blob: 24414211d9aa8ceb51db28c5891a72e290eec076 [file] [log] [blame]
//===-- RegisterContextDarwin_i386.cpp --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
#include <stddef.h> // offsetof
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/Log.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
// Support building against older versions of LLVM, this macro was added
// recently.
#ifndef LLVM_EXTENSION
#define LLVM_EXTENSION
#endif
// Project includes
#include "RegisterContextDarwin_i386.h"
using namespace lldb;
using namespace lldb_private;
enum {
gpr_eax = 0,
gpr_ebx,
gpr_ecx,
gpr_edx,
gpr_edi,
gpr_esi,
gpr_ebp,
gpr_esp,
gpr_ss,
gpr_eflags,
gpr_eip,
gpr_cs,
gpr_ds,
gpr_es,
gpr_fs,
gpr_gs,
fpu_fcw,
fpu_fsw,
fpu_ftw,
fpu_fop,
fpu_ip,
fpu_cs,
fpu_dp,
fpu_ds,
fpu_mxcsr,
fpu_mxcsrmask,
fpu_stmm0,
fpu_stmm1,
fpu_stmm2,
fpu_stmm3,
fpu_stmm4,
fpu_stmm5,
fpu_stmm6,
fpu_stmm7,
fpu_xmm0,
fpu_xmm1,
fpu_xmm2,
fpu_xmm3,
fpu_xmm4,
fpu_xmm5,
fpu_xmm6,
fpu_xmm7,
exc_trapno,
exc_err,
exc_faultvaddr,
k_num_registers,
// Aliases
fpu_fctrl = fpu_fcw,
fpu_fstat = fpu_fsw,
fpu_ftag = fpu_ftw,
fpu_fiseg = fpu_cs,
fpu_fioff = fpu_ip,
fpu_foseg = fpu_ds,
fpu_fooff = fpu_dp
};
enum {
ehframe_eax = 0,
ehframe_ecx,
ehframe_edx,
ehframe_ebx,
ehframe_ebp,
ehframe_esp,
ehframe_esi,
ehframe_edi,
ehframe_eip,
ehframe_eflags
};
enum {
dwarf_eax = 0,
dwarf_ecx,
dwarf_edx,
dwarf_ebx,
dwarf_esp,
dwarf_ebp,
dwarf_esi,
dwarf_edi,
dwarf_eip,
dwarf_eflags,
dwarf_stmm0 = 11,
dwarf_stmm1,
dwarf_stmm2,
dwarf_stmm3,
dwarf_stmm4,
dwarf_stmm5,
dwarf_stmm6,
dwarf_stmm7,
dwarf_xmm0 = 21,
dwarf_xmm1,
dwarf_xmm2,
dwarf_xmm3,
dwarf_xmm4,
dwarf_xmm5,
dwarf_xmm6,
dwarf_xmm7
};
#define GPR_OFFSET(reg) \
(LLVM_EXTENSION offsetof(RegisterContextDarwin_i386::GPR, reg))
#define FPU_OFFSET(reg) \
(LLVM_EXTENSION offsetof(RegisterContextDarwin_i386::FPU, reg) + \
sizeof(RegisterContextDarwin_i386::GPR))
#define EXC_OFFSET(reg) \
(LLVM_EXTENSION offsetof(RegisterContextDarwin_i386::EXC, reg) + \
sizeof(RegisterContextDarwin_i386::GPR) + \
sizeof(RegisterContextDarwin_i386::FPU))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that the
// register state structures are defined correctly and have the correct sizes
// and offsets.
