| /* | 
 |  * transupp.c | 
 |  * | 
 |  * This file was part of the Independent JPEG Group's software: | 
 |  * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding. | 
 |  * libjpeg-turbo Modifications: | 
 |  * Copyright (C) 2010, 2017, D. R. Commander. | 
 |  * For conditions of distribution and use, see the accompanying README.ijg | 
 |  * file. | 
 |  * | 
 |  * This file contains image transformation routines and other utility code | 
 |  * used by the jpegtran sample application.  These are NOT part of the core | 
 |  * JPEG library.  But we keep these routines separate from jpegtran.c to | 
 |  * ease the task of maintaining jpegtran-like programs that have other user | 
 |  * interfaces. | 
 |  */ | 
 |  | 
 | /* Although this file really shouldn't have access to the library internals, | 
 |  * it's helpful to let it call jround_up() and jcopy_block_row(). | 
 |  */ | 
 | #define JPEG_INTERNALS | 
 |  | 
 | #include "jinclude.h" | 
 | #include "jpeglib.h" | 
 | #include "transupp.h"           /* My own external interface */ | 
 | #include "jpegcomp.h" | 
 | #include <ctype.h>              /* to declare isdigit() */ | 
 |  | 
 |  | 
 | #if JPEG_LIB_VERSION >= 70 | 
 | #define dstinfo_min_DCT_h_scaled_size  dstinfo->min_DCT_h_scaled_size | 
 | #define dstinfo_min_DCT_v_scaled_size  dstinfo->min_DCT_v_scaled_size | 
 | #else | 
 | #define dstinfo_min_DCT_h_scaled_size  DCTSIZE | 
 | #define dstinfo_min_DCT_v_scaled_size  DCTSIZE | 
 | #endif | 
 |  | 
 |  | 
 | #if TRANSFORMS_SUPPORTED | 
 |  | 
 | /* | 
 |  * Lossless image transformation routines.  These routines work on DCT | 
 |  * coefficient arrays and thus do not require any lossy decompression | 
 |  * or recompression of the image. | 
 |  * Thanks to Guido Vollbeding for the initial design and code of this feature, | 
 |  * and to Ben Jackson for introducing the cropping feature. | 
 |  * | 
 |  * Horizontal flipping is done in-place, using a single top-to-bottom | 
 |  * pass through the virtual source array.  It will thus be much the | 
 |  * fastest option for images larger than main memory. | 
 |  * | 
 |  * The other routines require a set of destination virtual arrays, so they | 
 |  * need twice as much memory as jpegtran normally does.  The destination | 
 |  * arrays are always written in normal scan order (top to bottom) because | 
 |  * the virtual array manager expects this.  The source arrays will be scanned | 
 |  * in the corresponding order, which means multiple passes through the source | 
 |  * arrays for most of the transforms.  That could result in much thrashing | 
 |  * if the image is larger than main memory. | 
 |  * | 
 |  * If cropping or trimming is involved, the destination arrays may be smaller | 
 |  * than the source arrays.  Note it is not possible to do horizontal flip | 
 |  * in-place when a nonzero Y crop offset is specified, since we'd have to move | 
 |  * data from one block row to another but the virtual array manager doesn't | 
 |  * guarantee we can touch more than one row at a time.  So in that case, | 
 |  * we have to use a separate destination array. | 
 |  * | 
 |  * Some notes about the operating environment of the individual transform | 
 |  * routines: | 
 |  * 1. Both the source and destination virtual arrays are allocated from the | 
 |  *    source JPEG object, and therefore should be manipulated by calling the | 
 |  *    source's memory manager. | 
 |  * 2. The destination's component count should be used.  It may be smaller | 
 |  *    than the source's when forcing to grayscale. | 
 |  * 3. Likewise the destination's sampling factors should be used.  When | 
 |  *    forcing to grayscale the destination's sampling factors will be all 1, | 
 |  *    and we may as well take that as the effective iMCU size. | 
 |  * 4. When "trim" is in effect, the destination's dimensions will be the | 
 |  *    trimmed values but the source's will be untrimmed. | 
 |  * 5. When "crop" is in effect, the destination's dimensions will be the | 
 |  *    cropped values but the source's will be uncropped.  Each transform | 
 |  *    routine is responsible for picking up source data starting at the | 
 |  *    correct X and Y offset for the crop region.  (The X and Y offsets | 
 |  *    passed to the transform routines are measured in iMCU blocks of the | 
 |  *    destination.) | 
 |  * 6. All the routines assume that the source and destination buffers are | 
 |  *    padded out to a full iMCU boundary.  This is true, although for the | 
 |  *    source buffer it is an undocumented property of jdcoefct.c. | 
 |  */ | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_crop(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |         JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |         jvirt_barray_ptr *src_coef_arrays, | 
 |         jvirt_barray_ptr *dst_coef_arrays) | 
 | /* Crop.  This is only used when no rotate/flip is requested with the crop. */ | 
 | { | 
 |   JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; | 
 |   int ci, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   /* We simply have to copy the right amount of data (the destination's | 
 |    * image size) starting at the given X and Y offsets in the source. | 
 |    */ | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |          dst_blk_y + y_crop_blocks, | 
 |          (JDIMENSION)compptr->v_samp_factor, FALSE); | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, | 
 |                         dst_buffer[offset_y], | 
 |                         compptr->width_in_blocks); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_flip_h_no_crop(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |                   JDIMENSION x_crop_offset, jvirt_barray_ptr *src_coef_arrays) | 
 | /* Horizontal flip; done in-place, so no separate dest array is required. | 
 |  * NB: this only works when y_crop_offset is zero. | 
 |  */ | 
 | { | 
 |   JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; | 
 |   int ci, k, offset_y; | 
 |   JBLOCKARRAY buffer; | 
 |   JCOEFPTR ptr1, ptr2; | 
 |   JCOEF temp1, temp2; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   /* Horizontal mirroring of DCT blocks is accomplished by swapping | 
 |    * pairs of blocks in-place.  Within a DCT block, we perform horizontal | 
 |    * mirroring by changing the signs of odd-numbered columns. | 
 |    * Partial iMCUs at the right edge are left untouched. | 
 |    */ | 
 |   MCU_cols = srcinfo->output_width / | 
 |              (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
 |  | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     comp_width = MCU_cols * compptr->h_samp_factor; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     for (blk_y = 0; blk_y < compptr->height_in_blocks; | 
 |          blk_y += compptr->v_samp_factor) { | 
 |       buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, src_coef_arrays[ci], blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         /* Do the mirroring */ | 
 |         for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { | 
 |           ptr1 = buffer[offset_y][blk_x]; | 
 |           ptr2 = buffer[offset_y][comp_width - blk_x - 1]; | 
 |           /* this unrolled loop doesn't need to know which row it's on... */ | 
 |           for (k = 0; k < DCTSIZE2; k += 2) { | 
 |             temp1 = *ptr1;      /* swap even column */ | 
 |             temp2 = *ptr2; | 
 |             *ptr1++ = temp2; | 
 |             *ptr2++ = temp1; | 
 |             temp1 = *ptr1;      /* swap odd column with sign change */ | 
 |             temp2 = *ptr2; | 
 |             *ptr1++ = -temp2; | 
 |             *ptr2++ = -temp1; | 
 |           } | 
 |         } | 
 |         if (x_crop_blocks > 0) { | 
 |           /* Now left-justify the portion of the data to be kept. | 
 |            * We can't use a single jcopy_block_row() call because that routine | 
 |            * depends on memcpy(), whose behavior is unspecified for overlapping | 
 |            * source and destination areas.  Sigh. | 
 |            */ | 
 |           for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { | 
 |             jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, | 
