blob: 41fe446f728c76dd93a62bce058946ec261e39af [file] [log] [blame]
//===-- NativeRegisterContextLinux_arm64.cpp --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#if defined(__arm64__) || defined(__aarch64__)
#include "NativeRegisterContextLinux_arm.h"
#include "NativeRegisterContextLinux_arm64.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/RegisterValue.h"
#include "lldb/Host/common/NativeProcessProtocol.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h"
// System includes - They have to be included after framework includes because
// they define some macros which collide with variable names in other modules
#include <sys/socket.h>
// NT_PRSTATUS and NT_FPREGSET definition
#include <elf.h>
// user_hwdebug_state definition
#include <asm/ptrace.h>
#define REG_CONTEXT_SIZE (GetGPRSize() + GetFPRSize())
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_linux;
// ARM64 general purpose registers.
static const uint32_t g_gpr_regnums_arm64[] = {
gpr_x0_arm64, gpr_x1_arm64, gpr_x2_arm64, gpr_x3_arm64,
gpr_x4_arm64, gpr_x5_arm64, gpr_x6_arm64, gpr_x7_arm64,
gpr_x8_arm64, gpr_x9_arm64, gpr_x10_arm64, gpr_x11_arm64,
gpr_x12_arm64, gpr_x13_arm64, gpr_x14_arm64, gpr_x15_arm64,
gpr_x16_arm64, gpr_x17_arm64, gpr_x18_arm64, gpr_x19_arm64,
gpr_x20_arm64, gpr_x21_arm64, gpr_x22_arm64, gpr_x23_arm64,
gpr_x24_arm64, gpr_x25_arm64, gpr_x26_arm64, gpr_x27_arm64,
gpr_x28_arm64, gpr_fp_arm64, gpr_lr_arm64, gpr_sp_arm64,
gpr_pc_arm64, gpr_cpsr_arm64, gpr_w0_arm64, gpr_w1_arm64,
gpr_w2_arm64, gpr_w3_arm64, gpr_w4_arm64, gpr_w5_arm64,
gpr_w6_arm64, gpr_w7_arm64, gpr_w8_arm64, gpr_w9_arm64,
gpr_w10_arm64, gpr_w11_arm64, gpr_w12_arm64, gpr_w13_arm64,
gpr_w14_arm64, gpr_w15_arm64, gpr_w16_arm64, gpr_w17_arm64,
gpr_w18_arm64, gpr_w19_arm64, gpr_w20_arm64, gpr_w21_arm64,
gpr_w22_arm64, gpr_w23_arm64, gpr_w24_arm64, gpr_w25_arm64,
gpr_w26_arm64, gpr_w27_arm64, gpr_w28_arm64,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) -
1) == k_num_gpr_registers_arm64,
"g_gpr_regnums_arm64 has wrong number of register infos");
// ARM64 floating point registers.
