blob: 74929168462092e4b290e52b8b9a3de9404fc716 [file] [log] [blame]
//===-- NativeRegisterContextLinux_arm.cpp --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
#include "NativeRegisterContextLinux_arm.h"
#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
#include <elf.h>
#include <sys/socket.h>
#define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr))
#ifndef PTRACE_GETVFPREGS
#define PTRACE_GETVFPREGS 27
#define PTRACE_SETVFPREGS 28
#endif
#ifndef PTRACE_GETHBPREGS
#define PTRACE_GETHBPREGS 29
#define PTRACE_SETHBPREGS 30
#endif
#if !defined(PTRACE_TYPE_ARG3)
#define PTRACE_TYPE_ARG3 void *
#endif
#if !defined(PTRACE_TYPE_ARG4)
#define PTRACE_TYPE_ARG4 void *
#endif
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_linux;
// arm general purpose registers.
static const uint32_t g_gpr_regnums_arm[] = {
gpr_r0_arm, gpr_r1_arm, gpr_r2_arm, gpr_r3_arm, gpr_r4_arm,
gpr_r5_arm, gpr_r6_arm, gpr_r7_arm, gpr_r8_arm, gpr_r9_arm,
gpr_r10_arm, gpr_r11_arm, gpr_r12_arm, gpr_sp_arm, gpr_lr_arm,
gpr_pc_arm, gpr_cpsr_arm,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert(((sizeof g_gpr_regnums_arm / sizeof g_gpr_regnums_arm[0]) - 1) ==
k_num_gpr_registers_arm,
"g_gpr_regnums_arm has wrong number of register infos");
// arm floating point registers.
static const uint32_t g_fpu_regnums_arm[] = {
fpu_s0_arm, fpu_s1_arm, fpu_s2_arm, fpu_s3_arm, fpu_s4_arm,
fpu_s5_arm, fpu_s6_arm, fpu_s7_arm, fpu_s8_arm, fpu_s9_arm,
fpu_s10_arm, fpu_s11_arm, fpu_s12_arm, fpu_s13_arm, fpu_s14_arm,
fpu_s15_arm, fpu_s16_arm, fpu_s17_arm, fpu_s18_arm, fpu_s19_arm,
fpu_s20_arm, fpu_s21_arm, fpu_s22_arm, fpu_s23_arm, fpu_s24_arm,
fpu_s25_arm, fpu_s26_arm, fpu_s27_arm, fpu_s28_arm, fpu_s29_arm,
fpu_s30_arm, fpu_s31_arm, fpu_fpscr_arm, fpu_d0_arm, fpu_d1_arm,
fpu_d2_arm, fpu_d3_arm, fpu_d4_arm, fpu_d5_arm, fpu_d6_arm,
fpu_d7_arm, fpu_d8_arm, fpu_d9_arm, fpu_d10_arm, fpu_d11_arm,
fpu_d12_arm, fpu_d13_arm, fpu_d14_arm, fpu_d15_arm, fpu_d16_arm,
fpu_d17_arm, fpu_d18_arm, fpu_d19_arm, fpu_d20_arm, fpu_d21_arm,
fpu_d22_arm, fpu_d23_arm, fpu_d24_arm, fpu_d25_arm, fpu_d26_arm,
fpu_d27_arm, fpu_d28_arm, fpu_d29_arm, fpu_d30_arm, fpu_d31_arm,
fpu_q0_arm, fpu_q1_arm, fpu_q2_arm, fpu_q3_arm, fpu_q4_arm,
fpu_q5_arm, fpu_q6_arm, fpu_q7_arm, fpu_q8_arm, fpu_q9_arm,
fpu_q10_arm, fpu_q11_arm, fpu_q12_arm, fpu_q13_arm, fpu_q14_arm,
fpu_q15_arm,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert(((sizeof g_fpu_regnums_arm / sizeof g_fpu_regnums_arm[0]) - 1) ==
k_num_fpr_registers_arm,
"g_fpu_regnums_arm has wrong number of register infos");
namespace {
// Number of register sets provided by this context.
