blob: c5406fcc334067f6f80d4e6ece08e57c4c82d29d [file] [log] [blame]
//===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Edit/Commit.h"
#include "clang/Edit/EditedSource.h"
#include "clang/Edit/EditsReceiver.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseAST.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Rewrite/Frontend/FrontendActions.h"
#include "clang/Sema/SemaConsumer.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TargetSelect.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wglobal-constructors"
#include "llvm/ExecutionEngine/MCJIT.h"
#pragma clang diagnostic pop
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Signals.h"
// Project includes
#include "ClangDiagnostic.h"
#include "ClangExpressionParser.h"
#include "ClangASTSource.h"
#include "ClangExpressionDeclMap.h"
#include "ClangExpressionHelper.h"
#include "ClangModulesDeclVendor.h"
#include "ClangPersistentVariables.h"
#include "IRForTarget.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Expression/IRDynamicChecks.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Expression/IRInterpreter.h"
#include "lldb/Host/File.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/StringList.h"
using namespace clang;
using namespace llvm;
using namespace lldb_private;
//===----------------------------------------------------------------------===//
// Utility Methods for Clang
//===----------------------------------------------------------------------===//
class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
ClangModulesDeclVendor &m_decl_vendor;
ClangPersistentVariables &m_persistent_vars;
StreamString m_error_stream;
bool m_has_errors = false;
public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
ClangPersistentVariables &persistent_vars)
: m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
const clang::Module * /*null*/) override {
std::vector<ConstString> string_path;
for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) {
string_path.push_back(ConstString(component.first->getName()));
}
StreamString error_stream;
ClangModulesDeclVendor::ModuleVector exported_modules;
if (!m_decl_vendor.AddModule(string_path, &exported_modules,
m_error_stream)) {
m_has_errors = true;
}
for (ClangModulesDeclVendor::ModuleID module : exported_modules) {
m_persistent_vars.AddHandLoadedClangModule(module);
}
}
bool hasErrors() { return m_has_errors; }
llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
};
class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
public:
ClangDiagnosticManagerAdapter()
: m_passthrough(new clang::TextDiagnosticBuffer) {}
ClangDiagnosticManagerAdapter(
const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
: m_passthrough(passthrough) {}
void ResetManager(DiagnosticManager *manager = nullptr) {
m_manager = manager;
}
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &Info) {
if (m_manager) {
llvm::SmallVector<char, 32> diag_str;
Info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
const char *data = diag_str.data();
lldb_private::DiagnosticSeverity severity;
bool make_new_diagnostic = true;
switch (DiagLevel) {
case DiagnosticsEngine::Level::Fatal:
case DiagnosticsEngine::Level::Error:
severity = eDiagnosticSeverityError;
break;
case DiagnosticsEngine::Level::Warning:
severity = eDiagnosticSeverityWarning;
break;
case DiagnosticsEngine::Level::Remark:
case DiagnosticsEngine::Level::Ignored:
severity = eDiagnosticSeverityRemark;
break;
case DiagnosticsEngine::Level::Note:
m_manager->AppendMessageToDiagnostic(data);
make_new_diagnostic = false;
}
if (make_new_diagnostic) {
ClangDiagnostic *new_diagnostic =
new ClangDiagnostic(data, severity, Info.getID());
m_manager->AddDiagnostic(new_diagnostic);
// Don't store away warning fixits, since the compiler doesn't have
// enough context in an expression for the warning to be useful.
// FIXME: Should we try to filter out FixIts that apply to our generated
// code, and not the user's expression?
if (severity == eDiagnosticSeverityError) {
size_t num_fixit_hints = Info.getNumFixItHints();
for (size_t i = 0; i < num_fixit_hints; i++) {
const clang::FixItHint &fixit = Info.getFixItHint(i);
if (!fixit.isNull())
new_diagnostic->AddFixitHint(fixit);
}
}
}
}
m_passthrough->HandleDiagnostic(DiagLevel, Info);
}
void FlushDiagnostics(DiagnosticsEngine &Diags) {
m_passthrough->FlushDiagnostics(Diags);
}
DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
return new ClangDiagnosticManagerAdapter(m_passthrough);
}
clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
private:
DiagnosticManager *m_manager = nullptr;
std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
};
//===----------------------------------------------------------------------===//
// Implementation of ClangExpressionParser
//===----------------------------------------------------------------------===//
ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope,
Expression &expr,
bool generate_debug_info)
: ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
m_code_generator(), m_pp_callbacks(nullptr) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
// We can't compile expressions without a target. So if the exe_scope is
// null or doesn't have a target, then we just need to get out of here. I'll
// lldb_assert and not make any of the compiler objects since
// I can't return errors directly from the constructor. Further calls will
// check if the compiler was made and
// bag out if it wasn't.