#define DEFINE_GPR(reg, alt) \
#reg, alt, sizeof(((RegisterContextDarwin_i386::GPR *) NULL)->reg), \
GPR_OFFSET(reg), eEncodingUint, eFormatHex
#define DEFINE_FPU_UINT(reg) \
#reg, NULL, sizeof(((RegisterContextDarwin_i386::FPU *) NULL)->reg), \
FPU_OFFSET(reg), eEncodingUint, eFormatHex
#define DEFINE_FPU_VECT(reg, i) \
#reg #i, NULL, \
sizeof(((RegisterContextDarwin_i386::FPU *) NULL)->reg[i].bytes), \
FPU_OFFSET(reg[i]), eEncodingVector, eFormatVectorOfUInt8, \
{LLDB_INVALID_REGNUM, dwarf_##reg##i, \
LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, \
fpu_##reg##i }, \
nullptr, nullptr, nullptr, 0
#define DEFINE_EXC(reg) \
#reg, NULL, sizeof(((RegisterContextDarwin_i386::EXC *) NULL)->reg), \
EXC_OFFSET(reg), eEncodingUint, eFormatHex
#define REG_CONTEXT_SIZE \
(sizeof(RegisterContextDarwin_i386::GPR) + \
sizeof(RegisterContextDarwin_i386::FPU) + \
sizeof(RegisterContextDarwin_i386::EXC))
static RegisterInfo g_register_infos[] = {
// Macro auto defines most stuff eh_frame DWARF
// GENERIC PROCESS PLUGIN LLDB
// =============================== =======================
// =================== ========================= ==================
// =================
{DEFINE_GPR(eax, NULL),
{ehframe_eax, dwarf_eax, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
gpr_eax},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(ebx, NULL),
{ehframe_ebx, dwarf_ebx, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
gpr_ebx},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(ecx, NULL),
{ehframe_ecx, dwarf_ecx, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
gpr_ecx},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(edx, NULL),
{ehframe_edx, dwarf_edx, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
gpr_edx},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(edi, NULL),
{ehframe_edi, dwarf_edi, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
gpr_edi},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(esi, NULL),
{ehframe_esi, dwarf_esi, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
gpr_esi},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(ebp, "fp"),
{ehframe_ebp, dwarf_ebp, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM,
gpr_ebp},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(esp, "sp"),
{ehframe_esp, dwarf_esp, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM,
gpr_esp},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(ss, NULL),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, gpr_ss},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(eflags, "flags"),
{ehframe_eflags, dwarf_eflags, LLDB_REGNUM_GENERIC_FLAGS,
LLDB_INVALID_REGNUM, gpr_eflags},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(eip, "pc"),
{ehframe_eip, dwarf_eip, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM,
gpr_eip},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(cs, NULL),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, gpr_cs},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(ds, NULL),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, gpr_ds},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(es, NULL),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, gpr_es},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(fs, NULL),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, gpr_fs},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_GPR(gs, NULL),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, gpr_gs},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(fcw),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_fcw},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(fsw),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_fsw},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(ftw),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_ftw},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(fop),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_fop},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(ip),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_ip},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(cs),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_cs},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(dp),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_dp},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(ds),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_ds},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(mxcsr),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_mxcsr},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_UINT(mxcsrmask),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, fpu_mxcsrmask},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_FPU_VECT(stmm, 0)},
