blob: adcd65002191987c0674047e733462b6ac202f90 [file] [log] [blame]
//===-- DNBArchImplI386.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__i386__) || defined(__x86_64__)
#include <sys/cdefs.h>
#include "DNBLog.h"
#include "MacOSX/i386/DNBArchImplI386.h"
#include "MachProcess.h"
#include "MachThread.h"
extern "C" bool CPUHasAVX(); // Defined over in DNBArchImplX86_64.cpp
extern "C" bool CPUHasAVX512f(); // Defined over in DNBArchImplX86_64.cpp
#if defined(LLDB_DEBUGSERVER_RELEASE) || defined(LLDB_DEBUGSERVER_DEBUG)
enum debugState { debugStateUnknown, debugStateOff, debugStateOn };
static debugState sFPUDebugState = debugStateUnknown;
static debugState sAVXForceState = debugStateUnknown;
static bool DebugFPURegs() {
if (sFPUDebugState == debugStateUnknown) {
if (getenv("DNB_DEBUG_FPU_REGS"))
sFPUDebugState = debugStateOn;
else
sFPUDebugState = debugStateOff;
}
return (sFPUDebugState == debugStateOn);
}
static bool ForceAVXRegs() {
if (sFPUDebugState == debugStateUnknown) {
if (getenv("DNB_DEBUG_X86_FORCE_AVX_REGS"))
sAVXForceState = debugStateOn;
else
sAVXForceState = debugStateOff;
}
return (sAVXForceState == debugStateOn);
}
#define DEBUG_FPU_REGS (DebugFPURegs())
#define FORCE_AVX_REGS (ForceAVXRegs())
#else
#define DEBUG_FPU_REGS (0)
#define FORCE_AVX_REGS (0)
#endif
enum {
gpr_eax = 0,
gpr_ebx = 1,
gpr_ecx = 2,
gpr_edx = 3,
gpr_edi = 4,
gpr_esi = 5,
gpr_ebp = 6,
gpr_esp = 7,
gpr_ss = 8,
gpr_eflags = 9,
gpr_eip = 10,
gpr_cs = 11,
gpr_ds = 12,
gpr_es = 13,
gpr_fs = 14,
gpr_gs = 15,
gpr_ax,
gpr_bx,
gpr_cx,
gpr_dx,
gpr_di,
gpr_si,
gpr_bp,
gpr_sp,
gpr_ah,
gpr_bh,
gpr_ch,
gpr_dh,
gpr_al,
gpr_bl,
gpr_cl,
gpr_dl,
gpr_dil,
gpr_sil,
gpr_bpl,
gpr_spl,
k_num_gpr_regs
};
enum {
fpu_fcw,
fpu_fsw,
fpu_ftw,
fpu_fop,
fpu_ip,
fpu_cs,
fpu_dp,
fpu_ds,
fpu_mxcsr,
fpu_mxcsrmask,
fpu_stmm0,
fpu_stmm1,
fpu_stmm2,
fpu_stmm3,
fpu_stmm4,
fpu_stmm5,
fpu_stmm6,
fpu_stmm7,
fpu_xmm0,
fpu_xmm1,
fpu_xmm2,
fpu_xmm3,
fpu_xmm4,
fpu_xmm5,
fpu_xmm6,
fpu_xmm7,
fpu_ymm0,
fpu_ymm1,
fpu_ymm2,
fpu_ymm3,
fpu_ymm4,
fpu_ymm5,
fpu_ymm6,
fpu_ymm7,
fpu_k0,
fpu_k1,
fpu_k2,
fpu_k3,
fpu_k4,
fpu_k5,
fpu_k6,
fpu_k7,
fpu_zmm0,
fpu_zmm1,
fpu_zmm2,
fpu_zmm3,
fpu_zmm4,
fpu_zmm5,
fpu_zmm6,
fpu_zmm7,
k_num_fpu_regs,
// Aliases
fpu_fctrl = fpu_fcw,
fpu_fstat = fpu_fsw,
fpu_ftag = fpu_ftw,
fpu_fiseg = fpu_cs,
fpu_fioff = fpu_ip,
fpu_foseg = fpu_ds,
fpu_fooff = fpu_dp
};
enum {
exc_trapno,
exc_err,
exc_faultvaddr,
k_num_exc_regs,
};
enum {
ehframe_eax = 0,
ehframe_ecx,
ehframe_edx,
ehframe_ebx,
// On i386 Darwin the eh_frame register numbers for ebp and esp are reversed
// from DWARF.
