|  | /* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  | /* acos(x) | 
|  | * Method : | 
|  | *      acos(x)  = pi/2 - asin(x) | 
|  | *      acos(-x) = pi/2 + asin(x) | 
|  | * For |x|<=0.5 | 
|  | *      acos(x) = pi/2 - (x + x*x^2*R(x^2))     (see asin.c) | 
|  | * For x>0.5 | 
|  | *      acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) | 
|  | *              = 2asin(sqrt((1-x)/2)) | 
|  | *              = 2s + 2s*z*R(z)        ...z=(1-x)/2, s=sqrt(z) | 
|  | *              = 2f + (2c + 2s*z*R(z)) | 
|  | *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term | 
|  | *     for f so that f+c ~ sqrt(z). | 
|  | * For x<-0.5 | 
|  | *      acos(x) = pi - 2asin(sqrt((1-|x|)/2)) | 
|  | *              = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) | 
|  | * | 
|  | * Special cases: | 
|  | *      if x is NaN, return x itself; | 
|  | *      if |x|>1, return NaN with invalid signal. | 
|  | * | 
|  | * Function needed: sqrt | 
|  | */ | 
|  |  | 
|  | #include "libm.h" | 
|  |  | 
|  | static const double | 
|  | pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ | 
|  | pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ | 
|  | pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ | 
|  | pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ | 
|  | pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ | 
|  | pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ | 
|  | pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ | 
|  | pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ | 
|  | qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ | 
|  | qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ | 
|  | qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ | 
|  | qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ | 
|  |  | 
|  | static double R(double z) | 
|  | { | 
|  | double_t p, q; | 
|  | p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); | 
|  | q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4))); | 
|  | return p/q; | 
|  | } | 
|  |  | 
|  | double acos(double x) | 
|  | { | 
|  | double z,w,s,c,df; | 
|  | uint32_t hx,ix; | 
|  |  | 
|  | GET_HIGH_WORD(hx, x); | 
|  | ix = hx & 0x7fffffff; | 
|  | /* |x| >= 1 or nan */ | 
|  | if (ix >= 0x3ff00000) { | 
|  | uint32_t lx; | 
|  |  | 
|  | GET_LOW_WORD(lx,x); | 
|  | if ((ix-0x3ff00000 | lx) == 0) { | 
|  | /* acos(1)=0, acos(-1)=pi */ | 
|  | if (hx >> 31) | 
|  | return 2*pio2_hi + 0x1p-120f; | 
|  | return 0; | 
|  | } | 
|  | return 0/(x-x); | 
|  | } | 
|  | /* |x| < 0.5 */ | 
|  | if (ix < 0x3fe00000) { | 
|  | if (ix <= 0x3c600000)  /* |x| < 2**-57 */ | 
|  | return pio2_hi + 0x1p-120f; | 
|  | return pio2_hi - (x - (pio2_lo-x*R(x*x))); | 
|  | } | 
|  | /* x < -0.5 */ | 
|  | if (hx >> 31) { | 
|  | z = (1.0+x)*0.5; | 
|  | s = sqrt(z); | 
|  | w = R(z)*s-pio2_lo; | 
|  | return 2*(pio2_hi - (s+w)); | 
|  | } | 
|  | /* x > 0.5 */ | 
|  | z = (1.0-x)*0.5; | 
|  | s = sqrt(z); | 
|  | df = s; | 
|  | SET_LOW_WORD(df,0); | 
|  | c = (z-df*df)/(s+df); | 
|  | w = R(z)*s+c; | 
|  | return 2*(df+w); | 
|  | } |