{DEFINE_FPU_VECT(stmm, 1)},
{DEFINE_FPU_VECT(stmm, 2)},
{DEFINE_FPU_VECT(stmm, 3)},
{DEFINE_FPU_VECT(stmm, 4)},
{DEFINE_FPU_VECT(stmm, 5)},
{DEFINE_FPU_VECT(stmm, 6)},
{DEFINE_FPU_VECT(stmm, 7)},
{DEFINE_FPU_VECT(xmm, 0)},
{DEFINE_FPU_VECT(xmm, 1)},
{DEFINE_FPU_VECT(xmm, 2)},
{DEFINE_FPU_VECT(xmm, 3)},
{DEFINE_FPU_VECT(xmm, 4)},
{DEFINE_FPU_VECT(xmm, 5)},
{DEFINE_FPU_VECT(xmm, 6)},
{DEFINE_FPU_VECT(xmm, 7)},
{DEFINE_EXC(trapno),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, exc_trapno},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_EXC(err),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, exc_err},
nullptr,
nullptr,
nullptr,
0},
{DEFINE_EXC(faultvaddr),
{LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM, exc_faultvaddr},
nullptr,
nullptr,
nullptr,
0}};
static size_t k_num_register_infos = llvm::array_lengthof(g_register_infos);
RegisterContextDarwin_i386::RegisterContextDarwin_i386(
Thread &thread, uint32_t concrete_frame_idx)
: RegisterContext(thread, concrete_frame_idx), gpr(), fpu(), exc() {
uint32_t i;
for (i = 0; i < kNumErrors; i++) {
gpr_errs[i] = -1;
fpu_errs[i] = -1;
exc_errs[i] = -1;
}
}
RegisterContextDarwin_i386::~RegisterContextDarwin_i386() {}
void RegisterContextDarwin_i386::InvalidateAllRegisters() {
InvalidateAllRegisterStates();
}
size_t RegisterContextDarwin_i386::GetRegisterCount() {
assert(k_num_register_infos == k_num_registers);
return k_num_registers;
}
const RegisterInfo *
RegisterContextDarwin_i386::GetRegisterInfoAtIndex(size_t reg) {
assert(k_num_register_infos == k_num_registers);
if (reg < k_num_registers)
return &g_register_infos[reg];
return NULL;
}
size_t RegisterContextDarwin_i386::GetRegisterInfosCount() {
return k_num_register_infos;
}
const RegisterInfo *RegisterContextDarwin_i386::GetRegisterInfos() {
return g_register_infos;
}
// General purpose registers
static uint32_t g_gpr_regnums[] = {
gpr_eax, gpr_ebx, gpr_ecx, gpr_edx, gpr_edi, gpr_esi, gpr_ebp, gpr_esp,
gpr_ss, gpr_eflags, gpr_eip, gpr_cs, gpr_ds, gpr_es, gpr_fs, gpr_gs};
// Floating point registers
static uint32_t g_fpu_regnums[] = {
fpu_fcw, fpu_fsw, fpu_ftw, fpu_fop, fpu_ip, fpu_cs,
fpu_dp, fpu_ds, fpu_mxcsr, fpu_mxcsrmask, fpu_stmm0, fpu_stmm1,
fpu_stmm2, fpu_stmm3, fpu_stmm4, fpu_stmm5, fpu_stmm6, fpu_stmm7,
fpu_xmm0, fpu_xmm1, fpu_xmm2, fpu_xmm3, fpu_xmm4, fpu_xmm5,
fpu_xmm6, fpu_xmm7};
// Exception registers
static uint32_t g_exc_regnums[] = {exc_trapno, exc_err, exc_faultvaddr};
// Number of registers in each register set
const size_t k_num_gpr_registers = llvm::array_lengthof(g_gpr_regnums);
const size_t k_num_fpu_registers = llvm::array_lengthof(g_fpu_regnums);
const size_t k_num_exc_registers = llvm::array_lengthof(g_exc_regnums);
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index of
// zero is for all registers, followed by other registers sets. The register
// information for the all register set need not be filled in.
//----------------------------------------------------------------------
static const RegisterSet g_reg_sets[] = {
{
"General Purpose Registers", "gpr", k_num_gpr_registers, g_gpr_regnums,
},
{"Floating Point Registers", "fpu", k_num_fpu_registers, g_fpu_regnums},
{"Exception State Registers", "exc", k_num_exc_registers, g_exc_regnums}};
const size_t k_num_regsets = llvm::array_lengthof(g_reg_sets);
size_t RegisterContextDarwin_i386::GetRegisterSetCount() {
return k_num_regsets;
}
const RegisterSet *RegisterContextDarwin_i386::GetRegisterSet(size_t reg_set) {
if (reg_set < k_num_regsets)
return &g_reg_sets[reg_set];
return NULL;
}
//----------------------------------------------------------------------
// Register information definitions for 32 bit i386.