// It's due to an ancient compiler bug in the output of the eh_frame.
// Specifically, on i386 darwin eh_frame, 4 is ebp, 5 is esp.
// On i386 darwin debug_frame (and debug_info), 4 is esp, 5 is ebp.
ehframe_ebp,
ehframe_esp,
ehframe_esi,
ehframe_edi,
ehframe_eip,
ehframe_eflags
};
enum {
dwarf_eax = 0,
dwarf_ecx,
dwarf_edx,
dwarf_ebx,
dwarf_esp,
dwarf_ebp,
dwarf_esi,
dwarf_edi,
dwarf_eip,
dwarf_eflags,
dwarf_stmm0 = 11,
dwarf_stmm1,
dwarf_stmm2,
dwarf_stmm3,
dwarf_stmm4,
dwarf_stmm5,
dwarf_stmm6,
dwarf_stmm7,
dwarf_xmm0 = 21,
dwarf_xmm1,
dwarf_xmm2,
dwarf_xmm3,
dwarf_xmm4,
dwarf_xmm5,
dwarf_xmm6,
dwarf_xmm7,
dwarf_ymm0 = dwarf_xmm0,
dwarf_ymm1 = dwarf_xmm1,
dwarf_ymm2 = dwarf_xmm2,
dwarf_ymm3 = dwarf_xmm3,
dwarf_ymm4 = dwarf_xmm4,
dwarf_ymm5 = dwarf_xmm5,
dwarf_ymm6 = dwarf_xmm6,
dwarf_ymm7 = dwarf_xmm7,
dwarf_zmm0 = dwarf_xmm0,
dwarf_zmm1 = dwarf_xmm1,
dwarf_zmm2 = dwarf_xmm2,
dwarf_zmm3 = dwarf_xmm3,
dwarf_zmm4 = dwarf_xmm4,
dwarf_zmm5 = dwarf_xmm5,
dwarf_zmm6 = dwarf_xmm6,
dwarf_zmm7 = dwarf_xmm7,
dwarf_k0 = 118,
dwarf_k1,
dwarf_k2,
dwarf_k3,
dwarf_k4,
dwarf_k5,
dwarf_k6,
dwarf_k7,
};
enum {
debugserver_eax = 0,
debugserver_ecx = 1,
debugserver_edx = 2,
debugserver_ebx = 3,
debugserver_esp = 4,
debugserver_ebp = 5,
debugserver_esi = 6,
debugserver_edi = 7,
debugserver_eip = 8,
debugserver_eflags = 9,
debugserver_cs = 10,
debugserver_ss = 11,
debugserver_ds = 12,
debugserver_es = 13,
debugserver_fs = 14,
debugserver_gs = 15,
debugserver_stmm0 = 16,
debugserver_stmm1 = 17,
debugserver_stmm2 = 18,
debugserver_stmm3 = 19,
debugserver_stmm4 = 20,
debugserver_stmm5 = 21,
debugserver_stmm6 = 22,
debugserver_stmm7 = 23,
debugserver_fctrl = 24,
debugserver_fcw = debugserver_fctrl,
debugserver_fstat = 25,
debugserver_fsw = debugserver_fstat,
debugserver_ftag = 26,
debugserver_ftw = debugserver_ftag,
debugserver_fiseg = 27,
debugserver_fpu_cs = debugserver_fiseg,
debugserver_fioff = 28,
debugserver_ip = debugserver_fioff,
debugserver_foseg = 29,
debugserver_fpu_ds = debugserver_foseg,
debugserver_fooff = 30,
debugserver_dp = debugserver_fooff,
debugserver_fop = 31,
debugserver_xmm0 = 32,
debugserver_xmm1 = 33,
debugserver_xmm2 = 34,
debugserver_xmm3 = 35,
debugserver_xmm4 = 36,
debugserver_xmm5 = 37,
debugserver_xmm6 = 38,
debugserver_xmm7 = 39,
debugserver_mxcsr = 40,
debugserver_mm0 = 41,
debugserver_mm1 = 42,
debugserver_mm2 = 43,
debugserver_mm3 = 44,
debugserver_mm4 = 45,
debugserver_mm5 = 46,
debugserver_mm6 = 47,
debugserver_mm7 = 48,
debugserver_ymm0 = debugserver_xmm0,
debugserver_ymm1 = debugserver_xmm1,
debugserver_ymm2 = debugserver_xmm2,
debugserver_ymm3 = debugserver_xmm3,
debugserver_ymm4 = debugserver_xmm4,
debugserver_ymm5 = debugserver_xmm5,
debugserver_ymm6 = debugserver_xmm6,
debugserver_ymm7 = debugserver_xmm7,
debugserver_zmm0 = debugserver_xmm0,
debugserver_zmm1 = debugserver_xmm1,
debugserver_zmm2 = debugserver_xmm2,
debugserver_zmm3 = debugserver_xmm3,
debugserver_zmm4 = debugserver_xmm4,
