| /* | 
 |  * Copyright 2017 ARM Ltd. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "src/core/SkDistanceFieldGen.h" | 
 | #include "src/gpu/GrDistanceFieldGenFromVector.h" | 
 |  | 
 | #include "include/core/SkMatrix.h" | 
 | #include "include/gpu/GrConfig.h" | 
 | #include "include/pathops/SkPathOps.h" | 
 | #include "src/core/SkAutoMalloc.h" | 
 | #include "src/core/SkGeometry.h" | 
 | #include "src/core/SkPointPriv.h" | 
 | #include "src/core/SkRectPriv.h" | 
 | #include "src/gpu/geometry/GrPathUtils.h" | 
 |  | 
 | /** | 
 |  * If a scanline (a row of texel) cross from the kRight_SegSide | 
 |  * of a segment to the kLeft_SegSide, the winding score should | 
 |  * add 1. | 
 |  * And winding score should subtract 1 if the scanline cross | 
 |  * from kLeft_SegSide to kRight_SegSide. | 
 |  * Always return kNA_SegSide if the scanline does not cross over | 
 |  * the segment. Winding score should be zero in this case. | 
 |  * You can get the winding number for each texel of the scanline | 
 |  * by adding the winding score from left to right. | 
 |  * Assuming we always start from outside, so the winding number | 
 |  * should always start from zero. | 
 |  *      ________         ________ | 
 |  *     |        |       |        | | 
 |  * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment | 
 |  *     |+1      |-1     |-1      |+1     <= Winding score | 
 |  *   0 |   1    ^   0   ^  -1    |0      <= Winding number | 
 |  *     |________|       |________| | 
 |  * | 
 |  * .......NA................NA.......... | 
 |  *         0                 0 | 
 |  */ | 
 | enum SegSide { | 
 |     kLeft_SegSide  = -1, | 
 |     kOn_SegSide    =  0, | 
 |     kRight_SegSide =  1, | 
 |     kNA_SegSide    =  2, | 
 | }; | 
 |  | 
 | struct DFData { | 
 |     float fDistSq;            // distance squared to nearest (so far) edge | 
 |     int   fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment | 
 | }; | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | /* | 
 |  * Type definition for double precision DPoint and DAffineMatrix | 
 |  */ | 
 |  | 
 | // Point with double precision | 
 | struct DPoint { | 
 |     double fX, fY; | 
 |  | 
 |     static DPoint Make(double x, double y) { | 
 |         DPoint pt; | 
 |         pt.set(x, y); | 
 |         return pt; | 
 |     } | 
 |  | 
 |     double x() const { return fX; } | 
 |     double y() const { return fY; } | 
 |  | 
 |     void set(double x, double y) { fX = x; fY = y; } | 
 |  | 
 |     /** Returns the euclidian distance from (0,0) to (x,y) | 
 |     */ | 
 |     static double Length(double x, double y) { | 
 |         return sqrt(x * x + y * y); | 
 |     } | 
 |  | 
 |     /** Returns the euclidian distance between a and b | 
 |     */ | 
 |     static double Distance(const DPoint& a, const DPoint& b) { | 
 |         return Length(a.fX - b.fX, a.fY - b.fY); | 
 |     } | 
 |  | 
 |     double distanceToSqd(const DPoint& pt) const { | 
 |         double dx = fX - pt.fX; | 
 |         double dy = fY - pt.fY; | 
 |         return dx * dx + dy * dy; | 
 |     } | 
 | }; | 
 |  | 
 | // Matrix with double precision for affine transformation. | 
 | // We don't store row 3 because its always (0, 0, 1). | 
 | class DAffineMatrix { | 
 | public: | 
 |     double operator[](int index) const { | 
 |         SkASSERT((unsigned)index < 6); | 
 |         return fMat[index]; | 
 |     } | 
 |  | 
 |     double& operator[](int index) { | 
 |         SkASSERT((unsigned)index < 6); | 
 |         return fMat[index]; | 
 |     } | 
 |  | 
 |     void setAffine(double m11, double m12, double m13, | 
 |                    double m21, double m22, double m23) { | 
 |         fMat[0] = m11; | 
 |         fMat[1] = m12; | 
 |         fMat[2] = m13; | 
 |         fMat[3] = m21; | 
 |         fMat[4] = m22; | 
 |         fMat[5] = m23; | 
 |     } | 
 |  | 
 |     /** Set the matrix to identity | 
 |     */ | 
 |     void reset() { | 
 |         fMat[0] = fMat[4] = 1.0; | 
 |         fMat[1] = fMat[3] = | 
 |         fMat[2] = fMat[5] = 0.0; | 
 |     } | 
 |  | 
 |     // alias for reset() | 
 |     void setIdentity() { this->reset(); } | 
 |  | 
 |     DPoint mapPoint(const SkPoint& src) const { | 
 |         DPoint pt = DPoint::Make(src.x(), src.y()); | 
 |         return this->mapPoint(pt); | 
 |     } | 
 |  | 
 |     DPoint mapPoint(const DPoint& src) const { | 
 |         return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2], | 