//----------------------------------------------------------------------
int RegisterContextDarwin_i386::GetSetForNativeRegNum(int reg_num) {
if (reg_num < fpu_fcw)
return GPRRegSet;
else if (reg_num < exc_trapno)
return FPURegSet;
else if (reg_num < k_num_registers)
return EXCRegSet;
return -1;
}
void RegisterContextDarwin_i386::LogGPR(Log *log, const char *title) {
if (log) {
if (title)
log->Printf("%s", title);
for (uint32_t i = 0; i < k_num_gpr_registers; i++) {
uint32_t reg = gpr_eax + i;
log->Printf("%12s = 0x%8.8x", g_register_infos[reg].name,
(&gpr.eax)[reg]);
}
}
}
int RegisterContextDarwin_i386::ReadGPR(bool force) {
int set = GPRRegSet;
if (force || !RegisterSetIsCached(set)) {
SetError(set, Read, DoReadGPR(GetThreadID(), set, gpr));
}
return GetError(set, Read);
}
int RegisterContextDarwin_i386::ReadFPU(bool force) {
int set = FPURegSet;
if (force || !RegisterSetIsCached(set)) {
SetError(set, Read, DoReadFPU(GetThreadID(), set, fpu));
}
return GetError(set, Read);
}
int RegisterContextDarwin_i386::ReadEXC(bool force) {
int set = EXCRegSet;
if (force || !RegisterSetIsCached(set)) {
SetError(set, Read, DoReadEXC(GetThreadID(), set, exc));
}
return GetError(set, Read);
}
int RegisterContextDarwin_i386::WriteGPR() {
int set = GPRRegSet;
if (!RegisterSetIsCached(set)) {
SetError(set, Write, -1);
return -1;
}
SetError(set, Write, DoWriteGPR(GetThreadID(), set, gpr));
SetError(set, Read, -1);
return GetError(set, Write);
}
int RegisterContextDarwin_i386::WriteFPU() {
int set = FPURegSet;
if (!RegisterSetIsCached(set)) {
SetError(set, Write, -1);
return -1;
}
SetError(set, Write, DoWriteFPU(GetThreadID(), set, fpu));
SetError(set, Read, -1);
return GetError(set, Write);
}
int RegisterContextDarwin_i386::WriteEXC() {
int set = EXCRegSet;
if (!RegisterSetIsCached(set)) {
SetError(set, Write, -1);
return -1;
}
SetError(set, Write, DoWriteEXC(GetThreadID(), set, exc));
SetError(set, Read, -1);
return GetError(set, Write);
}
int RegisterContextDarwin_i386::ReadRegisterSet(uint32_t set, bool force) {
switch (set) {
case GPRRegSet:
return ReadGPR(force);
case FPURegSet:
return ReadFPU(force);
case EXCRegSet:
return ReadEXC(force);
default:
break;
}
return -1;
}
int RegisterContextDarwin_i386::WriteRegisterSet(uint32_t set) {
// Make sure we have a valid context to set.
if (RegisterSetIsCached(set)) {
switch (set) {
case GPRRegSet:
return WriteGPR();
case FPURegSet:
return WriteFPU();
case EXCRegSet:
return WriteEXC();
default:
break;
}
}
return -1;
}
bool RegisterContextDarwin_i386::ReadRegister(const RegisterInfo *reg_info,
RegisterValue &value) {
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
int set = RegisterContextDarwin_i386::GetSetForNativeRegNum(reg);
if (set == -1)
return false;
if (ReadRegisterSet(set, false) != 0)
return false;
switch (reg) {
case gpr_eax:
case gpr_ebx:
case gpr_ecx:
case gpr_edx:
case gpr_edi:
case gpr_esi:
case gpr_ebp:
case gpr_esp:
case gpr_ss:
case gpr_eflags:
case gpr_eip:
case gpr_cs:
case gpr_ds:
case gpr_es:
case gpr_fs:
case gpr_gs:
value = (&gpr.eax)[reg - gpr_eax];
break;
case fpu_fcw:
value = fpu.fcw;
break;
case fpu_fsw:
value = fpu.fsw;
break;
case fpu_ftw:
value = fpu.ftw;
break;
case fpu_fop:
value = fpu.fop;
break;
case fpu_ip:
value = fpu.ip;
break;
case fpu_cs:
value = fpu.cs;
break;
case fpu_dp:
value = fpu.dp;
break;
case fpu_ds:
value = fpu.ds;
break;
case fpu_mxcsr:
value = fpu.mxcsr;
break;
case fpu_mxcsrmask:
value = fpu.mxcsrmask;
break;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
// These values don't fit into scalar types,
// RegisterContext::ReadRegisterBytes() must be used for these registers
//::memcpy (reg_value.value.vector.uint8, fpu.stmm[reg - fpu_stmm0].bytes,
//10);
return false;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
// These values don't fit into scalar types,
// RegisterContext::ReadRegisterBytes() must be used for these registers
//::memcpy (reg_value.value.vector.uint8, fpu.xmm[reg - fpu_xmm0].bytes,
//16);
return false;
case exc_trapno:
value = exc.trapno;
break;
case exc_err:
value = exc.err;
break;
case exc_faultvaddr:
value = exc.faultvaddr;
break;
default:
return false;
}
return true;
}
bool RegisterContextDarwin_i386::WriteRegister(const RegisterInfo *reg_info,
const RegisterValue &value) {
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
int set = GetSetForNativeRegNum(reg);
if (set == -1)
return false;
if (ReadRegisterSet(set, false) != 0)
return false;
switch (reg) {
case gpr_eax:
case gpr_ebx:
case gpr_ecx:
case gpr_edx:
case gpr_edi:
case gpr_esi:
case gpr_ebp:
case gpr_esp:
case gpr_ss:
case gpr_eflags:
case gpr_eip:
case gpr_cs:
case gpr_ds:
case gpr_es:
case gpr_fs:
case gpr_gs:
(&gpr.eax)[reg - gpr_eax] = value.GetAsUInt32();
break;
case fpu_fcw:
fpu.fcw = value.GetAsUInt16();
break;
case fpu_fsw:
fpu.fsw = value.GetAsUInt16();
break;
case fpu_ftw:
fpu.ftw = value.GetAsUInt8();
break;
case fpu_fop:
fpu.fop = value.GetAsUInt16();
break;
case fpu_ip:
fpu.ip = value.GetAsUInt32();
break;
case fpu_cs:
fpu.cs = value.GetAsUInt16();
break;
case fpu_dp:
fpu.dp = value.GetAsUInt32();
break;
case fpu_ds:
fpu.ds = value.GetAsUInt16();
break;
case fpu_mxcsr:
fpu.mxcsr = value.GetAsUInt32();
break;
case fpu_mxcsrmask:
fpu.mxcsrmask = value.GetAsUInt32();
break;
case fpu_stmm0:
case fpu_stmm1:
case fpu_stmm2:
case fpu_stmm3:
case fpu_stmm4:
case fpu_stmm5:
case fpu_stmm6:
case fpu_stmm7:
// These values don't fit into scalar types,
// RegisterContext::ReadRegisterBytes() must be used for these registers
::memcpy(fpu.stmm[reg - fpu_stmm0].bytes, value.GetBytes(),
value.GetByteSize());
return false;
case fpu_xmm0:
case fpu_xmm1:
case fpu_xmm2:
case fpu_xmm3:
case fpu_xmm4:
case fpu_xmm5:
case fpu_xmm6:
case fpu_xmm7:
// These values don't fit into scalar types,
// RegisterContext::ReadRegisterBytes() must be used for these registers
::memcpy(fpu.xmm[reg - fpu_xmm0].bytes, value.GetBytes(),
value.GetByteSize());
return false;
case exc_trapno:
exc.trapno = value.GetAsUInt32();
break;
case exc_err:
exc.err = value.GetAsUInt32();
