blob: d0140a0c894ac4cc2fcf74a60811fab654a22cd1 [file] [log] [blame]
//===-- ABISysV_ppc64.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ABISysV_ppc64.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
// Project includes
#include "Utility/PPC64LE_DWARF_Registers.h"
#include "Utility/PPC64_DWARF_Registers.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#define DECLARE_REGISTER_INFOS_PPC64_STRUCT
#include "Plugins/Process/Utility/RegisterInfos_ppc64.h"
#undef DECLARE_REGISTER_INFOS_PPC64_STRUCT
#define DECLARE_REGISTER_INFOS_PPC64LE_STRUCT
#include "Plugins/Process/Utility/RegisterInfos_ppc64le.h"
#undef DECLARE_REGISTER_INFOS_PPC64LE_STRUCT
using namespace lldb;
using namespace lldb_private;
const lldb_private::RegisterInfo *
ABISysV_ppc64::GetRegisterInfoArray(uint32_t &count) {
if (GetByteOrder() == lldb::eByteOrderLittle) {
count = llvm::array_lengthof(g_register_infos_ppc64le);
return g_register_infos_ppc64le;
} else {
count = llvm::array_lengthof(g_register_infos_ppc64);
return g_register_infos_ppc64;
}
}
size_t ABISysV_ppc64::GetRedZoneSize() const { return 224; }
lldb::ByteOrder ABISysV_ppc64::GetByteOrder() const {
return GetProcessSP()->GetByteOrder();
}
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABISysV_ppc64::CreateInstance(lldb::ProcessSP process_sp,
const ArchSpec &arch) {
if (arch.GetTriple().getArch() == llvm::Triple::ppc64 ||
arch.GetTriple().getArch() == llvm::Triple::ppc64le) {
return ABISP(new ABISysV_ppc64(process_sp));
}
return ABISP();
}
bool ABISysV_ppc64::PrepareTrivialCall(Thread &thread, addr_t sp,
addr_t func_addr, addr_t return_addr,
llvm::ArrayRef<addr_t> args) const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
StreamString s;
s.Printf("ABISysV_ppc64::PrepareTrivialCall (tid = 0x%" PRIx64
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
", return_addr = 0x%" PRIx64,
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
args[i]);
s.PutCString(")");
log->PutString(s.GetString());
}
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = nullptr;
if (args.size() > 8) // TODO handle more than 8 arguments
return false;
for (size_t i = 0; i < args.size(); ++i) {
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_ARG1 + i);
if (log)
log->Printf("About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
static_cast<uint64_t>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// First, align the SP
if (log)
log->Printf("16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
(uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
sp -= 544; // allocate frame to save TOC, RA and SP.
Status error;
uint64_t reg_value;
const RegisterInfo *pc_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo *sp_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
ProcessSP process_sp(thread.GetProcess());
const RegisterInfo *lr_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
const RegisterInfo *r2_reg_info = reg_ctx->GetRegisterInfoAtIndex(2);
const RegisterInfo *r12_reg_info = reg_ctx->GetRegisterInfoAtIndex(12);
// Save return address onto the stack.
if (log)
log->Printf("Pushing the return address onto the stack: 0x%" PRIx64
"(+16): 0x%" PRIx64,
(uint64_t)sp, (uint64_t)return_addr);
if (!process_sp->WritePointerToMemory(sp + 16, return_addr, error))
return false;
// Write the return address to link register.
if (log)
log->Printf("Writing LR: 0x%" PRIx64, (uint64_t)return_addr);
if (!reg_ctx->WriteRegisterFromUnsigned(lr_reg_info, return_addr))
return false;
// Write target address to %r12 register.
if (log)
log->Printf("Writing R12: 0x%" PRIx64, (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned(r12_reg_info, func_addr))
return false;
// Read TOC pointer value.
reg_value = reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0);
// Write TOC pointer onto the stack.
