on separate |
| // paths through the function. This should be revisited if |
| // -Wrepeated-use-of-weak is made flow-sensitive. |
| if (FunctionScopeInfo *FSI = getCurFunction()) |
| if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || |
| VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && |
| !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, |
| Init->getLocStart())) |
| FSI->markSafeWeakUse(Init); |
| } |
| |
| // The initialization is usually a full-expression. |
| // |
| // FIXME: If this is a braced initialization of an aggregate, it is not |
| // an expression, and each individual field initializer is a separate |
| // full-expression. For instance, in: |
| // |
| // struct Temp { ~Temp(); }; |
| // struct S { S(Temp); }; |
| // struct T { S a, b; } t = { Temp(), Temp() } |
| // |
| // we should destroy the first Temp before constructing the second. |
| ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(), |
| false, |
| VDecl->isConstexpr()); |
| if (Result.isInvalid()) { |
| VDecl->setInvalidDecl(); |
| return; |
| } |
| Init = Result.get(); |
| |
| // Attach the initializer to the decl. |
| VDecl->setInit(Init); |
| |
| if (VDecl->isLocalVarDecl()) { |
| // Don't check the initializer if the declaration is malformed. |
| if (VDecl->isInvalidDecl()) { |
| // do nothing |
| |
| // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. |
| // This is true even in OpenCL C++. |
| } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { |
| CheckForConstantInitializer(Init, DclT); |
| |
| // Otherwise, C++ does not restrict the initializer. |
| } else if (getLangOpts().CPlusPlus) { |
| // do nothing |
| |
| // C99 6.7.8p4: All the expressions in an initializer for an object that has |
| // static storage duration shall be constant expressions or string literals. |
| } else if (VDecl->getStorageClass() == SC_Static) { |
| CheckForConstantInitializer(Init, DclT); |
| |
| // C89 is stricter than C99 for aggregate initializers. |
| // C89 6.5.7p3: All the expressions [...] in an initializer list |
| // for an object that has aggregate or union type shall be |
| // constant expressions. |
| } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && |
| isa<InitListExpr>(Init)) { |
| const Expr *Culprit; |
| if (!Init->isConstantInitializer(Context, false, &Culprit)) { |
| Diag(Culprit->getExprLoc(), |
| diag::ext_aggregate_init_not_constant) |
| << Culprit->getSourceRange(); |
| } |
| } |
| } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && |
| VDecl->getLexicalDeclContext()->isRecord()) { |
| // This is an in-class initialization for a static data member, e.g., |
| // |
| // struct S { |
| // static const int value = 17; |
| // }; |
| |
| // C++ [class.mem]p4: |
| // A member-declarator can contain a constant-initializer only |
| // if it declares a static member (9.4) of const integral or |
| // const enumeration type, see 9.4.2. |
| // |
| // C++11 [class.static.data]p3: |
| // If a non-volatile non-inline const static data member is of integral |
| // or enumeration type, its declaration in the class definition can |
| // specify a brace-or-equal-initializer in which every initializer-clause |
| // that is an assignment-expression is a constant expression. A static |
| // data member of literal type can be declared in the class definition |
| // with the constexpr specifier; if so, its declaration shall specify a |
| // brace-or-equal-initializer in which every initializer-clause that is |
| // an assignment-expression is a constant expression. |
| |
| // Do nothing on dependent types. |
| if (DclT->isDependentType()) { |
| |
| // Allow any 'static constexpr' members, whether or not they are of literal |
| // type. We separately check that every constexpr variable is of literal |
| // type. |
| } else if (VDecl->isConstexpr()) { |
| |
| // Require constness. |
| } else if (!DclT.isConstQualified()) { |
| Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) |
| << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| |
| // We allow integer constant expressions in all cases. |
| } else if (DclT->isIntegralOrEnumerationType()) { |
| // Check whether the expression is a constant expression. |
| SourceLocation Loc; |
| if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) |
| // In C++11, a non-constexpr const static data member with an |
| // in-class initializer cannot be volatile. |
| Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); |
| else if (Init->isValueDependent()) |
| ; // Nothing to check. |
| else if (Init->isIntegerConstantExpr(Context, &Loc)) |
| ; // Ok, it's an ICE! |
| else if (Init->getType()->isScopedEnumeralType() && |
| Init->isCXX11ConstantExpr(Context)) |
| ; // Ok, it is a scoped-enum constant expression. |
| else if (Init->isEvaluatable(Context)) { |
| // If we can constant fold the initializer through heroics, accept it, |
| // but report this as a use of an extension for -pedantic. |
| Diag(Loc, diag::ext_in_class_initializer_non_constant) |
| << Init->getSourceRange(); |
| } else { |
| // Otherwise, this is some crazy unknown case. Report the issue at the |
| // location provided by the isIntegerConstantExpr failed check. |
| Diag(Loc, diag::err_in_class_initializer_non_constant) |
| << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| } |
| |
| // We allow foldable floating-point constants as an extension. |
| } else if (DclT->isFloatingType()) { // also permits complex, which is ok |
| // In C++98, this is a GNU extension. In C++11, it is not, but we support |
| // it anyway and provide a fixit to add the 'constexpr'. |
| if (getLangOpts().CPlusPlus11) { |
| Diag(VDecl->getLocation(), |
| diag::ext_in_class_initializer_float_type_cxx11) |
| << DclT << Init->getSourceRange(); |
| Diag(VDecl->getLocStart(), |
| diag::note_in_class_initializer_float_type_cxx11) |
| << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); |
| } else { |
| Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) |
| << DclT << Init->getSourceRange(); |
| |
| if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { |
| Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) |
| << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| } |
| } |
| |
| // Suggest adding 'constexpr' in C++11 for literal types. |
| } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { |
| Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) |
| << DclT << Init->getSourceRange() |
| << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr "); |
| VDecl->setConstexpr(true); |
| |
| } else { |
| Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) |
| << DclT << Init->getSourceRange(); |
| VDecl->setInvalidDecl(); |
| } |
| } else if (VDecl->isFileVarDecl()) { |
| // In C, extern is typically used to avoid tentative definitions when |
| // declaring variables in headers, but adding an intializer makes it a |
| // definition. This is somewhat confusing, so GCC and Clang both warn on it. |
| // In C++, extern is often used to give implictly static const variables |
| // external linkage, so don't warn in that case. If selectany is present, |
| // this might be header code intended for C and C++ inclusion, so apply the |
| // C++ rules. |
| if (VDecl->getStorageClass() == SC_Extern && |
| ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || |
| !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && |
| !(getLangOpts().CPlusPlus && VDecl->isExternC()) && |
| !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) |
| Diag(VDecl->getLocation(), diag::warn_extern_init); |
| |
| // C99 6.7.8p4. All file scoped initializers need to be constant. |
| if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) |
| CheckForConstantInitializer(Init, DclT); |
| } |
| |
| // We will represent direct-initialization similarly to copy-initialization: |
| // int x(1); -as-> int x = 1; |
| // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); |
| // |
| // Clients that want to distinguish between the two forms, can check for |
| // direct initializer using VarDecl::getInitStyle(). |
| // A major benefit is that clients that don't particularly care about which |
| // exactly form was it (like the CodeGen) can handle both cases without |
| // special case code. |
| |
| // C++ 8.5p11: |
| // The form of initialization (using parentheses or '=') is generally |
| // insignificant, but does matter when the entity being initialized has a |
| // class type. |
| if (CXXDirectInit) { |
| assert(DirectInit && "Call-style initializer must be direct init."); |
| VDecl->setInitStyle(VarDecl::CallInit); |
| } else if (DirectInit) { |
| // This must be list-initialization. No other way is direct-initialization. |
| VDecl->setInitStyle(VarDecl::ListInit); |
| } |
| |
| CheckCompleteVariableDeclaration(VDecl); |
| } |
| |
| /// ActOnInitializerError - Given that there was an error parsing an |
| /// initializer for the given declaration, try to return to some form |
| /// of sanity. |
| void Sema::ActOnInitializerError(Decl *D) { |
| // Our main concern here is re-establishing invariants like "a |
| // variable's type is either dependent or complete". |
| if (!D || D->isInvalidDecl()) return; |
| |
| VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (!VD) return; |
| |
| // Bindings are not usable if we can't make sense of the initializer. |
| if (auto *DD = dyn_cast<DecompositionDecl>(D)) |
| for (auto *BD : DD->bindings()) |
| BD->setInvalidDecl(); |
| |
| // Auto types are meaningless if we can't make sense of the initializer. |
| if (ParsingInitForAutoVars.count(D)) { |
| D->setInvalidDecl(); |
| return; |
| } |
| |
| QualType Ty = VD->getType(); |
| if (Ty->isDependentType()) return; |
| |
| // Require a complete type. |
| if (RequireCompleteType(VD->getLocation(), |
| Context.getBaseElementType(Ty), |
| diag::err_typecheck_decl_incomplete_type)) { |
| VD->setInvalidDecl(); |
| return; |
| } |
| |
| // Require a non-abstract type. |
| if (RequireNonAbstractType(VD->getLocation(), Ty, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) { |
| VD->setInvalidDecl(); |
| return; |
| } |
| |
| // Don't bother complaining about constructors or destructors, |
| // though. |
| } |
| |
| void Sema::ActOnUninitializedDecl(Decl *RealDecl) { |
| // If there is no declaration, there was an error parsing it. Just ignore it. |
| if (!RealDecl) |
| return; |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { |
| QualType Type = Var->getType(); |
| |
| // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. |
| if (isa<DecompositionDecl>(RealDecl)) { |
| Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| if (Type->isUndeducedType() && |
| DeduceVariableDeclarationType(Var, false, nullptr)) |
| return; |
| |
| // C++11 [class.static.data]p3: A static data member can be declared with |
| // the constexpr specifier; if so, its declaration shall specify |
| // a brace-or-equal-initializer. |
| // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to |
| // the definition of a variable [...] or the declaration of a static data |
| // member. |
| if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && |
| !Var->isThisDeclarationADemotedDefinition()) { |
| if (Var->isStaticDataMember()) { |
| // C++1z removes the relevant rule; the in-class declaration is always |
| // a definition there. |
| if (!getLangOpts().CPlusPlus17) { |
| Diag(Var->getLocation(), |
| diag::err_constexpr_static_mem_var_requires_init) |
| << Var->getDeclName(); |
| Var->setInvalidDecl(); |
| return; |
| } |
| } else { |
| Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); |
| Var->setInvalidDecl(); |
| return; |
| } |
| } |
| |
| // OpenCL v1.1 s6.5.3: variables declared in the constant address space must |
| // be initialized. |
| if (!Var->isInvalidDecl() && |
| Var->getType().getAddressSpace() == LangAS::opencl_constant && |
| Var->getStorageClass() != SC_Extern && !Var->getInit()) { |
| Diag(Var->getLocation(), diag::err_opencl_constant_no_init); |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| switch (Var->isThisDeclarationADefinition()) { |
| case VarDecl::Definition: |
| if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) |
| break; |
| |
| // We have an out-of-line definition of a static data member |
| // that has an in-class initializer, so we type-check this like |
| // a declaration. |
| // |
| LLVM_FALLTHROUGH; |
| |
| case VarDecl::DeclarationOnly: |
| // It's only a declaration. |
| |
| // Block scope. C99 6.7p7: If an identifier for an object is |
| // declared with no linkage (C99 6.2.2p6), the type for the |
| // object shall be complete. |
| if (!Type->isDependentType() && Var->isLocalVarDecl() && |
| !Var->hasLinkage() && !Var->isInvalidDecl() && |
| RequireCompleteType(Var->getLocation(), Type, |
| diag::err_typecheck_decl_incomplete_type)) |
| Var->setInvalidDecl(); |
| |
| // Make sure that the type is not abstract. |
| if (!Type->isDependentType() && !Var->isInvalidDecl() && |
| RequireNonAbstractType(Var->getLocation(), Type, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) |
| Var->setInvalidDecl(); |
| if (!Type->isDependentType() && !Var->isInvalidDecl() && |
| Var->getStorageClass() == SC_PrivateExtern) { |
| Diag(Var->getLocation(), diag::warn_private_extern); |
| Diag(Var->getLocation(), diag::note_private_extern); |
| } |
| |
| return; |
| |
| case VarDecl::TentativeDefinition: |
| // File scope. C99 6.9.2p2: A declaration of an identifier for an |
| // object that has file scope without an initializer, and without a |
| // storage-class specifier or with the storage-class specifier "static", |
| // constitutes a tentative definition. Note: A tentative definition with |
| // external linkage is valid (C99 6.2.2p5). |
| if (!Var->isInvalidDecl()) { |
| if (const IncompleteArrayType *ArrayT |
| = Context.getAsIncompleteArrayType(Type)) { |
| if (RequireCompleteType(Var->getLocation(), |
| ArrayT->getElementType(), |
| diag::err_illegal_decl_array_incomplete_type)) |
| Var->setInvalidDecl(); |
| } else if (Var->getStorageClass() == SC_Static) { |
| // C99 6.9.2p3: If the declaration of an identifier for an object is |
| // a tentative definition and has internal linkage (C99 6.2.2p3), the |
| // declared type shall not be an incomplete type. |
| // NOTE: code such as the following |
| // static struct s; |
| // struct s { int a; }; |
| // is accepted by gcc. Hence here we issue a warning instead of |
| // an error and we do not invalidate the static declaration. |
| // NOTE: to avoid multiple warnings, only check the first declaration. |
| if (Var->isFirstDecl()) |
| RequireCompleteType(Var->getLocation(), Type, |
| diag::ext_typecheck_decl_incomplete_type); |
| } |
| } |
| |
| // Record the tentative definition; we're done. |
| if (!Var->isInvalidDecl()) |
| TentativeDefinitions.push_back(Var); |
| return; |
| } |
| |
| // Provide a specific diagnostic for uninitialized variable |
| // definitions with incomplete array type. |
| if (Type->isIncompleteArrayType()) { |
| Diag(Var->getLocation(), |
| diag::err_typecheck_incomplete_array_needs_initializer); |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| // Provide a specific diagnostic for uninitialized variable |
| // definitions with reference type. |
| if (Type->isReferenceType()) { |
| Diag(Var->getLocation(), diag::err_reference_var_requires_init) |
| << Var->getDeclName() |
| << SourceRange(Var->getLocation(), Var->getLocation()); |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| // Do not attempt to type-check the default initializer for a |
| // variable with dependent type. |
| if (Type->isDependentType()) |
| return; |
| |
| if (Var->isInvalidDecl()) |
| return; |
| |
| if (!Var->hasAttr<AliasAttr>()) { |
| if (RequireCompleteType(Var->getLocation(), |
| Context.getBaseElementType(Type), |
| diag::err_typecheck_decl_incomplete_type)) { |
| Var->setInvalidDecl(); |
| return; |
| } |
| } else { |
| return; |
| } |
| |
| // The variable can not have an abstract class type. |
| if (RequireNonAbstractType(Var->getLocation(), Type, |
| diag::err_abstract_type_in_decl, |
| AbstractVariableType)) { |
| Var->setInvalidDecl(); |
| return; |
| } |
| |
| // Check for jumps past the implicit initializer. C++0x |
| // clarifies that this applies to a "variable with automatic |
| // storage duration", not a "local variable". |
| // C++11 [stmt.dcl]p3 |
| // A program that jumps from a point where a variable with automatic |
| // storage duration is not in scope to a point where it is in scope is |
| // ill-formed unless the variable has scalar type, class type with a |
| // trivial default constructor and a trivial destructor, a cv-qualified |
| // version of one of these types, or an array of one of the preceding |
| // types and is declared without an initializer. |
| if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { |
| if (const RecordType *Record |
| = Context.getBaseElementType(Type)->getAs<RecordType>()) { |
| CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); |
| // Mark the function (if we're in one) for further checking even if the |
| // looser rules of C++11 do not require such checks, so that we can |
| // diagnose incompatibilities with C++98. |
| if (!CXXRecord->isPOD()) |
| setFunctionHasBranchProtectedScope(); |
| } |
| } |
| |
| // C++03 [dcl.init]p9: |
| // If no initializer is specified for an object, and the |
| // object is of (possibly cv-qualified) non-POD class type (or |
| // array thereof), the object shall be default-initialized; if |
| // the object is of const-qualified type, the underlying class |
| // type shall have a user-declared default |
| // constructor. Otherwise, if no initializer is specified for |
| // a non- static object, the object and its subobjects, if |
| // any, have an indeterminate initial value); if the object |
| // or any of its subobjects are of const-qualified type, the |
| // program is ill-formed. |
| // C++0x [dcl.init]p11: |
| // If no initializer is specified for an object, the object is |
| // default-initialized; [...]. |
| InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); |
| InitializationKind Kind |
| = InitializationKind::CreateDefault(Var->getLocation()); |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, None); |
| ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); |
| if (Init.isInvalid()) |
| Var->setInvalidDecl(); |
| else if (Init.get()) { |
| Var->setInit(MaybeCreateExprWithCleanups(Init.get())); |
| // This is important for template substitution. |
| Var->setInitStyle(VarDecl::CallInit); |
| } |
| |
| CheckCompleteVariableDeclaration(Var); |
| } |
| } |
| |
| void Sema::ActOnCXXForRangeDecl(Decl *D) { |
| // If there is no declaration, there was an error parsing it. Ignore it. |
| if (!D) |
| return; |
| |
| VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (!VD) { |
| Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); |
| D->setInvalidDecl(); |
| return; |
| } |
| |
| VD->setCXXForRangeDecl(true); |
| |
| // for-range-declaration cannot be given a storage class specifier. |
| int Error = -1; |
| switch (VD->getStorageClass()) { |
| case SC_None: |
| break; |
| case SC_Extern: |
| Error = 0; |
| break; |
| case SC_Static: |
| Error = 1; |
| break; |
| case SC_PrivateExtern: |
| Error = 2; |
| break; |
| case SC_Auto: |
| Error = 3; |
| break; |
| case SC_Register: |
| Error = 4; |
| break; |
| } |
| if (Error != -1) { |
| Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) |
| << VD->getDeclName() << Error; |
| D->setInvalidDecl(); |
| } |
| } |
| |
| StmtResult |
| Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, |
| IdentifierInfo *Ident, |
| ParsedAttributes &Attrs, |
| SourceLocation AttrEnd) { |
| // C++1y [stmt.iter]p1: |
| // A range-based for statement of the form |
| // for ( for-range-identifier : for-range-initializer ) statement |
| // is equivalent to |
| // for ( auto&& for-range-identifier : for-range-initializer ) statement |
| DeclSpec DS(Attrs.getPool().getFactory()); |
| |
| const char *PrevSpec; |
| unsigned DiagID; |
| DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, |
| getPrintingPolicy()); |
| |
| Declarator D(DS, DeclaratorContext::ForContext); |
| D.SetIdentifier(Ident, IdentLoc); |
| D.takeAttributes(Attrs, AttrEnd); |
| |
| ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory()); |
| D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), |
| IdentLoc); |
| Decl *Var = ActOnDeclarator(S, D); |
| cast<VarDecl>(Var)->setCXXForRangeDecl(true); |
| FinalizeDeclaration(Var); |
| return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, |
| AttrEnd.isValid() ? AttrEnd : IdentLoc); |
| } |
| |
| void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { |
| if (var->isInvalidDecl()) return; |
| |
| if (getLangOpts().OpenCL) { |
| // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an |
| // initialiser |
| if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && |
| !var->hasInit()) { |
| Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) |
| << 1 /*Init*/; |
| var->setInvalidDecl(); |
| return; |
| } |
| } |
| |
| // In Objective-C, don't allow jumps past the implicit initialization of a |
| // local retaining variable. |
| if (getLangOpts().ObjC1 && |
| var->hasLocalStorage()) { |
| switch (var->getType().getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Autoreleasing: |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| case Qualifiers::OCL_Strong: |
| setFunctionHasBranchProtectedScope(); |
| break; |
| } |
| } |
| |
| if (var->hasLocalStorage() && |
| var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
| setFunctionHasBranchProtectedScope(); |
| |
| // Warn about externally-visible variables being defined without a |
| // prior declaration. We only want to do this for global |
| // declarations, but we also specifically need to avoid doing it for |
| // class members because the linkage of an anonymous class can |
| // change if it's later given a typedef name. |
| if (var->isThisDeclarationADefinition() && |
| var->getDeclContext()->getRedeclContext()->isFileContext() && |
| var->isExternallyVisible() && var->hasLinkage() && |
| !var->isInline() && !var->getDescribedVarTemplate() && |
| !isTemplateInstantiation(var->getTemplateSpecializationKind()) && |
| !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, |
| var->getLocation())) { |
| // Find a previous declaration that's not a definition. |
| VarDecl *prev = var->getPreviousDecl(); |
| while (prev && prev->isThisDeclarationADefinition()) |
| prev = prev->getPreviousDecl(); |
| |
| if (!prev) |
| Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; |
| } |
| |
| // Cache the result of checking for constant initialization. |
| Optional<bool> CacheHasConstInit; |
| const Expr *CacheCulprit; |
| auto checkConstInit = [&]() mutable { |
| if (!CacheHasConstInit) |
| CacheHasConstInit = var->getInit()->isConstantInitializer( |
| Context, var->getType()->isReferenceType(), &CacheCulprit); |
| return *CacheHasConstInit; |
| }; |
| |
| if (var->getTLSKind() == VarDecl::TLS_Static) { |
| if (var->getType().isDestructedType()) { |
| // GNU C++98 edits for __thread, [basic.start.term]p3: |
| // The type of an object with thread storage duration shall not |
| // have a non-trivial destructor. |
| Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); |
| if (getLangOpts().CPlusPlus11) |
| Diag(var->getLocation(), diag::note_use_thread_local); |
| } else if (getLangOpts().CPlusPlus && var->hasInit()) { |
| if (!checkConstInit()) { |
| // GNU C++98 edits for __thread, [basic.start.init]p4: |
| // An object of thread storage duration shall not require dynamic |
| // initialization. |
| // FIXME: Need strict checking here. |
| Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) |
| << CacheCulprit->getSourceRange(); |
| if (getLangOpts().CPlusPlus11) |
| Diag(var->getLocation(), diag::note_use_thread_local); |
| } |
| } |
| } |
| |
| // Apply section attributes and pragmas to global variables. |
| bool GlobalStorage = var->hasGlobalStorage(); |
| if (GlobalStorage && var->isThisDeclarationADefinition() && |
| !inTemplateInstantiation()) { |
| PragmaStack<StringLiteral *> *Stack = nullptr; |
| int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read; |
| if (var->getType().isConstQualified()) |
| Stack = &ConstSegStack; |
| else if (!var->getInit()) { |
| Stack = &BSSSegStack; |
| SectionFlags |= ASTContext::PSF_Write; |
| } else { |
| Stack = &DataSegStack; |
| SectionFlags |= ASTContext::PSF_Write; |
| } |
| if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) { |
| var->addAttr(SectionAttr::CreateImplicit( |
| Context, SectionAttr::Declspec_allocate, |
| Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation)); |
| } |
| if (const SectionAttr *SA = var->getAttr<SectionAttr>()) |
| if (UnifySection(SA->getName(), SectionFlags, var)) |
| var->dropAttr<SectionAttr>(); |
| |
| // Apply the init_seg attribute if this has an initializer. If the |
| // initializer turns out to not be dynamic, we'll end up ignoring this |
| // attribute. |
| if (CurInitSeg && var->getInit()) |
| var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), |
| CurInitSegLoc)); |
| } |
| |
| // All the following checks are C++ only. |
| if (!getLangOpts().CPlusPlus) { |
| // If this variable must be emitted, add it as an initializer for the |
| // current module. |
| if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) |
| Context.addModuleInitializer(ModuleScopes.back().Module, var); |
| return; |
| } |
| |
| if (auto *DD = dyn_cast<DecompositionDecl>(var)) |
| CheckCompleteDecompositionDeclaration(DD); |
| |
| QualType type = var->getType(); |
| if (type->isDependentType()) return; |
| |
| // __block variables might require us to capture a copy-initializer. |
| if (var->hasAttr<BlocksAttr>()) { |
| // It's currently invalid to ever have a __block variable with an |
| // array type; should we diagnose that here? |
| |
| // Regardless, we don't want to ignore array nesting when |
| // constructing this copy. |
| if (type->isStructureOrClassType()) { |
| EnterExpressionEvaluationContext scope( |
| *this, ExpressionEvaluationContext::PotentiallyEvaluated); |
| SourceLocation poi = var->getLocation(); |
| Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi); |
| ExprResult result |
| = PerformMoveOrCopyInitialization( |
| InitializedEntity::InitializeBlock(poi, type, false), |
| var, var->getType(), varRef, /*AllowNRVO=*/true); |
| if (!result.isInvalid()) { |
| result = MaybeCreateExprWithCleanups(result); |
| Expr *init = result.getAs<Expr>(); |
| Context.setBlockVarCopyInits(var, init); |
| } |
| } |
| } |
| |
| Expr *Init = var->getInit(); |
| bool IsGlobal = GlobalStorage && !var->isStaticLocal(); |
| QualType baseType = Context.getBaseElementType(type); |
| |
| if (Init && !Init->isValueDependent()) { |
| if (var->isConstexpr()) { |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| if (!var->evaluateValue(Notes) || !var->isInitICE()) { |
| SourceLocation DiagLoc = var->getLocation(); |
| // If the note doesn't add any useful information other than a source |
| // location, fold it into the primary diagnostic. |
| if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
| diag::note_invalid_subexpr_in_const_expr) { |
| DiagLoc = Notes[0].first; |
| Notes.clear(); |
| } |
| Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) |
| << var << Init->getSourceRange(); |
| for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
| Diag(Notes[I].first, Notes[I].second); |
| } |
| } else if (var->isUsableInConstantExpressions(Context)) { |