static const uint32_t g_fpu_regnums_arm64[] = {
fpu_v0_arm64, fpu_v1_arm64, fpu_v2_arm64, fpu_v3_arm64,
fpu_v4_arm64, fpu_v5_arm64, fpu_v6_arm64, fpu_v7_arm64,
fpu_v8_arm64, fpu_v9_arm64, fpu_v10_arm64, fpu_v11_arm64,
fpu_v12_arm64, fpu_v13_arm64, fpu_v14_arm64, fpu_v15_arm64,
fpu_v16_arm64, fpu_v17_arm64, fpu_v18_arm64, fpu_v19_arm64,
fpu_v20_arm64, fpu_v21_arm64, fpu_v22_arm64, fpu_v23_arm64,
fpu_v24_arm64, fpu_v25_arm64, fpu_v26_arm64, fpu_v27_arm64,
fpu_v28_arm64, fpu_v29_arm64, fpu_v30_arm64, fpu_v31_arm64,
fpu_s0_arm64, fpu_s1_arm64, fpu_s2_arm64, fpu_s3_arm64,
fpu_s4_arm64, fpu_s5_arm64, fpu_s6_arm64, fpu_s7_arm64,
fpu_s8_arm64, fpu_s9_arm64, fpu_s10_arm64, fpu_s11_arm64,
fpu_s12_arm64, fpu_s13_arm64, fpu_s14_arm64, fpu_s15_arm64,
fpu_s16_arm64, fpu_s17_arm64, fpu_s18_arm64, fpu_s19_arm64,
fpu_s20_arm64, fpu_s21_arm64, fpu_s22_arm64, fpu_s23_arm64,
fpu_s24_arm64, fpu_s25_arm64, fpu_s26_arm64, fpu_s27_arm64,
fpu_s28_arm64, fpu_s29_arm64, fpu_s30_arm64, fpu_s31_arm64,
fpu_d0_arm64, fpu_d1_arm64, fpu_d2_arm64, fpu_d3_arm64,
fpu_d4_arm64, fpu_d5_arm64, fpu_d6_arm64, fpu_d7_arm64,
fpu_d8_arm64, fpu_d9_arm64, fpu_d10_arm64, fpu_d11_arm64,
fpu_d12_arm64, fpu_d13_arm64, fpu_d14_arm64, fpu_d15_arm64,
fpu_d16_arm64, fpu_d17_arm64, fpu_d18_arm64, fpu_d19_arm64,
fpu_d20_arm64, fpu_d21_arm64, fpu_d22_arm64, fpu_d23_arm64,
fpu_d24_arm64, fpu_d25_arm64, fpu_d26_arm64, fpu_d27_arm64,
fpu_d28_arm64, fpu_d29_arm64, fpu_d30_arm64, fpu_d31_arm64,
fpu_fpsr_arm64, fpu_fpcr_arm64,
LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) -
1) == k_num_fpr_registers_arm64,
"g_fpu_regnums_arm64 has wrong number of register infos");
namespace {
// Number of register sets provided by this context.
enum { k_num_register_sets = 2 };
}
// Register sets for ARM64.
static const RegisterSet g_reg_sets_arm64[k_num_register_sets] = {
{"General Purpose Registers", "gpr", k_num_gpr_registers_arm64,
g_gpr_regnums_arm64},
{"Floating Point Registers", "fpu", k_num_fpr_registers_arm64,
g_fpu_regnums_arm64}};
std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
switch (target_arch.GetMachine()) {
case llvm::Triple::arm:
return llvm::make_unique<NativeRegisterContextLinux_arm>(target_arch,
native_thread);
case llvm::Triple::aarch64:
return llvm::make_unique<NativeRegisterContextLinux_arm64>(target_arch,
native_thread);
default:
llvm_unreachable("have no register context for architecture");
}
}
NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
: NativeRegisterContextLinux(native_thread,
new RegisterInfoPOSIX_arm64(target_arch)) {
switch (target_arch.GetMachine()) {
case llvm::Triple::aarch64:
m_reg_info.num_registers = k_num_registers_arm64;
m_reg_info.num_gpr_registers = k_num_gpr_registers_arm64;
m_reg_info.num_fpr_registers = k_num_fpr_registers_arm64;
m_reg_info.last_gpr = k_last_gpr_arm64;
m_reg_info.first_fpr = k_first_fpr_arm64;
m_reg_info.last_fpr = k_last_fpr_arm64;
m_reg_info.first_fpr_v = fpu_v0_arm64;
m_reg_info.last_fpr_v = fpu_v31_arm64;
m_reg_info.gpr_flags = gpr_cpsr_arm64;
break;
default:
llvm_unreachable("Unhandled target architecture.");
break;
}
::memset(&m_fpr, 0, sizeof(m_fpr));
::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64));
::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs));
// 16 is just a maximum value, query hardware for actual watchpoint count
m_max_hwp_supported = 16;
m_max_hbp_supported = 16;
m_refresh_hwdebug_info = true;
}
uint32_t NativeRegisterContextLinux_arm64::GetRegisterSetCount() const {
return k_num_register_sets;
}
const RegisterSet *
NativeRegisterContextLinux_arm64::GetRegisterSet(uint32_t set_index) const {
if (set_index < k_num_register_sets)
return &g_reg_sets_arm64[set_index];
return nullptr;
}
uint32_t NativeRegisterContextLinux_arm64::GetUserRegisterCount() const {
uint32_t count = 0;
for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
count += g_reg_sets_arm64[set_index].num_registers;
return count;
}
Status
NativeRegisterContextLinux_arm64::ReadRegister(const RegisterInfo *reg_info,
RegisterValue &reg_value) {
Status error;
if (!reg_info) {
error.SetErrorString("reg_info NULL");
return error;
}
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
if (IsFPR(reg)) {
error = ReadFPR();
if (error.Fail())
return error;
} else {
uint32_t full_reg = reg;
bool is_subreg = reg_info->invalidate_regs &&
(reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
if (is_subreg) {
// Read the full aligned 64-bit register.