debugserver_zmm5 = debugserver_xmm5,
debugserver_zmm6 = debugserver_xmm6,
debugserver_zmm7 = debugserver_xmm7,
debugserver_k0 = 118,
debugserver_k1 = 119,
debugserver_k2 = 120,
debugserver_k3 = 121,
debugserver_k4 = 122,
debugserver_k5 = 123,
debugserver_k6 = 124,
debugserver_k7 = 125,
};
uint64_t DNBArchImplI386::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__eip;
return failValue;
}
kern_return_t DNBArchImplI386::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
m_state.context.gpr.__eip = static_cast<uint32_t>(value);
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchImplI386::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__esp;
return failValue;
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_GPR_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
//#define SET_GPR(reg) m_state.context.gpr.__##reg = gpr_##reg
kern_return_t DNBArchImplI386::GetGPRState(bool force) {
if (force || m_state.GetError(e_regSetGPR, Read)) {
#if DEBUG_GPR_VALUES
SET_GPR(eax);
SET_GPR(ebx);
SET_GPR(ecx);
SET_GPR(edx);
SET_GPR(edi);
SET_GPR(esi);
SET_GPR(ebp);
SET_GPR(esp);
SET_GPR(ss);
SET_GPR(eflags);
SET_GPR(eip);
SET_GPR(cs);
SET_GPR(ds);
SET_GPR(es);
SET_GPR(fs);
SET_GPR(gs);
m_state.SetError(e_regSetGPR, Read, 0);
#else
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(
e_regSetGPR, Read,
::thread_get_state(m_thread->MachPortNumber(), __i386_THREAD_STATE,
(thread_state_t)&m_state.context.gpr, &count));
#endif
}
return m_state.GetError(e_regSetGPR, Read);
}
// Uncomment the value below to verify the values in the debugger.
//#define DEBUG_FPU_VALUES 1 // DO NOT CHECK IN WITH THIS DEFINE ENABLED
kern_return_t DNBArchImplI386::GetFPUState(bool force) {
if (force || m_state.GetError(e_regSetFPU, Read)) {
if (DEBUG_FPU_REGS) {
m_state.context.fpu.no_avx.__fpu_reserved[0] = -1;
m_state.context.fpu.no_avx.__fpu_reserved[1] = -1;
*(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fcw) = 0x1234;
*(uint16_t *)&(m_state.context.fpu.no_avx.__fpu_fsw) = 0x5678;
m_state.context.fpu.no_avx.__fpu_ftw = 1;
m_state.context.fpu.no_avx.__fpu_rsrv1 = UINT8_MAX;
m_state.context.fpu.no_avx.__fpu_fop = 2;
m_state.context.fpu.no_avx.__fpu_ip = 3;
m_state.context.fpu.no_avx.__fpu_cs = 4;
m_state.context.fpu.no_avx.__fpu_rsrv2 = 5;
m_state.context.fpu.no_avx.__fpu_dp = 6;
m_state.context.fpu.no_avx.__fpu_ds = 7;
m_state.context.fpu.no_avx.__fpu_rsrv3 = UINT16_MAX;
m_state.context.fpu.no_avx.__fpu_mxcsr = 8;
m_state.context.fpu.no_avx.__fpu_mxcsrmask = 9;
for (int i = 0; i < 16; ++i) {
if (i < 10) {
m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = 'a';
m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = 'b';
m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = 'c';
m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = 'd';
m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = 'e';
m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = 'f';
m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = 'g';