break;
case exc_faultvaddr:
exc.faultvaddr = value.GetAsUInt32();
break;
default:
return false;
}
return WriteRegisterSet(set) == 0;
}
bool RegisterContextDarwin_i386::ReadAllRegisterValues(
lldb::DataBufferSP &data_sp) {
data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
if (data_sp && ReadGPR(false) == 0 && ReadFPU(false) == 0 &&
ReadEXC(false) == 0) {
uint8_t *dst = data_sp->GetBytes();
::memcpy(dst, &gpr, sizeof(gpr));
dst += sizeof(gpr);
::memcpy(dst, &fpu, sizeof(fpu));
dst += sizeof(gpr);
::memcpy(dst, &exc, sizeof(exc));
return true;
}
return false;
}
bool RegisterContextDarwin_i386::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
if (data_sp && data_sp->GetByteSize() == REG_CONTEXT_SIZE) {
const uint8_t *src = data_sp->GetBytes();
::memcpy(&gpr, src, sizeof(gpr));
src += sizeof(gpr);
::memcpy(&fpu, src, sizeof(fpu));
src += sizeof(gpr);
::memcpy(&exc, src, sizeof(exc));
uint32_t success_count = 0;
if (WriteGPR() == 0)
++success_count;
if (WriteFPU() == 0)
++success_count;
if (WriteEXC() == 0)
++success_count;
return success_count == 3;
}
return false;
}
uint32_t RegisterContextDarwin_i386::ConvertRegisterKindToRegisterNumber(
lldb::RegisterKind kind, uint32_t reg) {
if (kind == eRegisterKindGeneric) {
switch (reg) {
case LLDB_REGNUM_GENERIC_PC:
return gpr_eip;
case LLDB_REGNUM_GENERIC_SP:
return gpr_esp;
case LLDB_REGNUM_GENERIC_FP:
return gpr_ebp;
case LLDB_REGNUM_GENERIC_FLAGS:
return gpr_eflags;
case LLDB_REGNUM_GENERIC_RA:
default:
break;
}
} else if (kind == eRegisterKindEHFrame || kind == eRegisterKindDWARF) {
switch (reg) {
case dwarf_eax:
return gpr_eax;
case dwarf_ecx:
return gpr_ecx;
case dwarf_edx:
return gpr_edx;
case dwarf_ebx:
return gpr_ebx;
case dwarf_esp:
return gpr_esp;
case dwarf_ebp:
return gpr_ebp;
case dwarf_esi:
return gpr_esi;
case dwarf_edi:
return gpr_edi;
case dwarf_eip:
return gpr_eip;
case dwarf_eflags:
return gpr_eflags;
case dwarf_stmm0:
return fpu_stmm0;
case dwarf_stmm1:
return fpu_stmm1;
case dwarf_stmm2:
return fpu_stmm2;
case dwarf_stmm3:
return fpu_stmm3;
case dwarf_stmm4:
return fpu_stmm4;
case dwarf_stmm5:
return fpu_stmm5;
case dwarf_stmm6:
return fpu_stmm6;
case dwarf_stmm7:
return fpu_stmm7;
case dwarf_xmm0:
return fpu_xmm0;
case dwarf_xmm1:
return fpu_xmm1;
case dwarf_xmm2:
return fpu_xmm2;
case dwarf_xmm3:
return fpu_xmm3;
case dwarf_xmm4:
return fpu_xmm4;
case dwarf_xmm5:
return fpu_xmm5;
case dwarf_xmm6:
return fpu_xmm6;
case dwarf_xmm7:
return fpu_xmm7;
default:
break;
}
} else if (kind == eRegisterKindLLDB) {
return reg;
}
return LLDB_INVALID_REGNUM;
}
bool RegisterContextDarwin_i386::HardwareSingleStep(bool enable) {
if (ReadGPR(false) != 0)
return false;
const uint32_t trace_bit = 0x100u;
if (enable) {
// If the trace bit is already set, there is nothing to do
if (gpr.eflags & trace_bit)
return true;
else
gpr.eflags |= trace_bit;
} else {
// If the trace bit is already cleared, there is nothing to do
if (gpr.eflags & trace_bit)
gpr.eflags &= ~trace_bit;
else
return true;
}
return WriteGPR() == 0;
}