|  | // Copyright (c) 1994-2006 Sun Microsystems Inc. | 
|  | // All Rights Reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | // - Redistributions of source code must retain the above copyright notice, | 
|  | // this list of conditions and the following disclaimer. | 
|  | // | 
|  | // - Redistribution in binary form must reproduce the above copyright | 
|  | // notice, this list of conditions and the following disclaimer in the | 
|  | // documentation and/or other materials provided with the distribution. | 
|  | // | 
|  | // - Neither the name of Sun Microsystems or the names of contributors may | 
|  | // be used to endorse or promote products derived from this software without | 
|  | // specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | 
|  | // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | 
|  | // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | 
|  | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
|  | // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
|  | // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
|  | // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // The original source code covered by the above license above has been | 
|  | // modified significantly by Google Inc. | 
|  | // Copyright 2012 the V8 project authors. All rights reserved. | 
|  |  | 
|  | // A light-weight IA32 Assembler. | 
|  |  | 
|  | #ifndef V8_CODEGEN_IA32_ASSEMBLER_IA32_INL_H_ | 
|  | #define V8_CODEGEN_IA32_ASSEMBLER_IA32_INL_H_ | 
|  |  | 
|  | #include "src/codegen/ia32/assembler-ia32.h" | 
|  |  | 
|  | #include "src/base/memory.h" | 
|  | #include "src/codegen/assembler.h" | 
|  | #include "src/debug/debug.h" | 
|  | #include "src/objects/objects-inl.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | bool CpuFeatures::SupportsOptimizer() { return true; } | 
|  |  | 
|  | bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(SSE4_1); } | 
|  |  | 
|  | // The modes possibly affected by apply must be in kApplyMask. | 
|  | void RelocInfo::apply(intptr_t delta) { | 
|  | DCHECK_EQ(kApplyMask, (RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | | 
|  | RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | | 
|  | RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) | | 
|  | RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY))); | 
|  | if (IsRuntimeEntry(rmode_) || IsCodeTarget(rmode_) || | 
|  | IsOffHeapTarget(rmode_)) { | 
|  | base::WriteUnalignedValue(pc_, | 
|  | base::ReadUnalignedValue<int32_t>(pc_) - delta); | 
|  | } else if (IsInternalReference(rmode_)) { | 
|  | // Absolute code pointer inside code object moves with the code object. | 
|  | base::WriteUnalignedValue(pc_, | 
|  | base::ReadUnalignedValue<int32_t>(pc_) + delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | Address RelocInfo::target_address() { | 
|  | DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); | 
|  | return Assembler::target_address_at(pc_, constant_pool_); | 
|  | } | 
|  |  | 
|  | Address RelocInfo::target_address_address() { | 
|  | DCHECK(HasTargetAddressAddress()); | 
|  | return pc_; | 
|  | } | 
|  |  | 
|  | Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } | 
|  |  | 
|  | int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } | 
|  |  | 
|  | HeapObject RelocInfo::target_object() { | 
|  | DCHECK(IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT); | 
|  | return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_))); | 
|  | } | 
|  |  | 
|  | HeapObject RelocInfo::target_object_no_host(Isolate* isolate) { | 
|  | return target_object(); | 
|  | } | 
|  |  | 
|  | Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { | 