m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = 'h';
} else {
m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg[i] = INT8_MIN;
}
m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg[i] = '0';
m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg[i] = '1';
m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg[i] = '2';
m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg[i] = '3';
m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg[i] = '4';
m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg[i] = '5';
m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg[i] = '6';
m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg[i] = '7';
}
for (int i = 0; i < sizeof(m_state.context.fpu.no_avx.__fpu_rsrv4); ++i)
m_state.context.fpu.no_avx.__fpu_rsrv4[i] = INT8_MIN;
m_state.context.fpu.no_avx.__fpu_reserved1 = -1;
if (CPUHasAVX() || FORCE_AVX_REGS) {
for (int i = 0; i < sizeof(m_state.context.fpu.avx.__avx_reserved1);
++i)
m_state.context.fpu.avx.__avx_reserved1[i] = INT8_MIN;
for (int i = 0; i < 16; ++i) {
m_state.context.fpu.avx.__fpu_ymmh0.__xmm_reg[i] = '0';
m_state.context.fpu.avx.__fpu_ymmh1.__xmm_reg[i] = '1';
m_state.context.fpu.avx.__fpu_ymmh2.__xmm_reg[i] = '2';
m_state.context.fpu.avx.__fpu_ymmh3.__xmm_reg[i] = '3';
m_state.context.fpu.avx.__fpu_ymmh4.__xmm_reg[i] = '4';
m_state.context.fpu.avx.__fpu_ymmh5.__xmm_reg[i] = '5';
m_state.context.fpu.avx.__fpu_ymmh6.__xmm_reg[i] = '6';
m_state.context.fpu.avx.__fpu_ymmh7.__xmm_reg[i] = '7';
}
}
if (CPUHasAVX512f() || FORCE_AVX_REGS) {
for (int i = 0; i < 8; ++i) {
m_state.context.fpu.avx512f.__fpu_k0.__opmask_reg[i] = '0';
m_state.context.fpu.avx512f.__fpu_k1.__opmask_reg[i] = '1';
m_state.context.fpu.avx512f.__fpu_k2.__opmask_reg[i] = '2';
m_state.context.fpu.avx512f.__fpu_k3.__opmask_reg[i] = '3';
m_state.context.fpu.avx512f.__fpu_k4.__opmask_reg[i] = '4';
m_state.context.fpu.avx512f.__fpu_k5.__opmask_reg[i] = '5';
m_state.context.fpu.avx512f.__fpu_k6.__opmask_reg[i] = '6';
m_state.context.fpu.avx512f.__fpu_k7.__opmask_reg[i] = '7';
}
for (int i = 0; i < 32; ++i) {
m_state.context.fpu.avx512f.__fpu_zmmh0.__ymm_reg[i] = '0';
m_state.context.fpu.avx512f.__fpu_zmmh1.__ymm_reg[i] = '1';
m_state.context.fpu.avx512f.__fpu_zmmh2.__ymm_reg[i] = '2';
m_state.context.fpu.avx512f.__fpu_zmmh3.__ymm_reg[i] = '3';
m_state.context.fpu.avx512f.__fpu_zmmh4.__ymm_reg[i] = '4';
m_state.context.fpu.avx512f.__fpu_zmmh5.__ymm_reg[i] = '5';
m_state.context.fpu.avx512f.__fpu_zmmh6.__ymm_reg[i] = '6';
m_state.context.fpu.avx512f.__fpu_zmmh7.__ymm_reg[i] = '7';
}
}
m_state.SetError(e_regSetFPU, Read, 0);
} else {
mach_msg_type_number_t count = e_regSetWordSizeFPU;
int flavor = __i386_FLOAT_STATE;
// On a machine with the AVX512 register set, a process only gets a
// full AVX512 register context after it uses the AVX512 registers;
// if the process has not yet triggered this change, trying to fetch
// the AVX512 registers will fail. Fall through to fetching the AVX
// registers.