| // Check whether the initializer of a const variable of integral or |
| // enumeration type is an ICE now, since we can't tell whether it was |
| // initialized by a constant expression if we check later. |
| var->checkInitIsICE(); |
| } |
| |
| // Don't emit further diagnostics about constexpr globals since they |
| // were just diagnosed. |
| if (!var->isConstexpr() && GlobalStorage && |
| var->hasAttr<RequireConstantInitAttr>()) { |
| // FIXME: Need strict checking in C++03 here. |
| bool DiagErr = getLangOpts().CPlusPlus11 |
| ? !var->checkInitIsICE() : !checkConstInit(); |
| if (DiagErr) { |
| auto attr = var->getAttr<RequireConstantInitAttr>(); |
| Diag(var->getLocation(), diag::err_require_constant_init_failed) |
| << Init->getSourceRange(); |
| Diag(attr->getLocation(), diag::note_declared_required_constant_init_here) |
| << attr->getRange(); |
| if (getLangOpts().CPlusPlus11) { |
| APValue Value; |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes); |
| for (auto &it : Notes) |
| Diag(it.first, it.second); |
| } else { |
| Diag(CacheCulprit->getExprLoc(), |
| diag::note_invalid_subexpr_in_const_expr) |
| << CacheCulprit->getSourceRange(); |
| } |
| } |
| } |
| else if (!var->isConstexpr() && IsGlobal && |
| !getDiagnostics().isIgnored(diag::warn_global_constructor, |
| var->getLocation())) { |
| // Warn about globals which don't have a constant initializer. Don't |
| // warn about globals with a non-trivial destructor because we already |
| // warned about them. |
| CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); |
| if (!(RD && !RD->hasTrivialDestructor())) { |
| if (!checkConstInit()) |
| Diag(var->getLocation(), diag::warn_global_constructor) |
| << Init->getSourceRange(); |
| } |
| } |
| } |
| |
| // Require the destructor. |
| if (const RecordType *recordType = baseType->getAs<RecordType>()) |
| FinalizeVarWithDestructor(var, recordType); |
| |
| // If this variable must be emitted, add it as an initializer for the current |
| // module. |
| if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) |
| Context.addModuleInitializer(ModuleScopes.back().Module, var); |
| } |
| |
| /// Determines if a variable's alignment is dependent. |
| static bool hasDependentAlignment(VarDecl *VD) { |
| if (VD->getType()->isDependentType()) |
| return true; |
| for (auto *I : VD->specific_attrs<AlignedAttr>()) |
| if (I->isAlignmentDependent()) |
| return true; |
| return false; |
| } |
| |
| /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform |
| /// any semantic actions necessary after any initializer has been attached. |
| void Sema::FinalizeDeclaration(Decl *ThisDecl) { |
| // Note that we are no longer parsing the initializer for this declaration. |
| ParsingInitForAutoVars.erase(ThisDecl); |
| |
| VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); |
| if (!VD) |
| return; |
| |
| // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active |
| if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && |
| !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { |
| if (PragmaClangBSSSection.Valid) |
| VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context, |
| PragmaClangBSSSection.SectionName, |
| PragmaClangBSSSection.PragmaLocation)); |
| if (PragmaClangDataSection.Valid) |
| VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context, |
| PragmaClangDataSection.SectionName, |
| PragmaClangDataSection.PragmaLocation)); |
| if (PragmaClangRodataSection.Valid) |
| VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context, |
| PragmaClangRodataSection.SectionName, |
| PragmaClangRodataSection.PragmaLocation)); |
| } |
| |
| if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { |
| for (auto *BD : DD->bindings()) { |
| FinalizeDeclaration(BD); |
| } |
| } |
| |
| checkAttributesAfterMerging(*this, *VD); |
| |
| // Perform TLS alignment check here after attributes attached to the variable |
| // which may affect the alignment have been processed. Only perform the check |
| // if the target has a maximum TLS alignment (zero means no constraints). |
| if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { |
| // Protect the check so that it's not performed on dependent types and |
| // dependent alignments (we can't determine the alignment in that case). |
| if (VD->getTLSKind() && !hasDependentAlignment(VD) && |
| !VD->isInvalidDecl()) { |
| CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); |
| if (Context.getDeclAlign(VD) > MaxAlignChars) { |
| Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) |
| << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD |
| << (unsigned)MaxAlignChars.getQuantity(); |
| } |
| } |
| } |
| |
| if (VD->isStaticLocal()) { |
| if (FunctionDecl *FD = |
| dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) { |
| // Static locals inherit dll attributes from their function. |
| if (Attr *A = getDLLAttr(FD)) { |
| auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); |
| NewAttr->setInherited(true); |
| VD->addAttr(NewAttr); |
| } |
| // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__ |
| // function, only __shared__ variables or variables without any device |
| // memory qualifiers may be declared with static storage class. |
| // Note: It is unclear how a function-scope non-const static variable |
| // without device memory qualifier is implemented, therefore only static |
| // const variable without device memory qualifier is allowed. |
| [&]() { |
| if (!getLangOpts().CUDA) |
| return; |
| if (VD->hasAttr<CUDASharedAttr>()) |
| return; |
| if (VD->getType().isConstQualified() && |
| !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) |
| return; |
| if (CUDADiagIfDeviceCode(VD->getLocation(), |
| diag::err_device_static_local_var) |
| << CurrentCUDATarget()) |
| VD->setInvalidDecl(); |
| }(); |
| } |
| } |
| |
| // Perform check for initializers of device-side global variables. |
| // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA |
| // 7.5). We must also apply the same checks to all __shared__ |
| // variables whether they are local or not. CUDA also allows |
| // constant initializers for __constant__ and __device__ variables. |
| if (getLangOpts().CUDA) |
| checkAllowedCUDAInitializer(VD); |
| |
| // Grab the dllimport or dllexport attribute off of the VarDecl. |
| const InheritableAttr *DLLAttr = getDLLAttr(VD); |
| |
| // Imported static data members cannot be defined out-of-line. |
| if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { |
| if (VD->isStaticDataMember() && VD->isOutOfLine() && |
| VD->isThisDeclarationADefinition()) { |
| // We allow definitions of dllimport class template static data members |
| // with a warning. |
| CXXRecordDecl *Context = |
| cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); |
| bool IsClassTemplateMember = |
| isa<ClassTemplatePartialSpecializationDecl>(Context) || |
| Context->getDescribedClassTemplate(); |
| |
| Diag(VD->getLocation(), |
| IsClassTemplateMember |
| ? diag::warn_attribute_dllimport_static_field_definition |
| : diag::err_attribute_dllimport_static_field_definition); |
| Diag(IA->getLocation(), diag::note_attribute); |
| if (!IsClassTemplateMember) |
| VD->setInvalidDecl(); |
| } |
| } |
| |
| // dllimport/dllexport variables cannot be thread local, their TLS index |
| // isn't exported with the variable. |
| if (DLLAttr && VD->getTLSKind()) { |
| auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); |
| if (F && getDLLAttr(F)) { |
| assert(VD->isStaticLocal()); |
| // But if this is a static local in a dlimport/dllexport function, the |
| // function will never be inlined, which means the var would never be |
| // imported, so having it marked import/export is safe. |
| } else { |
| Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD |
| << DLLAttr; |
| VD->setInvalidDecl(); |
| } |
| } |
| |
| if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { |
| if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { |
| Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; |
| VD->dropAttr<UsedAttr>(); |
| } |
| } |
| |
| const DeclContext *DC = VD->getDeclContext(); |
| // If there's a #pragma GCC visibility in scope, and this isn't a class |
| // member, set the visibility of this variable. |
| if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) |
| AddPushedVisibilityAttribute(VD); |
| |
| // FIXME: Warn on unused var template partial specializations. |
| if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) |
| MarkUnusedFileScopedDecl(VD); |
| |
| // Now we have parsed the initializer and can update the table of magic |
| // tag values. |
| if (!VD->hasAttr<TypeTagForDatatypeAttr>() || |
| !VD->getType()->isIntegralOrEnumerationType()) |
| return; |
| |
| for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { |
| const Expr *MagicValueExpr = VD->getInit(); |
| if (!MagicValueExpr) { |
| continue; |
| } |
| llvm::APSInt MagicValueInt; |
| if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { |
| Diag(I->getRange().getBegin(), |
| diag::err_type_tag_for_datatype_not_ice) |
| << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); |
| continue; |
| } |
| if (MagicValueInt.getActiveBits() > 64) { |
| Diag(I->getRange().getBegin(), |
| diag::err_type_tag_for_datatype_too_large) |
| << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); |
| continue; |
| } |
| uint64_t MagicValue = MagicValueInt.getZExtValue(); |
| RegisterTypeTagForDatatype(I->getArgumentKind(), |
| MagicValue, |
| I->getMatchingCType(), |
| I->getLayoutCompatible(), |
| I->getMustBeNull()); |
| } |
| } |
| |
| static bool hasDeducedAuto(DeclaratorDecl *DD) { |
| auto *VD = dyn_cast<VarDecl>(DD); |
| return VD && !VD->getType()->hasAutoForTrailingReturnType(); |
| } |
| |
| Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, |
| ArrayRef<Decl *> Group) { |
| SmallVector<Decl*, 8> Decls; |
| |
| if (DS.isTypeSpecOwned()) |
| Decls.push_back(DS.getRepAsDecl()); |
| |
| DeclaratorDecl *FirstDeclaratorInGroup = nullptr; |
| DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; |
| bool DiagnosedMultipleDecomps = false; |
| DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; |
| bool DiagnosedNonDeducedAuto = false; |
| |
| for (unsigned i = 0, e = Group.size(); i != e; ++i) { |
| if (Decl *D = Group[i]) { |
| // For declarators, there are some additional syntactic-ish checks we need |
| // to perform. |
| if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { |
| if (!FirstDeclaratorInGroup) |
| FirstDeclaratorInGroup = DD; |
| if (!FirstDecompDeclaratorInGroup) |
| FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); |
| if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && |
| !hasDeducedAuto(DD)) |
| FirstNonDeducedAutoInGroup = DD; |
| |
| if (FirstDeclaratorInGroup != DD) { |
| // A decomposition declaration cannot be combined with any other |
| // declaration in the same group. |
| if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { |
| Diag(FirstDecompDeclaratorInGroup->getLocation(), |
| diag::err_decomp_decl_not_alone) |
| << FirstDeclaratorInGroup->getSourceRange() |
| << DD->getSourceRange(); |
| DiagnosedMultipleDecomps = true; |
| } |
| |
| // A declarator that uses 'auto' in any way other than to declare a |
| // variable with a deduced type cannot be combined with any other |
| // declarator in the same group. |
| if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { |
| Diag(FirstNonDeducedAutoInGroup->getLocation(), |
| diag::err_auto_non_deduced_not_alone) |
| << FirstNonDeducedAutoInGroup->getType() |
| ->hasAutoForTrailingReturnType() |
| << FirstDeclaratorInGroup->getSourceRange() |
| << DD->getSourceRange(); |
| DiagnosedNonDeducedAuto = true; |
| } |
| } |
| } |
| |
| Decls.push_back(D); |
| } |
| } |
| |
| if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { |
| if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { |
| handleTagNumbering(Tag, S); |
| if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && |
| getLangOpts().CPlusPlus) |
| Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); |
| } |
| } |
| |
| return BuildDeclaratorGroup(Decls); |
| } |
| |
| /// BuildDeclaratorGroup - convert a list of declarations into a declaration |
| /// group, performing any necessary semantic checking. |
| Sema::DeclGroupPtrTy |
| Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { |
| // C++14 [dcl.spec.auto]p7: (DR1347) |
| // If the type that replaces the placeholder type is not the same in each |
| // deduction, the program is ill-formed. |
| if (Group.size() > 1) { |
| QualType Deduced; |
| VarDecl *DeducedDecl = nullptr; |
| for (unsigned i = 0, e = Group.size(); i != e; ++i) { |
| VarDecl *D = dyn_cast<VarDecl>(Group[i]); |
| if (!D || D->isInvalidDecl()) |
| break; |
| DeducedType *DT = D->getType()->getContainedDeducedType(); |
| if (!DT || DT->getDeducedType().isNull()) |
| continue; |
| if (Deduced.isNull()) { |
| Deduced = DT->getDeducedType(); |
| DeducedDecl = D; |
| } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { |
| auto *AT = dyn_cast<AutoType>(DT); |
| Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), |
| diag::err_auto_different_deductions) |
| << (AT ? (unsigned)AT->getKeyword() : 3) |
| << Deduced << DeducedDecl->getDeclName() |
| << DT->getDeducedType() << D->getDeclName() |
| << DeducedDecl->getInit()->getSourceRange() |
| << D->getInit()->getSourceRange(); |
| D->setInvalidDecl(); |
| break; |
| } |
| } |
| } |
| |
| ActOnDocumentableDecls(Group); |
| |
| return DeclGroupPtrTy::make( |
| DeclGroupRef::Create(Context, Group.data(), Group.size())); |
| } |
| |
| void Sema::ActOnDocumentableDecl(Decl *D) { |
| ActOnDocumentableDecls(D); |
| } |
| |
| void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { |
| // Don't parse the comment if Doxygen diagnostics are ignored. |
| if (Group.empty() || !Group[0]) |
| return; |
| |
| if (Diags.isIgnored(diag::warn_doc_param_not_found, |
| Group[0]->getLocation()) && |
| Diags.isIgnored(diag::warn_unknown_comment_command_name, |
| Group[0]->getLocation())) |
| return; |
| |
| if (Group.size() >= 2) { |
| // This is a decl group. Normally it will contain only declarations |
| // produced from declarator list. But in case we have any definitions or |
| // additional declaration references: |
| // 'typedef struct S {} S;' |
| // 'typedef struct S *S;' |
| // 'struct S *pS;' |
| // FinalizeDeclaratorGroup adds these as separate declarations. |
| Decl *MaybeTagDecl = Group[0]; |
| if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { |
| Group = Group.slice(1); |
| } |
| } |
| |
| // See if there are any new comments that are not attached to a decl. |
| ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments(); |
| if (!Comments.empty() && |
| !Comments.back()->isAttached()) { |
| // There is at least one comment that not attached to a decl. |
| // Maybe it should be attached to one of these decls? |
| // |
| // Note that this way we pick up not only comments that precede the |
| // declaration, but also comments that *follow* the declaration -- thanks to |
| // the lookahead in the lexer: we've consumed the semicolon and looked |
| // ahead through comments. |
| for (unsigned i = 0, e = Group.size(); i != e; ++i) |
| Context.getCommentForDecl(Group[i], &PP); |
| } |
| } |
| |
| /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() |
| /// to introduce parameters into function prototype scope. |
| Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { |
| const DeclSpec &DS = D.getDeclSpec(); |
| |
| // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. |
| |
| // C++03 [dcl.stc]p2 also permits 'auto'. |
| StorageClass SC = SC_None; |
| if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
| SC = SC_Register; |
| // In C++11, the 'register' storage class specifier is deprecated. |
| // In C++17, it is not allowed, but we tolerate it as an extension. |
| if (getLangOpts().CPlusPlus11) { |
| Diag(DS.getStorageClassSpecLoc(), |
| getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class |
| : diag::warn_deprecated_register) |
| << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
| } |
| } else if (getLangOpts().CPlusPlus && |
| DS.getStorageClassSpec() == DeclSpec::SCS_auto) { |
| SC = SC_Auto; |
| } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { |
| Diag(DS.getStorageClassSpecLoc(), |
| diag::err_invalid_storage_class_in_func_decl); |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) |
| Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) |
| << DeclSpec::getSpecifierName(TSCS); |
| if (DS.isInlineSpecified()) |
| Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
| << getLangOpts().CPlusPlus17; |
| if (DS.isConstexprSpecified()) |
| Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) |
| << 0; |
| |
| DiagnoseFunctionSpecifiers(DS); |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType parmDeclType = TInfo->getType(); |
| |
| if (getLangOpts().CPlusPlus) { |
| // Check that there are no default arguments inside the type of this |
| // parameter. |
| CheckExtraCXXDefaultArguments(D); |
| |
| // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
| if (D.getCXXScopeSpec().isSet()) { |
| Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) |
| << D.getCXXScopeSpec().getRange(); |
| D.getCXXScopeSpec().clear(); |
| } |
| } |
| |
| // Ensure we have a valid name |
| IdentifierInfo *II = nullptr; |
| if (D.hasName()) { |
| II = D.getIdentifier(); |
| if (!II) { |
| Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) |
| << GetNameForDeclarator(D).getName(); |
| D.setInvalidType(true); |
| } |
| } |
| |
| // Check for redeclaration of parameters, e.g. int foo(int x, int x); |
| if (II) { |
| LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, |
| ForVisibleRedeclaration); |
| LookupName(R, S); |
| if (R.isSingleResult()) { |
| NamedDecl *PrevDecl = R.getFoundDecl(); |
| if (PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = nullptr; |
| } else if (S->isDeclScope(PrevDecl)) { |
| Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| |
| // Recover by removing the name |
| II = nullptr; |
| D.SetIdentifier(nullptr, D.getIdentifierLoc()); |
| D.setInvalidType(true); |
| } |
| } |
| } |
| |
| // Temporarily put parameter variables in the translation unit, not |
| // the enclosing context. This prevents them from accidentally |
| // looking like class members in C++. |
| ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(), |
| D.getLocStart(), |
| D.getIdentifierLoc(), II, |
| parmDeclType, TInfo, |
| SC); |
| |
| if (D.isInvalidType()) |
| New->setInvalidDecl(); |
| |
| assert(S->isFunctionPrototypeScope()); |
| assert(S->getFunctionPrototypeDepth() >= 1); |
| New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, |
| S->getNextFunctionPrototypeIndex()); |
| |
| // Add the parameter declaration into this scope. |
| S->AddDecl(New); |
| if (II) |
| IdResolver.AddDecl(New); |
| |
| ProcessDeclAttributes(S, New, D); |
| |
| if (D.getDeclSpec().isModulePrivateSpecified()) |
| Diag(New->getLocation(), diag::err_module_private_local) |
| << 1 << New->getDeclName() |
| << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
| |
| if (New->hasAttr<BlocksAttr>()) { |
| Diag(New->getLocation(), diag::err_block_on_nonlocal); |
| } |
| return New; |
| } |
| |
| /// Synthesizes a variable for a parameter arising from a |
| /// typedef. |
| ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, |
| SourceLocation Loc, |
| QualType T) { |
| /* FIXME: setting StartLoc == Loc. |
| Would it be worth to modify callers so as to provide proper source |
| location for the unnamed parameters, embedding the parameter's type? */ |
| ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, |
| T, Context.getTrivialTypeSourceInfo(T, Loc), |
| SC_None, nullptr); |
| Param->setImplicit(); |
| return Param; |
| } |
| |
| void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { |
| // Don't diagnose unused-parameter errors in template instantiations; we |
| // will already have done so in the template itself. |
| if (inTemplateInstantiation()) |
| return; |
| |
| for (const ParmVarDecl *Parameter : Parameters) { |
| if (!Parameter->isReferenced() && Parameter->getDeclName() && |
| !Parameter->hasAttr<UnusedAttr>()) { |
| Diag(Parameter->getLocation(), diag::warn_unused_parameter) |
| << Parameter->getDeclName(); |
| } |
| } |
| } |
| |
| void Sema::DiagnoseSizeOfParametersAndReturnValue( |
| ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { |
| if (LangOpts.NumLargeByValueCopy == 0) // No check. |
| return; |
| |
| // Warn if the return value is pass-by-value and larger than the specified |
| // threshold. |
| if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { |
| unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); |
| if (Size > LangOpts.NumLargeByValueCopy) |
| Diag(D->getLocation(), diag::warn_return_value_size) |
| << D->getDeclName() << Size; |
| } |
| |
| // Warn if any parameter is pass-by-value and larger than the specified |
| // threshold. |
| for (const ParmVarDecl *Parameter : Parameters) { |
| QualType T = Parameter->getType(); |
| if (T->isDependentType() || !T.isPODType(Context)) |
| continue; |
| unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); |
| if (Size > LangOpts.NumLargeByValueCopy) |
| Diag(Parameter->getLocation(), diag::warn_parameter_size) |
| << Parameter->getDeclName() << Size; |
| } |
| } |
| |
| ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, |
| SourceLocation NameLoc, IdentifierInfo *Name, |
| QualType T, TypeSourceInfo *TSInfo, |
| StorageClass SC) { |
| // In ARC, infer a lifetime qualifier for appropriate parameter types. |
| if (getLangOpts().ObjCAutoRefCount && |
| T.getObjCLifetime() == Qualifiers::OCL_None && |
| T->isObjCLifetimeType()) { |
| |
| Qualifiers::ObjCLifetime lifetime; |
| |
| // Special cases for arrays: |
| // - if it's const, use __unsafe_unretained |
| // - otherwise, it's an error |
| if (T->isArrayType()) { |
| if (!T.isConstQualified()) { |
| DelayedDiagnostics.add( |
| sema::DelayedDiagnostic::makeForbiddenType( |
| NameLoc, diag::err_arc_array_param_no_ownership, T, false)); |
| } |
| lifetime = Qualifiers::OCL_ExplicitNone; |
| } else { |
| lifetime = T->getObjCARCImplicitLifetime(); |
| } |
| T = Context.getLifetimeQualifiedType(T, lifetime); |
| } |
| |
| ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, |
| Context.getAdjustedParameterType(T), |
| TSInfo, SC, nullptr); |
| |
| // Parameters can not be abstract class types. |
| // For record types, this is done by the AbstractClassUsageDiagnoser once |
| // the class has been completely parsed. |
| if (!CurContext->isRecord() && |
| RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, |
| AbstractParamType)) |
| New->setInvalidDecl(); |
| |
| // Parameter declarators cannot be interface types. All ObjC objects are |
| // passed by reference. |
| if (T->isObjCObjectType()) { |
| SourceLocation TypeEndLoc = |
| getLocForEndOfToken(TSInfo->getTypeLoc().getLocEnd()); |
| Diag(NameLoc, |
| diag::err_object_cannot_be_passed_returned_by_value) << 1 << T |
| << FixItHint::CreateInsertion(TypeEndLoc, "*"); |
| T = Context.getObjCObjectPointerType(T); |
| New->setType(T); |
| } |
| |
| // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
| // duration shall not be qualified by an address-space qualifier." |
| // Since all parameters have automatic store duration, they can not have |
| // an address space. |
| if (T.getAddressSpace() != LangAS::Default && |
| // OpenCL allows function arguments declared to be an array of a type |
| // to be qualified with an address space. |
| !(getLangOpts().OpenCL && |
| (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { |
| Diag(NameLoc, diag::err_arg_with_address_space); |
| New->setInvalidDecl(); |
| } |
| |
| return New; |
| } |
| |
| void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, |
| SourceLocation LocAfterDecls) { |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| |
| // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' |
| // for a K&R function. |
| if (!FTI.hasPrototype) { |
| for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { |
| --i; |
| if (FTI.Params[i].Param == nullptr) { |
| SmallString<256> Code; |
| llvm::raw_svector_ostream(Code) |
| << " int " << FTI.Params[i].Ident->getName() << ";\n"; |
| Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) |
| << FTI.Params[i].Ident |
| << FixItHint::CreateInsertion(LocAfterDecls, Code); |
| |
| // Implicitly declare the argument as type 'int' for lack of a better |
| // type. |
| AttributeFactory attrs; |
| DeclSpec DS(attrs); |
| const char* PrevSpec; // unused |
| unsigned DiagID; // unused |
| DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, |
| DiagID, Context.getPrintingPolicy()); |
| // Use the identifier location for the type source range. |
| DS.SetRangeStart(FTI.Params[i].IdentLoc); |
| DS.SetRangeEnd(FTI.Params[i].IdentLoc); |
| Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext); |
| ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); |
| FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); |
| } |
| } |
| } |
| } |
| |
| Decl * |
| Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, |
| MultiTemplateParamsArg TemplateParameterLists, |
| SkipBodyInfo *SkipBody) { |
| assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); |
| assert(D.isFunctionDeclarator() && "Not a function declarator!"); |
| Scope *ParentScope = FnBodyScope->getParent(); |
| |
| D.setFunctionDefinitionKind(FDK_Definition); |
| Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); |
| return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); |
| } |
| |
| void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { |
| Consumer.HandleInlineFunctionDefinition(D); |
| } |
| |
| static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, |
| const FunctionDecl*& PossibleZeroParamPrototype) { |
| // Don't warn about invalid declarations. |
| if (FD->isInvalidDecl()) |
| return false; |
| |
| // Or declarations that aren't global. |
| if (!FD->isGlobal()) |
| return false; |
| |
| // Don't warn about C++ member functions. |
| if (isa<CXXMethodDecl>(FD)) |
| return false; |
| |
| // Don't warn about 'main'. |
| if (FD->isMain()) |
| return false; |
| |
| // Don't warn about inline functions. |
| if (FD->isInlined()) |
| return false; |
| |
| // Don't warn about function templates. |
| if (FD->getDescribedFunctionTemplate()) |
| return false; |
| |
| // Don't warn about function template specializations. |
| if (FD->isFunctionTemplateSpecialization()) |
| return false; |
| |
| // Don't warn for OpenCL kernels. |
| if (FD->hasAttr<OpenCLKernelAttr>()) |
| return false; |
| |
| // Don't warn on explicitly deleted functions. |
| if (FD->isDeleted()) |
| return false; |
| |
| bool MissingPrototype = true; |
| for (const FunctionDecl *Prev = FD->getPreviousDecl(); |
| Prev; Prev = Prev->getPreviousDecl()) { |
| // Ignore any declarations that occur in function or method |
| // scope, because they aren't visible from the header. |
| if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) |
| continue; |
| |
| MissingPrototype = !Prev->getType()->isFunctionProtoType(); |
| if (FD->getNumParams() == 0) |
| PossibleZeroParamPrototype = Prev; |
| break; |
| } |
| |
| return MissingPrototype; |
| } |
| |
| void |
| Sema::CheckForFunctionRedefinition(FunctionDecl *FD, |
| const FunctionDecl *EffectiveDefinition, |
| SkipBodyInfo *SkipBody) { |
| const FunctionDecl *Definition = EffectiveDefinition; |