if (!exe_scope) {
lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
__FUNCTION__, __FILE__, __LINE__);
return;
}
lldb::TargetSP target_sp;
target_sp = exe_scope->CalculateTarget();
if (!target_sp) {
lldb_assert(target_sp.get(),
"Can't make an expression parser with a null target.",
__FUNCTION__, __FILE__, __LINE__);
return;
}
// 1. Create a new compiler instance.
m_compiler.reset(new CompilerInstance());
lldb::LanguageType frame_lang =
expr.Language(); // defaults to lldb::eLanguageTypeUnknown
bool overridden_target_opts = false;
lldb_private::LanguageRuntime *lang_rt = nullptr;
std::string abi;
ArchSpec target_arch;
target_arch = target_sp->GetArchitecture();
const auto target_machine = target_arch.GetMachine();
// If the expression is being evaluated in the context of an existing stack
// frame, we introspect to see if the language runtime is available.
lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
// Make sure the user hasn't provided a preferred execution language with
// `expression --language X -- ...`
if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
frame_lang = frame_sp->GetLanguage();
if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
lang_rt = process_sp->GetLanguageRuntime(frame_lang);
if (log)
log->Printf("Frame has language of type %s",
Language::GetNameForLanguageType(frame_lang));
}
// 2. Configure the compiler with a set of default options that are
// appropriate for most situations.
if (target_arch.IsValid()) {
std::string triple = target_arch.GetTriple().str();
m_compiler->getTargetOpts().Triple = triple;
if (log)
log->Printf("Using %s as the target triple",
m_compiler->getTargetOpts().Triple.c_str());
} else {
// If we get here we don't have a valid target and just have to guess.
// Sometimes this will be ok to just use the host target triple (when we
// evaluate say "2+3", but other expressions like breakpoint conditions and
// other things that _are_ target specific really shouldn't just be using
// the host triple. In such a case the language runtime should expose an
// overridden options set (3), below.
m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
if (log)
log->Printf("Using default target triple of %s",
m_compiler->getTargetOpts().Triple.c_str());
}
// Now add some special fixes for known architectures: Any arm32 iOS
// environment, but not on arm64
if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
m_compiler->getTargetOpts().ABI = "apcs-gnu";
}
// Supported subsets of x86
if (target_machine == llvm::Triple::x86 ||
target_machine == llvm::Triple::x86_64) {
m_compiler->getTargetOpts().Features.push_back("+sse");
m_compiler->getTargetOpts().Features.push_back("+sse2");
}
// Set the target CPU to generate code for. This will be empty for any CPU
// that doesn't really need to make a special
// CPU string.
m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
// Set the target ABI
abi = GetClangTargetABI(target_arch);
if (!abi.empty())
m_compiler->getTargetOpts().ABI = abi;
// 3. Now allow the runtime to provide custom configuration options for the
// target. In this case, a specialized language runtime is available and we
// can query it for extra options. For 99% of use cases, this will not be
// needed and should be provided when basic platform detection is not enough.
if (lang_rt)
overridden_target_opts =
lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
if (overridden_target_opts)
if (log && log->GetVerbose()) {
LLDB_LOGV(
log, "Using overridden target options for the expression evaluation");
auto opts = m_compiler->getTargetOpts();
LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
StringList::LogDump(log, opts.Features, "Features");
}
// 4. Create and install the target on the compiler.
m_compiler->createDiagnostics();
auto target_info = TargetInfo::CreateTargetInfo(
m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
if (log) {
log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
log->Printf("Target datalayout string: '%s'",
target_info->getDataLayout().getStringRepresentation().c_str());
log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
log->Printf("Target vector alignment: %d",
target_info->getMaxVectorAlign());
}
m_compiler->setTarget(target_info);
assert(m_compiler->hasTarget());
// 5. Set language options.
lldb::LanguageType language = expr.Language();
switch (language) {
case lldb::eLanguageTypeC:
case lldb::eLanguageTypeC89:
case lldb::eLanguageTypeC99:
case lldb::eLanguageTypeC11:
// FIXME: the following language option is a temporary workaround,
// to "ask for C, get C++."