 |                             buffer[offset_y] + blk_x, (JDIMENSION)1); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_flip_h(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |           JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |           jvirt_barray_ptr *src_coef_arrays, | 
 |           jvirt_barray_ptr *dst_coef_arrays) | 
 | /* Horizontal flip in general cropping case */ | 
 | { | 
 |   JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; | 
 |   JDIMENSION x_crop_blocks, y_crop_blocks; | 
 |   int ci, k, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   JBLOCKROW src_row_ptr, dst_row_ptr; | 
 |   JCOEFPTR src_ptr, dst_ptr; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   /* Here we must output into a separate array because we can't touch | 
 |    * different rows of a single virtual array simultaneously.  Otherwise, | 
 |    * this is essentially the same as the routine above. | 
 |    */ | 
 |   MCU_cols = srcinfo->output_width / | 
 |              (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
 |  | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     comp_width = MCU_cols * compptr->h_samp_factor; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |          dst_blk_y + y_crop_blocks, | 
 |          (JDIMENSION)compptr->v_samp_factor, FALSE); | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         dst_row_ptr = dst_buffer[offset_y]; | 
 |         src_row_ptr = src_buffer[offset_y]; | 
 |         for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |              dst_blk_x++) { | 
 |           if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |             /* Do the mirrorable blocks */ | 
 |             dst_ptr = dst_row_ptr[dst_blk_x]; | 
 |             src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; | 
 |             /* this unrolled loop doesn't need to know which row it's on... */ | 
 |             for (k = 0; k < DCTSIZE2; k += 2) { | 
 |               *dst_ptr++ = *src_ptr++;   /* copy even column */ | 
 |               *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ | 
 |             } | 
 |           } else { | 
 |             /* Copy last partial block(s) verbatim */ | 
 |             jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, | 
 |                             dst_row_ptr + dst_blk_x, (JDIMENSION)1); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_flip_v(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |           JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |           jvirt_barray_ptr *src_coef_arrays, | 
 |           jvirt_barray_ptr *dst_coef_arrays) | 
 | /* Vertical flip */ | 
 | { | 
 |   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; | 
 |   JDIMENSION x_crop_blocks, y_crop_blocks; | 
 |   int ci, i, j, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   JBLOCKROW src_row_ptr, dst_row_ptr; | 
 |   JCOEFPTR src_ptr, dst_ptr; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   /* We output into a separate array because we can't touch different | 
 |    * rows of the source virtual array simultaneously.  Otherwise, this | 
 |    * is a pretty straightforward analog of horizontal flip. | 
 |    * Within a DCT block, vertical mirroring is done by changing the signs | 
 |    * of odd-numbered rows. | 
 |    * Partial iMCUs at the bottom edge are copied verbatim. | 
 |    */ | 
 |   MCU_rows = srcinfo->output_height / | 
 |              (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
 |  | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     comp_height = MCU_rows * compptr->v_samp_factor; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       if (y_crop_blocks + dst_blk_y < comp_height) { | 
 |         /* Row is within the mirrorable area. */ | 
 |         src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |           ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |            comp_height - y_crop_blocks - dst_blk_y - | 
 |            (JDIMENSION)compptr->v_samp_factor, | 
 |            (JDIMENSION)compptr->v_samp_factor, FALSE); | 
 |       } else { | 
 |         /* Bottom-edge blocks will be copied verbatim. */ | 
 |         src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |           ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |            dst_blk_y + y_crop_blocks, | 
 |            (JDIMENSION)compptr->v_samp_factor, FALSE); | 
 |       } | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         if (y_crop_blocks + dst_blk_y < comp_height) { | 
 |           /* Row is within the mirrorable area. */ | 
 |           dst_row_ptr = dst_buffer[offset_y]; | 
 |           src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; | 
 |           src_row_ptr += x_crop_blocks; | 
 |           for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |                dst_blk_x++) { | 
 |             dst_ptr = dst_row_ptr[dst_blk_x]; | 
 |             src_ptr = src_row_ptr[dst_blk_x]; | 
 |             for (i = 0; i < DCTSIZE; i += 2) { | 
 |               /* copy even row */ | 
 |               for (j = 0; j < DCTSIZE; j++) | 
 |                 *dst_ptr++ = *src_ptr++; | 
 |               /* copy odd row with sign change */ | 
 |               for (j = 0; j < DCTSIZE; j++) | 
 |                 *dst_ptr++ = - *src_ptr++; | 
 |             } | 
 |           } | 
 |         } else { | 
 |           /* Just copy row verbatim. */ | 
 |           jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, | 
 |                           dst_buffer[offset_y], | 
 |                           compptr->width_in_blocks); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_transpose(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |              JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |              jvirt_barray_ptr *src_coef_arrays, | 
 |              jvirt_barray_ptr *dst_coef_arrays) | 
 | /* Transpose source into destination */ | 
 | { | 
 |   JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; | 
 |   int ci, i, j, offset_x, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   JCOEFPTR src_ptr, dst_ptr; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   /* Transposing pixels within a block just requires transposing the | 
 |    * DCT coefficients. | 
 |    * Partial iMCUs at the edges require no special treatment; we simply | 
 |    * process all the available DCT blocks for every component. | 
 |    */ | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |              dst_blk_x += compptr->h_samp_factor) { | 
 |           src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |             ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |              dst_blk_x + x_crop_blocks, | 
 |              (JDIMENSION)compptr->h_samp_factor, FALSE); | 
 |           for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
 |             dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
 |             src_ptr = | 
 |               src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; | 
 |             for (i = 0; i < DCTSIZE; i++) | 
 |               for (j = 0; j < DCTSIZE; j++) | 
 |                 dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_rot_90(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |           JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |           jvirt_barray_ptr *src_coef_arrays, | 
 |           jvirt_barray_ptr *dst_coef_arrays) | 
 | /* 90 degree rotation is equivalent to | 
 |  *   1. Transposing the image; | 
 |  *   2. Horizontal mirroring. | 
 |  * These two steps are merged into a single processing routine. | 
 |  */ | 
 | { | 
 |   JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; | 
 |   JDIMENSION x_crop_blocks, y_crop_blocks; | 
 |   int ci, i, j, offset_x, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   JCOEFPTR src_ptr, dst_ptr; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   /* Because of the horizontal mirror step, we can't process partial iMCUs | 
 |    * at the (output) right edge properly.  They just get transposed and | 
 |    * not mirrored. | 
 |    */ | 
 |   MCU_cols = srcinfo->output_height / | 
 |              (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
 |  | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     comp_width = MCU_cols * compptr->h_samp_factor; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |              dst_blk_x += compptr->h_samp_factor) { | 