| if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) { |
| // If this is a friend function defined in a class template, it does not |
| // have a body until it is used, nevertheless it is a definition, see |
| // [temp.inst]p2: |
| // |
| // ... for the purpose of determining whether an instantiated redeclaration |
| // is valid according to [basic.def.odr] and [class.mem], a declaration that |
| // corresponds to a definition in the template is considered to be a |
| // definition. |
| // |
| // The following code must produce redefinition error: |
| // |
| // template<typename T> struct C20 { friend void func_20() {} }; |
| // C20<int> c20i; |
| // void func_20() {} |
| // |
| for (auto I : FD->redecls()) { |
| if (I != FD && !I->isInvalidDecl() && |
| I->getFriendObjectKind() != Decl::FOK_None) { |
| if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) { |
| if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { |
| // A merged copy of the same function, instantiated as a member of |
| // the same class, is OK. |
| if (declaresSameEntity(OrigFD, Original) && |
| declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()), |
| cast<Decl>(FD->getLexicalDeclContext()))) |
| continue; |
| } |
| |
| if (Original->isThisDeclarationADefinition()) { |
| Definition = I; |
| break; |
| } |
| } |
| } |
| } |
| } |
| if (!Definition) |
| return; |
| |
| if (canRedefineFunction(Definition, getLangOpts())) |
| return; |
| |
| // Don't emit an error when this is redefinition of a typo-corrected |
| // definition. |
| if (TypoCorrectedFunctionDefinitions.count(Definition)) |
| return; |
| |
| // If we don't have a visible definition of the function, and it's inline or |
| // a template, skip the new definition. |
| if (SkipBody && !hasVisibleDefinition(Definition) && |
| (Definition->getFormalLinkage() == InternalLinkage || |
| Definition->isInlined() || |
| Definition->getDescribedFunctionTemplate() || |
| Definition->getNumTemplateParameterLists())) { |
| SkipBody->ShouldSkip = true; |
| if (auto *TD = Definition->getDescribedFunctionTemplate()) |
| makeMergedDefinitionVisible(TD); |
| makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); |
| return; |
| } |
| |
| if (getLangOpts().GNUMode && Definition->isInlineSpecified() && |
| Definition->getStorageClass() == SC_Extern) |
| Diag(FD->getLocation(), diag::err_redefinition_extern_inline) |
| << FD->getDeclName() << getLangOpts().CPlusPlus; |
| else |
| Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); |
| |
| Diag(Definition->getLocation(), diag::note_previous_definition); |
| FD->setInvalidDecl(); |
| } |
| |
| static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, |
| Sema &S) { |
| CXXRecordDecl *const LambdaClass = CallOperator->getParent(); |
| |
| LambdaScopeInfo *LSI = S.PushLambdaScope(); |
| LSI->CallOperator = CallOperator; |
| LSI->Lambda = LambdaClass; |
| LSI->ReturnType = CallOperator->getReturnType(); |
| const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); |
| |
| if (LCD == LCD_None) |
| LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; |
| else if (LCD == LCD_ByCopy) |
| LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; |
| else if (LCD == LCD_ByRef) |
| LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; |
| DeclarationNameInfo DNI = CallOperator->getNameInfo(); |
| |
| LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); |
| LSI->Mutable = !CallOperator->isConst(); |
| |
| // Add the captures to the LSI so they can be noted as already |
| // captured within tryCaptureVar. |
| auto I = LambdaClass->field_begin(); |
| for (const auto &C : LambdaClass->captures()) { |
| if (C.capturesVariable()) { |
| VarDecl *VD = C.getCapturedVar(); |
| if (VD->isInitCapture()) |
| S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); |
| QualType CaptureType = VD->getType(); |
| const bool ByRef = C.getCaptureKind() == LCK_ByRef; |
| LSI->addCapture(VD, /*IsBlock*/false, ByRef, |
| /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), |
| /*EllipsisLoc*/C.isPackExpansion() |
| ? C.getEllipsisLoc() : SourceLocation(), |
| CaptureType, /*Expr*/ nullptr); |
| |
| } else if (C.capturesThis()) { |
| LSI->addThisCapture(/*Nested*/ false, C.getLocation(), |
| /*Expr*/ nullptr, |
| C.getCaptureKind() == LCK_StarThis); |
| } else { |
| LSI->addVLATypeCapture(C.getLocation(), I->getType()); |
| } |
| ++I; |
| } |
| } |
| |
| Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, |
| SkipBodyInfo *SkipBody) { |
| if (!D) { |
| // Parsing the function declaration failed in some way. Push on a fake scope |
| // anyway so we can try to parse the function body. |
| PushFunctionScope(); |
| return D; |
| } |
| |
| FunctionDecl *FD = nullptr; |
| |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) |
| FD = FunTmpl->getTemplatedDecl(); |
| else |
| FD = cast<FunctionDecl>(D); |
| |
| // Check for defining attributes before the check for redefinition. |
| if (const auto *Attr = FD->getAttr<AliasAttr>()) { |
| Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; |
| FD->dropAttr<AliasAttr>(); |
| FD->setInvalidDecl(); |
| } |
| if (const auto *Attr = FD->getAttr<IFuncAttr>()) { |
| Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; |
| FD->dropAttr<IFuncAttr>(); |
| FD->setInvalidDecl(); |
| } |
| |
| // See if this is a redefinition. If 'will have body' is already set, then |
| // these checks were already performed when it was set. |
| if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) { |
| CheckForFunctionRedefinition(FD, nullptr, SkipBody); |
| |
| // If we're skipping the body, we're done. Don't enter the scope. |
| if (SkipBody && SkipBody->ShouldSkip) |
| return D; |
| } |
| |
| // Mark this function as "will have a body eventually". This lets users to |
| // call e.g. isInlineDefinitionExternallyVisible while we're still parsing |
| // this function. |
| FD->setWillHaveBody(); |
| |
| // If we are instantiating a generic lambda call operator, push |
| // a LambdaScopeInfo onto the function stack. But use the information |
| // that's already been calculated (ActOnLambdaExpr) to prime the current |
| // LambdaScopeInfo. |
| // When the template operator is being specialized, the LambdaScopeInfo, |
| // has to be properly restored so that tryCaptureVariable doesn't try |
| // and capture any new variables. In addition when calculating potential |
| // captures during transformation of nested lambdas, it is necessary to |
| // have the LSI properly restored. |
| if (isGenericLambdaCallOperatorSpecialization(FD)) { |
| assert(inTemplateInstantiation() && |
| "There should be an active template instantiation on the stack " |
| "when instantiating a generic lambda!"); |
| RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); |
| } else { |
| // Enter a new function scope |
| PushFunctionScope(); |
| } |
| |
| // Builtin functions cannot be defined. |
| if (unsigned BuiltinID = FD->getBuiltinID()) { |
| if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && |
| !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { |
| Diag(FD->getLocation(), diag::err_builtin_definition) << FD; |
| FD->setInvalidDecl(); |
| } |
| } |
| |
| // The return type of a function definition must be complete |
| // (C99 6.9.1p3, C++ [dcl.fct]p6). |
| QualType ResultType = FD->getReturnType(); |
| if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
| !FD->isInvalidDecl() && |
| RequireCompleteType(FD->getLocation(), ResultType, |
| diag::err_func_def_incomplete_result)) |
| FD->setInvalidDecl(); |
| |
| if (FnBodyScope) |
| PushDeclContext(FnBodyScope, FD); |
| |
| // Check the validity of our function parameters |
| CheckParmsForFunctionDef(FD->parameters(), |
| /*CheckParameterNames=*/true); |
| |
| // Add non-parameter declarations already in the function to the current |
| // scope. |
| if (FnBodyScope) { |
| for (Decl *NPD : FD->decls()) { |
| auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); |
| if (!NonParmDecl) |
| continue; |
| assert(!isa<ParmVarDecl>(NonParmDecl) && |
| "parameters should not be in newly created FD yet"); |
| |
| // If the decl has a name, make it accessible in the current scope. |
| if (NonParmDecl->getDeclName()) |
| PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); |
| |
| // Similarly, dive into enums and fish their constants out, making them |
| // accessible in this scope. |
| if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { |
| for (auto *EI : ED->enumerators()) |
| PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); |
| } |
| } |
| } |
| |
| // Introduce our parameters into the function scope |
| for (auto Param : FD->parameters()) { |
| Param->setOwningFunction(FD); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Param->getIdentifier() && FnBodyScope) { |
| CheckShadow(FnBodyScope, Param); |
| |
| PushOnScopeChains(Param, FnBodyScope); |
| } |
| } |
| |
| // Ensure that the function's exception specification is instantiated. |
| if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) |
| ResolveExceptionSpec(D->getLocation(), FPT); |
| |
| // dllimport cannot be applied to non-inline function definitions. |
| if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && |
| !FD->isTemplateInstantiation()) { |
| assert(!FD->hasAttr<DLLExportAttr>()); |
| Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); |
| FD->setInvalidDecl(); |
| return D; |
| } |
| // We want to attach documentation to original Decl (which might be |
| // a function template). |
| ActOnDocumentableDecl(D); |
| if (getCurLexicalContext()->isObjCContainer() && |
| getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && |
| getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) |
| Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); |
| |
| return D; |
| } |
| |
| /// Given the set of return statements within a function body, |
| /// compute the variables that are subject to the named return value |
| /// optimization. |
| /// |
| /// Each of the variables that is subject to the named return value |
| /// optimization will be marked as NRVO variables in the AST, and any |
| /// return statement that has a marked NRVO variable as its NRVO candidate can |
| /// use the named return value optimization. |
| /// |
| /// This function applies a very simplistic algorithm for NRVO: if every return |
| /// statement in the scope of a variable has the same NRVO candidate, that |
| /// candidate is an NRVO variable. |
| void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { |
| ReturnStmt **Returns = Scope->Returns.data(); |
| |
| for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { |
| if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { |
| if (!NRVOCandidate->isNRVOVariable()) |
| Returns[I]->setNRVOCandidate(nullptr); |
| } |
| } |
| } |
| |
| bool Sema::canDelayFunctionBody(const Declarator &D) { |
| // We can't delay parsing the body of a constexpr function template (yet). |
| if (D.getDeclSpec().isConstexprSpecified()) |
| return false; |
| |
| // We can't delay parsing the body of a function template with a deduced |
| // return type (yet). |
| if (D.getDeclSpec().hasAutoTypeSpec()) { |
| // If the placeholder introduces a non-deduced trailing return type, |
| // we can still delay parsing it. |
| if (D.getNumTypeObjects()) { |
| const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); |
| if (Outer.Kind == DeclaratorChunk::Function && |
| Outer.Fun.hasTrailingReturnType()) { |
| QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); |
| return Ty.isNull() || !Ty->isUndeducedType(); |
| } |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Sema::canSkipFunctionBody(Decl *D) { |
| // We cannot skip the body of a function (or function template) which is |
| // constexpr, since we may need to evaluate its body in order to parse the |
| // rest of the file. |
| // We cannot skip the body of a function with an undeduced return type, |
| // because any callers of that function need to know the type. |
| if (const FunctionDecl *FD = D->getAsFunction()) { |
| if (FD->isConstexpr()) |
| return false; |
| // We can't simply call Type::isUndeducedType here, because inside template |
| // auto can be deduced to a dependent type, which is not considered |
| // "undeduced". |
| if (FD->getReturnType()->getContainedDeducedType()) |
| return false; |
| } |
| return Consumer.shouldSkipFunctionBody(D); |
| } |
| |
| Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { |
| if (!Decl) |
| return nullptr; |
| if (FunctionDecl *FD = Decl->getAsFunction()) |
| FD->setHasSkippedBody(); |
| else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) |
| MD->setHasSkippedBody(); |
| return Decl; |
| } |
| |
| Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { |
| return ActOnFinishFunctionBody(D, BodyArg, false); |
| } |
| |
| Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, |
| bool IsInstantiation) { |
| FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; |
| |
| sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); |
| sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; |
| |
| if (getLangOpts().CoroutinesTS && getCurFunction()->isCoroutine()) |
| CheckCompletedCoroutineBody(FD, Body); |
| |
| if (FD) { |
| FD->setBody(Body); |
| FD->setWillHaveBody(false); |
| |
| if (getLangOpts().CPlusPlus14) { |
| if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && |
| FD->getReturnType()->isUndeducedType()) { |
| // If the function has a deduced result type but contains no 'return' |
| // statements, the result type as written must be exactly 'auto', and |
| // the deduced result type is 'void'. |
| if (!FD->getReturnType()->getAs<AutoType>()) { |
| Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) |
| << FD->getReturnType(); |
| FD->setInvalidDecl(); |
| } else { |
| // Substitute 'void' for the 'auto' in the type. |
| TypeLoc ResultType = getReturnTypeLoc(FD); |
| Context.adjustDeducedFunctionResultType( |
| FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); |
| } |
| } |
| } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { |
| // In C++11, we don't use 'auto' deduction rules for lambda call |
| // operators because we don't support return type deduction. |
| auto *LSI = getCurLambda(); |
| if (LSI->HasImplicitReturnType) { |
| deduceClosureReturnType(*LSI); |
| |
| // C++11 [expr.prim.lambda]p4: |
| // [...] if there are no return statements in the compound-statement |
| // [the deduced type is] the type void |
| QualType RetType = |
| LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; |
| |
| // Update the return type to the deduced type. |
| const FunctionProtoType *Proto = |
| FD->getType()->getAs<FunctionProtoType>(); |
| FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), |
| Proto->getExtProtoInfo())); |
| } |
| } |
| |
| // If the function implicitly returns zero (like 'main') or is naked, |
| // don't complain about missing return statements. |
| if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) |
| WP.disableCheckFallThrough(); |
| |
| // MSVC permits the use of pure specifier (=0) on function definition, |
| // defined at class scope, warn about this non-standard construct. |
| if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl()) |
| Diag(FD->getLocation(), diag::ext_pure_function_definition); |
| |
| if (!FD->isInvalidDecl()) { |
| // Don't diagnose unused parameters of defaulted or deleted functions. |
| if (!FD->isDeleted() && !FD->isDefaulted()) |
| DiagnoseUnusedParameters(FD->parameters()); |
| DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), |
| FD->getReturnType(), FD); |
| |
| // If this is a structor, we need a vtable. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) |
| MarkVTableUsed(FD->getLocation(), Constructor->getParent()); |
| else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) |
| MarkVTableUsed(FD->getLocation(), Destructor->getParent()); |
| |
| // Try to apply the named return value optimization. We have to check |
| // if we can do this here because lambdas keep return statements around |
| // to deduce an implicit return type. |
| if (FD->getReturnType()->isRecordType() && |
| (!getLangOpts().CPlusPlus || !FD->isDependentContext())) |
| computeNRVO(Body, getCurFunction()); |
| } |
| |
| // GNU warning -Wmissing-prototypes: |
| // Warn if a global function is defined without a previous |
| // prototype declaration. This warning is issued even if the |
| // definition itself provides a prototype. The aim is to detect |
| // global functions that fail to be declared in header files. |
| const FunctionDecl *PossibleZeroParamPrototype = nullptr; |
| if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) { |
| Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; |
| |
| if (PossibleZeroParamPrototype) { |
| // We found a declaration that is not a prototype, |
| // but that could be a zero-parameter prototype |
| if (TypeSourceInfo *TI = |
| PossibleZeroParamPrototype->getTypeSourceInfo()) { |
| TypeLoc TL = TI->getTypeLoc(); |
| if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) |
| Diag(PossibleZeroParamPrototype->getLocation(), |
| diag::note_declaration_not_a_prototype) |
| << PossibleZeroParamPrototype |
| << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void"); |
| } |
| } |
| |
| // GNU warning -Wstrict-prototypes |
| // Warn if K&R function is defined without a previous declaration. |
| // This warning is issued only if the definition itself does not provide |
| // a prototype. Only K&R definitions do not provide a prototype. |
| // An empty list in a function declarator that is part of a definition |
| // of that function specifies that the function has no parameters |
| // (C99 6.7.5.3p14) |
| if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 && |
| !LangOpts.CPlusPlus) { |
| TypeSourceInfo *TI = FD->getTypeSourceInfo(); |
| TypeLoc TL = TI->getTypeLoc(); |
| FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); |
| Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; |
| } |
| } |
| |
| // Warn on CPUDispatch with an actual body. |
| if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) |
| if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) |
| if (!CmpndBody->body_empty()) |
| Diag(CmpndBody->body_front()->getLocStart(), |
| diag::warn_dispatch_body_ignored); |
| |
| if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| const CXXMethodDecl *KeyFunction; |
| if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && |
| MD->isVirtual() && |
| (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && |
| MD == KeyFunction->getCanonicalDecl()) { |
| // Update the key-function state if necessary for this ABI. |
| if (FD->isInlined() && |
| !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
| Context.setNonKeyFunction(MD); |
| |
| // If the newly-chosen key function is already defined, then we |
| // need to mark the vtable as used retroactively. |
| KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); |
| const FunctionDecl *Definition; |
| if (KeyFunction && KeyFunction->isDefined(Definition)) |
| MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); |
| } else { |
| // We just defined they key function; mark the vtable as used. |
| MarkVTableUsed(FD->getLocation(), MD->getParent(), true); |
| } |
| } |
| } |
| |
| assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && |
| "Function parsing confused"); |
| } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { |
| assert(MD == getCurMethodDecl() && "Method parsing confused"); |
| MD->setBody(Body); |
| if (!MD->isInvalidDecl()) { |
| DiagnoseUnusedParameters(MD->parameters()); |
| DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), |
| MD->getReturnType(), MD); |
| |
| if (Body) |
| computeNRVO(Body, getCurFunction()); |
| } |
| if (getCurFunction()->ObjCShouldCallSuper) { |
| Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call) |
| << MD->getSelector().getAsString(); |
| getCurFunction()->ObjCShouldCallSuper = false; |
| } |
| if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { |
| const ObjCMethodDecl *InitMethod = nullptr; |
| bool isDesignated = |
| MD->isDesignatedInitializerForTheInterface(&InitMethod); |
| assert(isDesignated && InitMethod); |
| (void)isDesignated; |
| |
| auto superIsNSObject = [&](const ObjCMethodDecl *MD) { |
| auto IFace = MD->getClassInterface(); |
| if (!IFace) |
| return false; |
| auto SuperD = IFace->getSuperClass(); |
| if (!SuperD) |
| return false; |
| return SuperD->getIdentifier() == |
| NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); |
| }; |
| // Don't issue this warning for unavailable inits or direct subclasses |
| // of NSObject. |
| if (!MD->isUnavailable() && !superIsNSObject(MD)) { |
| Diag(MD->getLocation(), |
| diag::warn_objc_designated_init_missing_super_call); |
| Diag(InitMethod->getLocation(), |
| diag::note_objc_designated_init_marked_here); |
| } |
| getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; |
| } |
| if (getCurFunction()->ObjCWarnForNoInitDelegation) { |
| // Don't issue this warning for unavaialable inits. |
| if (!MD->isUnavailable()) |
| Diag(MD->getLocation(), |
| diag::warn_objc_secondary_init_missing_init_call); |
| getCurFunction()->ObjCWarnForNoInitDelegation = false; |
| } |
| } else { |
| // Parsing the function declaration failed in some way. Pop the fake scope |
| // we pushed on. |
| PopFunctionScopeInfo(ActivePolicy, dcl); |
| return nullptr; |
| } |
| |
| if (Body && getCurFunction()->HasPotentialAvailabilityViolations) |
| DiagnoseUnguardedAvailabilityViolations(dcl); |
| |
| assert(!getCurFunction()->ObjCShouldCallSuper && |
| "This should only be set for ObjC methods, which should have been " |
| "handled in the block above."); |
| |
| // Verify and clean out per-function state. |
| if (Body && (!FD || !FD->isDefaulted())) { |
| // C++ constructors that have function-try-blocks can't have return |
| // statements in the handlers of that block. (C++ [except.handle]p14) |
| // Verify this. |
| if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) |
| DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); |
| |
| // Verify that gotos and switch cases don't jump into scopes illegally. |
| if (getCurFunction()->NeedsScopeChecking() && |
| !PP.isCodeCompletionEnabled()) |
| DiagnoseInvalidJumps(Body); |
| |
| if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { |
| if (!Destructor->getParent()->isDependentType()) |
| CheckDestructor(Destructor); |
| |
| MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), |
| Destructor->getParent()); |
| } |
| |
| // If any errors have occurred, clear out any temporaries that may have |
| // been leftover. This ensures that these temporaries won't be picked up for |
| // deletion in some later function. |
| if (getDiagnostics().hasErrorOccurred() || |
| getDiagnostics().getSuppressAllDiagnostics()) { |
| DiscardCleanupsInEvaluationContext(); |
| } |
| if (!getDiagnostics().hasUncompilableErrorOccurred() && |
| !isa<FunctionTemplateDecl>(dcl)) { |
| // Since the body is valid, issue any analysis-based warnings that are |
| // enabled. |
| ActivePolicy = &WP; |
| } |
| |
| if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && |
| (!CheckConstexprFunctionDecl(FD) || |
| !CheckConstexprFunctionBody(FD, Body))) |
| FD->setInvalidDecl(); |
| |
| if (FD && FD->hasAttr<NakedAttr>()) { |
| for (const Stmt *S : Body->children()) { |
| // Allow local register variables without initializer as they don't |
| // require prologue. |
| bool RegisterVariables = false; |
| if (auto *DS = dyn_cast<DeclStmt>(S)) { |
| for (const auto *Decl : DS->decls()) { |
| if (const auto *Var = dyn_cast<VarDecl>(Decl)) { |
| RegisterVariables = |
| Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); |
| if (!RegisterVariables) |
| break; |
| } |
| } |
| } |
| if (RegisterVariables) |
| continue; |
| if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { |
| Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function); |
| Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); |
| FD->setInvalidDecl(); |
| break; |
| } |
| } |
| } |
| |
| assert(ExprCleanupObjects.size() == |
| ExprEvalContexts.back().NumCleanupObjects && |
| "Leftover temporaries in function"); |
| assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"); |
| assert(MaybeODRUseExprs.empty() && |
| "Leftover expressions for odr-use checking"); |
| } |
| |
| if (!IsInstantiation) |
| PopDeclContext(); |
| |
| PopFunctionScopeInfo(ActivePolicy, dcl); |
| // If any errors have occurred, clear out any temporaries that may have |
| // been leftover. This ensures that these temporaries won't be picked up for |
| // deletion in some later function. |
| if (getDiagnostics().hasErrorOccurred()) { |
| DiscardCleanupsInEvaluationContext(); |
| } |
| |
| return dcl; |
| } |
| |
| /// When we finish delayed parsing of an attribute, we must attach it to the |
| /// relevant Decl. |
| void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, |
| ParsedAttributes &Attrs) { |
| // Always attach attributes to the underlying decl. |
| if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) |
| D = TD->getTemplatedDecl(); |
| ProcessDeclAttributeList(S, D, Attrs); |
| |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) |
| if (Method->isStatic()) |
| checkThisInStaticMemberFunctionAttributes(Method); |
| } |
| |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
| NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
| IdentifierInfo &II, Scope *S) { |
| // Find the scope in which the identifier is injected and the corresponding |
| // DeclContext. |
| // FIXME: C89 does not say what happens if there is no enclosing block scope. |
| // In that case, we inject the declaration into the translation unit scope |
| // instead. |
| Scope *BlockScope = S; |
| while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) |
| BlockScope = BlockScope->getParent(); |
| |
| Scope *ContextScope = BlockScope; |
| while (!ContextScope->getEntity()) |
| ContextScope = ContextScope->getParent(); |
| ContextRAII SavedContext(*this, ContextScope->getEntity()); |
| |
| // Before we produce a declaration for an implicitly defined |
| // function, see whether there was a locally-scoped declaration of |
| // this name as a function or variable. If so, use that |
| // (non-visible) declaration, and complain about it. |
| NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); |
| if (ExternCPrev) { |
| // We still need to inject the function into the enclosing block scope so |
| // that later (non-call) uses can see it. |
| PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); |
| |
| // C89 footnote 38: |
| // If in fact it is not defined as having type "function returning int", |
| // the behavior is undefined. |
| if (!isa<FunctionDecl>(ExternCPrev) || |
| !Context.typesAreCompatible( |
| cast<FunctionDecl>(ExternCPrev)->getType(), |
| Context.getFunctionNoProtoType(Context.IntTy))) { |
| Diag(Loc, diag::ext_use_out_of_scope_declaration) |
| << ExternCPrev << !getLangOpts().C99; |
| Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); |
| return ExternCPrev; |
| } |
| } |
| |
| // Extension in C99. Legal in C90, but warn about it. |
| // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. |
| unsigned diag_id; |
| if (II.getName().startswith("__builtin_")) |
| diag_id = diag::warn_builtin_unknown; |
| else if (getLangOpts().C99 || getLangOpts().OpenCL) |
| diag_id = diag::ext_implicit_function_decl; |
| else |
| diag_id = diag::warn_implicit_function_decl; |