full_reg = reg_info->invalidate_regs[0];
}
error = ReadRegisterRaw(full_reg, reg_value);
if (error.Success()) {
// If our read was not aligned (for ah,bh,ch,dh), shift our returned
// value one byte to the right.
if (is_subreg && (reg_info->byte_offset & 0x1))
reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
// If our return byte size was greater than the return value reg size,
// then use the type specified by reg_info rather than the uint64_t
// default
if (reg_value.GetByteSize() > reg_info->byte_size)
reg_value.SetType(reg_info);
}
return error;
}
// Get pointer to m_fpr variable and set the data from it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < sizeof m_fpr);
uint8_t *src = (uint8_t *)&m_fpr + fpr_offset;
reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
eByteOrderLittle, error);
return error;
}
Status NativeRegisterContextLinux_arm64::WriteRegister(
const RegisterInfo *reg_info, const RegisterValue &reg_value) {
if (!reg_info)
return Status("reg_info NULL");
const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
if (reg_index == LLDB_INVALID_REGNUM)
return Status("no lldb regnum for %s", reg_info && reg_info->name
? reg_info->name
: "<unknown register>");
if (IsGPR(reg_index))
return WriteRegisterRaw(reg_index, reg_value);
if (IsFPR(reg_index)) {
// Get pointer to m_fpr variable and set the data to it.
uint32_t fpr_offset = CalculateFprOffset(reg_info);
assert(fpr_offset < sizeof m_fpr);
uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset;
switch (reg_info->byte_size) {
case 2:
*(uint16_t *)dst = reg_value.GetAsUInt16();
break;
case 4:
*(uint32_t *)dst = reg_value.GetAsUInt32();
break;
case 8:
*(uint64_t *)dst = reg_value.GetAsUInt64();
break;
default:
assert(false && "Unhandled data size.");
return Status("unhandled register data size %" PRIu32,
reg_info->byte_size);
}
Status error = WriteFPR();
if (error.Fail())
return error;
return Status();
}
return Status("failed - register wasn't recognized to be a GPR or an FPR, "
"write strategy unknown");
}
Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues(
lldb::DataBufferSP &data_sp) {
Status error;
data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
if (!data_sp)
return Status("failed to allocate DataBufferHeap instance of size %" PRIu64,
REG_CONTEXT_SIZE);
error = ReadGPR();
if (error.Fail())
return error;
error = ReadFPR();
if (error.Fail())
return error;
uint8_t *dst = data_sp->GetBytes();
if (dst == nullptr) {
error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64
" returned a null pointer",
REG_CONTEXT_SIZE);
return error;
}
::memcpy(dst, &m_gpr_arm64, GetGPRSize());
dst += GetGPRSize();
::memcpy(dst, &m_fpr, sizeof(m_fpr));
return error;
}
Status NativeRegisterContextLinux_arm64::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
Status error;
if (!data_sp) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
__FUNCTION__);
return error;
}
if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
error.SetErrorStringWithFormat(
"NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched "
"data size, expected %" PRIu64 ", actual %" PRIu64,
__FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
return error;
}
uint8_t *src = data_sp->GetBytes();
if (src == nullptr) {
error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
"DataBuffer::GetBytes() returned a null "
"pointer",
__FUNCTION__);
return error;
}
::memcpy(&m_gpr_arm64, src, GetRegisterInfoInterface().GetGPRSize());
error = WriteGPR();
if (error.Fail())
return error;
src += GetRegisterInfoInterface().GetGPRSize();
::memcpy(&m_fpr, src, sizeof(m_fpr));
error = WriteFPR();
if (error.Fail())
return error;
return error;
}
bool NativeRegisterContextLinux_arm64::IsGPR(unsigned reg) const {
return reg <= m_reg_info.last_gpr; // GPR's come first.