 |                             fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]); | 
 |     } | 
 | private: | 
 |     double fMat[6]; | 
 | }; | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static const double kClose = (SK_Scalar1 / 16.0); | 
 | static const double kCloseSqd = kClose * kClose; | 
 | static const double kNearlyZero = (SK_Scalar1 / (1 << 18)); | 
 | static const double kTangentTolerance = (SK_Scalar1 / (1 << 11)); | 
 | static const float  kConicTolerance = 0.25f; | 
 |  | 
 | static inline bool between_closed_open(double a, double b, double c, | 
 |                                        double tolerance = 0.0, | 
 |                                        bool xformToleranceToX = false) { | 
 |     SkASSERT(tolerance >= 0.0); | 
 |     double tolB = tolerance; | 
 |     double tolC = tolerance; | 
 |  | 
 |     if (xformToleranceToX) { | 
 |         // Canonical space is y = x^2 and the derivative of x^2 is 2x. | 
 |         // So the slope of the tangent line at point (x, x^2) is 2x. | 
 |         // | 
 |         //                          /| | 
 |         //  sqrt(2x * 2x + 1 * 1)  / | 2x | 
 |         //                        /__| | 
 |         //                         1 | 
 |         tolB = tolerance / sqrt(4.0 * b * b + 1.0); | 
 |         tolC = tolerance / sqrt(4.0 * c * c + 1.0); | 
 |     } | 
 |     return b < c ? (a >= b - tolB && a < c - tolC) : | 
 |                    (a >= c - tolC && a < b - tolB); | 
 | } | 
 |  | 
 | static inline bool between_closed(double a, double b, double c, | 
 |                                   double tolerance = 0.0, | 
 |                                   bool xformToleranceToX = false) { | 
 |     SkASSERT(tolerance >= 0.0); | 
 |     double tolB = tolerance; | 
 |     double tolC = tolerance; | 
 |  | 
 |     if (xformToleranceToX) { | 
 |         tolB = tolerance / sqrt(4.0 * b * b + 1.0); | 
 |         tolC = tolerance / sqrt(4.0 * c * c + 1.0); | 
 |     } | 
 |     return b < c ? (a >= b - tolB && a <= c + tolC) : | 
 |                    (a >= c - tolC && a <= b + tolB); | 
 | } | 
 |  | 
 | static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { | 
 |     SkASSERT(tolerance >= 0.0); | 
 |     return fabs(x) <= tolerance; | 
 | } | 
 |  | 
 | static inline bool nearly_equal(double x, double y, | 
 |                                 double tolerance = kNearlyZero, | 
 |                                 bool xformToleranceToX = false) { | 
 |     SkASSERT(tolerance >= 0.0); | 
 |     if (xformToleranceToX) { | 
 |         tolerance = tolerance / sqrt(4.0 * y * y + 1.0); | 
 |     } | 
 |     return fabs(x - y) <= tolerance; | 
 | } | 
 |  | 
 | static inline double sign_of(const double &val) { | 
 |     return (val < 0.0) ? -1.0 : 1.0; | 
 | } | 
 |  | 
 | static bool is_colinear(const SkPoint pts[3]) { | 
 |     return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - | 
 |                        (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd); | 
 | } | 
 |  | 
 | class PathSegment { | 
 | public: | 
 |     enum { | 
 |         // These enum values are assumed in member functions below. | 
 |         kLine = 0, | 
 |         kQuad = 1, | 
 |     } fType; | 
 |  | 
 |     // line uses 2 pts, quad uses 3 pts | 
 |     SkPoint fPts[3]; | 
 |  | 
 |     DPoint  fP0T, fP2T; | 
 |     DAffineMatrix fXformMatrix; | 
 |     double fScalingFactor; | 
 |     double fScalingFactorSqd; | 
 |     double fNearlyZeroScaled; | 
 |     double fTangentTolScaledSqd; | 
 |     SkRect  fBoundingBox; | 
 |  | 
 |     void init(); | 
 |  | 
 |     int countPoints() { | 
 |         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); | 
 |         return fType + 2; | 
 |     } | 
 |  | 
 |     const SkPoint& endPt() const { | 
 |         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); | 
 |         return fPts[fType + 1]; | 
 |     } | 
 | }; | 
 |  | 
 | typedef SkTArray<PathSegment, true> PathSegmentArray; | 
 |  | 
 | void PathSegment::init() { | 
 |     const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y()); | 
 |     const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y()); | 
 |     const double p0x = p0.x(); | 
 |     const double p0y = p0.y(); | 
 |     const double p2x = p2.x(); | 
 |     const double p2y = p2.y(); | 
 |  | 
 |     fBoundingBox.set(fPts[0], this->endPt()); | 
 |  | 
 |     if (fType == PathSegment::kLine) { | 
 |         fScalingFactorSqd = fScalingFactor = 1.0; | 