if (CPUHasAVX512f() || FORCE_AVX_REGS) {
count = e_regSetWordSizeAVX512f;
flavor = __i386_AVX512F_STATE;
m_state.SetError(e_regSetFPU, Read,
::thread_get_state(m_thread->MachPortNumber(), flavor,
(thread_state_t)&m_state.context.fpu,
&count));
DNBLogThreadedIf(LOG_THREAD,
"::thread_get_state (0x%4.4x, %u, &fpu, %u => 0x%8.8x",
m_thread->MachPortNumber(), flavor, (uint32_t)count,
m_state.GetError(e_regSetFPU, Read));
if (m_state.GetError(e_regSetFPU, Read) == KERN_SUCCESS)
return m_state.GetError(e_regSetFPU, Read);
}
if (CPUHasAVX()) {
count = e_regSetWordSizeAVX;
flavor = __i386_AVX_STATE;
}
m_state.SetError(e_regSetFPU, Read,
::thread_get_state(m_thread->MachPortNumber(), flavor,
(thread_state_t)&m_state.context.fpu,
&count));
DNBLogThreadedIf(LOG_THREAD,
"::thread_get_state (0x%4.4x, %u, &fpu, %u => 0x%8.8x",
m_thread->MachPortNumber(), flavor, (uint32_t)count,
m_state.GetError(e_regSetFPU, Read));
}
}
return m_state.GetError(e_regSetFPU, Read);
}
kern_return_t DNBArchImplI386::GetEXCState(bool force) {
if (force || m_state.GetError(e_regSetEXC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(
e_regSetEXC, Read,
::thread_get_state(m_thread->MachPortNumber(), __i386_EXCEPTION_STATE,
(thread_state_t)&m_state.context.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t DNBArchImplI386::SetGPRState() {
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf(
LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
"(SetGPRState() for stop_count = %u)",
m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
m_state.SetError(e_regSetGPR, Write,
::thread_set_state(m_thread->MachPortNumber(),
__i386_THREAD_STATE,
(thread_state_t)&m_state.context.gpr,
e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t DNBArchImplI386::SetFPUState() {
if (DEBUG_FPU_REGS) {
m_state.SetError(e_regSetFPU, Write, 0);
return m_state.GetError(e_regSetFPU, Write);
} else {
int flavor = __i386_FLOAT_STATE;
mach_msg_type_number_t count = e_regSetWordSizeFPU;
if (CPUHasAVX512f() || FORCE_AVX_REGS) {
flavor = __i386_AVX512F_STATE;
count = e_regSetWordSizeAVX512f;
} else
if (CPUHasAVX()) {
flavor = __i386_AVX_STATE;
count = e_regSetWordSizeAVX;
}
m_state.SetError(e_regSetFPU, Write,
::thread_set_state(m_thread->MachPortNumber(), flavor,
(thread_state_t)&m_state.context.fpu,
count));
return m_state.GetError(e_regSetFPU, Write);
}
}
kern_return_t DNBArchImplI386::SetEXCState() {
m_state.SetError(e_regSetEXC, Write,
::thread_set_state(m_thread->MachPortNumber(),
__i386_EXCEPTION_STATE,
(thread_state_t)&m_state.context.exc,
e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t DNBArchImplI386::GetDBGState(bool force) {
if (force || m_state.GetError(e_regSetDBG, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeDBG;
m_state.SetError(
e_regSetDBG, Read,
::thread_get_state(m_thread->MachPortNumber(), __i386_DEBUG_STATE,
(thread_state_t)&m_state.context.dbg, &count));
}
return m_state.GetError(e_regSetDBG, Read);
}
kern_return_t DNBArchImplI386::SetDBGState(bool also_set_on_task) {
m_state.SetError(e_regSetDBG, Write,
::thread_set_state(m_thread->MachPortNumber(),
__i386_DEBUG_STATE,
(thread_state_t)&m_state.context.dbg,
e_regSetWordSizeDBG));
if (also_set_on_task) {
kern_return_t kret = ::task_set_state(
m_thread->Process()->Task().TaskPort(), __i386_DEBUG_STATE,
(thread_state_t)&m_state.context.dbg, e_regSetWordSizeDBG);
if (kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::SetDBGState failed "
"to set debug control register state: "
"0x%8.8x.",
kret);
}
return m_state.GetError(e_regSetDBG, Write);
}
void DNBArchImplI386::ThreadWillResume() {
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
// This is the primary thread, let the arch do anything it needs
EnableHardwareSingleStep(true);
}
// Reset the debug status register, if necessary, before we resume.