uint64_t stack_offset;
if (GetByteOrder() == lldb::eByteOrderLittle)
stack_offset = 24;
else
stack_offset = 40;
if (log)
log->Printf("Writing R2 (TOC) at SP(0x%" PRIx64 ")+%d: 0x%" PRIx64,
(uint64_t)(sp + stack_offset), (int)stack_offset,
(uint64_t)reg_value);
if (!process_sp->WritePointerToMemory(sp + stack_offset, reg_value, error))
return false;
// Read the current SP value.
reg_value = reg_ctx->ReadRegisterAsUnsigned(sp_reg_info, 0);
// Save current SP onto the stack.
if (log)
log->Printf("Writing SP at SP(0x%" PRIx64 ")+0: 0x%" PRIx64, (uint64_t)sp,
(uint64_t)reg_value);
if (!process_sp->WritePointerToMemory(sp, reg_value, error))
return false;
// %r1 is set to the actual stack value.
if (log)
log->Printf("Writing SP: 0x%" PRIx64, (uint64_t)sp);
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
return false;
// %pc is set to the address of the called function.
if (log)
log->Printf("Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
bool is_signed, Thread &thread,
uint32_t *argument_register_ids,
unsigned int &current_argument_register,
addr_t &current_stack_argument) {
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
if (current_argument_register < 6) {
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
argument_register_ids[current_argument_register], 0);
current_argument_register++;
if (is_signed)
scalar.SignExtend(bit_width);
} else {
uint32_t byte_size = (bit_width + (8 - 1)) / 8;
Status error;
if (thread.GetProcess()->ReadScalarIntegerFromMemory(
current_stack_argument, byte_size, is_signed, scalar, error)) {
current_stack_argument += byte_size;
return true;
}
return false;
}
return true;
}
bool ABISysV_ppc64::GetArgumentValues(Thread &thread, ValueList &values) const {
unsigned int num_values = values.GetSize();
unsigned int value_index;
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
uint64_t stack_offset;
if (GetByteOrder() == lldb::eByteOrderLittle)
stack_offset = 32;
else
stack_offset = 48;
// jump over return address.
addr_t current_stack_argument = sp + stack_offset;
uint32_t argument_register_ids[8];
for (size_t i = 0; i < 8; ++i) {
argument_register_ids[i] =
reg_ctx
->GetRegisterInfo(eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_ARG1 + i)
->kinds[eRegisterKindLLDB];
}
unsigned int current_argument_register = 0;
for (value_index = 0; value_index < num_values; ++value_index) {
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
// We currently only support extracting values with Clang QualTypes. Do we
// care about others?
CompilerType compiler_type = value->GetCompilerType();
if (!compiler_type)
return false;
bool is_signed;
if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
ReadIntegerArgument(value->GetScalar(), compiler_type.GetBitSize(&thread),
is_signed, thread, argument_register_ids,
current_argument_register, current_stack_argument);
} else if (compiler_type.IsPointerType()) {
ReadIntegerArgument(value->GetScalar(), compiler_type.GetBitSize(&thread),
false, thread, argument_register_ids,
current_argument_register, current_stack_argument);
}
}
return true;
}
Status ABISysV_ppc64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
compiler_type.IsPointerType()) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8) {
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
set_it_simple = true;
} else {
error.SetErrorString("We don't support returning longer than 64 bit "
"integer values at present.");
}
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
if (is_complex)
error.SetErrorString(
"We don't support returning complex values at present");
else {
size_t bit_width = compiler_type.GetBitSize(frame_sp.get());
if (bit_width <= 64) {
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
unsigned char buffer[16];
ByteOrder byte_order = data.GetByteOrder();
data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
set_it_simple = true;
} else {
// FIXME - don't know how to do 80 bit long doubles yet.
error.SetErrorString(
"We don't support returning float values > 64 bits at present");
}
}
}
if (!set_it_simple) {
// Okay we've got a structure or something that doesn't fit in a simple
// register. We should figure out where it really goes, but we don't
// support this yet.
error.SetErrorString("We only support setting simple integer and float "
"return types at present.");
}
return error;
}
//
// ReturnValueExtractor
//
namespace {
#define LOG_PREFIX "ReturnValueExtractor: "
class ReturnValueExtractor {
// This class represents a register, from which data may be extracted.