 |         double hypotenuse = DPoint::Distance(p0, p2); | 
 |  | 
 |         const double cosTheta = (p2x - p0x) / hypotenuse; | 
 |         const double sinTheta = (p2y - p0y) / hypotenuse; | 
 |  | 
 |         fXformMatrix.setAffine( | 
 |             cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), | 
 |             -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) | 
 |         ); | 
 |     } else { | 
 |         SkASSERT(fType == PathSegment::kQuad); | 
 |  | 
 |         // Calculate bounding box | 
 |         const SkPoint _P1mP0 = fPts[1] - fPts[0]; | 
 |         SkPoint t = _P1mP0 - fPts[2] + fPts[1]; | 
 |         t.fX = _P1mP0.x() / t.x(); | 
 |         t.fY = _P1mP0.y() / t.y(); | 
 |         t.fX = SkScalarClampMax(t.x(), 1.0); | 
 |         t.fY = SkScalarClampMax(t.y(), 1.0); | 
 |         t.fX = _P1mP0.x() * t.x(); | 
 |         t.fY = _P1mP0.y() * t.y(); | 
 |         const SkPoint m = fPts[0] + t; | 
 |         SkRectPriv::GrowToInclude(&fBoundingBox, m); | 
 |  | 
 |         const double p1x = fPts[1].x(); | 
 |         const double p1y = fPts[1].y(); | 
 |  | 
 |         const double p0xSqd = p0x * p0x; | 
 |         const double p0ySqd = p0y * p0y; | 
 |         const double p2xSqd = p2x * p2x; | 
 |         const double p2ySqd = p2y * p2y; | 
 |         const double p1xSqd = p1x * p1x; | 
 |         const double p1ySqd = p1y * p1y; | 
 |  | 
 |         const double p01xProd = p0x * p1x; | 
 |         const double p02xProd = p0x * p2x; | 
 |         const double b12xProd = p1x * p2x; | 
 |         const double p01yProd = p0y * p1y; | 
 |         const double p02yProd = p0y * p2y; | 
 |         const double b12yProd = p1y * p2y; | 
 |  | 
 |         const double sqrtA = p0y - (2.0 * p1y) + p2y; | 
 |         const double a = sqrtA * sqrtA; | 
 |         const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); | 
 |         const double sqrtB = p0x - (2.0 * p1x) + p2x; | 
 |         const double b = sqrtB * sqrtB; | 
 |         const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) | 
 |                 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) | 
 |                 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) | 
 |                 + (p2xSqd * p0ySqd); | 
 |         const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) | 
 |                 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) | 
 |                 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) | 
 |                 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) | 
 |                 + (2.0 * p2x * p01yProd) + (p2x * p02yProd) | 
 |                 - (2.0 * p2x * p1ySqd); | 
 |         const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) | 
 |                 - (2.0 * p01xProd * p2y) - (p02xProd * p0y) | 
 |                 + (4.0 * p02xProd * p1y) - (p02xProd * p2y) | 
 |                 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) | 
 |                 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) | 
 |                 + (p2xSqd * p0y)); | 
 |  | 
 |         const double cosTheta = sqrt(a / (a + b)); | 
 |         const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); | 
 |  | 
 |         const double gDef = cosTheta * g - sinTheta * f; | 
 |         const double fDef = sinTheta * g + cosTheta * f; | 
 |  | 
 |  | 
 |         const double x0 = gDef / (a + b); | 
 |         const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); | 
 |  | 
 |  | 
 |         const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); | 
 |         fScalingFactor = fabs(1.0 / lambda); | 
 |         fScalingFactorSqd = fScalingFactor * fScalingFactor; | 
 |  | 
 |         const double lambda_cosTheta = lambda * cosTheta; | 
 |         const double lambda_sinTheta = lambda * sinTheta; | 
 |  | 
 |         fXformMatrix.setAffine( | 
 |             lambda_cosTheta, -lambda_sinTheta, lambda * x0, | 
 |             lambda_sinTheta, lambda_cosTheta, lambda * y0 | 
 |         ); | 
 |     } | 
 |  | 
 |     fNearlyZeroScaled = kNearlyZero / fScalingFactor; | 
 |     fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd; | 
 |  | 
 |     fP0T = fXformMatrix.mapPoint(p0); | 
 |     fP2T = fXformMatrix.mapPoint(p2); | 
 | } | 
 |  | 
 | static void init_distances(DFData* data, int size) { | 
 |     DFData* currData = data; | 
 |  | 
 |     for (int i = 0; i < size; ++i) { | 
 |         // init distance to "far away" | 