enum { k_num_register_sets = 2 };
}
// Register sets for arm.
static const RegisterSet g_reg_sets_arm[k_num_register_sets] = {
{"General Purpose Registers", "gpr", k_num_gpr_registers_arm,
g_gpr_regnums_arm},
{"Floating Point Registers", "fpu", k_num_fpr_registers_arm,
g_fpu_regnums_arm}};
#if defined(__arm__)
std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
return llvm::make_unique<NativeRegisterContextLinux_arm>(target_arch,
native_thread);
}
#endif // defined(__arm__)
NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
: NativeRegisterContextLinux(native_thread,
new RegisterInfoPOSIX_arm(target_arch)) {
switch (target_arch.GetMachine()) {
case llvm::Triple::arm:
m_reg_info.num_registers = k_num_registers_arm;
m_reg_info.num_gpr_registers = k_num_gpr_registers_arm;
m_reg_info.num_fpr_registers = k_num_fpr_registers_arm;
m_reg_info.last_gpr = k_last_gpr_arm;
m_reg_info.first_fpr = k_first_fpr_arm;
m_reg_info.last_fpr = k_last_fpr_arm;
m_reg_info.first_fpr_v = fpu_s0_arm;
m_reg_info.last_fpr_v = fpu_s31_arm;
m_reg_info.gpr_flags = gpr_cpsr_arm;
break;
default:
assert(false && "Unhandled target architecture.");
break;
}
::memset(&m_fpr, 0, sizeof(m_fpr));
::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm));
::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs));
// 16 is just a maximum value, query hardware for actual watchpoint count
m_max_hwp_supported = 16;
m_max_hbp_supported = 16;
m_refresh_hwdebug_info = true;
}
uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const {
return k_num_register_sets;
}
uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const {
uint32_t count = 0;
for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
count += g_reg_sets_arm[set_index].num_registers;
return count;
}
const RegisterSet *
NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const {
if (set_index < k_num_register_sets)
return &g_reg_sets_arm[set_index];
return nullptr;
}
Status
NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info,
RegisterValue &reg_value) {
Status error;
if (!reg_info) {
error.SetErrorString("reg_info NULL");
return error;
}
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
if (IsFPR(reg)) {
error = ReadFPR();
if (error.Fail())
return error;
} else {
uint32_t full_reg = reg;
bool is_subreg = reg_info->invalidate_regs &&
(reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
if (is_subreg) {
// Read the full aligned 64-bit register.
full_reg = reg_info->invalidate_regs[0];
}
error = ReadRegisterRaw(full_reg, reg_value);
if (error.Success()) {
// If our read was not aligned (for ah,bh,ch,dh), shift our returned
// value one byte to the right.
