blob: 00265361f86558642bc3d9d610b6ca77a9dfb07a [file] [log] [blame]
//===-- DWARFDebugArangeSet.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DWARFDebugArangeSet.h"
#include "SymbolFileDWARF.h"
#include "lldb/Utility/Stream.h"
#include <assert.h>
using namespace lldb_private;
DWARFDebugArangeSet::DWARFDebugArangeSet()
: m_offset(DW_INVALID_OFFSET), m_header(), m_arange_descriptors() {
m_header.length = 0;
m_header.version = 0;
m_header.cu_offset = 0;
m_header.addr_size = 0;
m_header.seg_size = 0;
}
void DWARFDebugArangeSet::Clear() {
m_offset = DW_INVALID_OFFSET;
m_header.length = 0;
m_header.version = 0;
m_header.cu_offset = 0;
m_header.addr_size = 0;
m_header.seg_size = 0;
m_arange_descriptors.clear();
}
void DWARFDebugArangeSet::SetHeader(uint16_t version, uint32_t cu_offset,
uint8_t addr_size, uint8_t seg_size) {
m_header.version = version;
m_header.cu_offset = cu_offset;
m_header.addr_size = addr_size;
m_header.seg_size = seg_size;
}
void DWARFDebugArangeSet::Compact() {
if (m_arange_descriptors.empty())
return;
// Iterate through all arange descriptors and combine any ranges that overlap
// or have matching boundaries. The m_arange_descriptors are assumed to be in
// ascending order after being built by adding descriptors using the
// AddDescriptor method.
uint32_t i = 0;
while (i + 1 < m_arange_descriptors.size()) {
if (m_arange_descriptors[i].end_address() >=
m_arange_descriptors[i + 1].address) {
// The current range ends at or exceeds the start of the next address
// range. Compute the max end address between the two and use that to
// make the new length.
const dw_addr_t max_end_addr =
std::max(m_arange_descriptors[i].end_address(),
m_arange_descriptors[i + 1].end_address());
m_arange_descriptors[i].length =
max_end_addr - m_arange_descriptors[i].address;
// Now remove the next entry as it was just combined with the previous
// one.
m_arange_descriptors.erase(m_arange_descriptors.begin() + i + 1);
} else {
// Discontiguous address range, just proceed to the next one.
++i;
}
}
}
//----------------------------------------------------------------------
// Compare function DWARFDebugArangeSet::Descriptor structures
//----------------------------------------------------------------------
static bool DescriptorLessThan(const DWARFDebugArangeSet::Descriptor &range1,
const DWARFDebugArangeSet::Descriptor &range2) {
return range1.address < range2.address;
}
//----------------------------------------------------------------------
// Add a range descriptor and keep things sorted so we can easily compact the
// ranges before being saved or used.
//----------------------------------------------------------------------
void DWARFDebugArangeSet::AddDescriptor(
const DWARFDebugArangeSet::Descriptor &range) {
if (m_arange_descriptors.empty()) {
m_arange_descriptors.push_back(range);
return;
}
DescriptorIter end = m_arange_descriptors.end();
DescriptorIter pos =
lower_bound(m_arange_descriptors.begin(), end, range, DescriptorLessThan);
const dw_addr_t range_end_addr = range.end_address();
if (pos != end) {
const dw_addr_t found_end_addr = pos->end_address();
if (range.address < pos->address) {
if (range_end_addr < pos->address) {
// Non-contiguous entries, add this one before the found entry
m_arange_descriptors.insert(pos, range);
} else if (range_end_addr == pos->address) {
// The top end of 'range' is the lower end of the entry pointed to by
// 'pos'. We can combine range with the entry we found by setting the
// starting address and increasing the length since they don't overlap.
pos->address = range.address;
pos->length += range.length;
} else {
// We can combine these two and make sure the largest end address is
// used to make end address.
pos->address = range.address;
pos->length = std::max(found_end_addr, range_end_addr) - pos->address;
}
} else if (range.address == pos->address) {
pos->length = std::max(pos->length, range.length);
}
} else {
// NOTE: 'pos' points to entry past the end which is ok for insert,
// don't use otherwise!!!
const dw_addr_t max_addr = m_arange_descriptors.back().end_address();
if (max_addr < range.address) {
// Non-contiguous entries, add this one before the found entry
m_arange_descriptors.insert(pos, range);
} else if (max_addr == range.address) {
m_arange_descriptors.back().length += range.length;
} else {
m_arange_descriptors.back().length = std::max(max_addr, range_end_addr) -
m_arange_descriptors.back().address;
}
}
}
bool DWARFDebugArangeSet::Extract(const DWARFDataExtractor &data,
lldb::offset_t *offset_ptr) {
if (data.ValidOffset(*offset_ptr)) {
m_arange_descriptors.clear();
m_offset = *offset_ptr;
// 7.20 Address Range Table
//
// Each set of entries in the table of address ranges contained in the
// .debug_aranges section begins with a header consisting of: a 4-byte
// length containing the length of the set of entries for this compilation
// unit, not including the length field itself; a 2-byte version identifier
// containing the value 2 for DWARF Version 2; a 4-byte offset into
// the.debug_infosection; a 1-byte unsigned integer containing the size in
// bytes of an address (or the offset portion of an address for segmented
// addressing) on the target system; and a 1-byte unsigned integer
// containing the size in bytes of a segment descriptor on the target
// system. This header is followed by a series of tuples. Each tuple
// consists of an address and a length, each in the size appropriate for an
// address on the target architecture.