| Diag(Loc, diag_id) << &II << getLangOpts().OpenCL; |
| |
| // If we found a prior declaration of this function, don't bother building |
| // another one. We've already pushed that one into scope, so there's nothing |
| // more to do. |
| if (ExternCPrev) |
| return ExternCPrev; |
| |
| // Because typo correction is expensive, only do it if the implicit |
| // function declaration is going to be treated as an error. |
| if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { |
| TypoCorrection Corrected; |
| if (S && |
| (Corrected = CorrectTypo( |
| DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr, |
| llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError))) |
| diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), |
| /*ErrorRecovery*/false); |
| } |
| |
| // Set a Declarator for the implicit definition: int foo(); |
| const char *Dummy; |
| AttributeFactory attrFactory; |
| DeclSpec DS(attrFactory); |
| unsigned DiagID; |
| bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, |
| Context.getPrintingPolicy()); |
| (void)Error; // Silence warning. |
| assert(!Error && "Error setting up implicit decl!"); |
| SourceLocation NoLoc; |
| Declarator D(DS, DeclaratorContext::BlockContext); |
| D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, |
| /*IsAmbiguous=*/false, |
| /*LParenLoc=*/NoLoc, |
| /*Params=*/nullptr, |
| /*NumParams=*/0, |
| /*EllipsisLoc=*/NoLoc, |
| /*RParenLoc=*/NoLoc, |
| /*TypeQuals=*/0, |
| /*RefQualifierIsLvalueRef=*/true, |
| /*RefQualifierLoc=*/NoLoc, |
| /*ConstQualifierLoc=*/NoLoc, |
| /*VolatileQualifierLoc=*/NoLoc, |
| /*RestrictQualifierLoc=*/NoLoc, |
| /*MutableLoc=*/NoLoc, EST_None, |
| /*ESpecRange=*/SourceRange(), |
| /*Exceptions=*/nullptr, |
| /*ExceptionRanges=*/nullptr, |
| /*NumExceptions=*/0, |
| /*NoexceptExpr=*/nullptr, |
| /*ExceptionSpecTokens=*/nullptr, |
| /*DeclsInPrototype=*/None, Loc, |
| Loc, D), |
| std::move(DS.getAttributes()), SourceLocation()); |
| D.SetIdentifier(&II, Loc); |
| |
| // Insert this function into the enclosing block scope. |
| FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); |
| FD->setImplicit(); |
| |
| AddKnownFunctionAttributes(FD); |
| |
| return FD; |
| } |
| |
| /// Adds any function attributes that we know a priori based on |
| /// the declaration of this function. |
| /// |
| /// These attributes can apply both to implicitly-declared builtins |
| /// (like __builtin___printf_chk) or to library-declared functions |
| /// like NSLog or printf. |
| /// |
| /// We need to check for duplicate attributes both here and where user-written |
| /// attributes are applied to declarations. |
| void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { |
| if (FD->isInvalidDecl()) |
| return; |
| |
| // If this is a built-in function, map its builtin attributes to |
| // actual attributes. |
| if (unsigned BuiltinID = FD->getBuiltinID()) { |
| // Handle printf-formatting attributes. |
| unsigned FormatIdx; |
| bool HasVAListArg; |
| if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { |
| if (!FD->hasAttr<FormatAttr>()) { |
| const char *fmt = "printf"; |
| unsigned int NumParams = FD->getNumParams(); |
| if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) |
| FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) |
| fmt = "NSString"; |
| FD->addAttr(FormatAttr::CreateImplicit(Context, |
| &Context.Idents.get(fmt), |
| FormatIdx+1, |
| HasVAListArg ? 0 : FormatIdx+2, |
| FD->getLocation())); |
| } |
| } |
| if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, |
| HasVAListArg)) { |
| if (!FD->hasAttr<FormatAttr>()) |
| FD->addAttr(FormatAttr::CreateImplicit(Context, |
| &Context.Idents.get("scanf"), |
| FormatIdx+1, |
| HasVAListArg ? 0 : FormatIdx+2, |
| FD->getLocation())); |
| } |
| |
| // Mark const if we don't care about errno and that is the only thing |
| // preventing the function from being const. This allows IRgen to use LLVM |
| // intrinsics for such functions. |
| if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && |
| Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) |
| FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
| |
| // We make "fma" on some platforms const because we know it does not set |
| // errno in those environments even though it could set errno based on the |
| // C standard. |
| const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); |
| if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && |
| !FD->hasAttr<ConstAttr>()) { |
| switch (BuiltinID) { |
| case Builtin::BI__builtin_fma: |
| case Builtin::BI__builtin_fmaf: |
| case Builtin::BI__builtin_fmal: |
| case Builtin::BIfma: |
| case Builtin::BIfmaf: |
| case Builtin::BIfmal: |
| FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && |
| !FD->hasAttr<ReturnsTwiceAttr>()) |
| FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, |
| FD->getLocation())); |
| if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) |
| FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); |
| if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) |
| FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); |
| if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) |
| FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
| if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && |
| !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { |
| // Add the appropriate attribute, depending on the CUDA compilation mode |
| // and which target the builtin belongs to. For example, during host |
| // compilation, aux builtins are __device__, while the rest are __host__. |
| if (getLangOpts().CUDAIsDevice != |
| Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) |
| FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); |
| else |
| FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); |
| } |
| } |
| |
| // If C++ exceptions are enabled but we are told extern "C" functions cannot |
| // throw, add an implicit nothrow attribute to any extern "C" function we come |
| // across. |
| if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && |
| FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { |
| const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); |
| if (!FPT || FPT->getExceptionSpecType() == EST_None) |
| FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); |
| } |
| |
| IdentifierInfo *Name = FD->getIdentifier(); |
| if (!Name) |
| return; |
| if ((!getLangOpts().CPlusPlus && |
| FD->getDeclContext()->isTranslationUnit()) || |
| (isa<LinkageSpecDecl>(FD->getDeclContext()) && |
| cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == |
| LinkageSpecDecl::lang_c)) { |
| // Okay: this could be a libc/libm/Objective-C function we know |
| // about. |
| } else |
| return; |
| |
| if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { |
| // FIXME: asprintf and vasprintf aren't C99 functions. Should they be |
| // target-specific builtins, perhaps? |
| if (!FD->hasAttr<FormatAttr>()) |
| FD->addAttr(FormatAttr::CreateImplicit(Context, |
| &Context.Idents.get("printf"), 2, |
| Name->isStr("vasprintf") ? 0 : 3, |
| FD->getLocation())); |
| } |
| |
| if (Name->isStr("__CFStringMakeConstantString")) { |
| // We already have a __builtin___CFStringMakeConstantString, |
| // but builds that use -fno-constant-cfstrings don't go through that. |
| if (!FD->hasAttr<FormatArgAttr>()) |
| FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), |
| FD->getLocation())); |
| } |
| } |
| |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, |
| TypeSourceInfo *TInfo) { |
| assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| if (!TInfo) { |
| assert(D.isInvalidType() && "no declarator info for valid type"); |
| TInfo = Context.getTrivialTypeSourceInfo(T); |
| } |
| |
| // Scope manipulation handled by caller. |
| TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, |
| D.getLocStart(), |
| D.getIdentifierLoc(), |
| D.getIdentifier(), |
| TInfo); |
| |
| // Bail out immediately if we have an invalid declaration. |
| if (D.isInvalidType()) { |
| NewTD->setInvalidDecl(); |
| return NewTD; |
| } |
| |
| if (D.getDeclSpec().isModulePrivateSpecified()) { |
| if (CurContext->isFunctionOrMethod()) |
| Diag(NewTD->getLocation(), diag::err_module_private_local) |
| << 2 << NewTD->getDeclName() |
| << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
| else |
| NewTD->setModulePrivate(); |
| } |
| |
| // C++ [dcl.typedef]p8: |
| // If the typedef declaration defines an unnamed class (or |
| // enum), the first typedef-name declared by the declaration |
| // to be that class type (or enum type) is used to denote the |
| // class type (or enum type) for linkage purposes only. |
| // We need to check whether the type was declared in the declaration. |
| switch (D.getDeclSpec().getTypeSpecType()) { |
| case TST_enum: |
| case TST_struct: |
| case TST_interface: |
| case TST_union: |
| case TST_class: { |
| TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); |
| setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| return NewTD; |
| } |
| |
| /// Check that this is a valid underlying type for an enum declaration. |
| bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { |
| SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
| QualType T = TI->getType(); |
| |
| if (T->isDependentType()) |
| return false; |
| |
| if (const BuiltinType *BT = T->getAs<BuiltinType>()) |
| if (BT->isInteger()) |
| return false; |
| |
| Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; |
| return true; |
| } |
| |
| /// Check whether this is a valid redeclaration of a previous enumeration. |
| /// \return true if the redeclaration was invalid. |
| bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, |
| QualType EnumUnderlyingTy, bool IsFixed, |
| const EnumDecl *Prev) { |
| if (IsScoped != Prev->isScoped()) { |
| Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) |
| << Prev->isScoped(); |
| Diag(Prev->getLocation(), diag::note_previous_declaration); |
| return true; |
| } |
| |
| if (IsFixed && Prev->isFixed()) { |
| if (!EnumUnderlyingTy->isDependentType() && |
| !Prev->getIntegerType()->isDependentType() && |
| !Context.hasSameUnqualifiedType(EnumUnderlyingTy, |
| Prev->getIntegerType())) { |
| // TODO: Highlight the underlying type of the redeclaration. |
| Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) |
| << EnumUnderlyingTy << Prev->getIntegerType(); |
| Diag(Prev->getLocation(), diag::note_previous_declaration) |
| << Prev->getIntegerTypeRange(); |
| return true; |
| } |
| } else if (IsFixed != Prev->isFixed()) { |
| Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) |
| << Prev->isFixed(); |
| Diag(Prev->getLocation(), diag::note_previous_declaration); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Get diagnostic %select index for tag kind for |
| /// redeclaration diagnostic message. |
| /// WARNING: Indexes apply to particular diagnostics only! |
| /// |
| /// \returns diagnostic %select index. |
| static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { |
| switch (Tag) { |
| case TTK_Struct: return 0; |
| case TTK_Interface: return 1; |
| case TTK_Class: return 2; |
| default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); |
| } |
| } |
| |
| /// Determine if tag kind is a class-key compatible with |
| /// class for redeclaration (class, struct, or __interface). |
| /// |
| /// \returns true iff the tag kind is compatible. |
| static bool isClassCompatTagKind(TagTypeKind Tag) |
| { |
| return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; |
| } |
| |
| Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, |
| TagTypeKind TTK) { |
| if (isa<TypedefDecl>(PrevDecl)) |
| return NTK_Typedef; |
| else if (isa<TypeAliasDecl>(PrevDecl)) |
| return NTK_TypeAlias; |
| else if (isa<ClassTemplateDecl>(PrevDecl)) |
| return NTK_Template; |
| else if (isa<TypeAliasTemplateDecl>(PrevDecl)) |
| return NTK_TypeAliasTemplate; |
| else if (isa<TemplateTemplateParmDecl>(PrevDecl)) |
| return NTK_TemplateTemplateArgument; |
| switch (TTK) { |
| case TTK_Struct: |
| case TTK_Interface: |
| case TTK_Class: |
| return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; |
| case TTK_Union: |
| return NTK_NonUnion; |
| case TTK_Enum: |
| return NTK_NonEnum; |
| } |
| llvm_unreachable("invalid TTK"); |
| } |
| |
| /// Determine whether a tag with a given kind is acceptable |
| /// as a redeclaration of the given tag declaration. |
| /// |
| /// \returns true if the new tag kind is acceptable, false otherwise. |
| bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, |
| TagTypeKind NewTag, bool isDefinition, |
| SourceLocation NewTagLoc, |
| const IdentifierInfo *Name) { |
| // C++ [dcl.type.elab]p3: |
| // The class-key or enum keyword present in the |
| // elaborated-type-specifier shall agree in kind with the |
| // declaration to which the name in the elaborated-type-specifier |
| // refers. This rule also applies to the form of |
| // elaborated-type-specifier that declares a class-name or |
| // friend class since it can be construed as referring to the |
| // definition of the class. Thus, in any |
| // elaborated-type-specifier, the enum keyword shall be used to |
| // refer to an enumeration (7.2), the union class-key shall be |
| // used to refer to a union (clause 9), and either the class or |
| // struct class-key shall be used to refer to a class (clause 9) |
| // declared using the class or struct class-key. |
| TagTypeKind OldTag = Previous->getTagKind(); |
| if (!isDefinition || !isClassCompatTagKind(NewTag)) |
| if (OldTag == NewTag) |
| return true; |
| |
| if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) { |
| // Warn about the struct/class tag mismatch. |
| bool isTemplate = false; |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) |
| isTemplate = Record->getDescribedClassTemplate(); |
| |
| if (inTemplateInstantiation()) { |
| // In a template instantiation, do not offer fix-its for tag mismatches |
| // since they usually mess up the template instead of fixing the problem. |
| Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) |
| << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
| << getRedeclDiagFromTagKind(OldTag); |
| return true; |
| } |
| |
| if (isDefinition) { |
| // On definitions, check previous tags and issue a fix-it for each |
| // one that doesn't match the current tag. |
| if (Previous->getDefinition()) { |
| // Don't suggest fix-its for redefinitions. |
| return true; |
| } |
| |
| bool previousMismatch = false; |
| for (auto I : Previous->redecls()) { |
| if (I->getTagKind() != NewTag) { |
| if (!previousMismatch) { |
| previousMismatch = true; |
| Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) |
| << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
| << getRedeclDiagFromTagKind(I->getTagKind()); |
| } |
| Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) |
| << getRedeclDiagFromTagKind(NewTag) |
| << FixItHint::CreateReplacement(I->getInnerLocStart(), |
| TypeWithKeyword::getTagTypeKindName(NewTag)); |
| } |
| } |
| return true; |
| } |
| |
| // Check for a previous definition. If current tag and definition |
| // are same type, do nothing. If no definition, but disagree with |
| // with previous tag type, give a warning, but no fix-it. |
| const TagDecl *Redecl = Previous->getDefinition() ? |
| Previous->getDefinition() : Previous; |
| if (Redecl->getTagKind() == NewTag) { |
| return true; |
| } |
| |
| Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) |
| << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
| << getRedeclDiagFromTagKind(OldTag); |
| Diag(Redecl->getLocation(), diag::note_previous_use); |
| |
| // If there is a previous definition, suggest a fix-it. |
| if (Previous->getDefinition()) { |
| Diag(NewTagLoc, diag::note_struct_class_suggestion) |
| << getRedeclDiagFromTagKind(Redecl->getTagKind()) |
| << FixItHint::CreateReplacement(SourceRange(NewTagLoc), |
| TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); |
| } |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name |
| /// from an outer enclosing namespace or file scope inside a friend declaration. |
| /// This should provide the commented out code in the following snippet: |
| /// namespace N { |
| /// struct X; |
| /// namespace M { |
| /// struct Y { friend struct /*N::*/ X; }; |
| /// } |
| /// } |
| static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, |
| SourceLocation NameLoc) { |
| // While the decl is in a namespace, do repeated lookup of that name and see |
| // if we get the same namespace back. If we do not, continue until |
| // translation unit scope, at which point we have a fully qualified NNS. |
| SmallVector<IdentifierInfo *, 4> Namespaces; |
| DeclContext *DC = ND->getDeclContext()->getRedeclContext(); |
| for (; !DC->isTranslationUnit(); DC = DC->getParent()) { |
| // This tag should be declared in a namespace, which can only be enclosed by |
| // other namespaces. Bail if there's an anonymous namespace in the chain. |
| NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); |
| if (!Namespace || Namespace->isAnonymousNamespace()) |
| return FixItHint(); |
| IdentifierInfo *II = Namespace->getIdentifier(); |
| Namespaces.push_back(II); |
| NamedDecl *Lookup = SemaRef.LookupSingleName( |
| S, II, NameLoc, Sema::LookupNestedNameSpecifierName); |
| if (Lookup == Namespace) |
| break; |
| } |
| |
| // Once we have all the namespaces, reverse them to go outermost first, and |
| // build an NNS. |
| SmallString<64> Insertion; |
| llvm::raw_svector_ostream OS(Insertion); |
| if (DC->isTranslationUnit()) |
| OS << "::"; |
| std::reverse(Namespaces.begin(), Namespaces.end()); |
| for (auto *II : Namespaces) |
| OS << II->getName() << "::"; |
| return FixItHint::CreateInsertion(NameLoc, Insertion); |
| } |
| |
| /// Determine whether a tag originally declared in context \p OldDC can |
| /// be redeclared with an unqualified name in \p NewDC (assuming name lookup |
| /// found a declaration in \p OldDC as a previous decl, perhaps through a |
| /// using-declaration). |
| static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, |
| DeclContext *NewDC) { |
| OldDC = OldDC->getRedeclContext(); |
| NewDC = NewDC->getRedeclContext(); |
| |
| if (OldDC->Equals(NewDC)) |
| return true; |
| |
| // In MSVC mode, we allow a redeclaration if the contexts are related (either |
| // encloses the other). |
| if (S.getLangOpts().MSVCCompat && |
| (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) |
| return true; |
| |
| return false; |
| } |
| |
| /// This is invoked when we see 'struct foo' or 'struct {'. In the |
| /// former case, Name will be non-null. In the later case, Name will be null. |
| /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a |
| /// reference/declaration/definition of a tag. |
| /// |
| /// \param IsTypeSpecifier \c true if this is a type-specifier (or |
| /// trailing-type-specifier) other than one in an alias-declaration. |
| /// |
| /// \param SkipBody If non-null, will be set to indicate if the caller should |
| /// skip the definition of this tag and treat it as if it were a declaration. |
| Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, |
| SourceLocation KWLoc, CXXScopeSpec &SS, |
| IdentifierInfo *Name, SourceLocation NameLoc, |
| const ParsedAttributesView &Attrs, AccessSpecifier AS, |
| SourceLocation ModulePrivateLoc, |
| MultiTemplateParamsArg TemplateParameterLists, |
| bool &OwnedDecl, bool &IsDependent, |
| SourceLocation ScopedEnumKWLoc, |
| bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, |
| bool IsTypeSpecifier, bool IsTemplateParamOrArg, |
| SkipBodyInfo *SkipBody) { |
| // If this is not a definition, it must have a name. |
| IdentifierInfo *OrigName = Name; |
| assert((Name != nullptr || TUK == TUK_Definition) && |
| "Nameless record must be a definition!"); |
| assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); |
| |
| OwnedDecl = false; |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| bool ScopedEnum = ScopedEnumKWLoc.isValid(); |
| |
| // FIXME: Check member specializations more carefully. |
| bool isMemberSpecialization = false; |
| bool Invalid = false; |
| |
| // We only need to do this matching if we have template parameters |
| // or a scope specifier, which also conveniently avoids this work |
| // for non-C++ cases. |
| if (TemplateParameterLists.size() > 0 || |
| (SS.isNotEmpty() && TUK != TUK_Reference)) { |
| if (TemplateParameterList *TemplateParams = |
| MatchTemplateParametersToScopeSpecifier( |
| KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, |
| TUK == TUK_Friend, isMemberSpecialization, Invalid)) { |
| if (Kind == TTK_Enum) { |
| Diag(KWLoc, diag::err_enum_template); |
| return nullptr; |
| } |
| |
| if (TemplateParams->size() > 0) { |
| // This is a declaration or definition of a class template (which may |
| // be a member of another template). |
| |
| if (Invalid) |
| return nullptr; |
| |
| OwnedDecl = false; |
| DeclResult Result = CheckClassTemplate( |
| S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, |
| AS, ModulePrivateLoc, |
| /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, |
| TemplateParameterLists.data(), SkipBody); |
| return Result.get(); |
| } else { |
| // The "template<>" header is extraneous. |
| Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) |
| << TypeWithKeyword::getTagTypeKindName(Kind) << Name; |
| isMemberSpecialization = true; |
| } |
| } |
| } |
| |
| // Figure out the underlying type if this a enum declaration. We need to do |
| // this early, because it's needed to detect if this is an incompatible |
| // redeclaration. |
| llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; |
| bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; |
| |
| if (Kind == TTK_Enum) { |
| if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { |
| // No underlying type explicitly specified, or we failed to parse the |
| // type, default to int. |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| } else if (UnderlyingType.get()) { |
| // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an |
| // integral type; any cv-qualification is ignored. |
| TypeSourceInfo *TI = nullptr; |
| GetTypeFromParser(UnderlyingType.get(), &TI); |
| EnumUnderlying = TI; |
| |
| if (CheckEnumUnderlyingType(TI)) |
| // Recover by falling back to int. |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| |
| if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, |
| UPPC_FixedUnderlyingType)) |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| |
| } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| // For MSVC ABI compatibility, unfixed enums must use an underlying type |
| // of 'int'. However, if this is an unfixed forward declaration, don't set |
| // the underlying type unless the user enables -fms-compatibility. This |
| // makes unfixed forward declared enums incomplete and is more conforming. |
| if (TUK == TUK_Definition || getLangOpts().MSVCCompat) |
| EnumUnderlying = Context.IntTy.getTypePtr(); |
| } |
| } |
| |
| DeclContext *SearchDC = CurContext; |
| DeclContext *DC = CurContext; |
| bool isStdBadAlloc = false; |
| bool isStdAlignValT = false; |
| |
| RedeclarationKind Redecl = forRedeclarationInCurContext(); |
| if (TUK == TUK_Friend || TUK == TUK_Reference) |
| Redecl = NotForRedeclaration; |
| |
| /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C |
| /// implemented asks for structural equivalence checking, the returned decl |
| /// here is passed back to the parser, allowing the tag body to be parsed. |
| auto createTagFromNewDecl = [&]() -> TagDecl * { |
| assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| TagDecl *New = nullptr; |
| |
| if (Kind == TTK_Enum) { |
| New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, |
| ScopedEnum, ScopedEnumUsesClassTag, IsFixed); |
| // If this is an undefined enum, bail. |
| if (TUK != TUK_Definition && !Invalid) |
| return nullptr; |
| if (EnumUnderlying) { |
| EnumDecl *ED = cast<EnumDecl>(New); |
| if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) |
| ED->setIntegerTypeSourceInfo(TI); |
| else |
| ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); |
| ED->setPromotionType(ED->getIntegerType()); |
| } |
| } else { // struct/union |
| New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, |
| nullptr); |
| } |
| |
| if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { |
| // Add alignment attributes if necessary; these attributes are checked |
| // when the ASTContext lays out the structure. |
| // |
| // It is important for implementing the correct semantics that this |
| // happen here (in ActOnTag). The #pragma pack stack is |
| // maintained as a result of parser callbacks which can occur at |
| // many points during the parsing of a struct declaration (because |
| // the #pragma tokens are effectively skipped over during the |
| // parsing of the struct). |
| if (TUK == TUK_Definition) { |
| AddAlignmentAttributesForRecord(RD); |
| AddMsStructLayoutForRecord(RD); |
| } |
| } |
| New->setLexicalDeclContext(CurContext); |
| return New; |
| }; |
| |
| LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); |
| if (Name && SS.isNotEmpty()) { |
| // We have a nested-name tag ('struct foo::bar'). |
| |
| // Check for invalid 'foo::'. |
| if (SS.isInvalid()) { |
| Name = nullptr; |
| goto CreateNewDecl; |
| } |
| |
| // If this is a friend or a reference to a class in a dependent |
| // context, don't try to make a decl for it. |
| if (TUK == TUK_Friend || TUK == TUK_Reference) { |
| DC = computeDeclContext(SS, false); |
| if (!DC) { |
| IsDependent = true; |
| return nullptr; |
| } |
| } else { |
| DC = computeDeclContext(SS, true); |
| if (!DC) { |
| Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) |
| << SS.getRange(); |
| return nullptr; |
| } |
| } |
| |
| if (RequireCompleteDeclContext(SS, DC)) |
| return nullptr; |
| |
| SearchDC = DC; |
| // Look-up name inside 'foo::'. |
| LookupQualifiedName(Previous, DC); |
| |
| if (Previous.isAmbiguous()) |
| return nullptr; |
| |
| if (Previous.empty()) { |
| // Name lookup did not find anything. However, if the |
| // nested-name-specifier refers to the current instantiation, |
| // and that current instantiation has any dependent base |
| // classes, we might find something at instantiation time: treat |
| // this as a dependent elaborated-type-specifier. |
| // But this only makes any sense for reference-like lookups. |
| if (Previous.wasNotFoundInCurrentInstantiation() && |
| (TUK == TUK_Reference || TUK == TUK_Friend)) { |
| IsDependent = true; |
| return nullptr; |
| } |
| |
| // A tag 'foo::bar' must already exist. |
| Diag(NameLoc, diag::err_not_tag_in_scope) |
| << Kind << Name << DC << SS.getRange(); |
| Name = nullptr; |
| Invalid = true; |
| goto CreateNewDecl; |
| } |
| } else if (Name) { |
| // C++14 [class.mem]p14: |
| // If T is the name of a class, then each of the following shall have a |
| // name different from T: |
| // -- every member of class T that is itself a type |
| if (TUK != TUK_Reference && TUK != TUK_Friend && |
| DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) |
| return nullptr; |
| |
| // If this is a named struct, check to see if there was a previous forward |
| // declaration or definition. |
| // FIXME: We're looking into outer scopes here, even when we |
| // shouldn't be. Doing so can result in ambiguities that we |
| // shouldn't be diagnosing. |
| LookupName(Previous, S); |
| |
| // When declaring or defining a tag, ignore ambiguities introduced |