|  | DCHECK(IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT); | 
|  | return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_)); | 
|  | } | 
|  |  | 
|  | void RelocInfo::set_target_object(Heap* heap, HeapObject target, | 
|  | WriteBarrierMode write_barrier_mode, | 
|  | ICacheFlushMode icache_flush_mode) { | 
|  | DCHECK(IsCodeTarget(rmode_) || rmode_ == FULL_EMBEDDED_OBJECT); | 
|  | WriteUnalignedValue(pc_, target.ptr()); | 
|  | if (icache_flush_mode != SKIP_ICACHE_FLUSH) { | 
|  | FlushInstructionCache(pc_, sizeof(Address)); | 
|  | } | 
|  | if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() && | 
|  | !FLAG_disable_write_barriers) { | 
|  | WriteBarrierForCode(host(), this, target); | 
|  | } | 
|  | } | 
|  |  | 
|  | Address RelocInfo::target_external_reference() { | 
|  | DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); | 
|  | return ReadUnalignedValue<Address>(pc_); | 
|  | } | 
|  |  | 
|  | void RelocInfo::set_target_external_reference( | 
|  | Address target, ICacheFlushMode icache_flush_mode) { | 
|  | DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); | 
|  | WriteUnalignedValue(pc_, target); | 
|  | if (icache_flush_mode != SKIP_ICACHE_FLUSH) { | 
|  | FlushInstructionCache(pc_, sizeof(Address)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Address RelocInfo::target_internal_reference() { | 
|  | DCHECK(rmode_ == INTERNAL_REFERENCE); | 
|  | return ReadUnalignedValue<Address>(pc_); | 
|  | } | 
|  |  | 
|  | Address RelocInfo::target_internal_reference_address() { | 
|  | DCHECK(rmode_ == INTERNAL_REFERENCE); | 
|  | return pc_; | 
|  | } | 
|  |  | 
|  | Address RelocInfo::target_runtime_entry(Assembler* origin) { | 
|  | DCHECK(IsRuntimeEntry(rmode_)); | 
|  | return ReadUnalignedValue<Address>(pc_); | 
|  | } | 
|  |  | 
|  | void RelocInfo::set_target_runtime_entry(Address target, | 
|  | WriteBarrierMode write_barrier_mode, | 
|  | ICacheFlushMode icache_flush_mode) { | 
|  | DCHECK(IsRuntimeEntry(rmode_)); | 
|  | if (target_address() != target) { | 
|  | set_target_address(target, write_barrier_mode, icache_flush_mode); | 
|  | } | 
|  | } | 
|  |  | 
|  | Address RelocInfo::target_off_heap_target() { | 
|  | DCHECK(IsOffHeapTarget(rmode_)); | 
|  | return Assembler::target_address_at(pc_, constant_pool_); | 
|  | } | 
|  |  | 
|  | void RelocInfo::WipeOut() { | 
|  | if (IsFullEmbeddedObject(rmode_) || IsExternalReference(rmode_) || | 
|  | IsInternalReference(rmode_)) { | 
|  | WriteUnalignedValue(pc_, kNullAddress); | 
|  | } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || | 
|  | IsOffHeapTarget(rmode_)) { | 
|  | // Effectively write zero into the relocation. | 
|  | Assembler::set_target_address_at(pc_, constant_pool_, | 
|  | pc_ + sizeof(int32_t)); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::emit(uint32_t x) { | 
|  | WriteUnalignedValue(reinterpret_cast<Address>(pc_), x); | 
|  | pc_ += sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | void Assembler::emit_q(uint64_t x) { | 
|  | WriteUnalignedValue(reinterpret_cast<Address>(pc_), x); | 
|  | pc_ += sizeof(uint64_t); | 
|  | } | 
|  |  | 
|  | void Assembler::emit(Handle<HeapObject> handle) { | 
|  | emit(handle.address(), RelocInfo::FULL_EMBEDDED_OBJECT); | 
|  | } | 
|  |  | 
|  | void Assembler::emit(uint32_t x, RelocInfo::Mode rmode) { | 
|  | if (!RelocInfo::IsNone(rmode)) { | 
|  | RecordRelocInfo(rmode); | 
|  | } | 
|  | emit(x); | 
|  | } | 
|  |  | 
|  | void Assembler::emit(Handle<Code> code, RelocInfo::Mode rmode) { | 
|  | emit(code.address(), rmode); | 
|  | } | 
|  |  | 
|  | void Assembler::emit(const Immediate& x) { | 
|  | if (x.rmode_ == RelocInfo::INTERNAL_REFERENCE) { | 