if (is_subreg && (reg_info->byte_offset & 0x1))
reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
// If our return byte size was greater than the return value reg size,
// then use the type specified by reg_info rather than the uint64_t
// default
if (reg_value.GetByteSize() > reg_info->byte_size)
reg_value.SetType(reg_info);
}
return error;
}
// Get pointer to m_fpr variable and set the data from it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < sizeof m_fpr);
uint8_t *src = (uint8_t *)&m_fpr + fpr_offset;
switch (reg_info->byte_size) {
case 2:
reg_value.SetUInt16(*(uint16_t *)src);
break;
case 4:
reg_value.SetUInt32(*(uint32_t *)src);
break;
case 8:
reg_value.SetUInt64(*(uint64_t *)src);
break;
case 16:
reg_value.SetBytes(src, 16, GetByteOrder());
break;
default:
assert(false && "Unhandled data size.");
error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
reg_info->byte_size);
break;
}
return error;
}
Status
NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info,
const RegisterValue &reg_value) {
if (!reg_info)
return Status("reg_info NULL");
const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
if (reg_index == LLDB_INVALID_REGNUM)
return Status("no lldb regnum for %s", reg_info && reg_info->name
? reg_info->name
: "<unknown register>");
if (IsGPR(reg_index))
return WriteRegisterRaw(reg_index, reg_value);
if (IsFPR(reg_index)) {
// Get pointer to m_fpr variable and set the data to it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < sizeof m_fpr);
uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset;
switch (reg_info->byte_size) {
case 2:
*(uint16_t *)dst = reg_value.GetAsUInt16();
break;
case 4:
*(uint32_t *)dst = reg_value.GetAsUInt32();
break;
case 8:
*(uint64_t *)dst = reg_value.GetAsUInt64();
break;
default:
assert(false && "Unhandled data size.");
return Status("unhandled register data size %" PRIu32,
reg_info->byte_size);
}
Status error = WriteFPR();
if (error.Fail())
return error;
return Status();
}
return Status("failed - register wasn't recognized to be a GPR or an FPR, "
"write strategy unknown");
}
Status NativeRegisterContextLinux_arm::ReadAllRegisterValues(
lldb::DataBufferSP &data_sp) {
Status error;
data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
if (!data_sp)
return Status("failed to allocate DataBufferHeap instance of size %" PRIu64,
(uint64_t)REG_CONTEXT_SIZE);
error = ReadGPR();
if (error.Fail())
return error;
error = ReadFPR();
if (error.Fail())
return error;
uint8_t *dst = data_sp->GetBytes();
if (dst == nullptr) {
error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64
" returned a null pointer",
(uint64_t)REG_CONTEXT_SIZE);
return error;
}
::memcpy(dst, &m_gpr_arm, GetGPRSize());
dst += GetGPRSize();
::memcpy(dst, &m_fpr, sizeof(m_fpr));
return error;
}
Status NativeRegisterContextLinux_arm::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
Status error;
if (!data_sp) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
__FUNCTION__);
return error;
}
if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched "
"data size, expected %" PRIu64 ", actual %" PRIu64,
__FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize());
return error;
}
uint8_t *src = data_sp->GetBytes();
if (src == nullptr) {
error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
"DataBuffer::GetBytes() returned a null "
"pointer",
__FUNCTION__);
return error;
}
::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize());
error = WriteGPR();
if (error.Fail())
return error;
src += GetRegisterInfoInterface().GetGPRSize();
::memcpy(&m_fpr, src, sizeof(m_fpr));
error = WriteFPR();
if (error.Fail())
return error;
return error;
}
bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const {
return reg <= m_reg_info.last_gpr; // GPR's come first.
}
bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const {
return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr);
}
uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
if (log)
log->Printf("NativeRegisterContextLinux_arm::%s()", __FUNCTION__);
Status error;
// Read hardware breakpoint and watchpoint information.
error = ReadHardwareDebugInfo();
if (error.Fail())
return 0;
LLDB_LOG(log, "{0}", m_max_hbp_supported);
return m_max_hbp_supported;
}
uint32_t
NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr,
size_t size) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return LLDB_INVALID_INDEX32;
uint32_t control_value = 0, bp_index = 0;
// Setup address and control values.
// Use size to get a hint of arm vs thumb modes.
switch (size) {
case 2:
control_value = (0x3 << 5) | 7;
addr &= ~1;
break;
case 4:
control_value = (0xfu << 5) | 7;
addr &= ~3;
break;
default:
return LLDB_INVALID_INDEX32;
}
// Iterate over stored breakpoints and find a free bp_index
bp_index = LLDB_INVALID_INDEX32;
for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
if ((m_hbr_regs[i].control & 1) == 0) {
bp_index = i; // Mark last free slot
} else if (m_hbr_regs[i].address == addr) {
return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints.