kern_return_t kret = GetDBGState(false);
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchImplI386::ThreadWillResume() GetDBGState() => 0x%8.8x.", kret);
if (kret != KERN_SUCCESS)
return;
DBG &debug_state = m_state.context.dbg;
bool need_reset = false;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i)
if (IsWatchpointHit(debug_state, i))
need_reset = true;
if (need_reset) {
ClearWatchpointHits(debug_state);
kret = SetDBGState(false);
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchImplI386::ThreadWillResume() SetDBGState() => 0x%8.8x.", kret);
}
}
bool DNBArchImplI386::ThreadDidStop() {
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool DNBArchImplI386::NotifyException(MachException::Data &exc) {
switch (exc.exc_type) {
case EXC_BAD_ACCESS:
break;
case EXC_BAD_INSTRUCTION:
break;
case EXC_ARITHMETIC:
break;
case EXC_EMULATION:
break;
case EXC_SOFTWARE:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 2) {
// exc_code = EXC_I386_BPT
//
nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
if (pc != INVALID_NUB_ADDRESS && pc > 0) {
pc -= 1;
// Check for a breakpoint at one byte prior to the current PC value
// since the PC will be just past the trap.
DNBBreakpoint *bp =
m_thread->Process()->Breakpoints().FindByAddress(pc);
if (bp) {
// Backup the PC for i386 since the trap was taken and the PC
// is at the address following the single byte trap instruction.
if (m_state.context.gpr.__eip > 0) {
m_state.context.gpr.__eip = static_cast<uint32_t>(pc);
// Write the new PC back out
SetGPRState();
}
}
return true;
}
} else if (exc.exc_data.size() >= 2 && exc.exc_data[0] == 1) {
// exc_code = EXC_I386_SGL
//
// Check whether this corresponds to a watchpoint hit event.
// If yes, set the exc_sub_code to the data break address.
nub_addr_t addr = 0;
uint32_t hw_index = GetHardwareWatchpointHit(addr);
if (hw_index != INVALID_NUB_HW_INDEX) {
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
case EXC_SYSCALL:
break;
case EXC_MACH_SYSCALL:
break;
case EXC_RPC_ALERT:
break;
}
return false;
}
uint32_t DNBArchImplI386::NumSupportedHardwareWatchpoints() {
// Available debug address registers: dr0, dr1, dr2, dr3.
return 4;
}
static uint32_t size_and_rw_bits(nub_size_t size, bool read, bool write) {
uint32_t rw;
if (read) {
rw = 0x3; // READ or READ/WRITE
} else if (write) {
rw = 0x1; // WRITE
} else {
assert(0 && "read and write cannot both be false");
}
switch (size) {
case 1:
return rw;
case 2:
return (0x1 << 2) | rw;
case 4:
return (0x3 << 2) | rw;
case 8:
return (0x2 << 2) | rw;
}
assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
return 0;
}
void DNBArchImplI386::SetWatchpoint(DBG &debug_state, uint32_t hw_index,
nub_addr_t addr, nub_size_t size, bool read,
bool write) {
// Set both dr7 (debug control register) and dri (debug address register).