//
// It may be constructed by directly specifying its index (where 0 is the
// first register used to return values) or by specifying the offset of a
// given struct field, in which case the appropriated register index will be
// calculated.
class Register {
public:
enum Type {
GPR, // General Purpose Register
FPR // Floating Point Register
};
// main constructor
//
// offs - field offset in struct
Register(Type ty, uint32_t index, uint32_t offs, RegisterContext *reg_ctx,
ByteOrder byte_order)
: m_index(index), m_offs(offs % sizeof(uint64_t)),
m_avail(sizeof(uint64_t) - m_offs), m_type(ty), m_reg_ctx(reg_ctx),
m_byte_order(byte_order) {}
// explicit index, no offset
Register(Type ty, uint32_t index, RegisterContext *reg_ctx,
ByteOrder byte_order)
: Register(ty, index, 0, reg_ctx, byte_order) {}
// GPR, calculate index from offs
Register(uint32_t offs, RegisterContext *reg_ctx, ByteOrder byte_order)
: Register(GPR, offs / sizeof(uint64_t), offs, reg_ctx, byte_order) {}
uint32_t Index() const { return m_index; }
// register offset where data is located
uint32_t Offs() const { return m_offs; }
// available bytes in this register
uint32_t Avail() const { return m_avail; }
bool IsValid() const {
if (m_index > 7) {
LLDB_LOG(m_log, LOG_PREFIX
"No more than 8 registers should be used to return values");
return false;
}
return true;
}
std::string GetName() const {
if (m_type == GPR)
return ("r" + llvm::Twine(m_index + 3)).str();
else
return ("f" + llvm::Twine(m_index + 1)).str();
}
// get raw register data
bool GetRawData(uint64_t &raw_data) {
const RegisterInfo *reg_info =
m_reg_ctx->GetRegisterInfoByName(GetName());
if (!reg_info) {
LLDB_LOG(m_log, LOG_PREFIX "Failed to get RegisterInfo");
return false;
}
RegisterValue reg_val;
if (!m_reg_ctx->ReadRegister(reg_info, reg_val)) {
LLDB_LOG(m_log, LOG_PREFIX "ReadRegister() failed");
return false;
}
Status error;
uint32_t rc = reg_val.GetAsMemoryData(
reg_info, &raw_data, sizeof(raw_data), m_byte_order, error);
if (rc != sizeof(raw_data)) {
LLDB_LOG(m_log, LOG_PREFIX "GetAsMemoryData() failed");
return false;
}
return true;
}
private:
uint32_t m_index;
uint32_t m_offs;
uint32_t m_avail;
Type m_type;
RegisterContext *m_reg_ctx;
ByteOrder m_byte_order;
Log *m_log =
lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
};
Register GetGPR(uint32_t index) const {
return Register(Register::GPR, index, m_reg_ctx, m_byte_order);
}
Register GetFPR(uint32_t index) const {
return Register(Register::FPR, index, m_reg_ctx, m_byte_order);
}
Register GetGPRByOffs(uint32_t offs) const {
return Register(offs, m_reg_ctx, m_byte_order);
}
public:
// factory
static llvm::Expected<ReturnValueExtractor> Create(Thread &thread,
CompilerType &type) {
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return llvm::make_error<llvm::StringError>(
LOG_PREFIX "Failed to get RegisterContext",
llvm::inconvertibleErrorCode());
ProcessSP process_sp = thread.GetProcess();
if (!process_sp)
return llvm::make_error<llvm::StringError>(
LOG_PREFIX "GetProcess() failed", llvm::inconvertibleErrorCode());
return ReturnValueExtractor(thread, type, reg_ctx, process_sp);
}
// main method: get value of the type specified at construction time
ValueObjectSP GetValue() {
const uint32_t type_flags = m_type.GetTypeInfo();
// call the appropriate type handler
ValueSP value_sp;
ValueObjectSP valobj_sp;
if (type_flags & eTypeIsScalar) {
if (type_flags & eTypeIsInteger) {
value_sp = GetIntegerValue(0);
} else if (type_flags & eTypeIsFloat) {
if (type_flags & eTypeIsComplex) {