 |         currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; | 
 |         currData->fDeltaWindingScore = 0; | 
 |         ++currData; | 
 |     } | 
 | } | 
 |  | 
 | static inline void add_line_to_segment(const SkPoint pts[2], | 
 |                                        PathSegmentArray* segments) { | 
 |     segments->push_back(); | 
 |     segments->back().fType = PathSegment::kLine; | 
 |     segments->back().fPts[0] = pts[0]; | 
 |     segments->back().fPts[1] = pts[1]; | 
 |  | 
 |     segments->back().init(); | 
 | } | 
 |  | 
 | static inline void add_quad_segment(const SkPoint pts[3], | 
 |                                     PathSegmentArray* segments) { | 
 |     if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd || | 
 |         SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd || | 
 |         is_colinear(pts)) { | 
 |         if (pts[0] != pts[2]) { | 
 |             SkPoint line_pts[2]; | 
 |             line_pts[0] = pts[0]; | 
 |             line_pts[1] = pts[2]; | 
 |             add_line_to_segment(line_pts, segments); | 
 |         } | 
 |     } else { | 
 |         segments->push_back(); | 
 |         segments->back().fType = PathSegment::kQuad; | 
 |         segments->back().fPts[0] = pts[0]; | 
 |         segments->back().fPts[1] = pts[1]; | 
 |         segments->back().fPts[2] = pts[2]; | 
 |  | 
 |         segments->back().init(); | 
 |     } | 
 | } | 
 |  | 
 | static inline void add_cubic_segments(const SkPoint pts[4], | 
 |                                       PathSegmentArray* segments) { | 
 |     SkSTArray<15, SkPoint, true> quads; | 
 |     GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads); | 
 |     int count = quads.count(); | 
 |     for (int q = 0; q < count; q += 3) { | 
 |         add_quad_segment(&quads[q], segments); | 
 |     } | 
 | } | 
 |  | 
 | static float calculate_nearest_point_for_quad( | 
 |                 const PathSegment& segment, | 
 |                 const DPoint &xFormPt) { | 
 |     static const float kThird = 0.33333333333f; | 
 |     static const float kTwentySeventh = 0.037037037f; | 
 |  | 
 |     const float a = 0.5f - (float)xFormPt.y(); | 
 |     const float b = -0.5f * (float)xFormPt.x(); | 
 |  | 
 |     const float a3 = a * a * a; | 
 |     const float b2 = b * b; | 
 |  | 
 |     const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); | 
 |  | 
 |     if (c >= 0.f) { | 
 |         const float sqrtC = sqrt(c); | 
 |         const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); | 
 |         return result; | 
 |     } else { | 
 |         const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); | 
 |         const float phi = (float)acos(cosPhi); | 
 |         float result; | 
 |         if (xFormPt.x() > 0.f) { | 
 |             result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); | 
 |             if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { | 
 |                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); | 
 |             } | 
 |         } else { | 
 |             result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); | 
 |             if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { | 
 |                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); | 
 |             } | 
 |         } | 
 |         return result; | 
 |     } | 
 | } | 
 |  | 
 | // This structure contains some intermediate values shared by the same row. | 
 | // It is used to calculate segment side of a quadratic bezier. | 
 | struct RowData { | 
 |     // The intersection type of a scanline and y = x * x parabola in canonical space. | 
 |     enum IntersectionType { | 
 |         kNoIntersection, | 
 |         kVerticalLine, | 
 |         kTangentLine, | 
 |         kTwoPointsIntersect | 
 |     } fIntersectionType; | 
 |  | 
 |     // The direction of the quadratic segment/scanline in the canonical space. | 
 |     //  1: The quadratic segment/scanline going from negative x-axis to positive x-axis. | 
 |     //  0: The scanline is a vertical line in the canonical space. | 
 |     // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis. | 
 |     int fQuadXDirection; | 
 |     int fScanlineXDirection; | 
 |  | 
 |     // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. | 
 |     double fYAtIntersection; | 
 |  | 
 |     // The x-value for two intersection points. | 
 |     double fXAtIntersection1; | 
 |     double fXAtIntersection2; | 
 | }; | 
 |  | 
 | void precomputation_for_row( | 