 |           if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |             /* Block is within the mirrorable area. */ | 
 |             src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |               ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |                comp_width - x_crop_blocks - dst_blk_x - | 
 |                (JDIMENSION)compptr->h_samp_factor, | 
 |                (JDIMENSION)compptr->h_samp_factor, FALSE); | 
 |           } else { | 
 |             /* Edge blocks are transposed but not mirrored. */ | 
 |             src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |               ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |                dst_blk_x + x_crop_blocks, | 
 |                (JDIMENSION)compptr->h_samp_factor, FALSE); | 
 |           } | 
 |           for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
 |             dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
 |             if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |               /* Block is within the mirrorable area. */ | 
 |               src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] | 
 |                 [dst_blk_y + offset_y + y_crop_blocks]; | 
 |               for (i = 0; i < DCTSIZE; i++) { | 
 |                 for (j = 0; j < DCTSIZE; j++) | 
 |                   dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |                 i++; | 
 |                 for (j = 0; j < DCTSIZE; j++) | 
 |                   dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; | 
 |               } | 
 |             } else { | 
 |               /* Edge blocks are transposed but not mirrored. */ | 
 |               src_ptr = src_buffer[offset_x] | 
 |                 [dst_blk_y + offset_y + y_crop_blocks]; | 
 |               for (i = 0; i < DCTSIZE; i++) | 
 |                 for (j = 0; j < DCTSIZE; j++) | 
 |                   dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_rot_270(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |            JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |            jvirt_barray_ptr *src_coef_arrays, | 
 |            jvirt_barray_ptr *dst_coef_arrays) | 
 | /* 270 degree rotation is equivalent to | 
 |  *   1. Horizontal mirroring; | 
 |  *   2. Transposing the image. | 
 |  * These two steps are merged into a single processing routine. | 
 |  */ | 
 | { | 
 |   JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; | 
 |   JDIMENSION x_crop_blocks, y_crop_blocks; | 
 |   int ci, i, j, offset_x, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   JCOEFPTR src_ptr, dst_ptr; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   /* Because of the horizontal mirror step, we can't process partial iMCUs | 
 |    * at the (output) bottom edge properly.  They just get transposed and | 
 |    * not mirrored. | 
 |    */ | 
 |   MCU_rows = srcinfo->output_width / | 
 |              (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
 |  | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     comp_height = MCU_rows * compptr->v_samp_factor; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |              dst_blk_x += compptr->h_samp_factor) { | 
 |           src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |             ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |              dst_blk_x + x_crop_blocks, | 
 |              (JDIMENSION)compptr->h_samp_factor, FALSE); | 
 |           for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
 |             dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
 |             if (y_crop_blocks + dst_blk_y < comp_height) { | 
 |               /* Block is within the mirrorable area. */ | 
 |               src_ptr = src_buffer[offset_x] | 
 |                 [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; | 
 |               for (i = 0; i < DCTSIZE; i++) { | 
 |                 for (j = 0; j < DCTSIZE; j++) { | 
 |                   dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |                   j++; | 
 |                   dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; | 
 |                 } | 
 |               } | 
 |             } else { | 
 |               /* Edge blocks are transposed but not mirrored. */ | 
 |               src_ptr = src_buffer[offset_x] | 
 |                 [dst_blk_y + offset_y + y_crop_blocks]; | 
 |               for (i = 0; i < DCTSIZE; i++) | 
 |                 for (j = 0; j < DCTSIZE; j++) | 
 |                   dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_rot_180(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |            JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |            jvirt_barray_ptr *src_coef_arrays, | 
 |            jvirt_barray_ptr *dst_coef_arrays) | 
 | /* 180 degree rotation is equivalent to | 
 |  *   1. Vertical mirroring; | 
 |  *   2. Horizontal mirroring. | 
 |  * These two steps are merged into a single processing routine. | 
 |  */ | 
 | { | 
 |   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; | 
 |   JDIMENSION x_crop_blocks, y_crop_blocks; | 
 |   int ci, i, j, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   JBLOCKROW src_row_ptr, dst_row_ptr; | 
 |   JCOEFPTR src_ptr, dst_ptr; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   MCU_cols = srcinfo->output_width / | 
 |              (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
 |   MCU_rows = srcinfo->output_height / | 
 |              (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
 |  | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     comp_width = MCU_cols * compptr->h_samp_factor; | 
 |     comp_height = MCU_rows * compptr->v_samp_factor; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       if (y_crop_blocks + dst_blk_y < comp_height) { | 
 |         /* Row is within the vertically mirrorable area. */ | 
 |         src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |           ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |            comp_height - y_crop_blocks - dst_blk_y - | 
 |            (JDIMENSION)compptr->v_samp_factor, | 
 |            (JDIMENSION)compptr->v_samp_factor, FALSE); | 
 |       } else { | 
 |         /* Bottom-edge rows are only mirrored horizontally. */ | 
 |         src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |           ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |            dst_blk_y + y_crop_blocks, | 
 |            (JDIMENSION)compptr->v_samp_factor, FALSE); | 
 |       } | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         dst_row_ptr = dst_buffer[offset_y]; | 
 |         if (y_crop_blocks + dst_blk_y < comp_height) { | 
 |           /* Row is within the mirrorable area. */ | 
 |           src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; | 
 |           for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |                dst_blk_x++) { | 
 |             dst_ptr = dst_row_ptr[dst_blk_x]; | 
 |             if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |               /* Process the blocks that can be mirrored both ways. */ | 
 |               src_ptr = | 
 |                 src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; | 
 |               for (i = 0; i < DCTSIZE; i += 2) { | 
 |                 /* For even row, negate every odd column. */ | 
 |                 for (j = 0; j < DCTSIZE; j += 2) { | 
 |                   *dst_ptr++ = *src_ptr++; | 
 |                   *dst_ptr++ = - *src_ptr++; | 
 |                 } | 
 |                 /* For odd row, negate every even column. */ | 
 |                 for (j = 0; j < DCTSIZE; j += 2) { | 
 |                   *dst_ptr++ = - *src_ptr++; | 
 |                   *dst_ptr++ = *src_ptr++; | 
 |                 } | 
 |               } | 
 |             } else { | 
 |               /* Any remaining right-edge blocks are only mirrored vertically. */ | 
 |               src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; | 
 |               for (i = 0; i < DCTSIZE; i += 2) { | 
 |                 for (j = 0; j < DCTSIZE; j++) | 
 |                   *dst_ptr++ = *src_ptr++; | 
 |                 for (j = 0; j < DCTSIZE; j++) | 
 |                   *dst_ptr++ = - *src_ptr++; | 
 |               } | 
 |             } | 
 |           } | 