|  | Label* label = reinterpret_cast<Label*>(x.immediate()); | 
|  | emit_code_relative_offset(label); | 
|  | return; | 
|  | } | 
|  | if (!RelocInfo::IsNone(x.rmode_)) RecordRelocInfo(x.rmode_); | 
|  | if (x.is_heap_object_request()) { | 
|  | RequestHeapObject(x.heap_object_request()); | 
|  | emit(0); | 
|  | } else { | 
|  | emit(x.immediate()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::emit_code_relative_offset(Label* label) { | 
|  | if (label->is_bound()) { | 
|  | int32_t pos; | 
|  | pos = label->pos() + Code::kHeaderSize - kHeapObjectTag; | 
|  | emit(pos); | 
|  | } else { | 
|  | emit_disp(label, Displacement::CODE_RELATIVE); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::emit_b(Immediate x) { | 
|  | DCHECK(x.is_int8() || x.is_uint8()); | 
|  | uint8_t value = static_cast<uint8_t>(x.immediate()); | 
|  | *pc_++ = value; | 
|  | } | 
|  |  | 
|  | void Assembler::emit_w(const Immediate& x) { | 
|  | DCHECK(RelocInfo::IsNone(x.rmode_)); | 
|  | uint16_t value = static_cast<uint16_t>(x.immediate()); | 
|  | WriteUnalignedValue(reinterpret_cast<Address>(pc_), value); | 
|  | pc_ += sizeof(uint16_t); | 
|  | } | 
|  |  | 
|  | Address Assembler::target_address_at(Address pc, Address constant_pool) { | 
|  | return pc + sizeof(int32_t) + ReadUnalignedValue<int32_t>(pc); | 
|  | } | 
|  |  | 
|  | void Assembler::set_target_address_at(Address pc, Address constant_pool, | 
|  | Address target, | 
|  | ICacheFlushMode icache_flush_mode) { | 
|  | WriteUnalignedValue(pc, target - (pc + sizeof(int32_t))); | 
|  | if (icache_flush_mode != SKIP_ICACHE_FLUSH) { | 
|  | FlushInstructionCache(pc, sizeof(int32_t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Assembler::deserialization_set_special_target_at( | 
|  | Address instruction_payload, Code code, Address target) { | 
|  | set_target_address_at(instruction_payload, | 
|  | !code.is_null() ? code.constant_pool() : kNullAddress, | 
|  | target); | 
|  | } | 
|  |  | 
|  | int Assembler::deserialization_special_target_size( | 
|  | Address instruction_payload) { | 
|  | return kSpecialTargetSize; | 
|  | } | 
|  |  | 
|  | Displacement Assembler::disp_at(Label* L) { | 
|  | return Displacement(long_at(L->pos())); | 
|  | } | 
|  |  | 
|  | void Assembler::disp_at_put(Label* L, Displacement disp) { | 
|  | long_at_put(L->pos(), disp.data()); | 
|  | } | 
|  |  | 
|  | void Assembler::emit_disp(Label* L, Displacement::Type type) { | 
|  | Displacement disp(L, type); | 
|  | L->link_to(pc_offset()); | 
|  | emit(static_cast<int>(disp.data())); | 
|  | } | 
|  |  | 
|  | void Assembler::emit_near_disp(Label* L) { | 
|  | byte disp = 0x00; | 
|  | if (L->is_near_linked()) { | 
|  | int offset = L->near_link_pos() - pc_offset(); | 
|  | DCHECK(is_int8(offset)); | 
|  | disp = static_cast<byte>(offset & 0xFF); | 
|  | } | 
|  | L->link_to(pc_offset(), Label::kNear); | 
|  | *pc_++ = disp; | 
|  | } | 
|  |  | 
|  | void Assembler::deserialization_set_target_internal_reference_at( | 
|  | Address pc, Address target, RelocInfo::Mode mode) { | 
|  | WriteUnalignedValue(pc, target); | 
|  | } | 
|  |  | 
|  | void Operand::set_sib(ScaleFactor scale, Register index, Register base) { | 
|  | DCHECK_EQ(len_, 1); | 
|  | DCHECK_EQ(scale & -4, 0); | 
|  | // Use SIB with no index register only for base esp. | 
|  | DCHECK(index != esp || base == esp); | 
|  | buf_[1] = scale << 6 | index.code() << 3 | base.code(); | 
|  | len_ = 2; | 
|  | } | 
|  |  | 
|  | void Operand::set_disp8(int8_t disp) { | 
|  | DCHECK(len_ == 1 || len_ == 2); | 
|  | *reinterpret_cast<int8_t*>(&buf_[len_++]) = disp; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 | 
|  |  | 
|  | #endif  // V8_CODEGEN_IA32_ASSEMBLER_IA32_INL_H_ |