}
}
if (bp_index == LLDB_INVALID_INDEX32)
return LLDB_INVALID_INDEX32;
// Update breakpoint in local cache
m_hbr_regs[bp_index].real_addr = addr;
m_hbr_regs[bp_index].address = addr;
m_hbr_regs[bp_index].control = control_value;
// PTRACE call to set corresponding hardware breakpoint register.
error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index);
if (error.Fail()) {
m_hbr_regs[bp_index].address = 0;
m_hbr_regs[bp_index].control &= ~1;
return LLDB_INVALID_INDEX32;
}
return bp_index;
}
bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOG(log, "hw_idx: {0}", hw_idx);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return false;
if (hw_idx >= m_max_hbp_supported)
return false;
// Create a backup we can revert to in case of failure.
lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address;
uint32_t tempControl = m_hbr_regs[hw_idx].control;
m_hbr_regs[hw_idx].control &= ~1;
m_hbr_regs[hw_idx].address = 0;
// PTRACE call to clear corresponding hardware breakpoint register.
error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx);
if (error.Fail()) {
m_hbr_regs[hw_idx].control = tempControl;
m_hbr_regs[hw_idx].address = tempAddr;
return false;
}
return true;
}
Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex(
uint32_t &bp_index, lldb::addr_t trap_addr) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
if (log)
log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
lldb::addr_t break_addr;
for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) {
break_addr = m_hbr_regs[bp_index].address;
if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) {
m_hbr_regs[bp_index].hit_addr = trap_addr;
return Status();
}
}
bp_index = LLDB_INVALID_INDEX32;
return Status();
}
Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
if (log)
log->Printf("NativeRegisterContextLinux_arm::%s()", __FUNCTION__);
Status error;
// Read hardware breakpoint and watchpoint information.
error = ReadHardwareDebugInfo();
if (error.Fail())
return error;
lldb::addr_t tempAddr = 0;
uint32_t tempControl = 0;
for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
if (m_hbr_regs[i].control & 0x01) {
// Create a backup we can revert to in case of failure.
tempAddr = m_hbr_regs[i].address;
tempControl = m_hbr_regs[i].control;
// Clear breakpoints in local cache
m_hbr_regs[i].control &= ~1;
m_hbr_regs[i].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeBREAK, i);
if (error.Fail()) {
m_hbr_regs[i].control = tempControl;
m_hbr_regs[i].address = tempAddr;
return error;
}
}
}
return Status();
}
uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return 0;
LLDB_LOG(log, "{0}", m_max_hwp_supported);
return m_max_hwp_supported;
}
uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint(
lldb::addr_t addr, size_t size, uint32_t watch_flags) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
watch_flags);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return LLDB_INVALID_INDEX32;
uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0;
lldb::addr_t real_addr = addr;
// Check if we are setting watchpoint other than read/write/access Also
// update watchpoint flag to match Arm write-read bit configuration.
switch (watch_flags) {
case 1:
watch_flags = 2;
break;
case 2:
watch_flags = 1;
break;
case 3:
break;
default:
return LLDB_INVALID_INDEX32;
}
// Can't watch zero bytes
// Can't watch more than 4 bytes per WVR/WCR pair
if (size == 0 || size > 4)
return LLDB_INVALID_INDEX32;
// Check 4-byte alignment for hardware watchpoint target address. Below is a
// hack to recalculate address and size in order to make sure we can watch
// non 4-byte alligned addresses as well.
if (addr & 0x03) {
uint8_t watch_mask = (addr & 0x03) + size;
if (watch_mask > 0x04)
return LLDB_INVALID_INDEX32;
else if (watch_mask <= 0x02)
size = 2;
else if (watch_mask <= 0x04)
size = 4;
addr = addr & (~0x03);
}
// We can only watch up to four bytes that follow a 4 byte aligned address
// per watchpoint register pair, so make sure we can properly encode this.