 |         } else { | 
 |           /* Remaining rows are just mirrored horizontally. */ | 
 |           src_row_ptr = src_buffer[offset_y]; | 
 |           for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |                dst_blk_x++) { | 
 |             if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |               /* Process the blocks that can be mirrored. */ | 
 |               dst_ptr = dst_row_ptr[dst_blk_x]; | 
 |               src_ptr = | 
 |                 src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; | 
 |               for (i = 0; i < DCTSIZE2; i += 2) { | 
 |                 *dst_ptr++ = *src_ptr++; | 
 |                 *dst_ptr++ = - *src_ptr++; | 
 |               } | 
 |             } else { | 
 |               /* Any remaining right-edge blocks are only copied. */ | 
 |               jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, | 
 |                               dst_row_ptr + dst_blk_x, (JDIMENSION)1); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | do_transverse(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |               JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, | 
 |               jvirt_barray_ptr *src_coef_arrays, | 
 |               jvirt_barray_ptr *dst_coef_arrays) | 
 | /* Transverse transpose is equivalent to | 
 |  *   1. 180 degree rotation; | 
 |  *   2. Transposition; | 
 |  * or | 
 |  *   1. Horizontal mirroring; | 
 |  *   2. Transposition; | 
 |  *   3. Horizontal mirroring. | 
 |  * These steps are merged into a single processing routine. | 
 |  */ | 
 | { | 
 |   JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; | 
 |   JDIMENSION x_crop_blocks, y_crop_blocks; | 
 |   int ci, i, j, offset_x, offset_y; | 
 |   JBLOCKARRAY src_buffer, dst_buffer; | 
 |   JCOEFPTR src_ptr, dst_ptr; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   MCU_cols = srcinfo->output_height / | 
 |              (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); | 
 |   MCU_rows = srcinfo->output_width / | 
 |              (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); | 
 |  | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     comp_width = MCU_cols * compptr->h_samp_factor; | 
 |     comp_height = MCU_rows * compptr->v_samp_factor; | 
 |     x_crop_blocks = x_crop_offset * compptr->h_samp_factor; | 
 |     y_crop_blocks = y_crop_offset * compptr->v_samp_factor; | 
 |     for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; | 
 |          dst_blk_y += compptr->v_samp_factor) { | 
 |       dst_buffer = (*srcinfo->mem->access_virt_barray) | 
 |         ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, | 
 |          (JDIMENSION)compptr->v_samp_factor, TRUE); | 
 |       for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { | 
 |         for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; | 
 |              dst_blk_x += compptr->h_samp_factor) { | 
 |           if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |             /* Block is within the mirrorable area. */ | 
 |             src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |               ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |                comp_width - x_crop_blocks - dst_blk_x - | 
 |                (JDIMENSION)compptr->h_samp_factor, | 
 |                (JDIMENSION)compptr->h_samp_factor, FALSE); | 
 |           } else { | 
 |             src_buffer = (*srcinfo->mem->access_virt_barray) | 
 |               ((j_common_ptr)srcinfo, src_coef_arrays[ci], | 
 |                dst_blk_x + x_crop_blocks, | 
 |                (JDIMENSION)compptr->h_samp_factor, FALSE); | 
 |           } | 
 |           for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { | 
 |             dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; | 
 |             if (y_crop_blocks + dst_blk_y < comp_height) { | 
 |               if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |                 /* Block is within the mirrorable area. */ | 
 |                 src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] | 
 |                   [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; | 
 |                 for (i = 0; i < DCTSIZE; i++) { | 
 |                   for (j = 0; j < DCTSIZE; j++) { | 
 |                     dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |                     j++; | 
 |                     dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; | 
 |                   } | 
 |                   i++; | 
 |                   for (j = 0; j < DCTSIZE; j++) { | 
 |                     dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; | 
 |                     j++; | 
 |                     dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |                   } | 
 |                 } | 
 |               } else { | 
 |                 /* Right-edge blocks are mirrored in y only */ | 
 |                 src_ptr = src_buffer[offset_x] | 
 |                   [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; | 
 |                 for (i = 0; i < DCTSIZE; i++) { | 
 |                   for (j = 0; j < DCTSIZE; j++) { | 
 |                     dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |                     j++; | 
 |                     dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; | 
 |                   } | 
 |                 } | 
 |               } | 
 |             } else { | 
 |               if (x_crop_blocks + dst_blk_x < comp_width) { | 
 |                 /* Bottom-edge blocks are mirrored in x only */ | 
 |                 src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] | 
 |                   [dst_blk_y + offset_y + y_crop_blocks]; | 
 |                 for (i = 0; i < DCTSIZE; i++) { | 
 |                   for (j = 0; j < DCTSIZE; j++) | 
 |                     dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |                   i++; | 
 |                   for (j = 0; j < DCTSIZE; j++) | 
 |                     dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; | 
 |                 } | 
 |               } else { | 
 |                 /* At lower right corner, just transpose, no mirroring */ | 
 |                 src_ptr = src_buffer[offset_x] | 
 |                   [dst_blk_y + offset_y + y_crop_blocks]; | 
 |                 for (i = 0; i < DCTSIZE; i++) | 
 |                   for (j = 0; j < DCTSIZE; j++) | 
 |                     dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. | 
 |  * Returns TRUE if valid integer found, FALSE if not. | 
 |  * *strptr is advanced over the digit string, and *result is set to its value. | 
 |  */ | 
 |  | 
 | LOCAL(boolean) | 
 | jt_read_integer(const char **strptr, JDIMENSION *result) | 
 | { | 
 |   const char *ptr = *strptr; | 
 |   JDIMENSION val = 0; | 
 |  | 
 |   for (; isdigit(*ptr); ptr++) { | 
 |     val = val * 10 + (JDIMENSION)(*ptr - '0'); | 
 |   } | 
 |   *result = val; | 
 |   if (ptr == *strptr) | 
 |     return FALSE;               /* oops, no digits */ | 
 |   *strptr = ptr; | 
 |   return TRUE; | 
 | } | 
 |  | 
 |  | 
 | /* Parse a crop specification (written in X11 geometry style). | 
 |  * The routine returns TRUE if the spec string is valid, FALSE if not. | 
 |  * | 
 |  * The crop spec string should have the format | 
 |  *      <width>[f]x<height>[f]{+-}<xoffset>{+-}<yoffset> | 
 |  * where width, height, xoffset, and yoffset are unsigned integers. | 
 |  * Each of the elements can be omitted to indicate a default value. | 
 |  * (A weakness of this style is that it is not possible to omit xoffset | 
 |  * while specifying yoffset, since they look alike.) | 
 |  * | 
 |  * This code is loosely based on XParseGeometry from the X11 distribution. | 
 |  */ | 
 |  | 
 | GLOBAL(boolean) | 
 | jtransform_parse_crop_spec(jpeg_transform_info *info, const char *spec) | 
 | { | 
 |   info->crop = FALSE; | 
 |   info->crop_width_set = JCROP_UNSET; | 
 |   info->crop_height_set = JCROP_UNSET; | 
 |   info->crop_xoffset_set = JCROP_UNSET; | 
 |   info->crop_yoffset_set = JCROP_UNSET; | 
 |  | 
 |   if (isdigit(*spec)) { | 
 |     /* fetch width */ | 
 |     if (!jt_read_integer(&spec, &info->crop_width)) | 
 |       return FALSE; | 
 |     if (*spec == 'f' || *spec == 'F') { | 
 |       spec++; | 