 |             RowData *rowData, | 
 |             const PathSegment& segment, | 
 |             const SkPoint& pointLeft, | 
 |             const SkPoint& pointRight | 
 |             ) { | 
 |     if (segment.fType != PathSegment::kQuad) { | 
 |         return; | 
 |     } | 
 |  | 
 |     const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); | 
 |     const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight); | 
 |  | 
 |     rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x()); | 
 |     rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x()); | 
 |  | 
 |     const double x1 = xFormPtLeft.x(); | 
 |     const double y1 = xFormPtLeft.y(); | 
 |     const double x2 = xFormPtRight.x(); | 
 |     const double y2 = xFormPtRight.y(); | 
 |  | 
 |     if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) { | 
 |         rowData->fIntersectionType = RowData::kVerticalLine; | 
 |         rowData->fYAtIntersection = x1 * x1; | 
 |         rowData->fScanlineXDirection = 0; | 
 |         return; | 
 |     } | 
 |  | 
 |     // Line y = mx + b | 
 |     const double m = (y2 - y1) / (x2 - x1); | 
 |     const double b = -m * x1 + y1; | 
 |  | 
 |     const double m2 = m * m; | 
 |     const double c = m2 + 4.0 * b; | 
 |  | 
 |     const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0); | 
 |  | 
 |     // Check if the scanline is the tangent line of the curve, | 
 |     // and the curve start or end at the same y-coordinate of the scanline | 
 |     if ((rowData->fScanlineXDirection == 1 && | 
 |          (segment.fPts[0].y() == pointLeft.y() || | 
 |          segment.fPts[2].y() == pointLeft.y())) && | 
 |          nearly_zero(c, tol)) { | 
 |         rowData->fIntersectionType = RowData::kTangentLine; | 
 |         rowData->fXAtIntersection1 = m / 2.0; | 
 |         rowData->fXAtIntersection2 = m / 2.0; | 
 |     } else if (c <= 0.0) { | 
 |         rowData->fIntersectionType = RowData::kNoIntersection; | 
 |         return; | 
 |     } else { | 
 |         rowData->fIntersectionType = RowData::kTwoPointsIntersect; | 
 |         const double d = sqrt(c); | 
 |         rowData->fXAtIntersection1 = (m + d) / 2.0; | 
 |         rowData->fXAtIntersection2 = (m - d) / 2.0; | 
 |     } | 
 | } | 
 |  | 
 | SegSide calculate_side_of_quad( | 
 |             const PathSegment& segment, | 
 |             const SkPoint& point, | 
 |             const DPoint& xFormPt, | 
 |             const RowData& rowData) { | 
 |     SegSide side = kNA_SegSide; | 
 |  | 
 |     if (RowData::kVerticalLine == rowData.fIntersectionType) { | 
 |         side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection); | 
 |     } | 
 |     else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) { | 
 |         const double p1 = rowData.fXAtIntersection1; | 
 |         const double p2 = rowData.fXAtIntersection2; | 
 |  | 
 |         int signP1 = (int)sign_of(p1 - xFormPt.x()); | 
 |         bool includeP1 = true; | 
 |         bool includeP2 = true; | 
 |  | 
 |         if (rowData.fScanlineXDirection == 1) { | 
 |             if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() && | 
 |                  nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) || | 
 |                  (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() && | 
 |                  nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) { | 
 |                 includeP1 = false; | 
 |             } | 
 |             if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() && | 
 |                  nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) || | 
 |                  (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() && | 
 |                  nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) { | 
 |                 includeP2 = false; | 
 |             } | 
 |         } | 
 |  | 
 |         if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(), | 
 |                                         segment.fNearlyZeroScaled, true)) { | 
 |             side = (SegSide)(signP1 * rowData.fQuadXDirection); | 
 |         } | 
 |         if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(), | 
 |                                         segment.fNearlyZeroScaled, true)) { | 
 |             int signP2 = (int)sign_of(p2 - xFormPt.x()); | 
 |             if (side == kNA_SegSide || signP2 == 1) { | 
 |                 side = (SegSide)(-signP2 * rowData.fQuadXDirection); | 