addr_word_offset = addr % 4;
byte_mask = ((1u << size) - 1u) << addr_word_offset;
// Check if we need multiple watchpoint register
if (byte_mask > 0xfu)
return LLDB_INVALID_INDEX32;
// Setup control value
// Make the byte_mask into a valid Byte Address Select mask
control_value = byte_mask << 5;
// Turn on appropriate watchpoint flags read or write
control_value |= (watch_flags << 3);
// Enable this watchpoint and make it stop in privileged or user mode;
control_value |= 7;
// Make sure bits 1:0 are clear in our address
addr &= ~((lldb::addr_t)3);
// Iterate over stored watchpoints and find a free wp_index
wp_index = LLDB_INVALID_INDEX32;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
if ((m_hwp_regs[i].control & 1) == 0) {
wp_index = i; // Mark last free slot
} else if (m_hwp_regs[i].address == addr) {
return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
}
}
if (wp_index == LLDB_INVALID_INDEX32)
return LLDB_INVALID_INDEX32;
// Update watchpoint in local cache
m_hwp_regs[wp_index].real_addr = real_addr;
m_hwp_regs[wp_index].address = addr;
m_hwp_regs[wp_index].control = control_value;
// PTRACE call to set corresponding watchpoint register.
error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index);
if (error.Fail()) {
m_hwp_regs[wp_index].address = 0;
m_hwp_regs[wp_index].control &= ~1;
return LLDB_INVALID_INDEX32;
}
return wp_index;
}
bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint(
uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return false;
if (wp_index >= m_max_hwp_supported)
return false;
// Create a backup we can revert to in case of failure.
lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
uint32_t tempControl = m_hwp_regs[wp_index].control;
// Update watchpoint in local cache
m_hwp_regs[wp_index].control &= ~1;
m_hwp_regs[wp_index].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index);
if (error.Fail()) {
m_hwp_regs[wp_index].control = tempControl;
m_hwp_regs[wp_index].address = tempAddr;
return false;
}
return true;
}
Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() {
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return error;
lldb::addr_t tempAddr = 0;
uint32_t tempControl = 0;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
if (m_hwp_regs[i].control & 0x01) {
// Create a backup we can revert to in case of failure.
tempAddr = m_hwp_regs[i].address;
tempControl = m_hwp_regs[i].control;
// Clear watchpoints in local cache
m_hwp_regs[i].control &= ~1;
m_hwp_regs[i].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeWATCH, i);
if (error.Fail()) {
m_hwp_regs[i].control = tempControl;
m_hwp_regs[i].address = tempAddr;
return error;
}
}
}
return Status();
}
uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) {
case 0x01:
return 1;
case 0x03:
return 2;
case 0x07:
return 3;
case 0x0f:
return 4;
default:
return 0;
}
}
bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if ((m_hwp_regs[wp_index].control & 0x1) == 0x1)
return true;
else
return false;
}
Status
NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index,
lldb::addr_t trap_addr) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);
uint32_t watch_size;
lldb::addr_t watch_addr;
for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
watch_size = GetWatchpointSize(wp_index);
watch_addr = m_hwp_regs[wp_index].address;
if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
trap_addr < watch_addr + watch_size) {
m_hwp_regs[wp_index].hit_addr = trap_addr;
return Status();
}
}
wp_index = LLDB_INVALID_INDEX32;
return Status();
}
lldb::addr_t
NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].real_addr;
else
return LLDB_INVALID_ADDRESS;
}
lldb::addr_t
NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].hit_addr;
else
return LLDB_INVALID_ADDRESS;
}
Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() {
Status error;
if (!m_refresh_hwdebug_info) {
return Status();
}
unsigned int cap_val;
error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(),
nullptr, &cap_val,
sizeof(unsigned int));
if (error.Fail())
return error;
m_max_hwp_supported = (cap_val >> 8) & 0xff;
m_max_hbp_supported = cap_val & 0xff;
m_refresh_hwdebug_info = false;
return error;
}
Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType,
int hwb_index) {
Status error;
lldb::addr_t *addr_buf;
uint32_t *ctrl_buf;
if (hwbType == eDREGTypeWATCH) {
addr_buf = &m_hwp_regs[hwb_index].address;
ctrl_buf = &m_hwp_regs[hwb_index].control;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf,
sizeof(unsigned int));
if (error.Fail())
return error;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf,
sizeof(unsigned int));
} else {
addr_buf = &m_hbr_regs[hwb_index].address;
ctrl_buf = &m_hbr_regs[hwb_index].control;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf,
sizeof(unsigned int));
if (error.Fail())
return error;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_SETHBPREGS, m_thread.GetID(),
(PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf,
sizeof(unsigned int));
}
return error;
}
uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset(
const RegisterInfo *reg_info) const {
return reg_info->byte_offset -
GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset;
}
Status NativeRegisterContextLinux_arm::DoReadRegisterValue(
uint32_t offset, const char *reg_name, uint32_t size,
RegisterValue &value) {
// PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android
// devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we
// read out the full GPR register set instead. This approach is about 4 times
// slower but the performance overhead is negligible in comparision to
// processing time in lldb-server.