| // by types using'ed into this scope. |
| if (Previous.isAmbiguous() && |
| (TUK == TUK_Definition || TUK == TUK_Declaration)) { |
| LookupResult::Filter F = Previous.makeFilter(); |
| while (F.hasNext()) { |
| NamedDecl *ND = F.next(); |
| if (!ND->getDeclContext()->getRedeclContext()->Equals( |
| SearchDC->getRedeclContext())) |
| F.erase(); |
| } |
| F.done(); |
| } |
| |
| // C++11 [namespace.memdef]p3: |
| // If the name in a friend declaration is neither qualified nor |
| // a template-id and the declaration is a function or an |
| // elaborated-type-specifier, the lookup to determine whether |
| // the entity has been previously declared shall not consider |
| // any scopes outside the innermost enclosing namespace. |
| // |
| // MSVC doesn't implement the above rule for types, so a friend tag |
| // declaration may be a redeclaration of a type declared in an enclosing |
| // scope. They do implement this rule for friend functions. |
| // |
| // Does it matter that this should be by scope instead of by |
| // semantic context? |
| if (!Previous.empty() && TUK == TUK_Friend) { |
| DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); |
| LookupResult::Filter F = Previous.makeFilter(); |
| bool FriendSawTagOutsideEnclosingNamespace = false; |
| while (F.hasNext()) { |
| NamedDecl *ND = F.next(); |
| DeclContext *DC = ND->getDeclContext()->getRedeclContext(); |
| if (DC->isFileContext() && |
| !EnclosingNS->Encloses(ND->getDeclContext())) { |
| if (getLangOpts().MSVCCompat) |
| FriendSawTagOutsideEnclosingNamespace = true; |
| else |
| F.erase(); |
| } |
| } |
| F.done(); |
| |
| // Diagnose this MSVC extension in the easy case where lookup would have |
| // unambiguously found something outside the enclosing namespace. |
| if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { |
| NamedDecl *ND = Previous.getFoundDecl(); |
| Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) |
| << createFriendTagNNSFixIt(*this, ND, S, NameLoc); |
| } |
| } |
| |
| // Note: there used to be some attempt at recovery here. |
| if (Previous.isAmbiguous()) |
| return nullptr; |
| |
| if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { |
| // FIXME: This makes sure that we ignore the contexts associated |
| // with C structs, unions, and enums when looking for a matching |
| // tag declaration or definition. See the similar lookup tweak |
| // in Sema::LookupName; is there a better way to deal with this? |
| while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) |
| SearchDC = SearchDC->getParent(); |
| } |
| } |
| |
| if (Previous.isSingleResult() && |
| Previous.getFoundDecl()->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); |
| // Just pretend that we didn't see the previous declaration. |
| Previous.clear(); |
| } |
| |
| if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && |
| DC->Equals(getStdNamespace())) { |
| if (Name->isStr("bad_alloc")) { |
| // This is a declaration of or a reference to "std::bad_alloc". |
| isStdBadAlloc = true; |
| |
| // If std::bad_alloc has been implicitly declared (but made invisible to |
| // name lookup), fill in this implicit declaration as the previous |
| // declaration, so that the declarations get chained appropriately. |
| if (Previous.empty() && StdBadAlloc) |
| Previous.addDecl(getStdBadAlloc()); |
| } else if (Name->isStr("align_val_t")) { |
| isStdAlignValT = true; |
| if (Previous.empty() && StdAlignValT) |
| Previous.addDecl(getStdAlignValT()); |
| } |
| } |
| |
| // If we didn't find a previous declaration, and this is a reference |
| // (or friend reference), move to the correct scope. In C++, we |
| // also need to do a redeclaration lookup there, just in case |
| // there's a shadow friend decl. |
| if (Name && Previous.empty() && |
| (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { |
| if (Invalid) goto CreateNewDecl; |
| assert(SS.isEmpty()); |
| |
| if (TUK == TUK_Reference || IsTemplateParamOrArg) { |
| // C++ [basic.scope.pdecl]p5: |
| // -- for an elaborated-type-specifier of the form |
| // |
| // class-key identifier |
| // |
| // if the elaborated-type-specifier is used in the |
| // decl-specifier-seq or parameter-declaration-clause of a |
| // function defined in namespace scope, the identifier is |
| // declared as a class-name in the namespace that contains |
| // the declaration; otherwise, except as a friend |
| // declaration, the identifier is declared in the smallest |
| // non-class, non-function-prototype scope that contains the |
| // declaration. |
| // |
| // C99 6.7.2.3p8 has a similar (but not identical!) provision for |
| // C structs and unions. |
| // |
| // It is an error in C++ to declare (rather than define) an enum |
| // type, including via an elaborated type specifier. We'll |
| // diagnose that later; for now, declare the enum in the same |
| // scope as we would have picked for any other tag type. |
| // |
| // GNU C also supports this behavior as part of its incomplete |
| // enum types extension, while GNU C++ does not. |
| // |
| // Find the context where we'll be declaring the tag. |
| // FIXME: We would like to maintain the current DeclContext as the |
| // lexical context, |
| SearchDC = getTagInjectionContext(SearchDC); |
| |
| // Find the scope where we'll be declaring the tag. |
| S = getTagInjectionScope(S, getLangOpts()); |
| } else { |
| assert(TUK == TUK_Friend); |
| // C++ [namespace.memdef]p3: |
| // If a friend declaration in a non-local class first declares a |
| // class or function, the friend class or function is a member of |
| // the innermost enclosing namespace. |
| SearchDC = SearchDC->getEnclosingNamespaceContext(); |
| } |
| |
| // In C++, we need to do a redeclaration lookup to properly |
| // diagnose some problems. |
| // FIXME: redeclaration lookup is also used (with and without C++) to find a |
| // hidden declaration so that we don't get ambiguity errors when using a |
| // type declared by an elaborated-type-specifier. In C that is not correct |
| // and we should instead merge compatible types found by lookup. |
| if (getLangOpts().CPlusPlus) { |
| Previous.setRedeclarationKind(forRedeclarationInCurContext()); |
| LookupQualifiedName(Previous, SearchDC); |
| } else { |
| Previous.setRedeclarationKind(forRedeclarationInCurContext()); |
| LookupName(Previous, S); |
| } |
| } |
| |
| // If we have a known previous declaration to use, then use it. |
| if (Previous.empty() && SkipBody && SkipBody->Previous) |
| Previous.addDecl(SkipBody->Previous); |
| |
| if (!Previous.empty()) { |
| NamedDecl *PrevDecl = Previous.getFoundDecl(); |
| NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); |
| |
| // It's okay to have a tag decl in the same scope as a typedef |
| // which hides a tag decl in the same scope. Finding this |
| // insanity with a redeclaration lookup can only actually happen |
| // in C++. |
| // |
| // This is also okay for elaborated-type-specifiers, which is |
| // technically forbidden by the current standard but which is |
| // okay according to the likely resolution of an open issue; |
| // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 |
| if (getLangOpts().CPlusPlus) { |
| if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { |
| if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { |
| TagDecl *Tag = TT->getDecl(); |
| if (Tag->getDeclName() == Name && |
| Tag->getDeclContext()->getRedeclContext() |
| ->Equals(TD->getDeclContext()->getRedeclContext())) { |
| PrevDecl = Tag; |
| Previous.clear(); |
| Previous.addDecl(Tag); |
| Previous.resolveKind(); |
| } |
| } |
| } |
| } |
| |
| // If this is a redeclaration of a using shadow declaration, it must |
| // declare a tag in the same context. In MSVC mode, we allow a |
| // redefinition if either context is within the other. |
| if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { |
| auto *OldTag = dyn_cast<TagDecl>(PrevDecl); |
| if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && |
| isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && |
| !(OldTag && isAcceptableTagRedeclContext( |
| *this, OldTag->getDeclContext(), SearchDC))) { |
| Diag(KWLoc, diag::err_using_decl_conflict_reverse); |
| Diag(Shadow->getTargetDecl()->getLocation(), |
| diag::note_using_decl_target); |
| Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) |
| << 0; |
| // Recover by ignoring the old declaration. |
| Previous.clear(); |
| goto CreateNewDecl; |
| } |
| } |
| |
| if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { |
| // If this is a use of a previous tag, or if the tag is already declared |
| // in the same scope (so that the definition/declaration completes or |
| // rementions the tag), reuse the decl. |
| if (TUK == TUK_Reference || TUK == TUK_Friend || |
| isDeclInScope(DirectPrevDecl, SearchDC, S, |
| SS.isNotEmpty() || isMemberSpecialization)) { |
| // Make sure that this wasn't declared as an enum and now used as a |
| // struct or something similar. |
| if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, |
| TUK == TUK_Definition, KWLoc, |
| Name)) { |
| bool SafeToContinue |
| = (PrevTagDecl->getTagKind() != TTK_Enum && |
| Kind != TTK_Enum); |
| if (SafeToContinue) |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << Name |
| << FixItHint::CreateReplacement(SourceRange(KWLoc), |
| PrevTagDecl->getKindName()); |
| else |
| Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; |
| Diag(PrevTagDecl->getLocation(), diag::note_previous_use); |
| |
| if (SafeToContinue) |
| Kind = PrevTagDecl->getTagKind(); |
| else { |
| // Recover by making this an anonymous redefinition. |
| Name = nullptr; |
| Previous.clear(); |
| Invalid = true; |
| } |
| } |
| |
| if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { |
| const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); |
| |
| // If this is an elaborated-type-specifier for a scoped enumeration, |
| // the 'class' keyword is not necessary and not permitted. |
| if (TUK == TUK_Reference || TUK == TUK_Friend) { |
| if (ScopedEnum) |
| Diag(ScopedEnumKWLoc, diag::err_enum_class_reference) |
| << PrevEnum->isScoped() |
| << FixItHint::CreateRemoval(ScopedEnumKWLoc); |
| return PrevTagDecl; |
| } |
| |
| QualType EnumUnderlyingTy; |
| if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) |
| EnumUnderlyingTy = TI->getType().getUnqualifiedType(); |
| else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) |
| EnumUnderlyingTy = QualType(T, 0); |
| |
| // All conflicts with previous declarations are recovered by |
| // returning the previous declaration, unless this is a definition, |
| // in which case we want the caller to bail out. |
| if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, |
| ScopedEnum, EnumUnderlyingTy, |
| IsFixed, PrevEnum)) |
| return TUK == TUK_Declaration ? PrevTagDecl : nullptr; |
| } |
| |
| // C++11 [class.mem]p1: |
| // A member shall not be declared twice in the member-specification, |
| // except that a nested class or member class template can be declared |
| // and then later defined. |
| if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && |
| S->isDeclScope(PrevDecl)) { |
| Diag(NameLoc, diag::ext_member_redeclared); |
| Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); |
| } |
| |
| if (!Invalid) { |
| // If this is a use, just return the declaration we found, unless |
| // we have attributes. |
| if (TUK == TUK_Reference || TUK == TUK_Friend) { |
| if (!Attrs.empty()) { |
| // FIXME: Diagnose these attributes. For now, we create a new |
| // declaration to hold them. |
| } else if (TUK == TUK_Reference && |
| (PrevTagDecl->getFriendObjectKind() == |
| Decl::FOK_Undeclared || |
| PrevDecl->getOwningModule() != getCurrentModule()) && |
| SS.isEmpty()) { |
| // This declaration is a reference to an existing entity, but |
| // has different visibility from that entity: it either makes |
| // a friend visible or it makes a type visible in a new module. |
| // In either case, create a new declaration. We only do this if |
| // the declaration would have meant the same thing if no prior |
| // declaration were found, that is, if it was found in the same |
| // scope where we would have injected a declaration. |
| if (!getTagInjectionContext(CurContext)->getRedeclContext() |
| ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) |
| return PrevTagDecl; |
| // This is in the injected scope, create a new declaration in |
| // that scope. |
| S = getTagInjectionScope(S, getLangOpts()); |
| } else { |
| return PrevTagDecl; |
| } |
| } |
| |
| // Diagnose attempts to redefine a tag. |
| if (TUK == TUK_Definition) { |
| if (NamedDecl *Def = PrevTagDecl->getDefinition()) { |
| // If we're defining a specialization and the previous definition |
| // is from an implicit instantiation, don't emit an error |
| // here; we'll catch this in the general case below. |
| bool IsExplicitSpecializationAfterInstantiation = false; |
| if (isMemberSpecialization) { |
| if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) |
| IsExplicitSpecializationAfterInstantiation = |
| RD->getTemplateSpecializationKind() != |
| TSK_ExplicitSpecialization; |
| else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) |
| IsExplicitSpecializationAfterInstantiation = |
| ED->getTemplateSpecializationKind() != |
| TSK_ExplicitSpecialization; |
| } |
| |
| // Note that clang allows ODR-like semantics for ObjC/C, i.e., do |
| // not keep more that one definition around (merge them). However, |
| // ensure the decl passes the structural compatibility check in |
| // C11 6.2.7/1 (or 6.1.2.6/1 in C89). |
| NamedDecl *Hidden = nullptr; |
| if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
| // There is a definition of this tag, but it is not visible. We |
| // explicitly make use of C++'s one definition rule here, and |
| // assume that this definition is identical to the hidden one |
| // we already have. Make the existing definition visible and |
| // use it in place of this one. |
| if (!getLangOpts().CPlusPlus) { |
| // Postpone making the old definition visible until after we |
| // complete parsing the new one and do the structural |
| // comparison. |
| SkipBody->CheckSameAsPrevious = true; |
| SkipBody->New = createTagFromNewDecl(); |
| SkipBody->Previous = Hidden; |
| } else { |
| SkipBody->ShouldSkip = true; |
| makeMergedDefinitionVisible(Hidden); |
| } |
| return Def; |
| } else if (!IsExplicitSpecializationAfterInstantiation) { |
| // A redeclaration in function prototype scope in C isn't |
| // visible elsewhere, so merely issue a warning. |
| if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) |
| Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; |
| else |
| Diag(NameLoc, diag::err_redefinition) << Name; |
| notePreviousDefinition(Def, |
| NameLoc.isValid() ? NameLoc : KWLoc); |
| // If this is a redefinition, recover by making this |
| // struct be anonymous, which will make any later |
| // references get the previous definition. |
| Name = nullptr; |
| Previous.clear(); |
| Invalid = true; |
| } |
| } else { |
| // If the type is currently being defined, complain |
| // about a nested redefinition. |
| auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); |
| if (TD->isBeingDefined()) { |
| Diag(NameLoc, diag::err_nested_redefinition) << Name; |
| Diag(PrevTagDecl->getLocation(), |
| diag::note_previous_definition); |
| Name = nullptr; |
| Previous.clear(); |
| Invalid = true; |
| } |
| } |
| |
| // Okay, this is definition of a previously declared or referenced |
| // tag. We're going to create a new Decl for it. |
| } |
| |
| // Okay, we're going to make a redeclaration. If this is some kind |
| // of reference, make sure we build the redeclaration in the same DC |
| // as the original, and ignore the current access specifier. |
| if (TUK == TUK_Friend || TUK == TUK_Reference) { |
| SearchDC = PrevTagDecl->getDeclContext(); |
| AS = AS_none; |
| } |
| } |
| // If we get here we have (another) forward declaration or we |
| // have a definition. Just create a new decl. |
| |
| } else { |
| // If we get here, this is a definition of a new tag type in a nested |
| // scope, e.g. "struct foo; void bar() { struct foo; }", just create a |
| // new decl/type. We set PrevDecl to NULL so that the entities |
| // have distinct types. |
| Previous.clear(); |
| } |
| // If we get here, we're going to create a new Decl. If PrevDecl |
| // is non-NULL, it's a definition of the tag declared by |
| // PrevDecl. If it's NULL, we have a new definition. |
| |
| // Otherwise, PrevDecl is not a tag, but was found with tag |
| // lookup. This is only actually possible in C++, where a few |
| // things like templates still live in the tag namespace. |
| } else { |
| // Use a better diagnostic if an elaborated-type-specifier |
| // found the wrong kind of type on the first |
| // (non-redeclaration) lookup. |
| if ((TUK == TUK_Reference || TUK == TUK_Friend) && |
| !Previous.isForRedeclaration()) { |
| NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); |
| Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK |
| << Kind; |
| Diag(PrevDecl->getLocation(), diag::note_declared_at); |
| Invalid = true; |
| |
| // Otherwise, only diagnose if the declaration is in scope. |
| } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, |
| SS.isNotEmpty() || isMemberSpecialization)) { |
| // do nothing |
| |
| // Diagnose implicit declarations introduced by elaborated types. |
| } else if (TUK == TUK_Reference || TUK == TUK_Friend) { |
| NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); |
| Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; |
| Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
| Invalid = true; |
| |
| // Otherwise it's a declaration. Call out a particularly common |
| // case here. |
| } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { |
| unsigned Kind = 0; |
| if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; |
| Diag(NameLoc, diag::err_tag_definition_of_typedef) |
| << Name << Kind << TND->getUnderlyingType(); |
| Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
| Invalid = true; |
| |
| // Otherwise, diagnose. |
| } else { |
| // The tag name clashes with something else in the target scope, |
| // issue an error and recover by making this tag be anonymous. |
| Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
| notePreviousDefinition(PrevDecl, NameLoc); |
| Name = nullptr; |
| Invalid = true; |
| } |
| |
| // The existing declaration isn't relevant to us; we're in a |
| // new scope, so clear out the previous declaration. |
| Previous.clear(); |
| } |
| } |
| |
| CreateNewDecl: |
| |
| TagDecl *PrevDecl = nullptr; |
| if (Previous.isSingleResult()) |
| PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); |
| |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| |
| // Otherwise, create a new declaration. If there is a previous |
| // declaration of the same entity, the two will be linked via |
| // PrevDecl. |
| TagDecl *New; |
| |
| if (Kind == TTK_Enum) { |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // enum X { A, B, C } D; D should chain to X. |
| New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, |
| cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, |
| ScopedEnumUsesClassTag, IsFixed); |
| |
| if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) |
| StdAlignValT = cast<EnumDecl>(New); |
| |
| // If this is an undefined enum, warn. |
| if (TUK != TUK_Definition && !Invalid) { |
| TagDecl *Def; |
| if (IsFixed && (getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) && |
| cast<EnumDecl>(New)->isFixed()) { |
| // C++0x: 7.2p2: opaque-enum-declaration. |
| // Conflicts are diagnosed above. Do nothing. |
| } |
| else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { |
| Diag(Loc, diag::ext_forward_ref_enum_def) |
| << New; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| } else { |
| unsigned DiagID = diag::ext_forward_ref_enum; |
| if (getLangOpts().MSVCCompat) |
| DiagID = diag::ext_ms_forward_ref_enum; |
| else if (getLangOpts().CPlusPlus) |
| DiagID = diag::err_forward_ref_enum; |
| Diag(Loc, DiagID); |
| } |
| } |
| |
| if (EnumUnderlying) { |
| EnumDecl *ED = cast<EnumDecl>(New); |
| if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) |
| ED->setIntegerTypeSourceInfo(TI); |
| else |
| ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); |
| ED->setPromotionType(ED->getIntegerType()); |
| assert(ED->isComplete() && "enum with type should be complete"); |
| } |
| } else { |
| // struct/union/class |
| |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // struct X { int A; } D; D should chain to X. |
| if (getLangOpts().CPlusPlus) { |
| // FIXME: Look for a way to use RecordDecl for simple structs. |
| New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, |
| cast_or_null<CXXRecordDecl>(PrevDecl)); |
| |
| if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) |
| StdBadAlloc = cast<CXXRecordDecl>(New); |
| } else |
| New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, |
| cast_or_null<RecordDecl>(PrevDecl)); |
| } |
| |
| // C++11 [dcl.type]p3: |
| // A type-specifier-seq shall not define a class or enumeration [...]. |
| if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && |
| TUK == TUK_Definition) { |
| Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) |
| << Context.getTagDeclType(New); |
| Invalid = true; |
| } |
| |
| if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && |
| DC->getDeclKind() == Decl::Enum) { |
| Diag(New->getLocation(), diag::err_type_defined_in_enum) |
| << Context.getTagDeclType(New); |
| Invalid = true; |
| } |
| |
| // Maybe add qualifier info. |
| if (SS.isNotEmpty()) { |
| if (SS.isSet()) { |
| // If this is either a declaration or a definition, check the |
| // nested-name-specifier against the current context. |
| if ((TUK == TUK_Definition || TUK == TUK_Declaration) && |
| diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, |
| isMemberSpecialization)) |
| Invalid = true; |
| |
| New->setQualifierInfo(SS.getWithLocInContext(Context)); |
| if (TemplateParameterLists.size() > 0) { |
| New->setTemplateParameterListsInfo(Context, TemplateParameterLists); |
| } |
| } |
| else |
| Invalid = true; |
| } |
| |
| if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { |
| // Add alignment attributes if necessary; these attributes are checked when |
| // the ASTContext lays out the structure. |
| // |
| // It is important for implementing the correct semantics that this |
| // happen here (in ActOnTag). The #pragma pack stack is |
| // maintained as a result of parser callbacks which can occur at |
| // many points during the parsing of a struct declaration (because |
| // the #pragma tokens are effectively skipped over during the |
| // parsing of the struct). |
| if (TUK == TUK_Definition) { |
| AddAlignmentAttributesForRecord(RD); |
| AddMsStructLayoutForRecord(RD); |
| } |
| } |
| |
| if (ModulePrivateLoc.isValid()) { |
| if (isMemberSpecialization) |
| Diag(New->getLocation(), diag::err_module_private_specialization) |
| << 2 |
| << FixItHint::CreateRemoval(ModulePrivateLoc); |
| // __module_private__ does not apply to local classes. However, we only |
| // diagnose this as an error when the declaration specifiers are |
| // freestanding. Here, we just ignore the __module_private__. |
| else if (!SearchDC->isFunctionOrMethod()) |
| New->setModulePrivate(); |
| } |
| |
| // If this is a specialization of a member class (of a class template), |
| // check the specialization. |
| if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) |
| Invalid = true; |
| |
| // If we're declaring or defining a tag in function prototype scope in C, |
| // note that this type can only be used within the function and add it to |
| // the list of decls to inject into the function definition scope. |
| if ((Name || Kind == TTK_Enum) && |
| getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { |
| if (getLangOpts().CPlusPlus) { |
| // C++ [dcl.fct]p6: |
| // Types shall not be defined in return or parameter types. |
| if (TUK == TUK_Definition && !IsTypeSpecifier) { |
| Diag(Loc, diag::err_type_defined_in_param_type) |
| << Name; |
| Invalid = true; |
| } |
| } else if (!PrevDecl) { |
| Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); |
| } |
| } |
| |
| if (Invalid) |
| New->setInvalidDecl(); |
| |
| // Set the lexical context. If the tag has a C++ scope specifier, the |
| // lexical context will be different from the semantic context. |
| New->setLexicalDeclContext(CurContext); |
| |
| // Mark this as a friend decl if applicable. |
| // In Microsoft mode, a friend declaration also acts as a forward |
| // declaration so we always pass true to setObjectOfFriendDecl to make |
| // the tag name visible. |
| if (TUK == TUK_Friend) |
| New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); |
| |
| // Set the access specifier. |
| if (!Invalid && SearchDC->isRecord()) |
| SetMemberAccessSpecifier(New, PrevDecl, AS); |
| |
| if (PrevDecl) |
| CheckRedeclarationModuleOwnership(New, PrevDecl); |
| |
| if (TUK == TUK_Definition) |
| New->startDefinition(); |
| |
| ProcessDeclAttributeList(S, New, Attrs); |
| AddPragmaAttributes(S, New); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (TUK == TUK_Friend) { |
| // We might be replacing an existing declaration in the lookup tables; |
| // if so, borrow its access specifier. |
| if (PrevDecl) |
| New->setAccess(PrevDecl->getAccess()); |
| |
| DeclContext *DC = New->getDeclContext()->getRedeclContext(); |
| DC->makeDeclVisibleInContext(New); |
| if (Name) // can be null along some error paths |
| if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); |
| } else if (Name) { |
| S = getNonFieldDeclScope(S); |
| PushOnScopeChains(New, S, true); |
| } else { |
| CurContext->addDecl(New); |
| } |
| |
| // If this is the C FILE type, notify the AST context. |
| if (IdentifierInfo *II = New->getIdentifier()) |
| if (!New->isInvalidDecl() && |
| New->getDeclContext()->getRedeclContext()->isTranslationUnit() && |
| II->isStr("FILE")) |
| Context.setFILEDecl(New); |
| |
| if (PrevDecl) |
| mergeDeclAttributes(New, PrevDecl); |
| |
| // If there's a #pragma GCC visibility in scope, set the visibility of this |
| // record. |
| AddPushedVisibilityAttribute(New); |
| |
| if (isMemberSpecialization && !New->isInvalidDecl()) |
| CompleteMemberSpecialization(New, Previous); |
| |
| OwnedDecl = true; |
| // In C++, don't return an invalid declaration. We can't recover well from |
| // the cases where we make the type anonymous. |
| if (Invalid && getLangOpts().CPlusPlus) { |
| if (New->isBeingDefined()) |
| if (auto RD = dyn_cast<RecordDecl>(New)) |
| RD->completeDefinition(); |
| return nullptr; |
| } else { |
| return New; |
| } |
| } |
| |
| void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { |
| AdjustDeclIfTemplate(TagD); |
| TagDecl *Tag = cast<TagDecl>(TagD); |
| |
| // Enter the tag context. |
| PushDeclContext(S, Tag); |
| |
| ActOnDocumentableDecl(TagD); |
| |
| // If there's a #pragma GCC visibility in scope, set the visibility of this |
| // record. |
| AddPushedVisibilityAttribute(Tag); |
| } |
| |
| bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, |
| SkipBodyInfo &SkipBody) { |
| if (!hasStructuralCompatLayout(Prev, SkipBody.New)) |
| return false; |
| |
| // Make the previous decl visible. |
| makeMergedDefinitionVisible(SkipBody.Previous); |
| return true; |
| } |
| |
| Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { |
| assert(isa<ObjCContainerDecl>(IDecl) && |