m_header.length = data.GetDWARFInitialLength(offset_ptr);
m_header.version = data.GetU16(offset_ptr);
m_header.cu_offset = data.GetDWARFOffset(offset_ptr);
m_header.addr_size = data.GetU8(offset_ptr);
m_header.seg_size = data.GetU8(offset_ptr);
// Try to avoid reading invalid arange sets by making sure:
// 1 - the version looks good
// 2 - the address byte size looks plausible
// 3 - the length seems to make sense
// size looks plausible
if ((m_header.version >= 2 && m_header.version <= 5) &&
(m_header.addr_size == 4 || m_header.addr_size == 8) &&
(m_header.length > 0)) {
if (data.ValidOffset(m_offset + sizeof(m_header.length) +
m_header.length - 1)) {
// The first tuple following the header in each set begins at an offset
// that is a multiple of the size of a single tuple (that is, twice the
// size of an address). The header is padded, if necessary, to the
// appropriate boundary.
const uint32_t header_size = *offset_ptr - m_offset;
const uint32_t tuple_size = m_header.addr_size << 1;
uint32_t first_tuple_offset = 0;
while (first_tuple_offset < header_size)
first_tuple_offset += tuple_size;
*offset_ptr = m_offset + first_tuple_offset;
Descriptor arangeDescriptor;
static_assert(
sizeof(arangeDescriptor.address) == sizeof(arangeDescriptor.length),
"DWARFDebugArangeSet::Descriptor.address and "
"DWARFDebugArangeSet::Descriptor.length must have same size");
while (data.ValidOffset(*offset_ptr)) {
arangeDescriptor.address =
data.GetMaxU64(offset_ptr, m_header.addr_size);
arangeDescriptor.length =
data.GetMaxU64(offset_ptr, m_header.addr_size);
// Each set of tuples is terminated by a 0 for the address and 0 for
// the length.
if (arangeDescriptor.address || arangeDescriptor.length)
m_arange_descriptors.push_back(arangeDescriptor);
else
break; // We are done if we get a zero address and length
}
}
#if defined(LLDB_CONFIGURATION_DEBUG)
else {
printf("warning: .debug_arange set length is too large arange data at "
"0x%8.8x: length=0x%8.8x, version=0x%4.4x, cu_offset=0x%8.8x, "
"addr_size=%u, seg_size=%u\n",
m_offset, m_header.length, m_header.version, m_header.cu_offset,
m_header.addr_size, m_header.seg_size);
}
#endif
}
#if defined(LLDB_CONFIGURATION_DEBUG)
else {
printf("warning: .debug_arange set has bad header at 0x%8.8x: "
"length=0x%8.8x, version=0x%4.4x, cu_offset=0x%8.8x, "
"addr_size=%u, seg_size=%u\n",
m_offset, m_header.length, m_header.version, m_header.cu_offset,
m_header.addr_size, m_header.seg_size);
}
#endif
return !m_arange_descriptors.empty();
}
return false;
}
dw_offset_t DWARFDebugArangeSet::GetOffsetOfNextEntry() const {
return m_offset + m_header.length + 4;
}
void DWARFDebugArangeSet::Dump(Stream *s) const {
s->Printf("Address Range Header: length = 0x%8.8x, version = 0x%4.4x, "
"cu_offset = 0x%8.8x, addr_size = 0x%2.2x, seg_size = 0x%2.2x\n",
m_header.length, m_header.version, m_header.cu_offset,
m_header.addr_size, m_header.seg_size);
const uint32_t hex_width = m_header.addr_size * 2;
DescriptorConstIter pos;
DescriptorConstIter end = m_arange_descriptors.end();
for (pos = m_arange_descriptors.begin(); pos != end; ++pos)
s->Printf("[0x%*.*" PRIx64 " - 0x%*.*" PRIx64 ")\n", hex_width, hex_width,
pos->address, hex_width, hex_width, pos->end_address());
}
class DescriptorContainsAddress {
public:
DescriptorContainsAddress(dw_addr_t address) : m_address(address) {}
bool operator()(const DWARFDebugArangeSet::Descriptor &desc) const {
return (m_address >= desc.address) &&
(m_address < (desc.address + desc.length));
}
private:
const dw_addr_t m_address;
};
dw_offset_t DWARFDebugArangeSet::FindAddress(dw_addr_t address) const {
DescriptorConstIter end = m_arange_descriptors.end();
DescriptorConstIter pos =
std::find_if(m_arange_descriptors.begin(), end, // Range
DescriptorContainsAddress(address)); // Predicate
if (pos != end)
return m_header.cu_offset;
return DW_INVALID_OFFSET;
}