 |             } | 
 |         } | 
 |     } else if (RowData::kTangentLine == rowData.fIntersectionType) { | 
 |         // The scanline is the tangent line of current quadratic segment. | 
 |  | 
 |         const double p = rowData.fXAtIntersection1; | 
 |         int signP = (int)sign_of(p - xFormPt.x()); | 
 |         if (rowData.fScanlineXDirection == 1) { | 
 |             // The path start or end at the tangent point. | 
 |             if (segment.fPts[0].y() == point.y()) { | 
 |                 side = (SegSide)(signP); | 
 |             } else if (segment.fPts[2].y() == point.y()) { | 
 |                 side = (SegSide)(-signP); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return side; | 
 | } | 
 |  | 
 | static float distance_to_segment(const SkPoint& point, | 
 |                                  const PathSegment& segment, | 
 |                                  const RowData& rowData, | 
 |                                  SegSide* side) { | 
 |     SkASSERT(side); | 
 |  | 
 |     const DPoint xformPt = segment.fXformMatrix.mapPoint(point); | 
 |  | 
 |     if (segment.fType == PathSegment::kLine) { | 
 |         float result = SK_DistanceFieldPad * SK_DistanceFieldPad; | 
 |  | 
 |         if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) { | 
 |             result = (float)(xformPt.y() * xformPt.y()); | 
 |         } else if (xformPt.x() < segment.fP0T.x()) { | 
 |             result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y()); | 
 |         } else { | 
 |             result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x()) | 
 |                      + xformPt.y() * xformPt.y()); | 
 |         } | 
 |  | 
 |         if (between_closed_open(point.y(), segment.fBoundingBox.top(), | 
 |                                 segment.fBoundingBox.bottom())) { | 
 |             *side = (SegSide)(int)sign_of(xformPt.y()); | 
 |         } else { | 
 |             *side = kNA_SegSide; | 
 |         } | 
 |         return result; | 
 |     } else { | 
 |         SkASSERT(segment.fType == PathSegment::kQuad); | 
 |  | 
 |         const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); | 
 |  | 
 |         float dist; | 
 |  | 
 |         if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) { | 
 |             DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); | 
 |             dist = (float)xformPt.distanceToSqd(x); | 
 |         } else { | 
 |             const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T); | 
 |             const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T); | 
 |  | 
 |             if (distToB0T < distToB2T) { | 
 |                 dist = distToB0T; | 
 |             } else { | 
 |                 dist = distToB2T; | 
 |             } | 
 |         } | 
 |  | 
 |         if (between_closed_open(point.y(), segment.fBoundingBox.top(), | 
 |                                 segment.fBoundingBox.bottom())) { | 
 |             *side = calculate_side_of_quad(segment, point, xformPt, rowData); | 
 |         } else { | 
 |             *side = kNA_SegSide; | 
 |         } | 
 |  | 
 |         return (float)(dist * segment.fScalingFactorSqd); | 
 |     } | 
 | } | 
 |  | 
 | static void calculate_distance_field_data(PathSegmentArray* segments, | 
 |                                           DFData* dataPtr, | 
 |                                           int width, int height) { | 
 |     int count = segments->count(); | 
 |     for (int a = 0; a < count; ++a) { | 
 |         PathSegment& segment = (*segments)[a]; | 
 |         const SkRect& segBB = segment.fBoundingBox.makeOutset( | 
 |                                 SK_DistanceFieldPad, SK_DistanceFieldPad); | 
 |         int startColumn = (int)segBB.left(); | 
 |         int endColumn = SkScalarCeilToInt(segBB.right()); | 
 |  | 
 |         int startRow = (int)segBB.top(); | 
 |         int endRow = SkScalarCeilToInt(segBB.bottom()); | 
 |  | 
 |         SkASSERT((startColumn >= 0) && "StartColumn < 0!"); | 
 |         SkASSERT((endColumn <= width) && "endColumn > width!"); | 
 |         SkASSERT((startRow >= 0) && "StartRow < 0!"); | 
 |         SkASSERT((endRow <= height) && "EndRow > height!"); | 
 |  | 
 |         // Clip inside the distance field to avoid overflow | 
 |         startColumn = SkTMax(startColumn, 0); | 
 |         endColumn   = SkTMin(endColumn,   width); | 
 |         startRow    = SkTMax(startRow,    0); | 
 |         endRow      = SkTMin(endRow,      height); | 