| "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); |
| DeclContext *OCD = cast<DeclContext>(IDecl); |
| assert(getContainingDC(OCD) == CurContext && |
| "The next DeclContext should be lexically contained in the current one."); |
| CurContext = OCD; |
| return IDecl; |
| } |
| |
| void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, |
| SourceLocation FinalLoc, |
| bool IsFinalSpelledSealed, |
| SourceLocation LBraceLoc) { |
| AdjustDeclIfTemplate(TagD); |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); |
| |
| FieldCollector->StartClass(); |
| |
| if (!Record->getIdentifier()) |
| return; |
| |
| if (FinalLoc.isValid()) |
| Record->addAttr(new (Context) |
| FinalAttr(FinalLoc, Context, IsFinalSpelledSealed)); |
| |
| // C++ [class]p2: |
| // [...] The class-name is also inserted into the scope of the |
| // class itself; this is known as the injected-class-name. For |
| // purposes of access checking, the injected-class-name is treated |
| // as if it were a public member name. |
| CXXRecordDecl *InjectedClassName |
| = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext, |
| Record->getLocStart(), Record->getLocation(), |
| Record->getIdentifier(), |
| /*PrevDecl=*/nullptr, |
| /*DelayTypeCreation=*/true); |
| Context.getTypeDeclType(InjectedClassName, Record); |
| InjectedClassName->setImplicit(); |
| InjectedClassName->setAccess(AS_public); |
| if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) |
| InjectedClassName->setDescribedClassTemplate(Template); |
| PushOnScopeChains(InjectedClassName, S); |
| assert(InjectedClassName->isInjectedClassName() && |
| "Broken injected-class-name"); |
| } |
| |
| void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, |
| SourceRange BraceRange) { |
| AdjustDeclIfTemplate(TagD); |
| TagDecl *Tag = cast<TagDecl>(TagD); |
| Tag->setBraceRange(BraceRange); |
| |
| // Make sure we "complete" the definition even it is invalid. |
| if (Tag->isBeingDefined()) { |
| assert(Tag->isInvalidDecl() && "We should already have completed it"); |
| if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) |
| RD->completeDefinition(); |
| } |
| |
| if (isa<CXXRecordDecl>(Tag)) { |
| FieldCollector->FinishClass(); |
| } |
| |
| // Exit this scope of this tag's definition. |
| PopDeclContext(); |
| |
| if (getCurLexicalContext()->isObjCContainer() && |
| Tag->getDeclContext()->isFileContext()) |
| Tag->setTopLevelDeclInObjCContainer(); |
| |
| // Notify the consumer that we've defined a tag. |
| if (!Tag->isInvalidDecl()) |
| Consumer.HandleTagDeclDefinition(Tag); |
| } |
| |
| void Sema::ActOnObjCContainerFinishDefinition() { |
| // Exit this scope of this interface definition. |
| PopDeclContext(); |
| } |
| |
| void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { |
| assert(DC == CurContext && "Mismatch of container contexts"); |
| OriginalLexicalContext = DC; |
| ActOnObjCContainerFinishDefinition(); |
| } |
| |
| void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { |
| ActOnObjCContainerStartDefinition(cast<Decl>(DC)); |
| OriginalLexicalContext = nullptr; |
| } |
| |
| void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { |
| AdjustDeclIfTemplate(TagD); |
| TagDecl *Tag = cast<TagDecl>(TagD); |
| Tag->setInvalidDecl(); |
| |
| // Make sure we "complete" the definition even it is invalid. |
| if (Tag->isBeingDefined()) { |
| if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) |
| RD->completeDefinition(); |
| } |
| |
| // We're undoing ActOnTagStartDefinition here, not |
| // ActOnStartCXXMemberDeclarations, so we don't have to mess with |
| // the FieldCollector. |
| |
| PopDeclContext(); |
| } |
| |
| // Note that FieldName may be null for anonymous bitfields. |
| ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, |
| IdentifierInfo *FieldName, |
| QualType FieldTy, bool IsMsStruct, |
| Expr *BitWidth, bool *ZeroWidth) { |
| // Default to true; that shouldn't confuse checks for emptiness |
| if (ZeroWidth) |
| *ZeroWidth = true; |
| |
| // C99 6.7.2.1p4 - verify the field type. |
| // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
| if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { |
| // Handle incomplete types with specific error. |
| if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) |
| return ExprError(); |
| if (FieldName) |
| return Diag(FieldLoc, diag::err_not_integral_type_bitfield) |
| << FieldName << FieldTy << BitWidth->getSourceRange(); |
| return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) |
| << FieldTy << BitWidth->getSourceRange(); |
| } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), |
| UPPC_BitFieldWidth)) |
| return ExprError(); |
| |
| // If the bit-width is type- or value-dependent, don't try to check |
| // it now. |
| if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) |
| return BitWidth; |
| |
| llvm::APSInt Value; |
| ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); |
| if (ICE.isInvalid()) |
| return ICE; |
| BitWidth = ICE.get(); |
| |
| if (Value != 0 && ZeroWidth) |
| *ZeroWidth = false; |
| |
| // Zero-width bitfield is ok for anonymous field. |
| if (Value == 0 && FieldName) |
| return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; |
| |
| if (Value.isSigned() && Value.isNegative()) { |
| if (FieldName) |
| return Diag(FieldLoc, diag::err_bitfield_has_negative_width) |
| << FieldName << Value.toString(10); |
| return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) |
| << Value.toString(10); |
| } |
| |
| if (!FieldTy->isDependentType()) { |
| uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); |
| uint64_t TypeWidth = Context.getIntWidth(FieldTy); |
| bool BitfieldIsOverwide = Value.ugt(TypeWidth); |
| |
| // Over-wide bitfields are an error in C or when using the MSVC bitfield |
| // ABI. |
| bool CStdConstraintViolation = |
| BitfieldIsOverwide && !getLangOpts().CPlusPlus; |
| bool MSBitfieldViolation = |
| Value.ugt(TypeStorageSize) && |
| (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); |
| if (CStdConstraintViolation || MSBitfieldViolation) { |
| unsigned DiagWidth = |
| CStdConstraintViolation ? TypeWidth : TypeStorageSize; |
| if (FieldName) |
| return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) |
| << FieldName << (unsigned)Value.getZExtValue() |
| << !CStdConstraintViolation << DiagWidth; |
| |
| return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width) |
| << (unsigned)Value.getZExtValue() << !CStdConstraintViolation |
| << DiagWidth; |
| } |
| |
| // Warn on types where the user might conceivably expect to get all |
| // specified bits as value bits: that's all integral types other than |
| // 'bool'. |
| if (BitfieldIsOverwide && !FieldTy->isBooleanType()) { |
| if (FieldName) |
| Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) |
| << FieldName << (unsigned)Value.getZExtValue() |
| << (unsigned)TypeWidth; |
| else |
| Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width) |
| << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth; |
| } |
| } |
| |
| return BitWidth; |
| } |
| |
| /// ActOnField - Each field of a C struct/union is passed into this in order |
| /// to create a FieldDecl object for it. |
| Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, |
| Declarator &D, Expr *BitfieldWidth) { |
| FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), |
| DeclStart, D, static_cast<Expr*>(BitfieldWidth), |
| /*InitStyle=*/ICIS_NoInit, AS_public); |
| return Res; |
| } |
| |
| /// HandleField - Analyze a field of a C struct or a C++ data member. |
| /// |
| FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, |
| SourceLocation DeclStart, |
| Declarator &D, Expr *BitWidth, |
| InClassInitStyle InitStyle, |
| AccessSpecifier AS) { |
| if (D.isDecompositionDeclarator()) { |
| const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); |
| Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) |
| << Decomp.getSourceRange(); |
| return nullptr; |
| } |
| |
| IdentifierInfo *II = D.getIdentifier(); |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType T = TInfo->getType(); |
| if (getLangOpts().CPlusPlus) { |
| CheckExtraCXXDefaultArguments(D); |
| |
| if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
| UPPC_DataMemberType)) { |
| D.setInvalidType(); |
| T = Context.IntTy; |
| TInfo = Context.getTrivialTypeSourceInfo(T, Loc); |
| } |
| } |
| |
| // TR 18037 does not allow fields to be declared with address spaces. |
| if (T.getQualifiers().hasAddressSpace() || |
| T->isDependentAddressSpaceType() || |
| T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { |
| Diag(Loc, diag::err_field_with_address_space); |
| D.setInvalidType(); |
| } |
| |
| // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be |
| // used as structure or union field: image, sampler, event or block types. |
| if (LangOpts.OpenCL && (T->isEventT() || T->isImageType() || |
| T->isSamplerT() || T->isBlockPointerType())) { |
| Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; |
| D.setInvalidType(); |
| } |
| |
| DiagnoseFunctionSpecifiers(D.getDeclSpec()); |
| |
| if (D.getDeclSpec().isInlineSpecified()) |
| Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
| << getLangOpts().CPlusPlus17; |
| if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
| Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| diag::err_invalid_thread) |
| << DeclSpec::getSpecifierName(TSCS); |
| |
| // Check to see if this name was declared as a member previously |
| NamedDecl *PrevDecl = nullptr; |
| LookupResult Previous(*this, II, Loc, LookupMemberName, |
| ForVisibleRedeclaration); |
| LookupName(Previous, S); |
| switch (Previous.getResultKind()) { |
| case LookupResult::Found: |
| case LookupResult::FoundUnresolvedValue: |
| PrevDecl = Previous.getAsSingle<NamedDecl>(); |
| break; |
| |
| case LookupResult::FoundOverloaded: |
| PrevDecl = Previous.getRepresentativeDecl(); |
| break; |
| |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| case LookupResult::Ambiguous: |
| break; |
| } |
| Previous.suppressDiagnostics(); |
| |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = nullptr; |
| } |
| |
| if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) |
| PrevDecl = nullptr; |
| |
| bool Mutable |
| = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); |
| SourceLocation TSSL = D.getLocStart(); |
| FieldDecl *NewFD |
| = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, |
| TSSL, AS, PrevDecl, &D); |
| |
| if (NewFD->isInvalidDecl()) |
| Record->setInvalidDecl(); |
| |
| if (D.getDeclSpec().isModulePrivateSpecified()) |
| NewFD->setModulePrivate(); |
| |
| if (NewFD->isInvalidDecl() && PrevDecl) { |
| // Don't introduce NewFD into scope; there's already something |
| // with the same name in the same scope. |
| } else if (II) { |
| PushOnScopeChains(NewFD, S); |
| } else |
| Record->addDecl(NewFD); |
| |
| return NewFD; |
| } |
| |
| /// Build a new FieldDecl and check its well-formedness. |
| /// |
| /// This routine builds a new FieldDecl given the fields name, type, |
| /// record, etc. \p PrevDecl should refer to any previous declaration |
| /// with the same name and in the same scope as the field to be |
| /// created. |
| /// |
| /// \returns a new FieldDecl. |
| /// |
| /// \todo The Declarator argument is a hack. It will be removed once |
| FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, |
| TypeSourceInfo *TInfo, |
| RecordDecl *Record, SourceLocation Loc, |
| bool Mutable, Expr *BitWidth, |
| InClassInitStyle InitStyle, |
| SourceLocation TSSL, |
| AccessSpecifier AS, NamedDecl *PrevDecl, |
| Declarator *D) { |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| bool InvalidDecl = false; |
| if (D) InvalidDecl = D->isInvalidType(); |
| |
| // If we receive a broken type, recover by assuming 'int' and |
| // marking this declaration as invalid. |
| if (T.isNull()) { |
| InvalidDecl = true; |
| T = Context.IntTy; |
| } |
| |
| QualType EltTy = Context.getBaseElementType(T); |
| if (!EltTy->isDependentType()) { |
| if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { |
| // Fields of incomplete type force their record to be invalid. |
| Record->setInvalidDecl(); |
| InvalidDecl = true; |
| } else { |
| NamedDecl *Def; |
| EltTy->isIncompleteType(&Def); |
| if (Def && Def->isInvalidDecl()) { |
| Record->setInvalidDecl(); |
| InvalidDecl = true; |
| } |
| } |
| } |
| |
| // OpenCL v1.2 s6.9.c: bitfields are not supported. |
| if (BitWidth && getLangOpts().OpenCL) { |
| Diag(Loc, diag::err_opencl_bitfields); |
| InvalidDecl = true; |
| } |
| |
| // Anonymous bit-fields cannot be cv-qualified (CWG 2229). |
| if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && |
| T.hasQualifiers()) { |
| InvalidDecl = true; |
| Diag(Loc, diag::err_anon_bitfield_qualifiers); |
| } |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (!InvalidDecl && T->isVariablyModifiedType()) { |
| bool SizeIsNegative; |
| llvm::APSInt Oversized; |
| |
| TypeSourceInfo *FixedTInfo = |
| TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, |
| SizeIsNegative, |
| Oversized); |
| if (FixedTInfo) { |
| Diag(Loc, diag::warn_illegal_constant_array_size); |
| TInfo = FixedTInfo; |
| T = FixedTInfo->getType(); |
| } else { |
| if (SizeIsNegative) |
| Diag(Loc, diag::err_typecheck_negative_array_size); |
| else if (Oversized.getBoolValue()) |
| Diag(Loc, diag::err_array_too_large) |
| << Oversized.toString(10); |
| else |
| Diag(Loc, diag::err_typecheck_field_variable_size); |
| InvalidDecl = true; |
| } |
| } |
| |
| // Fields can not have abstract class types |
| if (!InvalidDecl && RequireNonAbstractType(Loc, T, |
| diag::err_abstract_type_in_decl, |
| AbstractFieldType)) |
| InvalidDecl = true; |
| |
| bool ZeroWidth = false; |
| if (InvalidDecl) |
| BitWidth = nullptr; |
| // If this is declared as a bit-field, check the bit-field. |
| if (BitWidth) { |
| BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, |
| &ZeroWidth).get(); |
| if (!BitWidth) { |
| InvalidDecl = true; |
| BitWidth = nullptr; |
| ZeroWidth = false; |
| } |
| } |
| |
| // Check that 'mutable' is consistent with the type of the declaration. |
| if (!InvalidDecl && Mutable) { |
| unsigned DiagID = 0; |
| if (T->isReferenceType()) |
| DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference |
| : diag::err_mutable_reference; |
| else if (T.isConstQualified()) |
| DiagID = diag::err_mutable_const; |
| |
| if (DiagID) { |
| SourceLocation ErrLoc = Loc; |
| if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) |
| ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); |
| Diag(ErrLoc, DiagID); |
| if (DiagID != diag::ext_mutable_reference) { |
| Mutable = false; |
| InvalidDecl = true; |
| } |
| } |
| } |
| |
| // C++11 [class.union]p8 (DR1460): |
| // At most one variant member of a union may have a |
| // brace-or-equal-initializer. |
| if (InitStyle != ICIS_NoInit) |
| checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); |
| |
| FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, |
| BitWidth, Mutable, InitStyle); |
| if (InvalidDecl) |
| NewFD->setInvalidDecl(); |
| |
| if (PrevDecl && !isa<TagDecl>(PrevDecl)) { |
| Diag(Loc, diag::err_duplicate_member) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| NewFD->setInvalidDecl(); |
| } |
| |
| if (!InvalidDecl && getLangOpts().CPlusPlus) { |
| if (Record->isUnion()) { |
| if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
| CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RDecl->getDefinition()) { |
| // C++ [class.union]p1: An object of a class with a non-trivial |
| // constructor, a non-trivial copy constructor, a non-trivial |
| // destructor, or a non-trivial copy assignment operator |
| // cannot be a member of a union, nor can an array of such |
| // objects. |
| if (CheckNontrivialField(NewFD)) |
| NewFD->setInvalidDecl(); |
| } |
| } |
| |
| // C++ [class.union]p1: If a union contains a member of reference type, |
| // the program is ill-formed, except when compiling with MSVC extensions |
| // enabled. |
| if (EltTy->isReferenceType()) { |
| Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? |
| diag::ext_union_member_of_reference_type : |
| diag::err_union_member_of_reference_type) |
| << NewFD->getDeclName() << EltTy; |
| if (!getLangOpts().MicrosoftExt) |
| NewFD->setInvalidDecl(); |
| } |
| } |
| } |
| |
| // FIXME: We need to pass in the attributes given an AST |
| // representation, not a parser representation. |
| if (D) { |
| // FIXME: The current scope is almost... but not entirely... correct here. |
| ProcessDeclAttributes(getCurScope(), NewFD, *D); |
| |
| if (NewFD->hasAttrs()) |
| CheckAlignasUnderalignment(NewFD); |
| } |
| |
| // In auto-retain/release, infer strong retension for fields of |
| // retainable type. |
| if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) |
| NewFD->setInvalidDecl(); |
| |
| if (T.isObjCGCWeak()) |
| Diag(Loc, diag::warn_attribute_weak_on_field); |
| |
| NewFD->setAccess(AS); |
| return NewFD; |
| } |
| |
| bool Sema::CheckNontrivialField(FieldDecl *FD) { |
| assert(FD); |
| assert(getLangOpts().CPlusPlus && "valid check only for C++"); |
| |
| if (FD->isInvalidDecl() || FD->getType()->isDependentType()) |
| return false; |
| |
| QualType EltTy = Context.getBaseElementType(FD->getType()); |
| if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
| CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (RDecl->getDefinition()) { |
| // We check for copy constructors before constructors |
| // because otherwise we'll never get complaints about |
| // copy constructors. |
| |
| CXXSpecialMember member = CXXInvalid; |
| // We're required to check for any non-trivial constructors. Since the |
| // implicit default constructor is suppressed if there are any |
| // user-declared constructors, we just need to check that there is a |
| // trivial default constructor and a trivial copy constructor. (We don't |
| // worry about move constructors here, since this is a C++98 check.) |
| if (RDecl->hasNonTrivialCopyConstructor()) |
| member = CXXCopyConstructor; |
| else if (!RDecl->hasTrivialDefaultConstructor()) |
| member = CXXDefaultConstructor; |
| else if (RDecl->hasNonTrivialCopyAssignment()) |
| member = CXXCopyAssignment; |
| else if (RDecl->hasNonTrivialDestructor()) |
| member = CXXDestructor; |
| |
| if (member != CXXInvalid) { |
| if (!getLangOpts().CPlusPlus11 && |
| getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { |
| // Objective-C++ ARC: it is an error to have a non-trivial field of |
| // a union. However, system headers in Objective-C programs |
| // occasionally have Objective-C lifetime objects within unions, |
| // and rather than cause the program to fail, we make those |
| // members unavailable. |
| SourceLocation Loc = FD->getLocation(); |
| if (getSourceManager().isInSystemHeader(Loc)) { |
| if (!FD->hasAttr<UnavailableAttr>()) |
| FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", |
| UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); |
| return false; |
| } |
| } |
| |
| Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : |
| diag::err_illegal_union_or_anon_struct_member) |
| << FD->getParent()->isUnion() << FD->getDeclName() << member; |
| DiagnoseNontrivial(RDecl, member); |
| return !getLangOpts().CPlusPlus11; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// TranslateIvarVisibility - Translate visibility from a token ID to an |
| /// AST enum value. |
| static ObjCIvarDecl::AccessControl |
| TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
| switch (ivarVisibility) { |
| default: llvm_unreachable("Unknown visitibility kind"); |
| case tok::objc_private: return ObjCIvarDecl::Private; |
| case tok::objc_public: return ObjCIvarDecl::Public; |
| case tok::objc_protected: return ObjCIvarDecl::Protected; |
| case tok::objc_package: return ObjCIvarDecl::Package; |
| } |
| } |
| |
| /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
| /// in order to create an IvarDecl object for it. |
| Decl *Sema::ActOnIvar(Scope *S, |
| SourceLocation DeclStart, |
| Declarator &D, Expr *BitfieldWidth, |
| tok::ObjCKeywordKind Visibility) { |
| |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType T = TInfo->getType(); |
| |
| if (BitWidth) { |
| // 6.7.2.1p3, 6.7.2.1p4 |
| BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); |
| if (!BitWidth) |
| D.setInvalidType(); |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| if (T->isReferenceType()) { |
| Diag(Loc, diag::err_ivar_reference_type); |
| D.setInvalidType(); |
| } |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| else if (T->isVariablyModifiedType()) { |
| Diag(Loc, diag::err_typecheck_ivar_variable_size); |
| D.setInvalidType(); |
| } |
| |
| // Get the visibility (access control) for this ivar. |
| ObjCIvarDecl::AccessControl ac = |
| Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) |
| : ObjCIvarDecl::None; |
| // Must set ivar's DeclContext to its enclosing interface. |
| ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); |
| if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) |
| return nullptr; |
| ObjCContainerDecl *EnclosingContext; |
| if (ObjCImplementationDecl *IMPDecl = |
| dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
| if (LangOpts.ObjCRuntime.isFragile()) { |
| // Case of ivar declared in an implementation. Context is that of its class. |
| EnclosingContext = IMPDecl->getClassInterface(); |
| assert(EnclosingContext && "Implementation has no class interface!"); |
| } |
| else |
| EnclosingContext = EnclosingDecl; |
| } else { |
| if (ObjCCategoryDecl *CDecl = |
| dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { |
| if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { |
| Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); |
| return nullptr; |
| } |
| } |
| EnclosingContext = EnclosingDecl; |
| } |
| |
| // Construct the decl. |
| ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, |
| DeclStart, Loc, II, T, |
| TInfo, ac, (Expr *)BitfieldWidth); |
| |
| if (II) { |
| NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, |
| ForVisibleRedeclaration); |
| if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) |
| && !isa<TagDecl>(PrevDecl)) { |
| Diag(Loc, diag::err_duplicate_member) << II; |
| Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| NewID->setInvalidDecl(); |
| } |
| } |
| |
| // Process attributes attached to the ivar. |
| ProcessDeclAttributes(S, NewID, D); |
| |
| if (D.isInvalidType()) |
| NewID->setInvalidDecl(); |
| |
| // In ARC, infer 'retaining' for ivars of retainable type. |
| if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) |
| NewID->setInvalidDecl(); |
| |
| if (D.getDeclSpec().isModulePrivateSpecified()) |
| NewID->setModulePrivate(); |
| |
| if (II) { |
| // FIXME: When interfaces are DeclContexts, we'll need to add |
| // these to the interface. |
| S->AddDecl(NewID); |
| IdResolver.AddDecl(NewID); |
| } |
| |
| if (LangOpts.ObjCRuntime.isNonFragile() && |
| !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) |
| Diag(Loc, diag::warn_ivars_in_interface); |
| |
| return NewID; |
| } |
| |
| /// ActOnLastBitfield - This routine handles synthesized bitfields rules for |
| /// class and class extensions. For every class \@interface and class |
| /// extension \@interface, if the last ivar is a bitfield of any type, |
| /// then add an implicit `char :0` ivar to the end of that interface. |
| void Sema::ActOnLastBitfield(SourceLocation DeclLoc, |
| SmallVectorImpl<Decl *> &AllIvarDecls) { |
| if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) |
| return; |
| |
| Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; |
| ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); |
| |
| if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) |
| return; |
| ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); |
| if (!ID) { |
| if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { |
| if (!CD->IsClassExtension()) |
| return; |
| } |
| // No need to add this to end of @implementation. |
| else |
| return; |
| } |
| // All conditions are met. Add a new bitfield to the tail end of ivars. |
| llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); |
| Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); |
| |
| Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), |
| DeclLoc, DeclLoc, nullptr, |
| Context.CharTy, |
| Context.getTrivialTypeSourceInfo(Context.CharTy, |
| DeclLoc), |
| ObjCIvarDecl::Private, BW, |
| true); |
| AllIvarDecls.push_back(Ivar); |
| } |
| |
| void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, |
| ArrayRef<Decl *> Fields, SourceLocation LBrac, |
| SourceLocation RBrac, |
| const ParsedAttributesView &Attrs) { |
| assert(EnclosingDecl && "missing record or interface decl"); |
| |
| // If this is an Objective-C @implementation or category and we have |
| // new fields here we should reset the layout of the interface since |
| // it will now change. |
| if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { |
| ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); |
| switch (DC->getKind()) { |
| default: break; |
| case Decl::ObjCCategory: |
| Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); |
| break; |
| case Decl::ObjCImplementation: |
| Context. |
| ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); |
| break; |
| } |
| } |
| |
| RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); |
| |
| // Start counting up the number of named members; make sure to include |
| // members of anonymous structs and unions in the total. |
| unsigned NumNamedMembers = 0; |
| if (Record) { |
| for (const auto *I : Record->decls()) { |
| if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) |
| if (IFD->getDeclName()) |
| ++NumNamedMembers; |
| } |
| } |
| |
| // Verify that all the fields are okay. |
| SmallVector<FieldDecl*, 32> RecFields; |
| |
| bool ObjCFieldLifetimeErrReported = false; |
| for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); |
| i != end; ++i) { |
| FieldDecl *FD = cast<FieldDecl>(*i); |
| |
| // Get the type for the field. |
| const Type *FDTy = FD->getType().getTypePtr(); |
| |
| if (!FD->isAnonymousStructOrUnion()) { |
| // Remember all fields written by the user. |
| RecFields.push_back(FD); |
| } |
| |
| // If the field is already invalid for some reason, don't emit more |
| // diagnostics about it. |
| if (FD->isInvalidDecl()) { |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| |
| // C99 6.7.2.1p2: |
| // A structure or union shall not contain a member with |
| // incomplete or function type (hence, a structure shall not |
| // contain an instance of itself, but may contain a pointer to |
| // an instance of itself), except that the last member of a |
| // structure with more than one named member may have incomplete |
| // array type; such a structure (and any union containing, |
| // possibly recursively, a member that is such a structure) |
| // shall not be a member of a structure or an element of an |
| // array. |
| bool IsLastField = (i + 1 == Fields.end()); |
| if (FDTy->isFunctionType()) { |
| // Field declared as a function. |
| Diag(FD->getLocation(), diag::err_field_declared_as_function) |
| << FD->getDeclName(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } else if (FDTy->isIncompleteArrayType() && |
| (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { |
| if (Record) { |
| // Flexible array member. |
| // Microsoft and g++ is more permissive regarding flexible array. |
| // It will accept flexible array in union and also |