 |       info->crop_width_set = JCROP_FORCE; | 
 |     } else | 
 |       info->crop_width_set = JCROP_POS; | 
 |   } | 
 |   if (*spec == 'x' || *spec == 'X') { | 
 |     /* fetch height */ | 
 |     spec++; | 
 |     if (!jt_read_integer(&spec, &info->crop_height)) | 
 |       return FALSE; | 
 |     if (*spec == 'f' || *spec == 'F') { | 
 |       spec++; | 
 |       info->crop_height_set = JCROP_FORCE; | 
 |     } else | 
 |       info->crop_height_set = JCROP_POS; | 
 |   } | 
 |   if (*spec == '+' || *spec == '-') { | 
 |     /* fetch xoffset */ | 
 |     info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; | 
 |     spec++; | 
 |     if (!jt_read_integer(&spec, &info->crop_xoffset)) | 
 |       return FALSE; | 
 |   } | 
 |   if (*spec == '+' || *spec == '-') { | 
 |     /* fetch yoffset */ | 
 |     info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; | 
 |     spec++; | 
 |     if (!jt_read_integer(&spec, &info->crop_yoffset)) | 
 |       return FALSE; | 
 |   } | 
 |   /* We had better have gotten to the end of the string. */ | 
 |   if (*spec != '\0') | 
 |     return FALSE; | 
 |   info->crop = TRUE; | 
 |   return TRUE; | 
 | } | 
 |  | 
 |  | 
 | /* Trim off any partial iMCUs on the indicated destination edge */ | 
 |  | 
 | LOCAL(void) | 
 | trim_right_edge(jpeg_transform_info *info, JDIMENSION full_width) | 
 | { | 
 |   JDIMENSION MCU_cols; | 
 |  | 
 |   MCU_cols = info->output_width / info->iMCU_sample_width; | 
 |   if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == | 
 |       full_width / info->iMCU_sample_width) | 
 |     info->output_width = MCU_cols * info->iMCU_sample_width; | 
 | } | 
 |  | 
 | LOCAL(void) | 
 | trim_bottom_edge(jpeg_transform_info *info, JDIMENSION full_height) | 
 | { | 
 |   JDIMENSION MCU_rows; | 
 |  | 
 |   MCU_rows = info->output_height / info->iMCU_sample_height; | 
 |   if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == | 
 |       full_height / info->iMCU_sample_height) | 
 |     info->output_height = MCU_rows * info->iMCU_sample_height; | 
 | } | 
 |  | 
 |  | 
 | /* Request any required workspace. | 
 |  * | 
 |  * This routine figures out the size that the output image will be | 
 |  * (which implies that all the transform parameters must be set before | 
 |  * it is called). | 
 |  * | 
 |  * We allocate the workspace virtual arrays from the source decompression | 
 |  * object, so that all the arrays (both the original data and the workspace) | 
 |  * will be taken into account while making memory management decisions. | 
 |  * Hence, this routine must be called after jpeg_read_header (which reads | 
 |  * the image dimensions) and before jpeg_read_coefficients (which realizes | 
 |  * the source's virtual arrays). | 
 |  * | 
 |  * This function returns FALSE right away if -perfect is given | 
 |  * and transformation is not perfect.  Otherwise returns TRUE. | 
 |  */ | 
 |  | 
 | GLOBAL(boolean) | 
 | jtransform_request_workspace(j_decompress_ptr srcinfo, | 
 |                              jpeg_transform_info *info) | 
 | { | 
 |   jvirt_barray_ptr *coef_arrays; | 
 |   boolean need_workspace, transpose_it; | 
 |   jpeg_component_info *compptr; | 
 |   JDIMENSION xoffset, yoffset; | 
 |   JDIMENSION width_in_iMCUs, height_in_iMCUs; | 
 |   JDIMENSION width_in_blocks, height_in_blocks; | 
 |   int ci, h_samp_factor, v_samp_factor; | 
 |  | 
 |   /* Determine number of components in output image */ | 
 |   if (info->force_grayscale && | 
 |       srcinfo->jpeg_color_space == JCS_YCbCr && | 
 |       srcinfo->num_components == 3) | 
 |     /* We'll only process the first component */ | 
 |     info->num_components = 1; | 
 |   else | 
 |     /* Process all the components */ | 
 |     info->num_components = srcinfo->num_components; | 
 |  | 
 |   /* Compute output image dimensions and related values. */ | 
 | #if JPEG_LIB_VERSION >= 80 | 
 |   jpeg_core_output_dimensions(srcinfo); | 
 | #else | 
 |   srcinfo->output_width = srcinfo->image_width; | 
 |   srcinfo->output_height = srcinfo->image_height; | 
 | #endif | 
 |  | 
 |   /* Return right away if -perfect is given and transformation is not perfect. | 
 |    */ | 
 |   if (info->perfect) { | 
 |     if (info->num_components == 1) { | 
 |       if (!jtransform_perfect_transform(srcinfo->output_width, | 
 |           srcinfo->output_height, | 
 |           srcinfo->_min_DCT_h_scaled_size, | 
 |           srcinfo->_min_DCT_v_scaled_size, | 
 |           info->transform)) | 
 |         return FALSE; | 
 |     } else { | 
 |       if (!jtransform_perfect_transform(srcinfo->output_width, | 
 |           srcinfo->output_height, | 
 |           srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size, | 
 |           srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size, | 
 |           info->transform)) | 
 |         return FALSE; | 
 |     } | 
 |   } | 
 |  | 
 |   /* If there is only one output component, force the iMCU size to be 1; | 
 |    * else use the source iMCU size.  (This allows us to do the right thing | 
 |    * when reducing color to grayscale, and also provides a handy way of | 
 |    * cleaning up "funny" grayscale images whose sampling factors are not 1x1.) | 
 |    */ | 
 |   switch (info->transform) { | 
 |   case JXFORM_TRANSPOSE: | 
 |   case JXFORM_TRANSVERSE: | 
 |   case JXFORM_ROT_90: | 
 |   case JXFORM_ROT_270: | 
 |     info->output_width = srcinfo->output_height; | 
 |     info->output_height = srcinfo->output_width; | 
 |     if (info->num_components == 1) { | 
 |       info->iMCU_sample_width = srcinfo->_min_DCT_v_scaled_size; | 
 |       info->iMCU_sample_height = srcinfo->_min_DCT_h_scaled_size; | 
 |     } else { | 
 |       info->iMCU_sample_width = | 
 |         srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; | 
 |       info->iMCU_sample_height = | 
 |         srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; | 
 |     } | 
 |     break; | 
 |   default: | 
 |     info->output_width = srcinfo->output_width; | 
 |     info->output_height = srcinfo->output_height; | 
 |     if (info->num_components == 1) { | 
 |       info->iMCU_sample_width = srcinfo->_min_DCT_h_scaled_size; | 
 |       info->iMCU_sample_height = srcinfo->_min_DCT_v_scaled_size; | 
 |     } else { | 
 |       info->iMCU_sample_width = | 
 |         srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; | 
 |       info->iMCU_sample_height = | 
 |         srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   /* If cropping has been requested, compute the crop area's position and | 
 |    * dimensions, ensuring that its upper left corner falls at an iMCU boundary. | 
 |    */ | 
 |   if (info->crop) { | 
 |     /* Insert default values for unset crop parameters */ | 
 |     if (info->crop_xoffset_set == JCROP_UNSET) | 
 |       info->crop_xoffset = 0;   /* default to +0 */ | 
 |     if (info->crop_yoffset_set == JCROP_UNSET) | 
 |       info->crop_yoffset = 0;   /* default to +0 */ | 
 |     if (info->crop_xoffset >= info->output_width || | 
 |         info->crop_yoffset >= info->output_height) | 
 |       ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); | 
 |     if (info->crop_width_set == JCROP_UNSET) | 
 |       info->crop_width = info->output_width - info->crop_xoffset; | 
 |     if (info->crop_height_set == JCROP_UNSET) | 
 |       info->crop_height = info->output_height - info->crop_yoffset; | 
 |     /* Ensure parameters are valid */ | 
 |     if (info->crop_width <= 0 || info->crop_width > info->output_width || | 
 |         info->crop_height <= 0 || info->crop_height > info->output_height || | 
 |         info->crop_xoffset > info->output_width - info->crop_width || | 
 |         info->crop_yoffset > info->output_height - info->crop_height) | 
 |       ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); | 
 |     /* Convert negative crop offsets into regular offsets */ | 
 |     if (info->crop_xoffset_set == JCROP_NEG) | 
 |       xoffset = info->output_width - info->crop_width - info->crop_xoffset; | 
 |     else | 
 |       xoffset = info->crop_xoffset; | 
 |     if (info->crop_yoffset_set == JCROP_NEG) | 
 |       yoffset = info->output_height - info->crop_height - info->crop_yoffset; | 
 |     else | 
 |       yoffset = info->crop_yoffset; | 
 |     /* Now adjust so that upper left corner falls at an iMCU boundary */ | 