LLDB_LOG(m_log, LOG_PREFIX "Complex numbers are not supported yet");
return ValueObjectSP();
} else {
value_sp = GetFloatValue(m_type, 0);
}
}
} else if (type_flags & eTypeIsPointer) {
value_sp = GetPointerValue(0);
}
if (value_sp) {
valobj_sp = ValueObjectConstResult::Create(
m_thread.GetStackFrameAtIndex(0).get(), *value_sp, ConstString(""));
} else if (type_flags & eTypeIsVector) {
valobj_sp = GetVectorValueObject();
} else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass) {
valobj_sp = GetStructValueObject();
}
return valobj_sp;
}
private:
// data
Thread &m_thread;
CompilerType &m_type;
uint64_t m_byte_size;
std::unique_ptr<DataBufferHeap> m_data_ap;
int32_t m_src_offs = 0;
int32_t m_dst_offs = 0;
bool m_packed = false;
Log *m_log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
RegisterContext *m_reg_ctx;
ProcessSP m_process_sp;
ByteOrder m_byte_order;
uint32_t m_addr_size;
// methods
// constructor
ReturnValueExtractor(Thread &thread, CompilerType &type,
RegisterContext *reg_ctx, ProcessSP process_sp)
: m_thread(thread), m_type(type),
m_byte_size(m_type.GetByteSize(nullptr)),
m_data_ap(new DataBufferHeap(m_byte_size, 0)), m_reg_ctx(reg_ctx),
m_process_sp(process_sp), m_byte_order(process_sp->GetByteOrder()),
m_addr_size(
process_sp->GetTarget().GetArchitecture().GetAddressByteSize()) {}
// build a new scalar value
ValueSP NewScalarValue(CompilerType &type) {
ValueSP value_sp(new Value);
value_sp->SetCompilerType(type);
value_sp->SetValueType(Value::eValueTypeScalar);
return value_sp;
}
// get an integer value in the specified register
ValueSP GetIntegerValue(uint32_t reg_index) {
uint64_t raw_value;
auto reg = GetGPR(reg_index);
if (!reg.GetRawData(raw_value))
return ValueSP();
// build value from data
ValueSP value_sp(NewScalarValue(m_type));
uint32_t type_flags = m_type.GetTypeInfo();
bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (m_byte_size) {
case sizeof(uint64_t):
if (is_signed)
value_sp->GetScalar() = (int64_t)(raw_value);
else
value_sp->GetScalar() = (uint64_t)(raw_value);
break;
case sizeof(uint32_t):
if (is_signed)
value_sp->GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value_sp->GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
break;
case sizeof(uint16_t):
if (is_signed)
value_sp->GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value_sp->GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
break;
case sizeof(uint8_t):
if (is_signed)
value_sp->GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value_sp->GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
break;
default:
llvm_unreachable("Invalid integer size");
}
return value_sp;
}
// get a floating point value on the specified register
ValueSP GetFloatValue(CompilerType &type, uint32_t reg_index) {
uint64_t raw_data;
auto reg = GetFPR(reg_index);
if (!reg.GetRawData(raw_data))
return ValueSP();
// build value from data
ValueSP value_sp(NewScalarValue(type));
DataExtractor de(&raw_data, sizeof(raw_data), m_byte_order, m_addr_size);
offset_t offset = 0;
size_t byte_size = type.GetByteSize(nullptr);
switch (byte_size) {
case sizeof(float):
value_sp->GetScalar() = (float)de.GetDouble(&offset);
break;
case sizeof(double):
value_sp->GetScalar() = de.GetDouble(&offset);
break;
default:
llvm_unreachable("Invalid floating point size");
}
return value_sp;
}
// get pointer value from register
ValueSP GetPointerValue(uint32_t reg_index) {
uint64_t raw_data;
auto reg = GetGPR(reg_index);
if (!reg.GetRawData(raw_data))
return ValueSP();
// build value from raw data