// dr7{7-0} encodes the local/gloabl enable bits:
// global enable --. .-- local enable
// | |
// v v
// dr0 -> bits{1-0}
// dr1 -> bits{3-2}
// dr2 -> bits{5-4}
// dr3 -> bits{7-6}
//
// dr7{31-16} encodes the rw/len bits:
// b_x+3, b_x+2, b_x+1, b_x
// where bits{x+1, x} => rw
// 0b00: execute, 0b01: write, 0b11: read-or-write, 0b10: io
// read-or-write (unused)
// and bits{x+3, x+2} => len
// 0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
//
// dr0 -> bits{19-16}
// dr1 -> bits{23-20}
// dr2 -> bits{27-24}
// dr3 -> bits{31-28}
debug_state.__dr7 |=
(1 << (2 * hw_index) |
size_and_rw_bits(size, read, write) << (16 + 4 * hw_index));
uint32_t addr_32 = addr & 0xffffffff;
switch (hw_index) {
case 0:
debug_state.__dr0 = addr_32;
break;
case 1:
debug_state.__dr1 = addr_32;
break;
case 2:
debug_state.__dr2 = addr_32;
break;
case 3:
debug_state.__dr3 = addr_32;
break;
default:
assert(0 &&
"invalid hardware register index, must be one of 0, 1, 2, or 3");
}
return;
}
void DNBArchImplI386::ClearWatchpoint(DBG &debug_state, uint32_t hw_index) {
debug_state.__dr7 &= ~(3 << (2 * hw_index));
switch (hw_index) {
case 0:
debug_state.__dr0 = 0;
break;
case 1:
debug_state.__dr1 = 0;
break;
case 2:
debug_state.__dr2 = 0;
break;
case 3:
debug_state.__dr3 = 0;
break;
default:
assert(0 &&
"invalid hardware register index, must be one of 0, 1, 2, or 3");
}
return;
}
bool DNBArchImplI386::IsWatchpointVacant(const DBG &debug_state,
uint32_t hw_index) {
// Check dr7 (debug control register) for local/global enable bits:
// global enable --. .-- local enable
// | |
// v v
// dr0 -> bits{1-0}
// dr1 -> bits{3-2}
// dr2 -> bits{5-4}
// dr3 -> bits{7-6}
return (debug_state.__dr7 & (3 << (2 * hw_index))) == 0;
}
// Resets local copy of debug status register to wait for the next debug
// exception.
void DNBArchImplI386::ClearWatchpointHits(DBG &debug_state) {
// See also IsWatchpointHit().
debug_state.__dr6 = 0;
return;
}
bool DNBArchImplI386::IsWatchpointHit(const DBG &debug_state,
uint32_t hw_index) {
// Check dr6 (debug status register) whether a watchpoint hits:
// is watchpoint hit?
// |
// v
// dr0 -> bits{0}
// dr1 -> bits{1}
// dr2 -> bits{2}
// dr3 -> bits{3}
return (debug_state.__dr6 & (1 << hw_index));
}
nub_addr_t DNBArchImplI386::GetWatchAddress(const DBG &debug_state,
uint32_t hw_index) {
switch (hw_index) {
case 0:
return debug_state.__dr0;
case 1:
return debug_state.__dr1;
case 2:
return debug_state.__dr2;
case 3:
return debug_state.__dr3;
}
assert(0 && "invalid hardware register index, must be one of 0, 1, 2, or 3");
return 0;
}
bool DNBArchImplI386::StartTransForHWP() {
if (m_2pc_trans_state != Trans_Done && m_2pc_trans_state != Trans_Rolled_Back)
DNBLogError("%s inconsistent state detected, expected %d or %d, got: %d",
__FUNCTION__, Trans_Done, Trans_Rolled_Back, m_2pc_trans_state);
m_2pc_dbg_checkpoint = m_state.context.dbg;
m_2pc_trans_state = Trans_Pending;
return true;
}
bool DNBArchImplI386::RollbackTransForHWP() {
m_state.context.dbg = m_2pc_dbg_checkpoint;
if (m_2pc_trans_state != Trans_Pending)
DNBLogError("%s inconsistent state detected, expected %d, got: %d",
__FUNCTION__, Trans_Pending, m_2pc_trans_state);
m_2pc_trans_state = Trans_Rolled_Back;
kern_return_t kret = SetDBGState(false);
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchImplI386::RollbackTransForHWP() SetDBGState() => 0x%8.8x.", kret);
if (kret == KERN_SUCCESS)
return true;
else
return false;
}
bool DNBArchImplI386::FinishTransForHWP() {
m_2pc_trans_state = Trans_Done;
return true;
}
DNBArchImplI386::DBG DNBArchImplI386::GetDBGCheckpoint() {
return m_2pc_dbg_checkpoint;
}
uint32_t DNBArchImplI386::EnableHardwareWatchpoint(nub_addr_t addr,
nub_size_t size, bool read,
bool write,
bool also_set_on_task) {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::EnableHardwareWatchpoint("
"addr = 0x%llx, size = %llu, read = %u, "
"write = %u)",
(uint64_t)addr, (uint64_t)size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can only watch 1, 2, 4, or 8 bytes.
if (!(size == 1 || size == 2 || size == 4 || size == 8))
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Read the debug state
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS) {
// Check to make sure we have the needed hardware support
uint32_t i = 0;
DBG &debug_state = m_state.context.dbg;
for (i = 0; i < num_hw_watchpoints; ++i) {
if (IsWatchpointVacant(debug_state, i))
break;
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_watchpoints) {
StartTransForHWP();
// Modify our local copy of the debug state, first.