 |     if (info->crop_width_set == JCROP_FORCE) | 
 |       info->output_width = info->crop_width; | 
 |     else | 
 |       info->output_width = | 
 |         info->crop_width + (xoffset % info->iMCU_sample_width); | 
 |     if (info->crop_height_set == JCROP_FORCE) | 
 |       info->output_height = info->crop_height; | 
 |     else | 
 |       info->output_height = | 
 |         info->crop_height + (yoffset % info->iMCU_sample_height); | 
 |     /* Save x/y offsets measured in iMCUs */ | 
 |     info->x_crop_offset = xoffset / info->iMCU_sample_width; | 
 |     info->y_crop_offset = yoffset / info->iMCU_sample_height; | 
 |   } else { | 
 |     info->x_crop_offset = 0; | 
 |     info->y_crop_offset = 0; | 
 |   } | 
 |  | 
 |   /* Figure out whether we need workspace arrays, | 
 |    * and if so whether they are transposed relative to the source. | 
 |    */ | 
 |   need_workspace = FALSE; | 
 |   transpose_it = FALSE; | 
 |   switch (info->transform) { | 
 |   case JXFORM_NONE: | 
 |     if (info->x_crop_offset != 0 || info->y_crop_offset != 0) | 
 |       need_workspace = TRUE; | 
 |     /* No workspace needed if neither cropping nor transforming */ | 
 |     break; | 
 |   case JXFORM_FLIP_H: | 
 |     if (info->trim) | 
 |       trim_right_edge(info, srcinfo->output_width); | 
 |     if (info->y_crop_offset != 0 || info->slow_hflip) | 
 |       need_workspace = TRUE; | 
 |     /* do_flip_h_no_crop doesn't need a workspace array */ | 
 |     break; | 
 |   case JXFORM_FLIP_V: | 
 |     if (info->trim) | 
 |       trim_bottom_edge(info, srcinfo->output_height); | 
 |     /* Need workspace arrays having same dimensions as source image. */ | 
 |     need_workspace = TRUE; | 
 |     break; | 
 |   case JXFORM_TRANSPOSE: | 
 |     /* transpose does NOT have to trim anything */ | 
 |     /* Need workspace arrays having transposed dimensions. */ | 
 |     need_workspace = TRUE; | 
 |     transpose_it = TRUE; | 
 |     break; | 
 |   case JXFORM_TRANSVERSE: | 
 |     if (info->trim) { | 
 |       trim_right_edge(info, srcinfo->output_height); | 
 |       trim_bottom_edge(info, srcinfo->output_width); | 
 |     } | 
 |     /* Need workspace arrays having transposed dimensions. */ | 
 |     need_workspace = TRUE; | 
 |     transpose_it = TRUE; | 
 |     break; | 
 |   case JXFORM_ROT_90: | 
 |     if (info->trim) | 
 |       trim_right_edge(info, srcinfo->output_height); | 
 |     /* Need workspace arrays having transposed dimensions. */ | 
 |     need_workspace = TRUE; | 
 |     transpose_it = TRUE; | 
 |     break; | 
 |   case JXFORM_ROT_180: | 
 |     if (info->trim) { | 
 |       trim_right_edge(info, srcinfo->output_width); | 
 |       trim_bottom_edge(info, srcinfo->output_height); | 
 |     } | 
 |     /* Need workspace arrays having same dimensions as source image. */ | 
 |     need_workspace = TRUE; | 
 |     break; | 
 |   case JXFORM_ROT_270: | 
 |     if (info->trim) | 
 |       trim_bottom_edge(info, srcinfo->output_width); | 
 |     /* Need workspace arrays having transposed dimensions. */ | 
 |     need_workspace = TRUE; | 
 |     transpose_it = TRUE; | 
 |     break; | 
 |   } | 
 |  | 
 |   /* Allocate workspace if needed. | 
 |    * Note that we allocate arrays padded out to the next iMCU boundary, | 
 |    * so that transform routines need not worry about missing edge blocks. | 
 |    */ | 
 |   if (need_workspace) { | 
 |     coef_arrays = (jvirt_barray_ptr *) | 
 |       (*srcinfo->mem->alloc_small) ((j_common_ptr)srcinfo, JPOOL_IMAGE, | 
 |                 sizeof(jvirt_barray_ptr) * info->num_components); | 
 |     width_in_iMCUs = (JDIMENSION) | 
 |       jdiv_round_up((long)info->output_width, (long)info->iMCU_sample_width); | 
 |     height_in_iMCUs = (JDIMENSION) | 
 |       jdiv_round_up((long)info->output_height, (long)info->iMCU_sample_height); | 
 |     for (ci = 0; ci < info->num_components; ci++) { | 
 |       compptr = srcinfo->comp_info + ci; | 
 |       if (info->num_components == 1) { | 
 |         /* we're going to force samp factors to 1x1 in this case */ | 
 |         h_samp_factor = v_samp_factor = 1; | 
 |       } else if (transpose_it) { | 
 |         h_samp_factor = compptr->v_samp_factor; | 
 |         v_samp_factor = compptr->h_samp_factor; | 
 |       } else { | 
 |         h_samp_factor = compptr->h_samp_factor; | 
 |         v_samp_factor = compptr->v_samp_factor; | 
 |       } | 
 |       width_in_blocks = width_in_iMCUs * h_samp_factor; | 
 |       height_in_blocks = height_in_iMCUs * v_samp_factor; | 
 |       coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) | 
 |         ((j_common_ptr)srcinfo, JPOOL_IMAGE, FALSE, | 
 |          width_in_blocks, height_in_blocks, (JDIMENSION)v_samp_factor); | 
 |     } | 
 |     info->workspace_coef_arrays = coef_arrays; | 
 |   } else | 
 |     info->workspace_coef_arrays = NULL; | 
 |  | 
 |   return TRUE; | 
 | } | 
 |  | 
 |  | 
 | /* Transpose destination image parameters */ | 
 |  | 
 | LOCAL(void) | 
 | transpose_critical_parameters(j_compress_ptr dstinfo) | 
 | { | 
 |   int tblno, i, j, ci, itemp; | 
 |   jpeg_component_info *compptr; | 
 |   JQUANT_TBL *qtblptr; | 
 |   JDIMENSION jtemp; | 
 |   UINT16 qtemp; | 
 |  | 
 |   /* Transpose image dimensions */ | 
 |   jtemp = dstinfo->image_width; | 
 |   dstinfo->image_width = dstinfo->image_height; | 
 |   dstinfo->image_height = jtemp; | 
 | #if JPEG_LIB_VERSION >= 70 | 
 |   itemp = dstinfo->min_DCT_h_scaled_size; | 
 |   dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; | 
 |   dstinfo->min_DCT_v_scaled_size = itemp; | 
 | #endif | 
 |  | 
 |   /* Transpose sampling factors */ | 
 |   for (ci = 0; ci < dstinfo->num_components; ci++) { | 
 |     compptr = dstinfo->comp_info + ci; | 
 |     itemp = compptr->h_samp_factor; | 
 |     compptr->h_samp_factor = compptr->v_samp_factor; | 
 |     compptr->v_samp_factor = itemp; | 
 |   } | 
 |  | 
 |   /* Transpose quantization tables */ | 
 |   for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { | 
 |     qtblptr = dstinfo->quant_tbl_ptrs[tblno]; | 
 |     if (qtblptr != NULL) { | 
 |       for (i = 0; i < DCTSIZE; i++) { | 
 |         for (j = 0; j < i; j++) { | 
 |           qtemp = qtblptr->quantval[i * DCTSIZE + j]; | 
 |           qtblptr->quantval[i * DCTSIZE + j] = | 
 |             qtblptr->quantval[j * DCTSIZE + i]; | 
 |           qtblptr->quantval[j * DCTSIZE + i] = qtemp; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* Adjust Exif image parameters. | 
 |  * | 
 |  * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. | 
 |  */ | 
 |  | 
 | LOCAL(void) | 
 | adjust_exif_parameters(JOCTET *data, unsigned int length, JDIMENSION new_width, | 
 |                        JDIMENSION new_height) | 
 | { | 
 |   boolean is_motorola; /* Flag for byte order */ | 
 |   unsigned int number_of_tags, tagnum; | 
 |   unsigned int firstoffset, offset; | 
 |   JDIMENSION new_value; | 
 |  | 
 |   if (length < 12) return; /* Length of an IFD entry */ | 
 |  | 
 |   /* Discover byte order */ | 
 |   if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) | 
 |     is_motorola = FALSE; | 
 |   else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) | 
 |     is_motorola = TRUE; | 
 |   else | 
 |     return; | 
 |  | 
 |   /* Check Tag Mark */ | 
 |   if (is_motorola) { | 
 |     if (GETJOCTET(data[2]) != 0) return; | 
 |     if (GETJOCTET(data[3]) != 0x2A) return; | 
 |   } else { | 
 |     if (GETJOCTET(data[3]) != 0) return; | 
 |     if (GETJOCTET(data[2]) != 0x2A) return; | 
 |   } | 
 |  | 
 |   /* Get first IFD offset (offset to IFD0) */ | 
 |   if (is_motorola) { | 
 |     if (GETJOCTET(data[4]) != 0) return; | 
 |     if (GETJOCTET(data[5]) != 0) return; | 
 |     firstoffset = GETJOCTET(data[6]); | 
 |     firstoffset <<= 8; | 
 |     firstoffset += GETJOCTET(data[7]); | 
 |   } else { | 
 |     if (GETJOCTET(data[7]) != 0) return; | 
 |     if (GETJOCTET(data[6]) != 0) return; | 
 |     firstoffset = GETJOCTET(data[5]); | 
 |     firstoffset <<= 8; | 
 |     firstoffset += GETJOCTET(data[4]); | 
 |   } | 
 |   if (firstoffset > length - 2) return; /* check end of data segment */ | 
 |  | 
 |   /* Get the number of directory entries contained in this IFD */ | 
 |   if (is_motorola) { | 
 |     number_of_tags = GETJOCTET(data[firstoffset]); | 