 |  | 
 |         for (int row = startRow; row < endRow; ++row) { | 
 |             SegSide prevSide = kNA_SegSide; | 
 |             const float pY = row + 0.5f; | 
 |             RowData rowData; | 
 |  | 
 |             const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY); | 
 |             const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY); | 
 |  | 
 |             if (between_closed_open(pY, segment.fBoundingBox.top(), | 
 |                                     segment.fBoundingBox.bottom())) { | 
 |                 precomputation_for_row(&rowData, segment, pointLeft, pointRight); | 
 |             } | 
 |  | 
 |             for (int col = startColumn; col < endColumn; ++col) { | 
 |                 int idx = (row * width) + col; | 
 |  | 
 |                 const float pX = col + 0.5f; | 
 |                 const SkPoint point = SkPoint::Make(pX, pY); | 
 |  | 
 |                 const float distSq = dataPtr[idx].fDistSq; | 
 |                 int dilation = distSq < 1.5 * 1.5 ? 1 : | 
 |                                distSq < 2.5 * 2.5 ? 2 : | 
 |                                distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; | 
 |                 if (dilation > SK_DistanceFieldPad) { | 
 |                     dilation = SK_DistanceFieldPad; | 
 |                 } | 
 |  | 
 |                 // Optimisation for not calculating some points. | 
 |                 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut() | 
 |                     .makeOutset(dilation, dilation).contains(col, row)) { | 
 |                     continue; | 
 |                 } | 
 |  | 
 |                 SegSide side = kNA_SegSide; | 
 |                 int     deltaWindingScore = 0; | 
 |                 float   currDistSq = distance_to_segment(point, segment, rowData, &side); | 
 |                 if (prevSide == kLeft_SegSide && side == kRight_SegSide) { | 
 |                     deltaWindingScore = -1; | 
 |                 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { | 
 |                     deltaWindingScore = 1; | 
 |                 } | 
 |  | 
 |                 prevSide = side; | 
 |  | 
 |                 if (currDistSq < distSq) { | 
 |                     dataPtr[idx].fDistSq = currDistSq; | 
 |                 } | 
 |  | 
 |                 dataPtr[idx].fDeltaWindingScore += deltaWindingScore; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | template <int distanceMagnitude> | 
 | static unsigned char pack_distance_field_val(float dist) { | 
 |     // The distance field is constructed as unsigned char values, so that the zero value is at 128, | 
 |     // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. | 
 |     // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. | 
 |     dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); | 
 |  | 
 |     // Scale into the positive range for unsigned distance. | 
 |     dist += distanceMagnitude; | 
 |  | 
 |     // Scale into unsigned char range. | 
 |     // Round to place negative and positive values as equally as possible around 128 | 
 |     // (which represents zero). | 
 |     return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); | 
 | } | 
 |  | 
 | bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, | 
 |                                      const SkPath& path, const SkMatrix& drawMatrix, | 
 |                                      int width, int height, size_t rowBytes) { | 
 |     SkASSERT(distanceField); | 
 |  | 
 | #ifdef SK_DEBUG | 
 |     SkPath xformPath; | 
 |     path.transform(drawMatrix, &xformPath); | 
 |     SkIRect pathBounds = xformPath.getBounds().roundOut(); | 
 |     SkIRect expectPathBounds = | 
 |             SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad, height - 2 * SK_DistanceFieldPad); | 
 | #endif | 
 |  | 
 |     SkASSERT(expectPathBounds.isEmpty() || | 
 |              expectPathBounds.contains(pathBounds.x(), pathBounds.y())); | 
 |     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || | 
 |              expectPathBounds.contains(pathBounds)); | 
 |  | 
 |     SkPath simplifiedPath; | 
 |     SkPath workingPath; | 
 |     if (Simplify(path, &simplifiedPath)) { | 
 |         workingPath = simplifiedPath; | 
 |     } else { | 
 |         workingPath = path; | 
 |     } | 
 |  | 
 |     if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     workingPath.transform(drawMatrix); | 
 |  | 
 |     SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut()); | 