// For now, the expression parser must use C++ anytime the language is a C
// family language, because the expression parser uses features of C++ to
// capture values.
m_compiler->getLangOpts().CPlusPlus = true;
break;
case lldb::eLanguageTypeObjC:
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ObjC2 = true;
// FIXME: the following language option is a temporary workaround,
// to "ask for ObjC, get ObjC++" (see comment above).
m_compiler->getLangOpts().CPlusPlus = true;
// Clang now sets as default C++14 as the default standard (with
// GNU extensions), so we do the same here to avoid mismatches that
// cause compiler error when evaluating expressions (e.g. nullptr not found
// as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
// two lines below) so we decide to be consistent with that, but this could
// be re-evaluated in the future.
m_compiler->getLangOpts().CPlusPlus11 = true;
break;
case lldb::eLanguageTypeC_plus_plus:
case lldb::eLanguageTypeC_plus_plus_11:
case lldb::eLanguageTypeC_plus_plus_14:
m_compiler->getLangOpts().CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
LLVM_FALLTHROUGH;
case lldb::eLanguageTypeC_plus_plus_03:
m_compiler->getLangOpts().CPlusPlus = true;
// FIXME: the following language option is a temporary workaround,
// to "ask for C++, get ObjC++". Apple hopes to remove this requirement on
// non-Apple platforms, but for now it is needed.
m_compiler->getLangOpts().ObjC1 = true;
break;
case lldb::eLanguageTypeObjC_plus_plus:
case lldb::eLanguageTypeUnknown:
default:
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ObjC2 = true;
m_compiler->getLangOpts().CPlusPlus = true;
m_compiler->getLangOpts().CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
break;
}
m_compiler->getLangOpts().Bool = true;
m_compiler->getLangOpts().WChar = true;
m_compiler->getLangOpts().Blocks = true;
m_compiler->getLangOpts().DebuggerSupport =
true; // Features specifically for debugger clients
if (expr.DesiredResultType() == Expression::eResultTypeId)
m_compiler->getLangOpts().DebuggerCastResultToId = true;
m_compiler->getLangOpts().CharIsSigned =
ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
.CharIsSignedByDefault();
// Spell checking is a nice feature, but it ends up completing a lot of types
// that we didn't strictly speaking need to complete. As a result, we spend a
// long time parsing and importing debug information.
m_compiler->getLangOpts().SpellChecking = false;
if (process_sp && m_compiler->getLangOpts().ObjC1) {
if (process_sp->GetObjCLanguageRuntime()) {
if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() ==
ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX,
VersionTuple(10, 7));
else
m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
VersionTuple(10, 7));
if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
m_compiler->getLangOpts().DebuggerObjCLiteral = true;
}
}
m_compiler->getLangOpts().ThreadsafeStatics = false;
m_compiler->getLangOpts().AccessControl =
false; // Debuggers get universal access
m_compiler->getLangOpts().DollarIdents =
true; // $ indicates a persistent variable name
// Set CodeGen options
m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
m_compiler->getCodeGenOpts().InstrumentFunctions = false;
m_compiler->getCodeGenOpts().DisableFPElim = true;
m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
if (generate_debug_info)
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
else
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
// Disable some warnings.
m_compiler->getDiagnostics().setSeverityForGroup(
clang::diag::Flavor::WarningOrError, "unused-value",
clang::diag::Severity::Ignored, SourceLocation());
m_compiler->getDiagnostics().setSeverityForGroup(
clang::diag::Flavor::WarningOrError, "odr",
clang::diag::Severity::Ignored, SourceLocation());
// Inform the target of the language options
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
m_compiler->getTarget().adjust(m_compiler->getLangOpts());
// 6. Set up the diagnostic buffer for reporting errors
m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
// 7. Set up the source management objects inside the compiler
clang::FileSystemOptions file_system_options;
m_file_manager.reset(new clang::FileManager(file_system_options));
if (!m_compiler->hasSourceManager())
m_compiler->createSourceManager(*m_file_manager.get());
m_compiler->createFileManager();
m_compiler->createPreprocessor(TU_Complete);
if (ClangModulesDeclVendor *decl_vendor =
target_sp->GetClangModulesDeclVendor()) {
ClangPersistentVariables *clang_persistent_vars =
llvm::cast<ClangPersistentVariables>(
target_sp->GetPersistentExpressionStateForLanguage(
lldb::eLanguageTypeC));
std::unique_ptr<PPCallbacks> pp_callbacks(
new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
m_pp_callbacks =
static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
}
// 8. Most of this we get from the CompilerInstance, but we also want to give
// the context an ExternalASTSource.
m_selector_table.reset(new SelectorTable());
m_builtin_context.reset(new Builtin::Context());
std::unique_ptr<clang::ASTContext> ast_context(
new ASTContext(m_compiler->getLangOpts(), m_compiler->getSourceManager(),
m_compiler->getPreprocessor().getIdentifierTable(),
*m_selector_table.get(), *m_builtin_context.get()));
ast_context->InitBuiltinTypes(m_compiler->getTarget());
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
if (decl_map) {
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(
decl_map->CreateProxy());
decl_map->InstallASTContext(*ast_context, m_compiler->getFileManager());
ast_context->setExternalSource(ast_source);
}
m_ast_context.reset(
new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
m_ast_context->setASTContext(ast_context.get());
m_compiler->setASTContext(ast_context.release());
std::string module_name("$__lldb_module");
m_llvm_context.reset(new LLVMContext());
m_code_generator.reset(CreateLLVMCodeGen(
m_compiler->getDiagnostics(), module_name,
m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
m_compiler->getCodeGenOpts(), *m_llvm_context));
}
ClangExpressionParser::~ClangExpressionParser() {}
unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
ClangDiagnosticManagerAdapter *adapter =
static_cast<ClangDiagnosticManagerAdapter *>(
m_compiler->getDiagnostics().getClient());
clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
adapter->ResetManager(&diagnostic_manager);
const char *expr_text = m_expr.Text();
clang::SourceManager &source_mgr = m_compiler->getSourceManager();
bool created_main_file = false;
if (m_compiler->getCodeGenOpts().getDebugInfo() ==
codegenoptions::FullDebugInfo) {
int temp_fd = -1;
llvm::SmallString<PATH_MAX> result_path;
if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
std::string temp_source_path = tmpdir_file_spec.GetPath();
llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
} else {
llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
}
if (temp_fd != -1) {
lldb_private::File file(temp_fd, true);
const size_t expr_text_len = strlen(expr_text);
size_t bytes_written = expr_text_len;
if (file.Write(expr_text, bytes_written).Success()) {
if (bytes_written == expr_text_len) {
file.Close();
source_mgr.setMainFileID(
source_mgr.createFileID(m_file_manager->getFile(result_path),
SourceLocation(), SrcMgr::C_User));
created_main_file = true;
}
}
}
}
if (!created_main_file) {
std::unique_ptr<MemoryBuffer> memory_buffer =
MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
}
diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
&m_compiler->getPreprocessor());
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ASTConsumer *ast_transformer =
type_system_helper->ASTTransformer(m_code_generator.get());
if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
decl_map->InstallCodeGenerator(m_code_generator.get());
if (ast_transformer) {
ast_transformer->Initialize(m_compiler->getASTContext());
ParseAST(m_compiler->getPreprocessor(), ast_transformer,
m_compiler->getASTContext());
} else {
m_code_generator->Initialize(m_compiler->getASTContext());
ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(),
m_compiler->getASTContext());
}
diag_buf->EndSourceFile();
unsigned num_errors = diag_buf->getNumErrors();
if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
num_errors++;
diagnostic_manager.PutString(eDiagnosticSeverityError,
"while importing modules:");
diagnostic_manager.AppendMessageToDiagnostic(
m_pp_callbacks->getErrorString());
}
if (!num_errors) {
if (type_system_helper->DeclMap() &&
!type_system_helper->DeclMap()->ResolveUnknownTypes()) {
diagnostic_manager.Printf(eDiagnosticSeverityError,
"Couldn't infer the type of a variable");
num_errors++;
}
}
if (!num_errors) {
type_system_helper->CommitPersistentDecls();
}
adapter->ResetManager();
return num_errors;
}
std::string
ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
std::string abi;
if (target_arch.IsMIPS()) {
switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
case ArchSpec::eMIPSABI_N64:
abi = "n64";
break;
case ArchSpec::eMIPSABI_N32:
abi = "n32";
break;
case ArchSpec::eMIPSABI_O32:
abi = "o32";
break;
default:
break;
}
}
return abi;
}
bool ClangExpressionParser::RewriteExpression(
DiagnosticManager &diagnostic_manager) {
clang::SourceManager &source_manager = m_compiler->getSourceManager();
clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
nullptr);
clang::edit::Commit commit(editor);
clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
class RewritesReceiver : public edit::EditsReceiver {
Rewriter &rewrite;
public:
RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
void insert(SourceLocation loc, StringRef text) override {
rewrite.InsertText(loc, text);
}
void replace(CharSourceRange range, StringRef text) override {
rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
}
};
RewritesReceiver rewrites_receiver(rewriter);
const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
size_t num_diags = diagnostics.size();
if (num_diags == 0)
return false;
for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
if (diagnostic && diagnostic->HasFixIts()) {
for (const FixItHint &fixit : diagnostic->FixIts()) {
// This is cobbed from clang::Rewrite::FixItRewriter.
if (fixit.CodeToInsert.empty()) {
if (fixit.InsertFromRange.isValid()) {
commit.insertFromRange(fixit.RemoveRange.getBegin(),
fixit.InsertFromRange, /*afterToken=*/false,
fixit.BeforePreviousInsertions);
} else
commit.remove(fixit.RemoveRange);
} else {
if (fixit.RemoveRange.isTokenRange() ||
fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
else
commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
/*afterToken=*/false, fixit.BeforePreviousInsertions);
}
}
}
}
// FIXME - do we want to try to propagate specific errors here?
if (!commit.isCommitable())
return false;
else if (!editor.commit(commit))
return false;
// Now play all the edits, and stash the result in the diagnostic manager.
editor.applyRewrites(rewrites_receiver);
RewriteBuffer &main_file_buffer =
rewriter.getEditBuffer(source_manager.getMainFileID());
std::string fixed_expression;
llvm::raw_string_ostream out_stream(fixed_expression);
main_file_buffer.write(out_stream);
out_stream.flush();
diagnostic_manager.SetFixedExpression(fixed_expression);
return true;
}
static bool FindFunctionInModule(ConstString &mangled_name,
llvm::Module *module, const char *orig_name) {
for (const auto &func : module->getFunctionList()) {
const StringRef &name = func.getName();
if (name.find(orig_name) != StringRef::npos) {
mangled_name.SetString(name);
return true;
}
}
return false;
}
lldb_private::Status ClangExpressionParser::PrepareForExecution(
lldb::addr_t &func_addr, lldb::addr_t &func_end,
lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
bool &can_interpret, ExecutionPolicy execution_policy) {
func_addr = LLDB_INVALID_ADDRESS;
func_end = LLDB_INVALID_ADDRESS;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
lldb_private::Status err;
std::unique_ptr<llvm::Module> llvm_module_ap(
m_code_generator->ReleaseModule());
if (!llvm_module_ap.get()) {
err.SetErrorToGenericError();
err.SetErrorString("IR doesn't contain a module");
return err;
}
ConstString function_name;
if (execution_policy != eExecutionPolicyTopLevel) {
// Find the actual name of the function (it's often mangled somehow)
if (!FindFunctionInModule(function_name, llvm_module_ap.get(),
m_expr.FunctionName())) {
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't find %s() in the module",
m_expr.FunctionName());
return err;
} else {
if (log)
log->Printf("Found function %s for %s", function_name.AsCString(),
m_expr.FunctionName());
}
}
SymbolContext sc;
if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
} else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
sc.target_sp = target_sp;
}
LLVMUserExpression::IRPasses custom_passes;
{
auto lang = m_expr.Language();
if (log)
log->Printf("%s - Current expression language is %s\n", __FUNCTION__,
Language::GetNameForLanguageType(lang));
lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
if (process_sp && lang != lldb::eLanguageTypeUnknown) {
auto runtime = process_sp->GetLanguageRuntime(lang);
if (runtime)
runtime->GetIRPasses(custom_passes);
}
}
if (custom_passes.EarlyPasses) {
if (log)
log->Printf("%s - Running Early IR Passes from LanguageRuntime on "
"expression module '%s'",
__FUNCTION__, m_expr.FunctionName());
custom_passes.EarlyPasses->run(*llvm_module_ap);
}
execution_unit_sp.reset(
new IRExecutionUnit(m_llvm_context, // handed off here
llvm_module_ap, // handed off here
function_name, exe_ctx.GetTargetSP(), sc,
m_compiler->getTargetOpts().Features));
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ClangExpressionDeclMap *decl_map =
type_system_helper->DeclMap(); // result can be NULL
if (decl_map) {
Stream *error_stream = NULL;
Target *target = exe_ctx.GetTargetPtr();
error_stream = target->GetDebugger().GetErrorFile().get();
IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
*execution_unit_sp, *error_stream,
function_name.AsCString());
bool ir_can_run =
ir_for_target.runOnModule(*execution_unit_sp->GetModule());
if (!ir_can_run) {
err.SetErrorString(
"The expression could not be prepared to run in the target");
return err;
}
Process *process = exe_ctx.GetProcessPtr();
if (execution_policy != eExecutionPolicyAlways &&
execution_policy != eExecutionPolicyTopLevel) {
lldb_private::Status interpret_error;
bool interpret_function_calls =
!process ? false : process->CanInterpretFunctionCalls();
can_interpret = IRInterpreter::CanInterpret(
*execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
interpret_error, interpret_function_calls);
if (!can_interpret && execution_policy == eExecutionPolicyNever) {
err.SetErrorStringWithFormat("Can't run the expression locally: %s",
interpret_error.AsCString());
return err;
}
}
if (!process && execution_policy == eExecutionPolicyAlways) {
err.SetErrorString("Expression needed to run in the target, but the "
"target can't be run");
return err;
}
if (!process && execution_policy == eExecutionPolicyTopLevel) {
err.SetErrorString("Top-level code needs to be inserted into a runnable "
"target, but the target can't be run");
return err;
}
if (execution_policy == eExecutionPolicyAlways ||
(execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
if (m_expr.NeedsValidation() && process) {
if (!process->GetDynamicCheckers()) {
DynamicCheckerFunctions *dynamic_checkers =
new DynamicCheckerFunctions();
DiagnosticManager install_diagnostics;
if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
if (install_diagnostics.Diagnostics().size())
err.SetErrorString("couldn't install checkers, unknown error");
else
err.SetErrorString(install_diagnostics.GetString().c_str());
return err;
}
process->SetDynamicCheckers(dynamic_checkers);
if (log)
log->Printf("== [ClangUserExpression::Evaluate] Finished "
"installing dynamic checkers ==");
}
IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(),
function_name.AsCString());
llvm::Module *module = execution_unit_sp->GetModule();
if (!module || !ir_dynamic_checks.runOnModule(*module)) {
err.SetErrorToGenericError();
err.SetErrorString("Couldn't add dynamic checks to the expression");
return err;
}
if (custom_passes.LatePasses) {
if (log)
log->Printf("%s - Running Late IR Passes from LanguageRuntime on "
"expression module '%s'",
__FUNCTION__, m_expr.FunctionName());
custom_passes.LatePasses->run(*module);
}
}
}
if (execution_policy == eExecutionPolicyAlways ||
execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
} else {
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
return err;
}
lldb_private::Status ClangExpressionParser::RunStaticInitializers(
lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
lldb_private::Status err;
lldbassert(execution_unit_sp.get());
lldbassert(exe_ctx.HasThreadScope());
if (!execution_unit_sp.get()) {
err.SetErrorString(
"can't run static initializers for a NULL execution unit");
return err;
}
if (!exe_ctx.HasThreadScope()) {
err.SetErrorString("can't run static initializers without a thread");
return err;
}
std::vector<lldb::addr_t> static_initializers;
execution_unit_sp->GetStaticInitializers(static_initializers);
for (lldb::addr_t static_initializer : static_initializers) {
EvaluateExpressionOptions options;
lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
llvm::ArrayRef<lldb::addr_t>(), options));
DiagnosticManager execution_errors;
lldb::ExpressionResults results =
exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
exe_ctx, call_static_initializer, options, execution_errors);
if (results != lldb::eExpressionCompleted) {
err.SetErrorStringWithFormat("couldn't run static initializer: %s",
execution_errors.GetString().c_str());
return err;
}
}
return err;
}