 |     number_of_tags <<= 8; | 
 |     number_of_tags += GETJOCTET(data[firstoffset + 1]); | 
 |   } else { | 
 |     number_of_tags = GETJOCTET(data[firstoffset + 1]); | 
 |     number_of_tags <<= 8; | 
 |     number_of_tags += GETJOCTET(data[firstoffset]); | 
 |   } | 
 |   if (number_of_tags == 0) return; | 
 |   firstoffset += 2; | 
 |  | 
 |   /* Search for ExifSubIFD offset Tag in IFD0 */ | 
 |   for (;;) { | 
 |     if (firstoffset > length - 12) return; /* check end of data segment */ | 
 |     /* Get Tag number */ | 
 |     if (is_motorola) { | 
 |       tagnum = GETJOCTET(data[firstoffset]); | 
 |       tagnum <<= 8; | 
 |       tagnum += GETJOCTET(data[firstoffset + 1]); | 
 |     } else { | 
 |       tagnum = GETJOCTET(data[firstoffset + 1]); | 
 |       tagnum <<= 8; | 
 |       tagnum += GETJOCTET(data[firstoffset]); | 
 |     } | 
 |     if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ | 
 |     if (--number_of_tags == 0) return; | 
 |     firstoffset += 12; | 
 |   } | 
 |  | 
 |   /* Get the ExifSubIFD offset */ | 
 |   if (is_motorola) { | 
 |     if (GETJOCTET(data[firstoffset + 8]) != 0) return; | 
 |     if (GETJOCTET(data[firstoffset + 9]) != 0) return; | 
 |     offset = GETJOCTET(data[firstoffset + 10]); | 
 |     offset <<= 8; | 
 |     offset += GETJOCTET(data[firstoffset + 11]); | 
 |   } else { | 
 |     if (GETJOCTET(data[firstoffset + 11]) != 0) return; | 
 |     if (GETJOCTET(data[firstoffset + 10]) != 0) return; | 
 |     offset = GETJOCTET(data[firstoffset + 9]); | 
 |     offset <<= 8; | 
 |     offset += GETJOCTET(data[firstoffset + 8]); | 
 |   } | 
 |   if (offset > length - 2) return; /* check end of data segment */ | 
 |  | 
 |   /* Get the number of directory entries contained in this SubIFD */ | 
 |   if (is_motorola) { | 
 |     number_of_tags = GETJOCTET(data[offset]); | 
 |     number_of_tags <<= 8; | 
 |     number_of_tags += GETJOCTET(data[offset + 1]); | 
 |   } else { | 
 |     number_of_tags = GETJOCTET(data[offset + 1]); | 
 |     number_of_tags <<= 8; | 
 |     number_of_tags += GETJOCTET(data[offset]); | 
 |   } | 
 |   if (number_of_tags < 2) return; | 
 |   offset += 2; | 
 |  | 
 |   /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ | 
 |   do { | 
 |     if (offset > length - 12) return; /* check end of data segment */ | 
 |     /* Get Tag number */ | 
 |     if (is_motorola) { | 
 |       tagnum = GETJOCTET(data[offset]); | 
 |       tagnum <<= 8; | 
 |       tagnum += GETJOCTET(data[offset + 1]); | 
 |     } else { | 
 |       tagnum = GETJOCTET(data[offset + 1]); | 
 |       tagnum <<= 8; | 
 |       tagnum += GETJOCTET(data[offset]); | 
 |     } | 
 |     if (tagnum == 0xA002 || tagnum == 0xA003) { | 
 |       if (tagnum == 0xA002) | 
 |         new_value = new_width; /* ExifImageWidth Tag */ | 
 |       else | 
 |         new_value = new_height; /* ExifImageHeight Tag */ | 
 |       if (is_motorola) { | 
 |         data[offset + 2] = 0; /* Format = unsigned long (4 octets) */ | 
 |         data[offset + 3] = 4; | 
 |         data[offset + 4] = 0; /* Number Of Components = 1 */ | 
 |         data[offset + 5] = 0; | 
 |         data[offset + 6] = 0; | 
 |         data[offset + 7] = 1; | 
 |         data[offset + 8] = 0; | 
 |         data[offset + 9] = 0; | 
 |         data[offset + 10] = (JOCTET)((new_value >> 8) & 0xFF); | 
 |         data[offset + 11] = (JOCTET)(new_value & 0xFF); | 
 |       } else { | 
 |         data[offset + 2] = 4; /* Format = unsigned long (4 octets) */ | 
 |         data[offset + 3] = 0; | 
 |         data[offset + 4] = 1; /* Number Of Components = 1 */ | 
 |         data[offset + 5] = 0; | 
 |         data[offset + 6] = 0; | 
 |         data[offset + 7] = 0; | 
 |         data[offset + 8] = (JOCTET)(new_value & 0xFF); | 
 |         data[offset + 9] = (JOCTET)((new_value >> 8) & 0xFF); | 
 |         data[offset + 10] = 0; | 
 |         data[offset + 11] = 0; | 
 |       } | 
 |     } | 
 |     offset += 12; | 
 |   } while (--number_of_tags); | 
 | } | 
 |  | 
 |  | 
 | /* Adjust output image parameters as needed. | 
 |  * | 
 |  * This must be called after jpeg_copy_critical_parameters() | 
 |  * and before jpeg_write_coefficients(). | 
 |  * | 
 |  * The return value is the set of virtual coefficient arrays to be written | 
 |  * (either the ones allocated by jtransform_request_workspace, or the | 
 |  * original source data arrays).  The caller will need to pass this value | 
 |  * to jpeg_write_coefficients(). | 
 |  */ | 
 |  | 
 | GLOBAL(jvirt_barray_ptr *) | 
 | jtransform_adjust_parameters(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |                              jvirt_barray_ptr *src_coef_arrays, | 
 |                              jpeg_transform_info *info) | 
 | { | 
 |   /* If force-to-grayscale is requested, adjust destination parameters */ | 
 |   if (info->force_grayscale) { | 
 |     /* First, ensure we have YCbCr or grayscale data, and that the source's | 
 |      * Y channel is full resolution.  (No reasonable person would make Y | 
 |      * be less than full resolution, so actually coping with that case | 
 |      * isn't worth extra code space.  But we check it to avoid crashing.) | 
 |      */ | 
 |     if (((dstinfo->jpeg_color_space == JCS_YCbCr && | 
 |           dstinfo->num_components == 3) || | 
 |          (dstinfo->jpeg_color_space == JCS_GRAYSCALE && | 
 |           dstinfo->num_components == 1)) && | 
 |         srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && | 
 |         srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { | 
 |       /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed | 
 |        * properly.  Among other things, it sets the target h_samp_factor & | 
 |        * v_samp_factor to 1, which typically won't match the source. | 
 |        * We have to preserve the source's quantization table number, however. | 
 |        */ | 
 |       int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; | 
 |       jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); | 
 |       dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; | 
 |     } else { | 
 |       /* Sorry, can't do it */ | 
 |       ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); | 
 |     } | 
 |   } else if (info->num_components == 1) { | 
 |     /* For a single-component source, we force the destination sampling factors | 
 |      * to 1x1, with or without force_grayscale.  This is useful because some | 
 |      * decoders choke on grayscale images with other sampling factors. | 
 |      */ | 
 |     dstinfo->comp_info[0].h_samp_factor = 1; | 
 |     dstinfo->comp_info[0].v_samp_factor = 1; | 
 |   } | 
 |  | 
 |   /* Correct the destination's image dimensions as necessary | 
 |    * for rotate/flip, resize, and crop operations. | 
 |    */ | 
 | #if JPEG_LIB_VERSION >= 80 | 
 |   dstinfo->jpeg_width = info->output_width; | 
 |   dstinfo->jpeg_height = info->output_height; | 
 | #endif | 
 |  | 
 |   /* Transpose destination image parameters */ | 
 |   switch (info->transform) { | 
 |   case JXFORM_TRANSPOSE: | 
 |   case JXFORM_TRANSVERSE: | 
 |   case JXFORM_ROT_90: | 
 |   case JXFORM_ROT_270: | 
 | #if JPEG_LIB_VERSION < 80 | 
 |     dstinfo->image_width = info->output_height; | 
 |     dstinfo->image_height = info->output_width; | 
 | #endif | 
 |     transpose_critical_parameters(dstinfo); | 
 |     break; | 
 |   default: | 
 | #if JPEG_LIB_VERSION < 80 | 
 |     dstinfo->image_width = info->output_width; | 
 |     dstinfo->image_height = info->output_height; | 
 | #endif | 
 |     break; | 
 |   } | 
 |  | 
 |   /* Adjust Exif properties */ | 
 |   if (srcinfo->marker_list != NULL && | 
 |       srcinfo->marker_list->marker == JPEG_APP0 + 1 && | 
 |       srcinfo->marker_list->data_length >= 6 && | 
 |       GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && | 
 |       GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && | 
 |       GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && | 
 |       GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && | 
 |       GETJOCTET(srcinfo->marker_list->data[4]) == 0 && | 
 |       GETJOCTET(srcinfo->marker_list->data[5]) == 0) { | 
 |     /* Suppress output of JFIF marker */ | 
 |     dstinfo->write_JFIF_header = FALSE; | 
 |     /* Adjust Exif image parameters */ | 