}
bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const {
return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr);
}
uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareBreakpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
if (log)
log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
Status error;
// Read hardware breakpoint and watchpoint information.
error = ReadHardwareDebugInfo();
if (error.Fail())
return 0;
return m_max_hbp_supported;
}
uint32_t
NativeRegisterContextLinux_arm64::SetHardwareBreakpoint(lldb::addr_t addr,
size_t size) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return LLDB_INVALID_INDEX32;
uint32_t control_value = 0, bp_index = 0;
// Check if size has a valid hardware breakpoint length.
if (size != 4)
return LLDB_INVALID_INDEX32; // Invalid size for a AArch64 hardware
// breakpoint
// Check 4-byte alignment for hardware breakpoint target address.
if (addr & 0x03)
return LLDB_INVALID_INDEX32; // Invalid address, should be 4-byte aligned.
// Setup control value
control_value = 0;
control_value |= ((1 << size) - 1) << 5;
control_value |= (2 << 1) | 1;
// Iterate over stored breakpoints and find a free bp_index
bp_index = LLDB_INVALID_INDEX32;
for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
if ((m_hbr_regs[i].control & 1) == 0) {
bp_index = i; // Mark last free slot
} else if (m_hbr_regs[i].address == addr) {
return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints.
}
}
if (bp_index == LLDB_INVALID_INDEX32)
return LLDB_INVALID_INDEX32;
// Update breakpoint in local cache
m_hbr_regs[bp_index].real_addr = addr;
m_hbr_regs[bp_index].address = addr;
m_hbr_regs[bp_index].control = control_value;
// PTRACE call to set corresponding hardware breakpoint register.
error = WriteHardwareDebugRegs(eDREGTypeBREAK);
if (error.Fail()) {
m_hbr_regs[bp_index].address = 0;
m_hbr_regs[bp_index].control &= ~1;
return LLDB_INVALID_INDEX32;
}
return bp_index;
}
bool NativeRegisterContextLinux_arm64::ClearHardwareBreakpoint(
uint32_t hw_idx) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
LLDB_LOG(log, "hw_idx: {0}", hw_idx);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return false;
if (hw_idx >= m_max_hbp_supported)
return false;
// Create a backup we can revert to in case of failure.
lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address;
uint32_t tempControl = m_hbr_regs[hw_idx].control;
m_hbr_regs[hw_idx].control &= ~1;
m_hbr_regs[hw_idx].address = 0;
// PTRACE call to clear corresponding hardware breakpoint register.
error = WriteHardwareDebugRegs(eDREGTypeBREAK);
if (error.Fail()) {
m_hbr_regs[hw_idx].control = tempControl;
m_hbr_regs[hw_idx].address = tempAddr;
return false;
}
return true;
}
Status NativeRegisterContextLinux_arm64::GetHardwareBreakHitIndex(
uint32_t &bp_index, lldb::addr_t trap_addr) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
if (log)
log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
lldb::addr_t break_addr;
for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) {
break_addr = m_hbr_regs[bp_index].address;
if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) {
m_hbr_regs[bp_index].hit_addr = trap_addr;
return Status();
}
}
bp_index = LLDB_INVALID_INDEX32;
return Status();
}
Status NativeRegisterContextLinux_arm64::ClearAllHardwareBreakpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
if (log)
log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
Status error;
// Read hardware breakpoint and watchpoint information.