| // as the sole element of a struct/class. |
| unsigned DiagID = 0; |
| if (!Record->isUnion() && !IsLastField) { |
| Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) |
| << FD->getDeclName() << FD->getType() << Record->getTagKind(); |
| Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } else if (Record->isUnion()) |
| DiagID = getLangOpts().MicrosoftExt |
| ? diag::ext_flexible_array_union_ms |
| : getLangOpts().CPlusPlus |
| ? diag::ext_flexible_array_union_gnu |
| : diag::err_flexible_array_union; |
| else if (NumNamedMembers < 1) |
| DiagID = getLangOpts().MicrosoftExt |
| ? diag::ext_flexible_array_empty_aggregate_ms |
| : getLangOpts().CPlusPlus |
| ? diag::ext_flexible_array_empty_aggregate_gnu |
| : diag::err_flexible_array_empty_aggregate; |
| |
| if (DiagID) |
| Diag(FD->getLocation(), DiagID) << FD->getDeclName() |
| << Record->getTagKind(); |
| // While the layout of types that contain virtual bases is not specified |
| // by the C++ standard, both the Itanium and Microsoft C++ ABIs place |
| // virtual bases after the derived members. This would make a flexible |
| // array member declared at the end of an object not adjacent to the end |
| // of the type. |
| if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) |
| if (RD->getNumVBases() != 0) |
| Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) |
| << FD->getDeclName() << Record->getTagKind(); |
| if (!getLangOpts().C99) |
| Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) |
| << FD->getDeclName() << Record->getTagKind(); |
| |
| // If the element type has a non-trivial destructor, we would not |
| // implicitly destroy the elements, so disallow it for now. |
| // |
| // FIXME: GCC allows this. We should probably either implicitly delete |
| // the destructor of the containing class, or just allow this. |
| QualType BaseElem = Context.getBaseElementType(FD->getType()); |
| if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { |
| Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) |
| << FD->getDeclName() << FD->getType(); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Okay, we have a legal flexible array member at the end of the struct. |
| Record->setHasFlexibleArrayMember(true); |
| } else { |
| // In ObjCContainerDecl ivars with incomplete array type are accepted, |
| // unless they are followed by another ivar. That check is done |
| // elsewhere, after synthesized ivars are known. |
| } |
| } else if (!FDTy->isDependentType() && |
| RequireCompleteType(FD->getLocation(), FD->getType(), |
| diag::err_field_incomplete)) { |
| // Incomplete type |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { |
| if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| // A type which contains a flexible array member is considered to be a |
| // flexible array member. |
| Record->setHasFlexibleArrayMember(true); |
| if (!Record->isUnion()) { |
| // If this is a struct/class and this is not the last element, reject |
| // it. Note that GCC supports variable sized arrays in the middle of |
| // structures. |
| if (!IsLastField) |
| Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) |
| << FD->getDeclName() << FD->getType(); |
| else { |
| // We support flexible arrays at the end of structs in |
| // other structs as an extension. |
| Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) |
| << FD->getDeclName(); |
| } |
| } |
| } |
| if (isa<ObjCContainerDecl>(EnclosingDecl) && |
| RequireNonAbstractType(FD->getLocation(), FD->getType(), |
| diag::err_abstract_type_in_decl, |
| AbstractIvarType)) { |
| // Ivars can not have abstract class types |
| FD->setInvalidDecl(); |
| } |
| if (Record && FDTTy->getDecl()->hasObjectMember()) |
| Record->setHasObjectMember(true); |
| if (Record && FDTTy->getDecl()->hasVolatileMember()) |
| Record->setHasVolatileMember(true); |
| } else if (FDTy->isObjCObjectType()) { |
| /// A field cannot be an Objective-c object |
| Diag(FD->getLocation(), diag::err_statically_allocated_object) |
| << FixItHint::CreateInsertion(FD->getLocation(), "*"); |
| QualType T = Context.getObjCObjectPointerType(FD->getType()); |
| FD->setType(T); |
| } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| Record && !ObjCFieldLifetimeErrReported && Record->isUnion()) { |
| // It's an error in ARC or Weak if a field has lifetime. |
| // We don't want to report this in a system header, though, |
| // so we just make the field unavailable. |
| // FIXME: that's really not sufficient; we need to make the type |
| // itself invalid to, say, initialize or copy. |
| QualType T = FD->getType(); |
| if (T.hasNonTrivialObjCLifetime()) { |
| SourceLocation loc = FD->getLocation(); |
| if (getSourceManager().isInSystemHeader(loc)) { |
| if (!FD->hasAttr<UnavailableAttr>()) { |
| FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", |
| UnavailableAttr::IR_ARCFieldWithOwnership, loc)); |
| } |
| } else { |
| Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag) |
| << T->isBlockPointerType() << Record->getTagKind(); |
| } |
| ObjCFieldLifetimeErrReported = true; |
| } |
| } else if (getLangOpts().ObjC1 && |
| getLangOpts().getGC() != LangOptions::NonGC && |
| Record && !Record->hasObjectMember()) { |
| if (FD->getType()->isObjCObjectPointerType() || |
| FD->getType().isObjCGCStrong()) |
| Record->setHasObjectMember(true); |
| else if (Context.getAsArrayType(FD->getType())) { |
| QualType BaseType = Context.getBaseElementType(FD->getType()); |
| if (BaseType->isRecordType() && |
| BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) |
| Record->setHasObjectMember(true); |
| else if (BaseType->isObjCObjectPointerType() || |
| BaseType.isObjCGCStrong()) |
| Record->setHasObjectMember(true); |
| } |
| } |
| |
| if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) { |
| QualType FT = FD->getType(); |
| if (FT.isNonTrivialToPrimitiveDefaultInitialize()) |
| Record->setNonTrivialToPrimitiveDefaultInitialize(true); |
| QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); |
| if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) |
| Record->setNonTrivialToPrimitiveCopy(true); |
| if (FT.isDestructedType()) { |
| Record->setNonTrivialToPrimitiveDestroy(true); |
| Record->setParamDestroyedInCallee(true); |
| } |
| |
| if (const auto *RT = FT->getAs<RecordType>()) { |
| if (RT->getDecl()->getArgPassingRestrictions() == |
| RecordDecl::APK_CanNeverPassInRegs) |
| Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); |
| } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) |
| Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); |
| } |
| |
| if (Record && FD->getType().isVolatileQualified()) |
| Record->setHasVolatileMember(true); |
| // Keep track of the number of named members. |
| if (FD->getIdentifier()) |
| ++NumNamedMembers; |
| } |
| |
| // Okay, we successfully defined 'Record'. |
| if (Record) { |
| bool Completed = false; |
| if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { |
| if (!CXXRecord->isInvalidDecl()) { |
| // Set access bits correctly on the directly-declared conversions. |
| for (CXXRecordDecl::conversion_iterator |
| I = CXXRecord->conversion_begin(), |
| E = CXXRecord->conversion_end(); I != E; ++I) |
| I.setAccess((*I)->getAccess()); |
| } |
| |
| if (!CXXRecord->isDependentType()) { |
| if (CXXRecord->hasUserDeclaredDestructor()) { |
| // Adjust user-defined destructor exception spec. |
| if (getLangOpts().CPlusPlus11) |
| AdjustDestructorExceptionSpec(CXXRecord, |
| CXXRecord->getDestructor()); |
| } |
| |
| // Add any implicitly-declared members to this class. |
| AddImplicitlyDeclaredMembersToClass(CXXRecord); |
| |
| if (!CXXRecord->isInvalidDecl()) { |
| // If we have virtual base classes, we may end up finding multiple |
| // final overriders for a given virtual function. Check for this |
| // problem now. |
| if (CXXRecord->getNumVBases()) { |
| CXXFinalOverriderMap FinalOverriders; |
| CXXRecord->getFinalOverriders(FinalOverriders); |
| |
| for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
| MEnd = FinalOverriders.end(); |
| M != MEnd; ++M) { |
| for (OverridingMethods::iterator SO = M->second.begin(), |
| SOEnd = M->second.end(); |
| SO != SOEnd; ++SO) { |
| assert(SO->second.size() > 0 && |
| "Virtual function without overriding functions?"); |
| if (SO->second.size() == 1) |
| continue; |
| |
| // C++ [class.virtual]p2: |
| // In a derived class, if a virtual member function of a base |
| // class subobject has more than one final overrider the |
| // program is ill-formed. |
| Diag(Record->getLocation(), diag::err_multiple_final_overriders) |
| << (const NamedDecl *)M->first << Record; |
| Diag(M->first->getLocation(), |
| diag::note_overridden_virtual_function); |
| for (OverridingMethods::overriding_iterator |
| OM = SO->second.begin(), |
| OMEnd = SO->second.end(); |
| OM != OMEnd; ++OM) |
| Diag(OM->Method->getLocation(), diag::note_final_overrider) |
| << (const NamedDecl *)M->first << OM->Method->getParent(); |
| |
| Record->setInvalidDecl(); |
| } |
| } |
| CXXRecord->completeDefinition(&FinalOverriders); |
| Completed = true; |
| } |
| } |
| } |
| } |
| |
| if (!Completed) |
| Record->completeDefinition(); |
| |
| // Handle attributes before checking the layout. |
| ProcessDeclAttributeList(S, Record, Attrs); |
| |
| // We may have deferred checking for a deleted destructor. Check now. |
| if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) { |
| auto *Dtor = CXXRecord->getDestructor(); |
| if (Dtor && Dtor->isImplicit() && |
| ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { |
| CXXRecord->setImplicitDestructorIsDeleted(); |
| SetDeclDeleted(Dtor, CXXRecord->getLocation()); |
| } |
| } |
| |
| if (Record->hasAttrs()) { |
| CheckAlignasUnderalignment(Record); |
| |
| if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) |
| checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), |
| IA->getRange(), IA->getBestCase(), |
| IA->getSemanticSpelling()); |
| } |
| |
| // Check if the structure/union declaration is a type that can have zero |
| // size in C. For C this is a language extension, for C++ it may cause |
| // compatibility problems. |
| bool CheckForZeroSize; |
| if (!getLangOpts().CPlusPlus) { |
| CheckForZeroSize = true; |
| } else { |
| // For C++ filter out types that cannot be referenced in C code. |
| CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); |
| CheckForZeroSize = |
| CXXRecord->getLexicalDeclContext()->isExternCContext() && |
| !CXXRecord->isDependentType() && |
| CXXRecord->isCLike(); |
| } |
| if (CheckForZeroSize) { |
| bool ZeroSize = true; |
| bool IsEmpty = true; |
| unsigned NonBitFields = 0; |
| for (RecordDecl::field_iterator I = Record->field_begin(), |
| E = Record->field_end(); |
| (NonBitFields == 0 || ZeroSize) && I != E; ++I) { |
| IsEmpty = false; |
| if (I->isUnnamedBitfield()) { |
| if (!I->isZeroLengthBitField(Context)) |
| ZeroSize = false; |
| } else { |
| ++NonBitFields; |
| QualType FieldType = I->getType(); |
| if (FieldType->isIncompleteType() || |
| !Context.getTypeSizeInChars(FieldType).isZero()) |
| ZeroSize = false; |
| } |
| } |
| |
| // Empty structs are an extension in C (C99 6.7.2.1p7). They are |
| // allowed in C++, but warn if its declaration is inside |
| // extern "C" block. |
| if (ZeroSize) { |
| Diag(RecLoc, getLangOpts().CPlusPlus ? |
| diag::warn_zero_size_struct_union_in_extern_c : |
| diag::warn_zero_size_struct_union_compat) |
| << IsEmpty << Record->isUnion() << (NonBitFields > 1); |
| } |
| |
| // Structs without named members are extension in C (C99 6.7.2.1p7), |
| // but are accepted by GCC. |
| if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { |
| Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : |
| diag::ext_no_named_members_in_struct_union) |
| << Record->isUnion(); |
| } |
| } |
| } else { |
| ObjCIvarDecl **ClsFields = |
| reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); |
| if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { |
| ID->setEndOfDefinitionLoc(RBrac); |
| // Add ivar's to class's DeclContext. |
| for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| ClsFields[i]->setLexicalDeclContext(ID); |
| ID->addDecl(ClsFields[i]); |
| } |
| // Must enforce the rule that ivars in the base classes may not be |
| // duplicates. |
| if (ID->getSuperClass()) |
| DiagnoseDuplicateIvars(ID, ID->getSuperClass()); |
| } else if (ObjCImplementationDecl *IMPDecl = |
| dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
| assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); |
| for (unsigned I = 0, N = RecFields.size(); I != N; ++I) |
| // Ivar declared in @implementation never belongs to the implementation. |
| // Only it is in implementation's lexical context. |
| ClsFields[I]->setLexicalDeclContext(IMPDecl); |
| CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); |
| IMPDecl->setIvarLBraceLoc(LBrac); |
| IMPDecl->setIvarRBraceLoc(RBrac); |
| } else if (ObjCCategoryDecl *CDecl = |
| dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { |
| // case of ivars in class extension; all other cases have been |
| // reported as errors elsewhere. |
| // FIXME. Class extension does not have a LocEnd field. |
| // CDecl->setLocEnd(RBrac); |
| // Add ivar's to class extension's DeclContext. |
| // Diagnose redeclaration of private ivars. |
| ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); |
| for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| if (IDecl) { |
| if (const ObjCIvarDecl *ClsIvar = |
| IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { |
| Diag(ClsFields[i]->getLocation(), |
| diag::err_duplicate_ivar_declaration); |
| Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| continue; |
| } |
| for (const auto *Ext : IDecl->known_extensions()) { |
| if (const ObjCIvarDecl *ClsExtIvar |
| = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { |
| Diag(ClsFields[i]->getLocation(), |
| diag::err_duplicate_ivar_declaration); |
| Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); |
| continue; |
| } |
| } |
| } |
| ClsFields[i]->setLexicalDeclContext(CDecl); |
| CDecl->addDecl(ClsFields[i]); |
| } |
| CDecl->setIvarLBraceLoc(LBrac); |
| CDecl->setIvarRBraceLoc(RBrac); |
| } |
| } |
| } |
| |
| /// Determine whether the given integral value is representable within |
| /// the given type T. |
| static bool isRepresentableIntegerValue(ASTContext &Context, |
| llvm::APSInt &Value, |
| QualType T) { |
| assert((T->isIntegralType(Context) || T->isEnumeralType()) && |
| "Integral type required!"); |
| unsigned BitWidth = Context.getIntWidth(T); |
| |
| if (Value.isUnsigned() || Value.isNonNegative()) { |
| if (T->isSignedIntegerOrEnumerationType()) |
| --BitWidth; |
| return Value.getActiveBits() <= BitWidth; |
| } |
| return Value.getMinSignedBits() <= BitWidth; |
| } |
| |
| // Given an integral type, return the next larger integral type |
| // (or a NULL type of no such type exists). |
| static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { |
| // FIXME: Int128/UInt128 support, which also needs to be introduced into |
| // enum checking below. |
| assert((T->isIntegralType(Context) || |
| T->isEnumeralType()) && "Integral type required!"); |
| const unsigned NumTypes = 4; |
| QualType SignedIntegralTypes[NumTypes] = { |
| Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy |
| }; |
| QualType UnsignedIntegralTypes[NumTypes] = { |
| Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, |
| Context.UnsignedLongLongTy |
| }; |
| |
| unsigned BitWidth = Context.getTypeSize(T); |
| QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes |
| : UnsignedIntegralTypes; |
| for (unsigned I = 0; I != NumTypes; ++I) |
| if (Context.getTypeSize(Types[I]) > BitWidth) |
| return Types[I]; |
| |
| return QualType(); |
| } |
| |
| EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, |
| EnumConstantDecl *LastEnumConst, |
| SourceLocation IdLoc, |
| IdentifierInfo *Id, |
| Expr *Val) { |
| unsigned IntWidth = Context.getTargetInfo().getIntWidth(); |
| llvm::APSInt EnumVal(IntWidth); |
| QualType EltTy; |
| |
| if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) |
| Val = nullptr; |
| |
| if (Val) |
| Val = DefaultLvalueConversion(Val).get(); |
| |
| if (Val) { |
| if (Enum->isDependentType() || Val->isTypeDependent()) |
| EltTy = Context.DependentTy; |
| else { |
| if (getLangOpts().CPlusPlus11 && Enum->isFixed() && |
| !getLangOpts().MSVCCompat) { |
| // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the |
| // constant-expression in the enumerator-definition shall be a converted |
| // constant expression of the underlying type. |
| EltTy = Enum->getIntegerType(); |
| ExprResult Converted = |
| CheckConvertedConstantExpression(Val, EltTy, EnumVal, |
| CCEK_Enumerator); |
| if (Converted.isInvalid()) |
| Val = nullptr; |
| else |
| Val = Converted.get(); |
| } else if (!Val->isValueDependent() && |
| !(Val = VerifyIntegerConstantExpression(Val, |
| &EnumVal).get())) { |
| // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
| } else { |
| if (Enum->isComplete()) { |
| EltTy = Enum->getIntegerType(); |
| |
| // In Obj-C and Microsoft mode, require the enumeration value to be |
| // representable in the underlying type of the enumeration. In C++11, |
| // we perform a non-narrowing conversion as part of converted constant |
| // expression checking. |
| if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { |
| if (getLangOpts().MSVCCompat) { |
| Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; |
| Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); |
| } else |
| Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; |
| } else |
| Val = ImpCastExprToType(Val, EltTy, |
| EltTy->isBooleanType() ? |
| CK_IntegralToBoolean : CK_IntegralCast) |
| .get(); |
| } else if (getLangOpts().CPlusPlus) { |
| // C++11 [dcl.enum]p5: |
| // If the underlying type is not fixed, the type of each enumerator |
| // is the type of its initializing value: |
| // - If an initializer is specified for an enumerator, the |
| // initializing value has the same type as the expression. |
| EltTy = Val->getType(); |
| } else { |
| // C99 6.7.2.2p2: |
| // The expression that defines the value of an enumeration constant |
| // shall be an integer constant expression that has a value |
| // representable as an int. |
| |
| // Complain if the value is not representable in an int. |
| if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) |
| Diag(IdLoc, diag::ext_enum_value_not_int) |
| << EnumVal.toString(10) << Val->getSourceRange() |
| << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); |
| else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { |
| // Force the type of the expression to 'int'. |
| Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); |
| } |
| EltTy = Val->getType(); |
| } |
| } |
| } |
| } |
| |
| if (!Val) { |
| if (Enum->isDependentType()) |
| EltTy = Context.DependentTy; |
| else if (!LastEnumConst) { |
| // C++0x [dcl.enum]p5: |
| // If the underlying type is not fixed, the type of each enumerator |
| // is the type of its initializing value: |
| // - If no initializer is specified for the first enumerator, the |
| // initializing value has an unspecified integral type. |
| // |
| // GCC uses 'int' for its unspecified integral type, as does |
| // C99 6.7.2.2p3. |
| if (Enum->isFixed()) { |
| EltTy = Enum->getIntegerType(); |
| } |
| else { |
| EltTy = Context.IntTy; |
| } |
| } else { |
| // Assign the last value + 1. |
| EnumVal = LastEnumConst->getInitVal(); |
| ++EnumVal; |
| EltTy = LastEnumConst->getType(); |
| |
| // Check for overflow on increment. |
| if (EnumVal < LastEnumConst->getInitVal()) { |
| // C++0x [dcl.enum]p5: |
| // If the underlying type is not fixed, the type of each enumerator |
| // is the type of its initializing value: |
| // |
| // - Otherwise the type of the initializing value is the same as |
| // the type of the initializing value of the preceding enumerator |
| // unless the incremented value is not representable in that type, |
| // in which case the type is an unspecified integral type |
| // sufficient to contain the incremented value. If no such type |
| // exists, the program is ill-formed. |
| QualType T = getNextLargerIntegralType(Context, EltTy); |
| if (T.isNull() || Enum->isFixed()) { |
| // There is no integral type larger enough to represent this |
| // value. Complain, then allow the value to wrap around. |
| EnumVal = LastEnumConst->getInitVal(); |
| EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); |
| ++EnumVal; |
| if (Enum->isFixed()) |
| // When the underlying type is fixed, this is ill-formed. |
| Diag(IdLoc, diag::err_enumerator_wrapped) |
| << EnumVal.toString(10) |
| << EltTy; |
| else |
| Diag(IdLoc, diag::ext_enumerator_increment_too_large) |
| << EnumVal.toString(10); |
| } else { |
| EltTy = T; |
| } |
| |
| // Retrieve the last enumerator's value, extent that type to the |
| // type that is supposed to be large enough to represent the incremented |
| // value, then increment. |
| EnumVal = LastEnumConst->getInitVal(); |
| EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); |
| EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); |
| ++EnumVal; |
| |
| // If we're not in C++, diagnose the overflow of enumerator values, |
| // which in C99 means that the enumerator value is not representable in |
| // an int (C99 6.7.2.2p2). However, we support GCC's extension that |
| // permits enumerator values that are representable in some larger |
| // integral type. |
| if (!getLangOpts().CPlusPlus && !T.isNull()) |
| Diag(IdLoc, diag::warn_enum_value_overflow); |
| } else if (!getLangOpts().CPlusPlus && |
| !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { |
| // Enforce C99 6.7.2.2p2 even when we compute the next value. |
| Diag(IdLoc, diag::ext_enum_value_not_int) |
| << EnumVal.toString(10) << 1; |
| } |
| } |
| } |
| |
| if (!EltTy->isDependentType()) { |
| // Make the enumerator value match the signedness and size of the |
| // enumerator's type. |
| EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); |
| EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); |
| } |
| |
| return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, |
| Val, EnumVal); |
| } |
| |
| Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, |
| SourceLocation IILoc) { |
| if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || |
| !getLangOpts().CPlusPlus) |
| return SkipBodyInfo(); |
| |
| // We have an anonymous enum definition. Look up the first enumerator to |
| // determine if we should merge the definition with an existing one and |
| // skip the body. |
| NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); |
| if (!PrevECD) |
| return SkipBodyInfo(); |
| |
| EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); |
| NamedDecl *Hidden; |
| if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { |
| SkipBodyInfo Skip; |
| Skip.Previous = Hidden; |
| return Skip; |
| } |
| |
| return SkipBodyInfo(); |
| } |
| |
| Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| const ParsedAttributesView &Attrs, |
| SourceLocation EqualLoc, Expr *Val) { |
| EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); |
| EnumConstantDecl *LastEnumConst = |
| cast_or_null<EnumConstantDecl>(lastEnumConst); |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| S = getNonFieldDeclScope(S); |
| |
| // Verify that there isn't already something declared with this name in this |
| // scope. |
| NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName, |
| ForVisibleRedeclaration); |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = nullptr; |
| } |
| |
| // C++ [class.mem]p15: |
| // If T is the name of a class, then each of the following shall have a name |
| // different from T: |
| // - every enumerator of every member of class T that is an unscoped |
| // enumerated type |
| if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) |
| DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), |
| DeclarationNameInfo(Id, IdLoc)); |
| |
| EnumConstantDecl *New = |
| CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); |
| if (!New) |
| return nullptr; |
| |
| if (PrevDecl) { |
| // When in C++, we may get a TagDecl with the same name; in this case the |
| // enum constant will 'hide' the tag. |
| assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && |
| "Received TagDecl when not in C++!"); |
| if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { |
| if (isa<EnumConstantDecl>(PrevDecl)) |
| Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; |
| else |
| Diag(IdLoc, diag::err_redefinition) << Id; |
| notePreviousDefinition(PrevDecl, IdLoc); |
| return nullptr; |
| } |
| } |
| |
| // Process attributes. |
| ProcessDeclAttributeList(S, New, Attrs); |
| AddPragmaAttributes(S, New); |
| |
| // Register this decl in the current scope stack. |
| New->setAccess(TheEnumDecl->getAccess()); |
| PushOnScopeChains(New, S); |
| |
| ActOnDocumentableDecl(New); |
| |
| return New; |
| } |
| |
| // Returns true when the enum initial expression does not trigger the |
| // duplicate enum warning. A few common cases are exempted as follows: |
| // Element2 = Element1 |
| // Element2 = Element1 + 1 |
| // Element2 = Element1 - 1 |
| // Where Element2 and Element1 are from the same enum. |
| static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { |
| Expr *InitExpr = ECD->getInitExpr(); |
| if (!InitExpr) |
| return true; |
| InitExpr = InitExpr->IgnoreImpCasts(); |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { |
| if (!BO->isAdditiveOp()) |
| return true; |
| IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); |
| if (!IL) |
| return true; |
| if (IL->getValue() != 1) |
| return true; |
| |
| InitExpr = BO->getLHS(); |
| } |
| |
| // This checks if the elements are from the same enum. |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); |
| if (!DRE) |
| return true; |
| |
| EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); |
| if (!EnumConstant) |
| return true; |
| |
| if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != |
| Enum) |
| return true; |
| |
| return false; |
| } |
| |
| // Emits a warning when an element is implicitly set a value that |
| // a previous element has already been set to. |
| static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, |
| EnumDecl *Enum, QualType EnumType) { |
| // Avoid anonymous enums |
| if (!Enum->getIdentifier()) |
| return; |
| |
| // Only check for small enums. |
| if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) |
| return; |
| |
| if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) |
| return; |
| |
| typedef SmallVector<EnumConstantDecl *, 3> ECDVector; |
| typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; |
| |
| typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; |
| typedef llvm::DenseMap<int64_t, DeclOrVector> ValueToVectorMap; |
| |
| // Use int64_t as a key to avoid needing special handling for DenseMap keys. |
| auto EnumConstantToKey = [](const EnumConstantDecl *D) { |
| llvm::APSInt Val = D->getInitVal(); |
| return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); |
| }; |
| |
| DuplicatesVector DupVector; |
| ValueToVectorMap EnumMap; |
| |
| // Populate the EnumMap with all values represented by enum constants without |
| // an initializer. |
| for (auto *Element : Elements) { |
| EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); |
| |
| // Null EnumConstantDecl means a previous diagnostic has been emitted for |
| // this constant. Skip this enum since it may be ill-formed. |
| if (!ECD) { |