 |     SkASSERT(expectPathBounds.isEmpty() || | 
 |              expectPathBounds.contains(pathBounds.x(), pathBounds.y())); | 
 |     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || | 
 |              expectPathBounds.contains(pathBounds)); | 
 |  | 
 |     // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad) | 
 |     SkMatrix dfMatrix; | 
 |     dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); | 
 |     workingPath.transform(dfMatrix); | 
 |  | 
 |     // create temp data | 
 |     size_t dataSize = width * height * sizeof(DFData); | 
 |     SkAutoSMalloc<1024> dfStorage(dataSize); | 
 |     DFData* dataPtr = (DFData*) dfStorage.get(); | 
 |  | 
 |     // create initial distance data | 
 |     init_distances(dataPtr, width * height); | 
 |  | 
 |     SkPathEdgeIter iter(workingPath); | 
 |     SkSTArray<15, PathSegment, true> segments; | 
 |  | 
 |     while (auto e = iter.next()) { | 
 |         switch (e.fEdge) { | 
 |             case SkPathEdgeIter::Edge::kLine: { | 
 |                 add_line_to_segment(e.fPts, &segments); | 
 |                 break; | 
 |             } | 
 |             case SkPathEdgeIter::Edge::kQuad: | 
 |                 add_quad_segment(e.fPts, &segments); | 
 |                 break; | 
 |             case SkPathEdgeIter::Edge::kConic: { | 
 |                 SkScalar weight = iter.conicWeight(); | 
 |                 SkAutoConicToQuads converter; | 
 |                 const SkPoint* quadPts = converter.computeQuads(e.fPts, weight, kConicTolerance); | 
 |                 for (int i = 0; i < converter.countQuads(); ++i) { | 
 |                     add_quad_segment(quadPts + 2*i, &segments); | 
 |                 } | 
 |                 break; | 
 |             } | 
 |             case SkPathEdgeIter::Edge::kCubic: { | 
 |                 add_cubic_segments(e.fPts, &segments); | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     calculate_distance_field_data(&segments, dataPtr, width, height); | 
 |  | 
 |     for (int row = 0; row < height; ++row) { | 
 |         int windingNumber = 0; // Winding number start from zero for each scanline | 
 |         for (int col = 0; col < width; ++col) { | 
 |             int idx = (row * width) + col; | 
 |             windingNumber += dataPtr[idx].fDeltaWindingScore; | 
 |  | 
 |             enum DFSign { | 
 |                 kInside = -1, | 
 |                 kOutside = 1 | 
 |             } dfSign; | 
 |  | 
 |             if (workingPath.getFillType() == SkPath::kWinding_FillType) { | 
 |                 dfSign = windingNumber ? kInside : kOutside; | 
 |             } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) { | 
 |                 dfSign = windingNumber ? kOutside : kInside; | 
 |             } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) { | 
 |                 dfSign = (windingNumber % 2) ? kInside : kOutside; | 
 |             } else { | 
 |                 SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType); | 
 |                 dfSign = (windingNumber % 2) ? kOutside : kInside; | 
 |             } | 
 |  | 
 |             // The winding number at the end of a scanline should be zero. | 
 |             SkASSERT(((col != width - 1) || (windingNumber == 0)) && | 
 |                     "Winding number should be zero at the end of a scan line."); | 
 |             // Fallback to use SkPath::contains to determine the sign of pixel in release build. | 
 |             if (col == width - 1 && windingNumber != 0) { | 
 |                 for (int col = 0; col < width; ++col) { | 
 |                     int idx = (row * width) + col; | 
 |                     dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside; | 
 |                     const float miniDist = sqrt(dataPtr[idx].fDistSq); | 
 |                     const float dist = dfSign * miniDist; | 
 |  | 
 |                     unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); | 
 |  | 
 |                     distanceField[(row * rowBytes) + col] = pixelVal; | 
 |                 } | 
 |                 continue; | 
 |             } | 
 |  | 
 |             const float miniDist = sqrt(dataPtr[idx].fDistSq); | 
 |             const float dist = dfSign * miniDist; | 
 |  | 
 |             unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); | 
 |  | 
 |             distanceField[(row * rowBytes) + col] = pixelVal; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } |