blob: 07dab751f4b90c4c3b0fafd2ff57a2014e2b69fd [file] [log] [blame]
//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "GDBRemoteRegisterContext.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/StreamString.h"
// Project includes
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_ehframe_Registers.h"
#include "lldb/Utility/StringExtractorGDBRemote.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;
//----------------------------------------------------------------------
// GDBRemoteRegisterContext constructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::GDBRemoteRegisterContext(
ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once)
: RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once) {
// Resize our vector of bools to contain one bool for every register. We will
// use these boolean values to know when a register value is valid in
// m_reg_data.
m_reg_valid.resize(reg_info.GetNumRegisters());
// Make a heap based buffer that is big enough to store all registers
DataBufferSP reg_data_sp(
new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
m_reg_data.SetData(reg_data_sp);
m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
void GDBRemoteRegisterContext::InvalidateAllRegisters() {
SetAllRegisterValid(false);
}
void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
std::vector<bool>::iterator pos, end = m_reg_valid.end();
for (pos = m_reg_valid.begin(); pos != end; ++pos)
*pos = b;
}
size_t GDBRemoteRegisterContext::GetRegisterCount() {
return m_reg_info.GetNumRegisters();
}
const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
reg_info->byte_size = reg_size;
}
return reg_info;
}
size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
return m_reg_info.GetNumRegisterSets();
}
const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
return m_reg_info.GetRegisterSet(reg_set);
}
bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
RegisterValue &value) {
// Read the register
if (ReadRegisterBytes(reg_info, m_reg_data)) {
const bool partial_data_ok = false;
Status error(value.SetValueFromData(
reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
return error.Success();
}
return false;
}
bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
uint32_t reg, llvm::ArrayRef<uint8_t> data) {
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
if (reg_info == NULL)
return false;
// Invalidate if needed
InvalidateIfNeeded(false);
const size_t reg_byte_size = reg_info->byte_size;
memcpy(const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
data.data(), std::min(data.size(), reg_byte_size));
bool success = data.size() >= reg_byte_size;
if (success) {
SetRegisterIsValid(reg, true);
} else if (data.size() > 0) {
// Only set register is valid to false if we copied some bytes, else leave
// it as it was.
SetRegisterIsValid(reg, false);
}
return success;
}
bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
uint64_t new_reg_val) {
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
if (reg_info == NULL)
return false;
// Early in process startup, we can get a thread that has an invalid byte
// order because the process hasn't been completely set up yet (see the ctor
// where the byte order is setfrom the process). If that's the case, we
// can't set the value here.
if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
return false;
}
// Invalidate if needed
InvalidateIfNeeded(false);
DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
// If our register context and our register info disagree, which should never
// happen, don't overwrite past the end of the buffer.
if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
return false;
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == NULL)
return false;
if (data.CopyByteOrderedData(0, // src offset
reg_info->byte_size, // src length
dst, // dst
reg_info->byte_size, // dst length
m_reg_data.GetByteOrder())) // dst byte order
{
SetRegisterIsValid(reg, true);
return true;
}
return false;
}
// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
bool GDBRemoteRegisterContext::GetPrimordialRegister(
const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
if (DataBufferSP buffer_sp =
gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
return PrivateSetRegisterValue(
lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
buffer_sp->GetByteSize()));
return false;
}
bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
DataExtractor &data) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == NULL || thread == NULL)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
InvalidateIfNeeded(false);
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (!GetRegisterIsValid(reg)) {
if (m_read_all_at_once) {
if (DataBufferSP buffer_sp =
gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
buffer_sp->GetBytes(),
std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
SetAllRegisterValid(true);
return true;
}
}
return false;
}
if (reg_info->value_regs) {
// Process this composite register request by delegating to the
// constituent primordial registers.
// Index of the primordial register.
bool success = true;
for (uint32_t idx = 0; success; ++idx) {
const uint32_t prim_reg = reg_info->value_regs[idx];
if (prim_reg == LLDB_INVALID_REGNUM)
break;
// We have a valid primordial register as our constituent. Grab the
// corresponding register info.
const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
if (prim_reg_info == NULL)
success = false;
else {
// Read the containing register if it hasn't already been read
if (!GetRegisterIsValid(prim_reg))
success = GetPrimordialRegister(prim_reg_info, gdb_comm);
}
}
if (success) {
// If we reach this point, all primordial register requests have
// succeeded. Validate this composite register.
SetRegisterIsValid(reg_info, true);
}
} else {
// Get each register individually
GetPrimordialRegister(reg_info, gdb_comm);
}
// Make sure we got a valid register value after reading it
if (!GetRegisterIsValid(reg))
return false;
}
if (&data != &m_reg_data) {
#if defined(LLDB_CONFIGURATION_DEBUG)
assert(m_reg_data.GetByteSize() >=
reg_info->byte_offset + reg_info->byte_size);
#endif
// If our register context and our register info disagree, which should
// never happen, don't read past the end of the buffer.
if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
return false;
// If we aren't extracting into our own buffer (which only happens when
// this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
// we transfer bytes from our buffer into the data buffer that was passed
// in
data.SetByteOrder(m_reg_data.GetByteOrder());
data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
}
return true;
}
bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
const RegisterValue &value) {
DataExtractor data;
if (value.GetData(data))
return WriteRegisterBytes(reg_info, data, 0);
return false;
}
// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
bool GDBRemoteRegisterContext::SetPrimordialRegister(
const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
StreamString packet;
StringExtractorGDBRemote response;
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
// Invalidate just this register
SetRegisterIsValid(reg, false);
return gdb_comm.WriteRegister(
m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
{m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
reg_info->byte_size});
}
bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
DataExtractor &data,
uint32_t data_offset) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == NULL || thread == NULL)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
#if defined(LLDB_CONFIGURATION_DEBUG)
assert(m_reg_data.GetByteSize() >=
reg_info->byte_offset + reg_info->byte_size);
#endif
// If our register context and our register info disagree, which should never
// happen, don't overwrite past the end of the buffer.
if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
return false;
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == NULL)
return false;
if (data.CopyByteOrderedData(data_offset, // src offset
reg_info->byte_size, // src length
dst, // dst
reg_info->byte_size, // dst length
m_reg_data.GetByteOrder())) // dst byte order
{
GDBRemoteClientBase::Lock lock(gdb_comm, false);
if (lock) {
if (m_read_all_at_once) {
// Invalidate all register values
InvalidateIfNeeded(true);
// Set all registers in one packet
if (gdb_comm.WriteAllRegisters(
m_thread.GetProtocolID(),
{m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
{
SetAllRegisterValid(false);
return true;
}
} else {
bool success = true;
if (reg_info->value_regs) {
// This register is part of another register. In this case we read
// the actual register data for any "value_regs", and once all that
// data is read, we will have enough data in our register context
// bytes for the value of this register
// Invalidate this composite register first.
for (uint32_t idx = 0; success; ++idx) {
const uint32_t reg = reg_info->value_regs[idx];
if (reg == LLDB_INVALID_REGNUM)
break;
// We have a valid primordial register as our constituent. Grab the
// corresponding register info.
const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
if (value_reg_info == NULL)
success = false;
else
success = SetPrimordialRegister(value_reg_info, gdb_comm);
}
} else {
// This is an actual register, write it
success = SetPrimordialRegister(reg_info, gdb_comm);
}
// Check if writing this register will invalidate any other register
// values? If so, invalidate them
if (reg_info->invalidate_regs) {
for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
reg != LLDB_INVALID_REGNUM;
reg = reg_info->invalidate_regs[++idx]) {
SetRegisterIsValid(reg, false);
}
}
return success;
}
} else {
Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
GDBR_LOG_PACKETS));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
gdb_comm.DumpHistory(strm);
log->Printf("error: failed to get packet sequence mutex, not sending "
"write register for \"%s\":\n%s",
reg_info->name, strm.GetData());
} else
log->Printf("error: failed to get packet sequence mutex, not sending "
"write register for \"%s\"",
reg_info->name);
}
}
}
return false;
}
bool GDBRemoteRegisterContext::ReadAllRegisterValues(
RegisterCheckpoint &reg_checkpoint) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == NULL || thread == NULL)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
uint32_t save_id = 0;
if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
reg_checkpoint.SetID(save_id);
reg_checkpoint.GetData().reset();
return true;
} else {
reg_checkpoint.SetID(0); // Invalid save ID is zero
return ReadAllRegisterValues(reg_checkpoint.GetData());
}
}
bool GDBRemoteRegisterContext::WriteAllRegisterValues(
const RegisterCheckpoint &reg_checkpoint) {
uint32_t save_id = reg_checkpoint.GetID();
if (save_id != 0) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == NULL || thread == NULL)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
} else {
return WriteAllRegisterValues(reg_checkpoint.GetData());
}
}
bool GDBRemoteRegisterContext::ReadAllRegisterValues(
lldb::DataBufferSP &data_sp) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == NULL || thread == NULL)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
const bool use_g_packet =
gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
GDBRemoteClientBase::Lock lock(gdb_comm, false);
if (lock) {
if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
InvalidateAllRegisters();
if (use_g_packet &&
(data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
return true;
// We're going to read each register
// individually and store them as binary data in a buffer.
const RegisterInfo *reg_info;
for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL; i++) {
if (reg_info
->value_regs) // skip registers that are slices of real registers
continue;
ReadRegisterBytes(reg_info, m_reg_data);
// ReadRegisterBytes saves the contents of the register in to the
// m_reg_data buffer
}
data_sp.reset(new DataBufferHeap(m_reg_data.GetDataStart(),
m_reg_info.GetRegisterDataByteSize()));
return true;
} else {
Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
GDBR_LOG_PACKETS));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
gdb_comm.DumpHistory(strm);
log->Printf("error: failed to get packet sequence mutex, not sending "
"read all registers:\n%s",
strm.GetData());
} else
log->Printf("error: failed to get packet sequence mutex, not sending "
"read all registers");
}
}
data_sp.reset();
return false;
}
bool GDBRemoteRegisterContext::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
return false;
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == NULL || thread == NULL)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
const bool use_g_packet =
gdb_comm.AvoidGPackets((ProcessGDBRemote *)process) == false;
GDBRemoteClientBase::Lock lock(gdb_comm, false);
if (lock) {
// The data_sp contains the G response packet.
if (use_g_packet) {
if (gdb_comm.WriteAllRegisters(
m_thread.GetProtocolID(),
{data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
return true;
uint32_t num_restored = 0;
// We need to manually go through all of the registers and restore them
// manually
DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
m_reg_data.GetAddressByteSize());
const RegisterInfo *reg_info;
// The g packet contents may either include the slice registers
// (registers defined in terms of other registers, e.g. eax is a subset
// of rax) or not. The slice registers should NOT be in the g packet,
// but some implementations may incorrectly include them.
//
// If the slice registers are included in the packet, we must step over
// the slice registers when parsing the packet -- relying on the
// RegisterInfo byte_offset field would be incorrect. If the slice
// registers are not included, then using the byte_offset values into the
// data buffer is the best way to find individual register values.
uint64_t size_including_slice_registers = 0;
uint64_t size_not_including_slice_registers = 0;
uint64_t size_by_highest_offset = 0;
for (uint32_t reg_idx = 0;
(reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL; ++reg_idx) {
size_including_slice_registers += reg_info->byte_size;
if (reg_info->value_regs == NULL)
size_not_including_slice_registers += reg_info->byte_size;
if (reg_info->byte_offset >= size_by_highest_offset)
size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
}
bool use_byte_offset_into_buffer;
if (size_by_highest_offset == restore_data.GetByteSize()) {
// The size of the packet agrees with the highest offset: + size in the
// register file
use_byte_offset_into_buffer = true;
} else if (size_not_including_slice_registers ==
restore_data.GetByteSize()) {
// The size of the packet is the same as concatenating all of the
// registers sequentially, skipping the slice registers
use_byte_offset_into_buffer = true;
} else if (size_including_slice_registers == restore_data.GetByteSize()) {
// The slice registers are present in the packet (when they shouldn't
// be). Don't try to use the RegisterInfo byte_offset into the
// restore_data, it will point to the wrong place.
use_byte_offset_into_buffer = false;
} else {
// None of our expected sizes match the actual g packet data we're
// looking at. The most conservative approach here is to use the
// running total byte offset.
use_byte_offset_into_buffer = false;
}
// In case our register definitions don't include the correct offsets,
// keep track of the size of each reg & compute offset based on that.
uint32_t running_byte_offset = 0;
for (uint32_t reg_idx = 0;
(reg_info = GetRegisterInfoAtIndex(reg_idx)) != NULL;
++reg_idx, running_byte_offset += reg_info->byte_size) {
// Skip composite aka slice registers (e.g. eax is a slice of rax).
if (reg_info->value_regs)
continue;
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
uint32_t register_offset;
if (use_byte_offset_into_buffer) {
register_offset = reg_info->byte_offset;
} else {
register_offset = running_byte_offset;
}
const uint32_t reg_byte_size = reg_info->byte_size;
const uint8_t *restore_src =
restore_data.PeekData(register_offset, reg_byte_size);
if (restore_src) {
SetRegisterIsValid(reg, false);
if (gdb_comm.WriteRegister(
m_thread.GetProtocolID(),
reg_info->kinds[eRegisterKindProcessPlugin],
{restore_src, reg_byte_size}))
++num_restored;
}
}
return num_restored > 0;
} else {
// For the use_g_packet == false case, we're going to write each register
// individually. The data buffer is binary data in this case, instead of
// ascii characters.
bool arm64_debugserver = false;
if (m_thread.GetProcess().get()) {
const ArchSpec &arch =
m_thread.GetProcess()->GetTarget().GetArchitecture();
if (arch.IsValid() && arch.GetMachine() == llvm::Triple::aarch64 &&
arch.GetTriple().getVendor() == llvm::Triple::Apple &&
arch.GetTriple().getOS() == llvm::Triple::IOS) {
arm64_debugserver = true;
}
}
uint32_t num_restored = 0;
const RegisterInfo *reg_info;
for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != NULL;
i++) {
if (reg_info->value_regs) // skip registers that are slices of real
// registers
continue;
// Skip the fpsr and fpcr floating point status/control register
// writing to work around a bug in an older version of debugserver that
// would lead to register context corruption when writing fpsr/fpcr.
if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
strcmp(reg_info->name, "fpcr") == 0)) {
continue;
}
SetRegisterIsValid(reg_info, false);
if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
reg_info->kinds[eRegisterKindProcessPlugin],
{data_sp->GetBytes() + reg_info->byte_offset,
reg_info->byte_size}))
++num_restored;
}
return num_restored > 0;
}
} else {
Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
GDBR_LOG_PACKETS));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
gdb_comm.DumpHistory(strm);
log->Printf("error: failed to get packet sequence mutex, not sending "
"write all registers:\n%s",
strm.GetData());
} else
log->Printf("error: failed to get packet sequence mutex, not sending "
"write all registers");
}
}
return false;
}
uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
lldb::RegisterKind kind, uint32_t num) {
return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
}
void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
// For Advanced SIMD and VFP register mapping.
static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1)
static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3)
static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5)
static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7)
static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9)
static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11)
static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13)
static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15)
static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17)
static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19)
static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
static uint32_t g_q0_regs[] = {
26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
static uint32_t g_q1_regs[] = {
30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
static uint32_t g_q2_regs[] = {
34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
static uint32_t g_q3_regs[] = {
38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
static uint32_t g_q4_regs[] = {
42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
static uint32_t g_q5_regs[] = {
46, 47, 48, 49,
LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
static uint32_t g_q6_regs[] = {
50, 51, 52, 53,
LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
static uint32_t g_q7_regs[] = {
54, 55, 56, 57,
LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17)
static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19)
static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
// This is our array of composite registers, with each element coming from
// the above register mappings.