 | #if JPEG_LIB_VERSION >= 80 | 
 |     if (dstinfo->jpeg_width != srcinfo->image_width || | 
 |         dstinfo->jpeg_height != srcinfo->image_height) | 
 |       /* Align data segment to start of TIFF structure for parsing */ | 
 |       adjust_exif_parameters(srcinfo->marker_list->data + 6, | 
 |                              srcinfo->marker_list->data_length - 6, | 
 |                              dstinfo->jpeg_width, dstinfo->jpeg_height); | 
 | #else | 
 |     if (dstinfo->image_width != srcinfo->image_width || | 
 |         dstinfo->image_height != srcinfo->image_height) | 
 |       /* Align data segment to start of TIFF structure for parsing */ | 
 |       adjust_exif_parameters(srcinfo->marker_list->data + 6, | 
 |                              srcinfo->marker_list->data_length - 6, | 
 |                              dstinfo->image_width, dstinfo->image_height); | 
 | #endif | 
 |   } | 
 |  | 
 |   /* Return the appropriate output data set */ | 
 |   if (info->workspace_coef_arrays != NULL) | 
 |     return info->workspace_coef_arrays; | 
 |   return src_coef_arrays; | 
 | } | 
 |  | 
 |  | 
 | /* Execute the actual transformation, if any. | 
 |  * | 
 |  * This must be called *after* jpeg_write_coefficients, because it depends | 
 |  * on jpeg_write_coefficients to have computed subsidiary values such as | 
 |  * the per-component width and height fields in the destination object. | 
 |  * | 
 |  * Note that some transformations will modify the source data arrays! | 
 |  */ | 
 |  | 
 | GLOBAL(void) | 
 | jtransform_execute_transform(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |                              jvirt_barray_ptr *src_coef_arrays, | 
 |                              jpeg_transform_info *info) | 
 | { | 
 |   jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; | 
 |  | 
 |   /* Note: conditions tested here should match those in switch statement | 
 |    * in jtransform_request_workspace() | 
 |    */ | 
 |   switch (info->transform) { | 
 |   case JXFORM_NONE: | 
 |     if (info->x_crop_offset != 0 || info->y_crop_offset != 0) | 
 |       do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |               src_coef_arrays, dst_coef_arrays); | 
 |     break; | 
 |   case JXFORM_FLIP_H: | 
 |     if (info->y_crop_offset != 0 || info->slow_hflip) | 
 |       do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |                 src_coef_arrays, dst_coef_arrays); | 
 |     else | 
 |       do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, | 
 |                         src_coef_arrays); | 
 |     break; | 
 |   case JXFORM_FLIP_V: | 
 |     do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |               src_coef_arrays, dst_coef_arrays); | 
 |     break; | 
 |   case JXFORM_TRANSPOSE: | 
 |     do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |                  src_coef_arrays, dst_coef_arrays); | 
 |     break; | 
 |   case JXFORM_TRANSVERSE: | 
 |     do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |                   src_coef_arrays, dst_coef_arrays); | 
 |     break; | 
 |   case JXFORM_ROT_90: | 
 |     do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |               src_coef_arrays, dst_coef_arrays); | 
 |     break; | 
 |   case JXFORM_ROT_180: | 
 |     do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |                src_coef_arrays, dst_coef_arrays); | 
 |     break; | 
 |   case JXFORM_ROT_270: | 
 |     do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, | 
 |                src_coef_arrays, dst_coef_arrays); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | /* jtransform_perfect_transform | 
 |  * | 
 |  * Determine whether lossless transformation is perfectly | 
 |  * possible for a specified image and transformation. | 
 |  * | 
 |  * Inputs: | 
 |  *   image_width, image_height: source image dimensions. | 
 |  *   MCU_width, MCU_height: pixel dimensions of MCU. | 
 |  *   transform: transformation identifier. | 
 |  * Parameter sources from initialized jpeg_struct | 
 |  * (after reading source header): | 
 |  *   image_width = cinfo.image_width | 
 |  *   image_height = cinfo.image_height | 
 |  *   MCU_width = cinfo.max_h_samp_factor * cinfo.block_size | 
 |  *   MCU_height = cinfo.max_v_samp_factor * cinfo.block_size | 
 |  * Result: | 
 |  *   TRUE = perfect transformation possible | 
 |  *   FALSE = perfect transformation not possible | 
 |  *           (may use custom action then) | 
 |  */ | 
 |  | 
 | GLOBAL(boolean) | 
 | jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, | 
 |                              int MCU_width, int MCU_height, | 
 |                              JXFORM_CODE transform) | 
 | { | 
 |   boolean result = TRUE; /* initialize TRUE */ | 
 |  | 
 |   switch (transform) { | 
 |   case JXFORM_FLIP_H: | 
 |   case JXFORM_ROT_270: | 
 |     if (image_width % (JDIMENSION)MCU_width) | 
 |       result = FALSE; | 
 |     break; | 
 |   case JXFORM_FLIP_V: | 
 |   case JXFORM_ROT_90: | 
 |     if (image_height % (JDIMENSION)MCU_height) | 
 |       result = FALSE; | 
 |     break; | 
 |   case JXFORM_TRANSVERSE: | 
 |   case JXFORM_ROT_180: | 
 |     if (image_width % (JDIMENSION)MCU_width) | 
 |       result = FALSE; | 
 |     if (image_height % (JDIMENSION)MCU_height) | 
 |       result = FALSE; | 
 |     break; | 
 |   default: | 
 |     break; | 
 |   } | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | #endif /* TRANSFORMS_SUPPORTED */ | 
 |  | 
 |  | 
 | /* Setup decompression object to save desired markers in memory. | 
 |  * This must be called before jpeg_read_header() to have the desired effect. | 
 |  */ | 
 |  | 
 | GLOBAL(void) | 
 | jcopy_markers_setup(j_decompress_ptr srcinfo, JCOPY_OPTION option) | 
 | { | 
 | #ifdef SAVE_MARKERS_SUPPORTED | 
 |   int m; | 
 |  | 
 |   /* Save comments except under NONE option */ | 
 |   if (option != JCOPYOPT_NONE) { | 
 |     jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); | 
 |   } | 
 |   /* Save all types of APPn markers iff ALL option */ | 
 |   if (option == JCOPYOPT_ALL || option == JCOPYOPT_ALL_EXCEPT_ICC) { | 
 |     for (m = 0; m < 16; m++) { | 
 |       if (option == JCOPYOPT_ALL_EXCEPT_ICC && m == 2) | 
 |         continue; | 
 |       jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); | 
 |     } | 
 |   } | 
 | #endif /* SAVE_MARKERS_SUPPORTED */ | 
 | } | 
 |  | 
 | /* Copy markers saved in the given source object to the destination object. | 
 |  * This should be called just after jpeg_start_compress() or | 
 |  * jpeg_write_coefficients(). | 
 |  * Note that those routines will have written the SOI, and also the | 
 |  * JFIF APP0 or Adobe APP14 markers if selected. | 
 |  */ | 
 |  | 
 | GLOBAL(void) | 
 | jcopy_markers_execute(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, | 
 |                       JCOPY_OPTION option) | 
 | { | 
 |   jpeg_saved_marker_ptr marker; | 
 |  | 
 |   /* In the current implementation, we don't actually need to examine the | 
 |    * option flag here; we just copy everything that got saved. | 
 |    * But to avoid confusion, we do not output JFIF and Adobe APP14 markers | 
 |    * if the encoder library already wrote one. | 
 |    */ | 
 |   for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { | 
 |     if (dstinfo->write_JFIF_header && | 
 |         marker->marker == JPEG_APP0 && | 
 |         marker->data_length >= 5 && | 
 |         GETJOCTET(marker->data[0]) == 0x4A && | 
 |         GETJOCTET(marker->data[1]) == 0x46 && | 
 |         GETJOCTET(marker->data[2]) == 0x49 && | 
 |         GETJOCTET(marker->data[3]) == 0x46 && | 
 |         GETJOCTET(marker->data[4]) == 0) | 
 |       continue;                 /* reject duplicate JFIF */ | 
 |     if (dstinfo->write_Adobe_marker && | 
 |         marker->marker == JPEG_APP0 + 14 && | 
 |         marker->data_length >= 5 && | 
 |         GETJOCTET(marker->data[0]) == 0x41 && | 
 |         GETJOCTET(marker->data[1]) == 0x64 && | 
 |         GETJOCTET(marker->data[2]) == 0x6F && | 
 |         GETJOCTET(marker->data[3]) == 0x62 && | 
 |         GETJOCTET(marker->data[4]) == 0x65) | 
 |       continue;                 /* reject duplicate Adobe */ | 
 |     jpeg_write_marker(dstinfo, marker->marker, | 
 |                       marker->data, marker->data_length); | 
 |   } | 
 | } |