| return; |
| } |
| |
| // Constants with initalizers are handled in the next loop. |
| if (ECD->getInitExpr()) |
| continue; |
| |
| // Duplicate values are handled in the next loop. |
| EnumMap.insert({EnumConstantToKey(ECD), ECD}); |
| } |
| |
| if (EnumMap.size() == 0) |
| return; |
| |
| // Create vectors for any values that has duplicates. |
| for (auto *Element : Elements) { |
| // The last loop returned if any constant was null. |
| EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); |
| if (!ValidDuplicateEnum(ECD, Enum)) |
| continue; |
| |
| auto Iter = EnumMap.find(EnumConstantToKey(ECD)); |
| if (Iter == EnumMap.end()) |
| continue; |
| |
| DeclOrVector& Entry = Iter->second; |
| if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { |
| // Ensure constants are different. |
| if (D == ECD) |
| continue; |
| |
| // Create new vector and push values onto it. |
| auto Vec = llvm::make_unique<ECDVector>(); |
| Vec->push_back(D); |
| Vec->push_back(ECD); |
| |
| // Update entry to point to the duplicates vector. |
| Entry = Vec.get(); |
| |
| // Store the vector somewhere we can consult later for quick emission of |
| // diagnostics. |
| DupVector.emplace_back(std::move(Vec)); |
| continue; |
| } |
| |
| ECDVector *Vec = Entry.get<ECDVector*>(); |
| // Make sure constants are not added more than once. |
| if (*Vec->begin() == ECD) |
| continue; |
| |
| Vec->push_back(ECD); |
| } |
| |
| // Emit diagnostics. |
| for (const auto &Vec : DupVector) { |
| assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); |
| |
| // Emit warning for one enum constant. |
| auto *FirstECD = Vec->front(); |
| S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) |
| << FirstECD << FirstECD->getInitVal().toString(10) |
| << FirstECD->getSourceRange(); |
| |
| // Emit one note for each of the remaining enum constants with |
| // the same value. |
| for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) |
| S.Diag(ECD->getLocation(), diag::note_duplicate_element) |
| << ECD << ECD->getInitVal().toString(10) |
| << ECD->getSourceRange(); |
| } |
| } |
| |
| bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, |
| bool AllowMask) const { |
| assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); |
| assert(ED->isCompleteDefinition() && "expected enum definition"); |
| |
| auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); |
| llvm::APInt &FlagBits = R.first->second; |
| |
| if (R.second) { |
| for (auto *E : ED->enumerators()) { |
| const auto &EVal = E->getInitVal(); |
| // Only single-bit enumerators introduce new flag values. |
| if (EVal.isPowerOf2()) |
| FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; |
| } |
| } |
| |
| // A value is in a flag enum if either its bits are a subset of the enum's |
| // flag bits (the first condition) or we are allowing masks and the same is |
| // true of its complement (the second condition). When masks are allowed, we |
| // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. |
| // |
| // While it's true that any value could be used as a mask, the assumption is |
| // that a mask will have all of the insignificant bits set. Anything else is |
| // likely a logic error. |
| llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); |
| return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); |
| } |
| |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, |
| Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, |
| const ParsedAttributesView &Attrs) { |
| EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); |
| QualType EnumType = Context.getTypeDeclType(Enum); |
| |
| ProcessDeclAttributeList(S, Enum, Attrs); |
| |
| if (Enum->isDependentType()) { |
| for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(Elements[i]); |
| if (!ECD) continue; |
| |
| ECD->setType(EnumType); |
| } |
| |
| Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); |
| return; |
| } |
| |
| // TODO: If the result value doesn't fit in an int, it must be a long or long |
| // long value. ISO C does not support this, but GCC does as an extension, |
| // emit a warning. |
| unsigned IntWidth = Context.getTargetInfo().getIntWidth(); |
| unsigned CharWidth = Context.getTargetInfo().getCharWidth(); |
| unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); |
| |
| // Verify that all the values are okay, compute the size of the values, and |
| // reverse the list. |
| unsigned NumNegativeBits = 0; |
| unsigned NumPositiveBits = 0; |
| |
| // Keep track of whether all elements have type int. |
| bool AllElementsInt = true; |
| |
| for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(Elements[i]); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| const llvm::APSInt &InitVal = ECD->getInitVal(); |
| |
| // Keep track of the size of positive and negative values. |
| if (InitVal.isUnsigned() || InitVal.isNonNegative()) |
| NumPositiveBits = std::max(NumPositiveBits, |
| (unsigned)InitVal.getActiveBits()); |
| else |
| NumNegativeBits = std::max(NumNegativeBits, |
| (unsigned)InitVal.getMinSignedBits()); |
| |
| // Keep track of whether every enum element has type int (very commmon). |
| if (AllElementsInt) |
| AllElementsInt = ECD->getType() == Context.IntTy; |
| } |
| |
| // Figure out the type that should be used for this enum. |
| QualType BestType; |
| unsigned BestWidth; |
| |
| // C++0x N3000 [conv.prom]p3: |
| // An rvalue of an unscoped enumeration type whose underlying |
| // type is not fixed can be converted to an rvalue of the first |
| // of the following types that can represent all the values of |
| // the enumeration: int, unsigned int, long int, unsigned long |
| // int, long long int, or unsigned long long int. |
| // C99 6.4.4.3p2: |
| // An identifier declared as an enumeration constant has type int. |
| // The C99 rule is modified by a gcc extension |
| QualType BestPromotionType; |
| |
| bool Packed = Enum->hasAttr<PackedAttr>(); |
| // -fshort-enums is the equivalent to specifying the packed attribute on all |
| // enum definitions. |
| if (LangOpts.ShortEnums) |
| Packed = true; |
| |
| // If the enum already has a type because it is fixed or dictated by the |
| // target, promote that type instead of analyzing the enumerators. |
| if (Enum->isComplete()) { |
| BestType = Enum->getIntegerType(); |
| if (BestType->isPromotableIntegerType()) |
| BestPromotionType = Context.getPromotedIntegerType(BestType); |
| else |
| BestPromotionType = BestType; |
| |
| BestWidth = Context.getIntWidth(BestType); |
| } |
| else if (NumNegativeBits) { |
| // If there is a negative value, figure out the smallest integer type (of |
| // int/long/longlong) that fits. |
| // If it's packed, check also if it fits a char or a short. |
| if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { |
| BestType = Context.SignedCharTy; |
| BestWidth = CharWidth; |
| } else if (Packed && NumNegativeBits <= ShortWidth && |
| NumPositiveBits < ShortWidth) { |
| BestType = Context.ShortTy; |
| BestWidth = ShortWidth; |
| } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
| BestType = Context.IntTy; |
| BestWidth = IntWidth; |
| } else { |
| BestWidth = Context.getTargetInfo().getLongWidth(); |
| |
| if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { |
| BestType = Context.LongTy; |
| } else { |
| BestWidth = Context.getTargetInfo().getLongLongWidth(); |
| |
| if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
| Diag(Enum->getLocation(), diag::ext_enum_too_large); |
| BestType = Context.LongLongTy; |
| } |
| } |
| BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); |
| } else { |
| // If there is no negative value, figure out the smallest type that fits |
| // all of the enumerator values. |
| // If it's packed, check also if it fits a char or a short. |
| if (Packed && NumPositiveBits <= CharWidth) { |
| BestType = Context.UnsignedCharTy; |
| BestPromotionType = Context.IntTy; |
| BestWidth = CharWidth; |
| } else if (Packed && NumPositiveBits <= ShortWidth) { |
| BestType = Context.UnsignedShortTy; |
| BestPromotionType = Context.IntTy; |
| BestWidth = ShortWidth; |
| } else if (NumPositiveBits <= IntWidth) { |
| BestType = Context.UnsignedIntTy; |
| BestWidth = IntWidth; |
| BestPromotionType |
| = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) |
| ? Context.UnsignedIntTy : Context.IntTy; |
| } else if (NumPositiveBits <= |
| (BestWidth = Context.getTargetInfo().getLongWidth())) { |
| BestType = Context.UnsignedLongTy; |
| BestPromotionType |
| = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) |
| ? Context.UnsignedLongTy : Context.LongTy; |
| } else { |
| BestWidth = Context.getTargetInfo().getLongLongWidth(); |
| assert(NumPositiveBits <= BestWidth && |
| "How could an initializer get larger than ULL?"); |
| BestType = Context.UnsignedLongLongTy; |
| BestPromotionType |
| = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) |
| ? Context.UnsignedLongLongTy : Context.LongLongTy; |
| } |
| } |
| |
| // Loop over all of the enumerator constants, changing their types to match |
| // the type of the enum if needed. |
| for (auto *D : Elements) { |
| auto *ECD = cast_or_null<EnumConstantDecl>(D); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // Standard C says the enumerators have int type, but we allow, as an |
| // extension, the enumerators to be larger than int size. If each |
| // enumerator value fits in an int, type it as an int, otherwise type it the |
| // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
| // that X has type 'int', not 'unsigned'. |
| |
| // Determine whether the value fits into an int. |
| llvm::APSInt InitVal = ECD->getInitVal(); |
| |
| // If it fits into an integer type, force it. Otherwise force it to match |
| // the enum decl type. |
| QualType NewTy; |
| unsigned NewWidth; |
| bool NewSign; |
| if (!getLangOpts().CPlusPlus && |
| !Enum->isFixed() && |
| isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { |
| NewTy = Context.IntTy; |
| NewWidth = IntWidth; |
| NewSign = true; |
| } else if (ECD->getType() == BestType) { |
| // Already the right type! |
| if (getLangOpts().CPlusPlus) |
| // C++ [dcl.enum]p4: Following the closing brace of an |
| // enum-specifier, each enumerator has the type of its |
| // enumeration. |
| ECD->setType(EnumType); |
| continue; |
| } else { |
| NewTy = BestType; |
| NewWidth = BestWidth; |
| NewSign = BestType->isSignedIntegerOrEnumerationType(); |
| } |
| |
| // Adjust the APSInt value. |
| InitVal = InitVal.extOrTrunc(NewWidth); |
| InitVal.setIsSigned(NewSign); |
| ECD->setInitVal(InitVal); |
| |
| // Adjust the Expr initializer and type. |
| if (ECD->getInitExpr() && |
| !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) |
| ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, |
| CK_IntegralCast, |
| ECD->getInitExpr(), |
| /*base paths*/ nullptr, |
| VK_RValue)); |
| if (getLangOpts().CPlusPlus) |
| // C++ [dcl.enum]p4: Following the closing brace of an |
| // enum-specifier, each enumerator has the type of its |
| // enumeration. |
| ECD->setType(EnumType); |
| else |
| ECD->setType(NewTy); |
| } |
| |
| Enum->completeDefinition(BestType, BestPromotionType, |
| NumPositiveBits, NumNegativeBits); |
| |
| CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); |
| |
| if (Enum->isClosedFlag()) { |
| for (Decl *D : Elements) { |
| EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| llvm::APSInt InitVal = ECD->getInitVal(); |
| if (InitVal != 0 && !InitVal.isPowerOf2() && |
| !IsValueInFlagEnum(Enum, InitVal, true)) |
| Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) |
| << ECD << Enum; |
| } |
| } |
| |
| // Now that the enum type is defined, ensure it's not been underaligned. |
| if (Enum->hasAttrs()) |
| CheckAlignasUnderalignment(Enum); |
| } |
| |
| Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| StringLiteral *AsmString = cast<StringLiteral>(expr); |
| |
| FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, |
| AsmString, StartLoc, |
| EndLoc); |
| CurContext->addDecl(New); |
| return New; |
| } |
| |
| static void checkModuleImportContext(Sema &S, Module *M, |
| SourceLocation ImportLoc, DeclContext *DC, |
| bool FromInclude = false) { |
| SourceLocation ExternCLoc; |
| |
| if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { |
| switch (LSD->getLanguage()) { |
| case LinkageSpecDecl::lang_c: |
| if (ExternCLoc.isInvalid()) |
| ExternCLoc = LSD->getLocStart(); |
| break; |
| case LinkageSpecDecl::lang_cxx: |
| break; |
| } |
| DC = LSD->getParent(); |
| } |
| |
| while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) |
| DC = DC->getParent(); |
| |
| if (!isa<TranslationUnitDecl>(DC)) { |
| S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) |
| ? diag::ext_module_import_not_at_top_level_noop |
| : diag::err_module_import_not_at_top_level_fatal) |
| << M->getFullModuleName() << DC; |
| S.Diag(cast<Decl>(DC)->getLocStart(), |
| diag::note_module_import_not_at_top_level) << DC; |
| } else if (!M->IsExternC && ExternCLoc.isValid()) { |
| S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) |
| << M->getFullModuleName(); |
| S.Diag(ExternCLoc, diag::note_extern_c_begins_here); |
| } |
| } |
| |
| Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc, |
| SourceLocation ModuleLoc, |
| ModuleDeclKind MDK, |
| ModuleIdPath Path) { |
| assert(getLangOpts().ModulesTS && |
| "should only have module decl in modules TS"); |
| |
| // A module implementation unit requires that we are not compiling a module |
| // of any kind. A module interface unit requires that we are not compiling a |
| // module map. |
| switch (getLangOpts().getCompilingModule()) { |
| case LangOptions::CMK_None: |
| // It's OK to compile a module interface as a normal translation unit. |
| break; |
| |
| case LangOptions::CMK_ModuleInterface: |
| if (MDK != ModuleDeclKind::Implementation) |
| break; |
| |
| // We were asked to compile a module interface unit but this is a module |
| // implementation unit. That indicates the 'export' is missing. |
| Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) |
| << FixItHint::CreateInsertion(ModuleLoc, "export "); |
| MDK = ModuleDeclKind::Interface; |
| break; |
| |
| case LangOptions::CMK_ModuleMap: |
| Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); |
| return nullptr; |
| } |
| |
| assert(ModuleScopes.size() == 1 && "expected to be at global module scope"); |
| |
| // FIXME: Most of this work should be done by the preprocessor rather than |
| // here, in order to support macro import. |
| |
| // Only one module-declaration is permitted per source file. |
| if (ModuleScopes.back().Module->Kind == Module::ModuleInterfaceUnit) { |
| Diag(ModuleLoc, diag::err_module_redeclaration); |
| Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), |
| diag::note_prev_module_declaration); |
| return nullptr; |
| } |
| |
| // Flatten the dots in a module name. Unlike Clang's hierarchical module map |
| // modules, the dots here are just another character that can appear in a |
| // module name. |
| std::string ModuleName; |
| for (auto &Piece : Path) { |
| if (!ModuleName.empty()) |
| ModuleName += "."; |
| ModuleName += Piece.first->getName(); |
| } |
| |
| // If a module name was explicitly specified on the command line, it must be |
| // correct. |
| if (!getLangOpts().CurrentModule.empty() && |
| getLangOpts().CurrentModule != ModuleName) { |
| Diag(Path.front().second, diag::err_current_module_name_mismatch) |
| << SourceRange(Path.front().second, Path.back().second) |
| << getLangOpts().CurrentModule; |
| return nullptr; |
| } |
| const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; |
| |
| auto &Map = PP.getHeaderSearchInfo().getModuleMap(); |
| Module *Mod; |
| |
| switch (MDK) { |
| case ModuleDeclKind::Interface: { |
| // We can't have parsed or imported a definition of this module or parsed a |
| // module map defining it already. |
| if (auto *M = Map.findModule(ModuleName)) { |
| Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; |
| if (M->DefinitionLoc.isValid()) |
| Diag(M->DefinitionLoc, diag::note_prev_module_definition); |
| else if (const auto *FE = M->getASTFile()) |
| Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) |
| << FE->getName(); |
| Mod = M; |
| break; |
| } |
| |
| // Create a Module for the module that we're defining. |
| Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, |
| ModuleScopes.front().Module); |
| assert(Mod && "module creation should not fail"); |
| break; |
| } |
| |
| case ModuleDeclKind::Partition: |
| // FIXME: Check we are in a submodule of the named module. |
| return nullptr; |
| |
| case ModuleDeclKind::Implementation: |
| std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( |
| PP.getIdentifierInfo(ModuleName), Path[0].second); |
| Mod = getModuleLoader().loadModule(ModuleLoc, Path, Module::AllVisible, |
| /*IsIncludeDirective=*/false); |
| if (!Mod) { |
| Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; |
| // Create an empty module interface unit for error recovery. |
| Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName, |
| ModuleScopes.front().Module); |
| } |
| break; |
| } |
| |
| // Switch from the global module to the named module. |
| ModuleScopes.back().Module = Mod; |
| ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation; |
| VisibleModules.setVisible(Mod, ModuleLoc); |
| |
| // From now on, we have an owning module for all declarations we see. |
| // However, those declarations are module-private unless explicitly |
| // exported. |
| auto *TU = Context.getTranslationUnitDecl(); |
| TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); |
| TU->setLocalOwningModule(Mod); |
| |
| // FIXME: Create a ModuleDecl. |
| return nullptr; |
| } |
| |
| DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, |
| SourceLocation ImportLoc, |
| ModuleIdPath Path) { |
| Module *Mod = |
| getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible, |
| /*IsIncludeDirective=*/false); |
| if (!Mod) |
| return true; |
| |
| VisibleModules.setVisible(Mod, ImportLoc); |
| |
| checkModuleImportContext(*this, Mod, ImportLoc, CurContext); |
| |
| // FIXME: we should support importing a submodule within a different submodule |
| // of the same top-level module. Until we do, make it an error rather than |
| // silently ignoring the import. |
| // Import-from-implementation is valid in the Modules TS. FIXME: Should we |
| // warn on a redundant import of the current module? |
| if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule && |
| (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) |
| Diag(ImportLoc, getLangOpts().isCompilingModule() |
| ? diag::err_module_self_import |
| : diag::err_module_import_in_implementation) |
| << Mod->getFullModuleName() << getLangOpts().CurrentModule; |
| |
| SmallVector<SourceLocation, 2> IdentifierLocs; |
| Module *ModCheck = Mod; |
| for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
| // If we've run out of module parents, just drop the remaining identifiers. |
| // We need the length to be consistent. |
| if (!ModCheck) |
| break; |
| ModCheck = ModCheck->Parent; |
| |
| IdentifierLocs.push_back(Path[I].second); |
| } |
| |
| ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, |
| Mod, IdentifierLocs); |
| if (!ModuleScopes.empty()) |
| Context.addModuleInitializer(ModuleScopes.back().Module, Import); |
| CurContext->addDecl(Import); |
| |
| // Re-export the module if needed. |
| if (Import->isExported() && |
| !ModuleScopes.empty() && ModuleScopes.back().ModuleInterface) |
| getCurrentModule()->Exports.emplace_back(Mod, false); |
| |
| return Import; |
| } |
| |
| void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { |
| checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); |
| BuildModuleInclude(DirectiveLoc, Mod); |
| } |
| |
| void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { |
| // Determine whether we're in the #include buffer for a module. The #includes |
| // in that buffer do not qualify as module imports; they're just an |
| // implementation detail of us building the module. |
| // |
| // FIXME: Should we even get ActOnModuleInclude calls for those? |
| bool IsInModuleIncludes = |
| TUKind == TU_Module && |
| getSourceManager().isWrittenInMainFile(DirectiveLoc); |
| |
| bool ShouldAddImport = !IsInModuleIncludes; |
| |
| // If this module import was due to an inclusion directive, create an |
| // implicit import declaration to capture it in the AST. |
| if (ShouldAddImport) { |
| TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); |
| ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, |
| DirectiveLoc, Mod, |
| DirectiveLoc); |
| if (!ModuleScopes.empty()) |
| Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); |
| TU->addDecl(ImportD); |
| Consumer.HandleImplicitImportDecl(ImportD); |
| } |
| |
| getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); |
| VisibleModules.setVisible(Mod, DirectiveLoc); |
| } |
| |
| void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { |
| checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); |
| |
| ModuleScopes.push_back({}); |
| ModuleScopes.back().Module = Mod; |
| if (getLangOpts().ModulesLocalVisibility) |
| ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); |
| |
| VisibleModules.setVisible(Mod, DirectiveLoc); |
| |
| // The enclosing context is now part of this module. |
| // FIXME: Consider creating a child DeclContext to hold the entities |
| // lexically within the module. |
| if (getLangOpts().trackLocalOwningModule()) { |
| for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { |
| cast<Decl>(DC)->setModuleOwnershipKind( |
| getLangOpts().ModulesLocalVisibility |
| ? Decl::ModuleOwnershipKind::VisibleWhenImported |
| : Decl::ModuleOwnershipKind::Visible); |
| cast<Decl>(DC)->setLocalOwningModule(Mod); |
| } |
| } |
| } |
| |
| void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) { |
| if (getLangOpts().ModulesLocalVisibility) { |
| VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); |
| // Leaving a module hides namespace names, so our visible namespace cache |
| // is now out of date. |
| VisibleNamespaceCache.clear(); |
| } |
| |
| assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && |
| "left the wrong module scope"); |
| ModuleScopes.pop_back(); |
| |
| // We got to the end of processing a local module. Create an |
| // ImportDecl as we would for an imported module. |
| FileID File = getSourceManager().getFileID(EomLoc); |
| SourceLocation DirectiveLoc; |
| if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { |
| // We reached the end of a #included module header. Use the #include loc. |
| assert(File != getSourceManager().getMainFileID() && |
| "end of submodule in main source file"); |
| DirectiveLoc = getSourceManager().getIncludeLoc(File); |
| } else { |
| // We reached an EOM pragma. Use the pragma location. |
| DirectiveLoc = EomLoc; |
| } |
| BuildModuleInclude(DirectiveLoc, Mod); |
| |
| // Any further declarations are in whatever module we returned to. |
| if (getLangOpts().trackLocalOwningModule()) { |
| // The parser guarantees that this is the same context that we entered |
| // the module within. |
| for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { |
| cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); |
| if (!getCurrentModule()) |
| cast<Decl>(DC)->setModuleOwnershipKind( |
| Decl::ModuleOwnershipKind::Unowned); |
| } |
| } |
| } |
| |
| void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, |
| Module *Mod) { |
| // Bail if we're not allowed to implicitly import a module here. |
| if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || |
| VisibleModules.isVisible(Mod)) |
| return; |
| |
| // Create the implicit import declaration. |
| TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); |
| ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, |
| Loc, Mod, Loc); |
| TU->addDecl(ImportD); |
| Consumer.HandleImplicitImportDecl(ImportD); |
| |
| // Make the module visible. |
| getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); |
| VisibleModules.setVisible(Mod, Loc); |
| } |
| |
| /// We have parsed the start of an export declaration, including the '{' |
| /// (if present). |
| Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, |
| SourceLocation LBraceLoc) { |
| ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); |
| |
| // C++ Modules TS draft: |
| // An export-declaration shall appear in the purview of a module other than |
| // the global module. |
| if (ModuleScopes.empty() || !ModuleScopes.back().ModuleInterface) |
| Diag(ExportLoc, diag::err_export_not_in_module_interface); |
| |
| // An export-declaration [...] shall not contain more than one |
| // export keyword. |
| // |
| // The intent here is that an export-declaration cannot appear within another |
| // export-declaration. |
| if (D->isExported()) |
| Diag(ExportLoc, diag::err_export_within_export); |
| |
| CurContext->addDecl(D); |
| PushDeclContext(S, D); |
| D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); |
| return D; |
| } |
| |
| /// Complete the definition of an export declaration. |
| Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { |
| auto *ED = cast<ExportDecl>(D); |
| if (RBraceLoc.isValid()) |
| ED->setRBraceLoc(RBraceLoc); |
| |
| // FIXME: Diagnose export of internal-linkage declaration (including |
| // anonymous namespace). |
| |
| PopDeclContext(); |
| return D; |
| } |
| |
| void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, |
| IdentifierInfo* AliasName, |
| SourceLocation PragmaLoc, |
| SourceLocation NameLoc, |
| SourceLocation AliasNameLoc) { |
| NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, |
| LookupOrdinaryName); |
| AsmLabelAttr *Attr = |
| AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc); |
| |
| // If a declaration that: |
| // 1) declares a function or a variable |
| // 2) has external linkage |
| // already exists, add a label attribute to it. |
| if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { |
| if (isDeclExternC(PrevDecl)) |
| PrevDecl->addAttr(Attr); |
| else |
| Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) |
| << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; |
| // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. |
| } else |
| (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); |
| } |
| |
| void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, |
| SourceLocation PragmaLoc, |
| SourceLocation NameLoc) { |
| Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); |
| |
| if (PrevDecl) { |
| PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); |
| } else { |
| (void)WeakUndeclaredIdentifiers.insert( |
| std::pair<IdentifierInfo*,WeakInfo> |
| (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); |
| } |
| } |
| |
| void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, |
| IdentifierInfo* AliasName, |
| SourceLocation PragmaLoc, |
| SourceLocation NameLoc, |
| SourceLocation AliasNameLoc) { |
| Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, |
| LookupOrdinaryName); |
| WeakInfo W = WeakInfo(Name, NameLoc); |
| |
| if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { |
| if (!PrevDecl->hasAttr<AliasAttr>()) |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) |
| DeclApplyPragmaWeak(TUScope, ND, W); |
| } else { |
| (void)WeakUndeclaredIdentifiers.insert( |
| std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); |
| } |
| } |
| |
| Decl *Sema::getObjCDeclContext() const { |
| return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); |
| } |