ValueSP value_sp(NewScalarValue(m_type));
value_sp->GetScalar() = raw_data;
return value_sp;
}
// build the ValueObject from our data buffer
ValueObjectSP BuildValueObject() {
DataExtractor de(DataBufferSP(m_data_ap.release()), m_byte_order,
m_addr_size);
return ValueObjectConstResult::Create(&m_thread, m_type, ConstString(""),
de);
}
// get a vector return value
ValueObjectSP GetVectorValueObject() {
const uint32_t MAX_VRS = 2;
// get first V register used to return values
const RegisterInfo *vr[MAX_VRS];
vr[0] = m_reg_ctx->GetRegisterInfoByName("vr2");
if (!vr[0]) {
LLDB_LOG(m_log, LOG_PREFIX "Failed to get vr2 RegisterInfo");
return ValueObjectSP();
}
const uint32_t vr_size = vr[0]->byte_size;
size_t vrs = 1;
if (m_byte_size > 2 * vr_size) {
LLDB_LOG(
m_log, LOG_PREFIX
"Returning vectors that don't fit in 2 VR regs is not supported");
return ValueObjectSP();
}
// load vr3, if needed
if (m_byte_size > vr_size) {
vrs++;
vr[1] = m_reg_ctx->GetRegisterInfoByName("vr3");
if (!vr[1]) {
LLDB_LOG(m_log, LOG_PREFIX "Failed to get vr3 RegisterInfo");
return ValueObjectSP();
}
}
// Get the whole contents of vector registers and let the logic here
// arrange the data properly.
RegisterValue vr_val[MAX_VRS];
Status error;
std::unique_ptr<DataBufferHeap> vr_data(
new DataBufferHeap(vrs * vr_size, 0));
for (uint32_t i = 0; i < vrs; i++) {
if (!m_reg_ctx->ReadRegister(vr[i], vr_val[i])) {
LLDB_LOG(m_log, LOG_PREFIX "Failed to read vector register contents");
return ValueObjectSP();
}
if (!vr_val[i].GetAsMemoryData(vr[i], vr_data->GetBytes() + i * vr_size,
vr_size, m_byte_order, error)) {
LLDB_LOG(m_log, LOG_PREFIX "Failed to extract vector register bytes");
return ValueObjectSP();
}
}
// The compiler generated code seems to always put the vector elements at
// the end of the vector register, in case they don't occupy all of it.
// This offset variable handles this.
uint32_t offs = 0;
if (m_byte_size < vr_size)
offs = vr_size - m_byte_size;
// copy extracted data to our buffer
memcpy(m_data_ap->GetBytes(), vr_data->GetBytes() + offs, m_byte_size);
return BuildValueObject();
}
// get a struct return value
ValueObjectSP GetStructValueObject() {
// case 1: get from stack
if (m_byte_size > 2 * sizeof(uint64_t)) {
uint64_t addr;
auto reg = GetGPR(0);
if (!reg.GetRawData(addr))
return ValueObjectSP();
Status error;
size_t rc = m_process_sp->ReadMemory(addr, m_data_ap->GetBytes(),
m_byte_size, error);
if (rc != m_byte_size) {
LLDB_LOG(m_log, LOG_PREFIX "Failed to read memory pointed by r3");
return ValueObjectSP();
}
return BuildValueObject();
}
// get number of children
const bool omit_empty_base_classes = true;
uint32_t n = m_type.GetNumChildren(omit_empty_base_classes);
if (!n) {
LLDB_LOG(m_log, LOG_PREFIX "No children found in struct");
return ValueObjectSP();
}
// case 2: homogeneous double or float aggregate
CompilerType elem_type;
if (m_type.IsHomogeneousAggregate(&elem_type)) {
uint32_t type_flags = elem_type.GetTypeInfo();
uint64_t elem_size = elem_type.GetByteSize(nullptr);
if (type_flags & eTypeIsComplex || !(type_flags & eTypeIsFloat)) {
LLDB_LOG(m_log,
LOG_PREFIX "Unexpected type found in homogeneous aggregate");
return ValueObjectSP();
}
for (uint32_t i = 0; i < n; i++) {
ValueSP val_sp = GetFloatValue(elem_type, i);
if (!val_sp)
return ValueObjectSP();
// copy to buffer
Status error;
size_t rc = val_sp->GetScalar().GetAsMemoryData(
m_data_ap->GetBytes() + m_dst_offs, elem_size, m_byte_order, error);
if (rc != elem_size) {
LLDB_LOG(m_log, LOG_PREFIX "Failed to get float data");
return ValueObjectSP();
}
m_dst_offs += elem_size;
}
return BuildValueObject();
}
// case 3: get from GPRs
// first, check if this is a packed struct or not
ClangASTContext *ast =
llvm::dyn_cast<ClangASTContext>(m_type.GetTypeSystem());
if (ast) {
clang::RecordDecl *record_decl = ClangASTContext::GetAsRecordDecl(m_type);
if (record_decl) {
auto attrs = record_decl->attrs();
for (const auto &attr : attrs) {
if (attr->getKind() == clang::attr::Packed) {
m_packed = true;
break;
}
}
}
}
LLDB_LOG(m_log, LOG_PREFIX "{0} struct",
m_packed ? "packed" : "not packed");
for (uint32_t i = 0; i < n; i++) {
std::string name;
uint32_t size;
GetChildType(i, name, size);
// NOTE: the offset returned by GetChildCompilerTypeAtIndex()
// can't be used because it never considers alignment bytes
// between struct fields.
LLDB_LOG(m_log, LOG_PREFIX "field={0}, size={1}", name, size);
if (!ExtractField(size))
return ValueObjectSP();
}
return BuildValueObject();
}
// extract 'size' bytes at 'offs' from GPRs
bool ExtractFromRegs(int32_t offs, uint32_t size, void *buf) {
while (size) {
auto reg = GetGPRByOffs(offs);
if (!reg.IsValid())
return false;
uint32_t n = std::min(reg.Avail(), size);
uint64_t raw_data;
if (!reg.GetRawData(raw_data))
return false;
memcpy(buf, (char *)&raw_data + reg.Offs(), n);
offs += n;
size -= n;
buf = (char *)buf + n;
}
return true;
}
// extract one field from GPRs and put it in our buffer
bool ExtractField(uint32_t size) {
auto reg = GetGPRByOffs(m_src_offs);
if (!reg.IsValid())
return false;
// handle padding
if (!m_packed) {
uint32_t n = m_src_offs % size;
// not 'size' bytes aligned
if (n) {
LLDB_LOG(m_log,
LOG_PREFIX "Extracting {0} alignment bytes at offset {1}", n,
m_src_offs);
// get alignment bytes
if (!ExtractFromRegs(m_src_offs, n, m_data_ap->GetBytes() + m_dst_offs))
return false;
m_src_offs += n;
m_dst_offs += n;
}
}
// get field
LLDB_LOG(m_log, LOG_PREFIX "Extracting {0} field bytes at offset {1}", size,
m_src_offs);
if (!ExtractFromRegs(m_src_offs, size, m_data_ap->GetBytes() + m_dst_offs))
return false;
m_src_offs += size;
m_dst_offs += size;
return true;
}
// get child
CompilerType GetChildType(uint32_t i, std::string &name, uint32_t &size) {
// GetChild constant inputs
const bool transparent_pointers = false;
const bool omit_empty_base_classes = true;
const bool ignore_array_bounds = false;
// GetChild output params
int32_t child_offs;
uint32_t child_bitfield_bit_size;
uint32_t child_bitfield_bit_offset;
bool child_is_base_class;
bool child_is_deref_of_parent;
ValueObject *valobj = nullptr;
uint64_t language_flags;
ExecutionContext exe_ctx;
m_thread.CalculateExecutionContext(exe_ctx);
return m_type.GetChildCompilerTypeAtIndex(
&exe_ctx, i, transparent_pointers, omit_empty_base_classes,
ignore_array_bounds, name, size, child_offs, child_bitfield_bit_size,
child_bitfield_bit_offset, child_is_base_class,
child_is_deref_of_parent, valobj, language_flags);
}
};
#undef LOG_PREFIX
} // anonymous namespace
ValueObjectSP
ABISysV_ppc64::GetReturnValueObjectSimple(Thread &thread,
CompilerType &type) const {
if (!type)
return ValueObjectSP();
auto exp_extractor = ReturnValueExtractor::Create(thread, type);
if (!exp_extractor) {
Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
LLDB_LOG_ERROR(log, exp_extractor.takeError(),
"Extracting return value failed: {0}");
return ValueObjectSP();
}
return exp_extractor.get().GetValue();
}
ValueObjectSP ABISysV_ppc64::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