error = ReadHardwareDebugInfo();
if (error.Fail())
return error;
lldb::addr_t tempAddr = 0;
uint32_t tempControl = 0;
for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
if (m_hbr_regs[i].control & 0x01) {
// Create a backup we can revert to in case of failure.
tempAddr = m_hbr_regs[i].address;
tempControl = m_hbr_regs[i].control;
// Clear watchpoints in local cache
m_hbr_regs[i].control &= ~1;
m_hbr_regs[i].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeBREAK);
if (error.Fail()) {
m_hbr_regs[i].control = tempControl;
m_hbr_regs[i].address = tempAddr;
return error;
}
}
}
return Status();
}
uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareWatchpoints() {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return 0;
LLDB_LOG(log, "{0}", m_max_hwp_supported);
return m_max_hwp_supported;
}
uint32_t NativeRegisterContextLinux_arm64::SetHardwareWatchpoint(
lldb::addr_t addr, size_t size, uint32_t watch_flags) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
watch_flags);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return LLDB_INVALID_INDEX32;
uint32_t control_value = 0, wp_index = 0;
lldb::addr_t real_addr = addr;
// Check if we are setting watchpoint other than read/write/access Also
// update watchpoint flag to match AArch64 write-read bit configuration.
switch (watch_flags) {
case 1:
watch_flags = 2;
break;
case 2:
watch_flags = 1;
break;
case 3:
break;
default:
return LLDB_INVALID_INDEX32;
}
// Check if size has a valid hardware watchpoint length.
if (size != 1 && size != 2 && size != 4 && size != 8)
return LLDB_INVALID_INDEX32;
// Check 8-byte alignment for hardware watchpoint target address. Below is a
// hack to recalculate address and size in order to make sure we can watch
// non 8-byte alligned addresses as well.
if (addr & 0x07) {
uint8_t watch_mask = (addr & 0x07) + size;
if (watch_mask > 0x08)
return LLDB_INVALID_INDEX32;
else if (watch_mask <= 0x02)
size = 2;
else if (watch_mask <= 0x04)
size = 4;
else
size = 8;
addr = addr & (~0x07);
}
// Setup control value
control_value = watch_flags << 3;
control_value |= ((1 << size) - 1) << 5;
control_value |= (2 << 1) | 1;
// Iterate over stored watchpoints and find a free wp_index
wp_index = LLDB_INVALID_INDEX32;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
if ((m_hwp_regs[i].control & 1) == 0) {
wp_index = i; // Mark last free slot
} else if (m_hwp_regs[i].address == addr) {
return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
}
}
if (wp_index == LLDB_INVALID_INDEX32)
return LLDB_INVALID_INDEX32;
// Update watchpoint in local cache
m_hwp_regs[wp_index].real_addr = real_addr;
m_hwp_regs[wp_index].address = addr;
m_hwp_regs[wp_index].control = control_value;
// PTRACE call to set corresponding watchpoint register.
error = WriteHardwareDebugRegs(eDREGTypeWATCH);
if (error.Fail()) {
m_hwp_regs[wp_index].address = 0;
m_hwp_regs[wp_index].control &= ~1;
return LLDB_INVALID_INDEX32;
}
return wp_index;
}
bool NativeRegisterContextLinux_arm64::ClearHardwareWatchpoint(
uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return false;
if (wp_index >= m_max_hwp_supported)
return false;
// Create a backup we can revert to in case of failure.
lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
uint32_t tempControl = m_hwp_regs[wp_index].control;
// Update watchpoint in local cache
m_hwp_regs[wp_index].control &= ~1;
m_hwp_regs[wp_index].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeWATCH);
if (error.Fail()) {
m_hwp_regs[wp_index].control = tempControl;
m_hwp_regs[wp_index].address = tempAddr;
return false;
}
return true;
}
Status NativeRegisterContextLinux_arm64::ClearAllHardwareWatchpoints() {
// Read hardware breakpoint and watchpoint information.