assert(offset % 4 == 0 && "Try to write a register with unaligned offset");
if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm))
return Status("Register isn't fit into the size of the GPR area");
Status error = DoReadGPR(m_gpr_arm, sizeof(m_gpr_arm));
if (error.Fail())
return error;
value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]);
return Status();
}
Status NativeRegisterContextLinux_arm::DoWriteRegisterValue(
uint32_t offset, const char *reg_name, const RegisterValue &value) {
// PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android
// devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we
// read out the full GPR register set, modify the requested register and
// write it back. This approach is about 4 times slower but the performance
// overhead is negligible in comparision to processing time in lldb-server.
assert(offset % 4 == 0 && "Try to write a register with unaligned offset");
if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm))
return Status("Register isn't fit into the size of the GPR area");
Status error = DoReadGPR(m_gpr_arm, sizeof(m_gpr_arm));
if (error.Fail())
return error;
uint32_t reg_value = value.GetAsUInt32();
// As precaution for an undefined behavior encountered while setting PC we
// will clear thumb bit of new PC if we are already in thumb mode; that is
// CPSR thumb mode bit is set.
if (offset / sizeof(uint32_t) == gpr_pc_arm) {
// Check if we are already in thumb mode and thumb bit of current PC is
// read out to be zero and thumb bit of next PC is read out to be one.
if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) &&
(value.GetAsUInt32() & 0x01)) {
reg_value &= (~1ull);
}
}
m_gpr_arm[offset / sizeof(uint32_t)] = reg_value;
return DoWriteGPR(m_gpr_arm, sizeof(m_gpr_arm));
}
Status NativeRegisterContextLinux_arm::DoReadGPR(void *buf, size_t buf_size) {
#ifdef __arm__
return NativeRegisterContextLinux::DoReadGPR(buf, buf_size);
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return ReadRegisterSet(&ioVec, buf_size, NT_PRSTATUS);
#endif // __arm__
}
Status NativeRegisterContextLinux_arm::DoWriteGPR(void *buf, size_t buf_size) {
#ifdef __arm__
return NativeRegisterContextLinux::DoWriteGPR(buf, buf_size);
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return WriteRegisterSet(&ioVec, buf_size, NT_PRSTATUS);
#endif // __arm__
}
Status NativeRegisterContextLinux_arm::DoReadFPR(void *buf, size_t buf_size) {
#ifdef __arm__
return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(),
nullptr, buf, buf_size);
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return ReadRegisterSet(&ioVec, buf_size, NT_ARM_VFP);
#endif // __arm__
}
Status NativeRegisterContextLinux_arm::DoWriteFPR(void *buf, size_t buf_size) {
#ifdef __arm__
return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(),
nullptr, buf, buf_size);
#else // __aarch64__
struct iovec ioVec;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return WriteRegisterSet(&ioVec, buf_size, NT_ARM_VFP);
#endif // __arm__
}
#endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__)