static uint32_t *g_composites[] = {
g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs,
g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs,
g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs,
g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs,
g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
g_q14_regs, g_q15_regs};
// clang-format off
static RegisterInfo g_register_infos[] = {
// NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN
// ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ========
{ "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 },
{ "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 },
{ "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 },
{ "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 },
{ "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 },
{ "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 },
{ "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 },
{ "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 },
{ "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 },
{ "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 },
{ "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 },
{ "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 },
{ "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 },
{ "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 },
{ "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 },
{ "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 },
{ "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 },
{ "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 },
{ "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 },
{ "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 },
{ "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 },
{ "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 },
{ "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 },
{ "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 },
{ "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 },
{ "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 },
{ "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 },
{ "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 },
{ "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 },
{ "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 },
{ "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 },
{ "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 },
{ "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 },
{ "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 },
{ "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 },
{ "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 },
{ "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 },
{ "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 },
{ "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 },
{ "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 },
{ "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 },
{ "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 },
{ "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 },
{ "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 },
{ "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 },
{ "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 },
{ "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 },
{ "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 },
{ "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 },
{ "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 },
{ "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 },
{ "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 },
{ "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 },
{ "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 },
{ "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 },
{ "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 },
{ "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 },
{ "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 },
{ "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 },
{ "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 },
{ "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 },
{ "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 },
{ "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 },
{ "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 },
{ "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 },
{ "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 },
{ "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 },
{ "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 },
{ "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 },
{ "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 },
{ "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 },
{ "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 },
{ "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 },
{ "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 },
{ "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 },
{ "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 },
{ "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 },
{ "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 },
{ "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 },
{ "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 },
{ "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 },
{ "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 },
{ "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 },
{ "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 },
{ "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 },
{ "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 },
{ "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 },
{ "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 },
{ "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 },
{ "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 },
{ "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 },
{ "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 },
{ "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 },
{ "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 },
{ "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 },
{ "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 },
{ "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 },
{ "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 },
{ "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 },
{ "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 },
{ "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 },
{ "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 },
{ "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 },
{ "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 },
{ "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 },
{ "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 },
{ "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 }
};
// clang-format on
static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
static ConstString gpr_reg_set("General Purpose Registers");
static ConstString sfp_reg_set("Software Floating Point Registers");
static ConstString vfp_reg_set("Floating Point Registers");
size_t i;
if (from_scratch) {
// Calculate the offsets of the registers
// Note that the layout of the "composite" registers (d0-d15 and q0-q15)
// which comes after the "primordial" registers is important. This enables
// us to calculate the offset of the composite register by using the offset
// of its first primordial register. For example, to calculate the offset
// of q0, use s0's offset.
if (g_register_infos[2].byte_offset == 0) {
uint32_t byte_offset = 0;
for (i = 0; i < num_registers; ++i) {
// For primordial registers, increment the byte_offset by the byte_size
// to arrive at the byte_offset for the next register. Otherwise, we
// have a composite register whose offset can be calculated by
// consulting the offset of its first primordial register.
if (!g_register_infos[i].value_regs) {
g_register_infos[i].byte_offset = byte_offset;
byte_offset += g_register_infos[i].byte_size;
} else {
const uint32_t first_primordial_reg =
g_register_infos[i].value_regs[0];
g_register_infos[i].byte_offset =
g_register_infos[first_primordial_reg].byte_offset;
}
}
}
for (i = 0; i < num_registers; ++i) {
ConstString name;
ConstString alt_name;
if (g_register_infos[i].name && g_register_infos[i].name[0])
name.SetCString(g_register_infos[i].name);
if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
alt_name.SetCString(g_register_infos[i].alt_name);
if (i <= 15 || i == 25)
AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
else if (i <= 24)
AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
else
AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
}
} else {
// Add composite registers to our primordial registers, then.
const size_t num_composites = llvm::array_lengthof(g_composites);
const size_t num_dynamic_regs = GetNumRegisters();
const size_t num_common_regs = num_registers - num_composites;
RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
// First we need to validate that all registers that we already have match
// the non composite regs. If so, then we can add the registers, else we
// need to bail
bool match = true;
if (num_dynamic_regs == num_common_regs) {
for (i = 0; match && i < num_dynamic_regs; ++i) {
// Make sure all register names match
if (m_regs[i].name && g_register_infos[i].name) {
if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
match = false;
break;
}
}
// Make sure all register byte sizes match
if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
match = false;
break;
}
}
} else {
// Wrong number of registers.
match = false;
}
// If "match" is true, then we can add extra registers.
if (match) {
for (i = 0; i < num_composites; ++i) {
ConstString name;
ConstString alt_name;
const uint32_t first_primordial_reg =
g_comp_register_infos[i].value_regs[0];
const char *reg_name = g_register_infos[first_primordial_reg].name;
if (reg_name && reg_name[0]) {
for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
// Find a matching primordial register info entry.
if (reg_info && reg_info->name &&
::strcasecmp(reg_info->name, reg_name) == 0) {
// The name matches the existing primordial entry. Find and
// assign the offset, and then add this composite register entry.
g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
name.SetCString(g_comp_register_infos[i].name);
AddRegister(g_comp_register_infos[i], name, alt_name,
vfp_reg_set);
}
}
}
}
}
}
}