Status error = ReadHardwareDebugInfo();
if (error.Fail())
return error;
lldb::addr_t tempAddr = 0;
uint32_t tempControl = 0;
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
if (m_hwp_regs[i].control & 0x01) {
// Create a backup we can revert to in case of failure.
tempAddr = m_hwp_regs[i].address;
tempControl = m_hwp_regs[i].control;
// Clear watchpoints in local cache
m_hwp_regs[i].control &= ~1;
m_hwp_regs[i].address = 0;
// Ptrace call to update hardware debug registers
error = WriteHardwareDebugRegs(eDREGTypeWATCH);
if (error.Fail()) {
m_hwp_regs[i].control = tempControl;
m_hwp_regs[i].address = tempAddr;
return error;
}
}
}
return Status();
}
uint32_t
NativeRegisterContextLinux_arm64::GetWatchpointSize(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
switch ((m_hwp_regs[wp_index].control >> 5) & 0xff) {
case 0x01:
return 1;
case 0x03:
return 2;
case 0x0f:
return 4;
case 0xff:
return 8;
default:
return 0;
}
}
bool NativeRegisterContextLinux_arm64::WatchpointIsEnabled(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if ((m_hwp_regs[wp_index].control & 0x1) == 0x1)
return true;
else
return false;
}
Status NativeRegisterContextLinux_arm64::GetWatchpointHitIndex(
uint32_t &wp_index, lldb::addr_t trap_addr) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);
uint32_t watch_size;
lldb::addr_t watch_addr;
for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
watch_size = GetWatchpointSize(wp_index);
watch_addr = m_hwp_regs[wp_index].address;
if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
trap_addr < watch_addr + watch_size) {
m_hwp_regs[wp_index].hit_addr = trap_addr;
return Status();
}
}
wp_index = LLDB_INVALID_INDEX32;
return Status();
}
lldb::addr_t
NativeRegisterContextLinux_arm64::GetWatchpointAddress(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].real_addr;
else
return LLDB_INVALID_ADDRESS;
}
lldb::addr_t
NativeRegisterContextLinux_arm64::GetWatchpointHitAddress(uint32_t wp_index) {
Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
LLDB_LOG(log, "wp_index: {0}", wp_index);
if (wp_index >= m_max_hwp_supported)
return LLDB_INVALID_ADDRESS;
if (WatchpointIsEnabled(wp_index))
return m_hwp_regs[wp_index].hit_addr;
else
return LLDB_INVALID_ADDRESS;
}
Status NativeRegisterContextLinux_arm64::ReadHardwareDebugInfo() {
if (!m_refresh_hwdebug_info) {
return Status();
}
::pid_t tid = m_thread.GetID();
int regset = NT_ARM_HW_WATCH;
struct iovec ioVec;
struct user_hwdebug_state dreg_state;
Status error;
ioVec.iov_base = &dreg_state;
ioVec.iov_len = sizeof(dreg_state);
error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
&ioVec, ioVec.iov_len);
if (error.Fail())
return error;
m_max_hwp_supported = dreg_state.dbg_info & 0xff;
regset = NT_ARM_HW_BREAK;
error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
&ioVec, ioVec.iov_len);
if (error.Fail())
return error;
m_max_hbp_supported = dreg_state.dbg_info & 0xff;
m_refresh_hwdebug_info = false;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(int hwbType) {
struct iovec ioVec;
struct user_hwdebug_state dreg_state;
Status error;
memset(&dreg_state, 0, sizeof(dreg_state));
ioVec.iov_base = &dreg_state;
if (hwbType == eDREGTypeWATCH) {
hwbType = NT_ARM_HW_WATCH;
ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) +
(sizeof(dreg_state.dbg_regs[0]) * m_max_hwp_supported);
for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
dreg_state.dbg_regs[i].addr = m_hwp_regs[i].address;
dreg_state.dbg_regs[i].ctrl = m_hwp_regs[i].control;
}
} else {
hwbType = NT_ARM_HW_BREAK;
ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) +
(sizeof(dreg_state.dbg_regs[0]) * m_max_hbp_supported);
for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
dreg_state.dbg_regs[i].addr = m_hbr_regs[i].address;
dreg_state.dbg_regs[i].ctrl = m_hbr_regs[i].control;
}
}
return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
&hwbType, &ioVec, ioVec.iov_len);
}
Status NativeRegisterContextLinux_arm64::DoReadRegisterValue(
uint32_t offset, const char *reg_name, uint32_t size,
RegisterValue &value) {
Status error;
if (offset > sizeof(struct user_pt_regs)) {
offset -= sizeof(struct user_pt_regs);
if (offset > sizeof(struct user_fpsimd_state)) {
error.SetErrorString("invalid offset value");
return error;
}
elf_fpregset_t regs;
int regset = NT_FPREGSET;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_GETREGSET, m_thread.GetID(), &regset, &ioVec, sizeof regs);
if (error.Success()) {
value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16,
m_thread.GetProcess().GetByteOrder());
}
} else {
elf_gregset_t regs;
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
error = NativeProcessLinux::PtraceWrapper(
PTRACE_GETREGSET, m_thread.GetID(), &regset, &ioVec, sizeof regs);
if (error.Success()) {
value.SetBytes((void *)(((unsigned char *)(regs)) + offset), 8,
m_thread.GetProcess().GetByteOrder());
}
}
return error;
}
Status NativeRegisterContextLinux_arm64::DoWriteRegisterValue(
uint32_t offset, const char *reg_name, const RegisterValue &value) {
Status error;
::pid_t tid = m_thread.GetID();
if (offset > sizeof(struct user_pt_regs)) {
offset -= sizeof(struct user_pt_regs);
if (offset > sizeof(struct user_fpsimd_state)) {
error.SetErrorString("invalid offset value");
return error;
}
elf_fpregset_t regs;
int regset = NT_FPREGSET;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
&ioVec, sizeof regs);
if (error.Success()) {
::memcpy((void *)(((unsigned char *)(&regs)) + offset), value.GetBytes(),
16);
error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, &regset,
&ioVec, sizeof regs);
}
} else {
elf_gregset_t regs;
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
&ioVec, sizeof regs);
if (error.Success()) {
::memcpy((void *)(((unsigned char *)(&regs)) + offset), value.GetBytes(),
8);
error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, &regset,
&ioVec, sizeof regs);
}
}
return error;
}
Status NativeRegisterContextLinux_arm64::DoReadGPR(void *buf, size_t buf_size) {
int regset = NT_PRSTATUS;
struct iovec ioVec;
Status error;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(),
&regset, &ioVec, buf_size);
}
Status NativeRegisterContextLinux_arm64::DoWriteGPR(void *buf,
size_t buf_size) {
int regset = NT_PRSTATUS;
struct iovec ioVec;
Status error;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
&regset, &ioVec, buf_size);
}
Status NativeRegisterContextLinux_arm64::DoReadFPR(void *buf, size_t buf_size) {
int regset = NT_FPREGSET;
struct iovec ioVec;
Status error;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(),
&regset, &ioVec, buf_size);
}
Status NativeRegisterContextLinux_arm64::DoWriteFPR(void *buf,
size_t buf_size) {
int regset = NT_FPREGSET;
struct iovec ioVec;
Status error;
ioVec.iov_base = buf;
ioVec.iov_len = buf_size;
return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
&regset, &ioVec, buf_size);
}
uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset(
const RegisterInfo *reg_info) const {
return reg_info->byte_offset -
GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset;
}
#endif // defined (__arm64__) || defined (__aarch64__)