return GetReturnValueObjectSimple(thread, return_compiler_type);
}
bool ABISysV_ppc64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t lr_reg_num;
uint32_t sp_reg_num;
uint32_t pc_reg_num;
if (GetByteOrder() == lldb::eByteOrderLittle) {
lr_reg_num = ppc64le_dwarf::dwarf_lr_ppc64le;
sp_reg_num = ppc64le_dwarf::dwarf_r1_ppc64le;
pc_reg_num = ppc64le_dwarf::dwarf_pc_ppc64le;
} else {
lr_reg_num = ppc64_dwarf::dwarf_lr_ppc64;
sp_reg_num = ppc64_dwarf::dwarf_r1_ppc64;
pc_reg_num = ppc64_dwarf::dwarf_pc_ppc64;
}
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our Call Frame Address is the stack pointer value
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
// The previous PC is in the LR
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow(row);
// All other registers are the same.
unwind_plan.SetSourceName("ppc64 at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
return true;
}
bool ABISysV_ppc64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t sp_reg_num;
uint32_t pc_reg_num;
uint32_t cr_reg_num;
if (GetByteOrder() == lldb::eByteOrderLittle) {
sp_reg_num = ppc64le_dwarf::dwarf_r1_ppc64le;
pc_reg_num = ppc64le_dwarf::dwarf_lr_ppc64le;
cr_reg_num = ppc64le_dwarf::dwarf_cr_ppc64le;
} else {
sp_reg_num = ppc64_dwarf::dwarf_r1_ppc64;
pc_reg_num = ppc64_dwarf::dwarf_lr_ppc64;
cr_reg_num = ppc64_dwarf::dwarf_cr_ppc64;
}
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 8;
row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 2, true);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
row->SetRegisterLocationToAtCFAPlusOffset(cr_reg_num, ptr_size, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("ppc64 default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
unwind_plan.SetReturnAddressRegister(pc_reg_num);
return true;
}
bool ABISysV_ppc64::RegisterIsVolatile(const RegisterInfo *reg_info) {
return !RegisterIsCalleeSaved(reg_info);
}
// See "Register Usage" in the
// "System V Application Binary Interface"
// "64-bit PowerPC ELF Application Binary Interface Supplement" current version
// is 2 released 2015 at
// https://members.openpowerfoundation.org/document/dl/576
bool ABISysV_ppc64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
if (reg_info) {
// Preserved registers are :
// r1,r2,r13-r31
// cr2-cr4 (partially preserved)
// f14-f31 (not yet)
// v20-v31 (not yet)
// vrsave (not yet)
const char *name = reg_info->name;
if (name[0] == 'r') {
if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
return true;
if (name[1] == '1' && name[2] > '2')
return true;
if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
return true;
}
if (name[0] == 'f' && name[1] >= '0' && name[2] <= '9') {
if (name[2] == '\0')
return false;
if (name[1] == '1' && name[2] >= '4')
return true;
if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
return true;
}
if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
return true;
if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
return false;
if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
return true;
}
return false;
}
void ABISysV_ppc64::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "System V ABI for ppc64 targets", CreateInstance);
}
void ABISysV_ppc64::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString ABISysV_ppc64::GetPluginNameStatic() {
static ConstString g_name("sysv-ppc64");
return g_name;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString ABISysV_ppc64::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t ABISysV_ppc64::GetPluginVersion() { return 1; }