SetWatchpoint(debug_state, i, addr, size, read, write);
// Now set the watch point in the inferior.
kret = SetDBGState(also_set_on_task);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::"
"EnableHardwareWatchpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
else // Revert to the previous debug state voluntarily. The transaction
// coordinator knows that we have failed.
m_state.context.dbg = GetDBGCheckpoint();
} else {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::"
"EnableHardwareWatchpoint(): All "
"hardware resources (%u) are in use.",
num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool DNBArchImplI386::DisableHardwareWatchpoint(uint32_t hw_index,
bool also_set_on_task) {
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (kret == KERN_SUCCESS) {
DBG &debug_state = m_state.context.dbg;
if (hw_index < num_hw_points &&
!IsWatchpointVacant(debug_state, hw_index)) {
StartTransForHWP();
// Modify our local copy of the debug state, first.
ClearWatchpoint(debug_state, hw_index);
// Now disable the watch point in the inferior.
kret = SetDBGState(also_set_on_task);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchImplI386::DisableHardwareWatchpoint( %u )",
hw_index);
if (kret == KERN_SUCCESS)
return true;
else // Revert to the previous debug state voluntarily. The transaction
// coordinator knows that we have failed.
m_state.context.dbg = GetDBGCheckpoint();
}
}
return false;
}
// Iterate through the debug status register; return the index of the first hit.
uint32_t DNBArchImplI386::GetHardwareWatchpointHit(nub_addr_t &addr) {
// Read the debug state
kern_return_t kret = GetDBGState(true);
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchImplI386::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS) {
DBG &debug_state = m_state.context.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i) {
if (IsWatchpointHit(debug_state, i)) {
addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplI386::"
"GetHardwareWatchpointHit() found => "
"%u (addr = 0x%llx).",
i, (uint64_t)addr);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchImplI386::EnableHardwareSingleStep(bool enable) {
if (GetGPRState(false) == KERN_SUCCESS) {
const uint32_t trace_bit = 0x100u;
if (enable)
m_state.context.gpr.__eflags |= trace_bit;
else
m_state.context.gpr.__eflags &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information definitions
//----------------------------------------------------------------------
#define DEFINE_GPR_PSEUDO_16(reg16, reg32) \
{ \
e_regSetGPR, gpr_##reg16, #reg16, NULL, Uint, Hex, 2, 0, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \
INVALID_NUB_REGNUM, g_contained_##reg32, g_invalidate_##reg32 \
}
#define DEFINE_GPR_PSEUDO_8H(reg8, reg32) \
{ \
e_regSetGPR, gpr_##reg8, #reg8, NULL, Uint, Hex, 1, 1, INVALID_NUB_REGNUM, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \
g_contained_##reg32, g_invalidate_##reg32 \
}
#define DEFINE_GPR_PSEUDO_8L(reg8, reg32) \
{ \
e_regSetGPR, gpr_##reg8, #reg8, NULL, Uint, Hex, 1, 0, INVALID_NUB_REGNUM, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \
g_contained_##reg32, g_invalidate_##reg32 \
}
#define GPR_OFFSET(reg) (offsetof(DNBArchImplI386::GPR, __##reg))
#define FPU_OFFSET(reg) \
(offsetof(DNBArchImplI386::FPU, __fpu_##reg) + \
offsetof(DNBArchImplI386::Context, fpu.no_avx))
#define AVX_OFFSET(reg) \
(offsetof(DNBArchImplI386::AVX, __fpu_##reg) + \
offsetof(DNBArchImplI386::Context, fpu.avx))
#define AVX512F_OFFSET(reg) \
(offsetof(DNBArchImplI386::AVX512F, __fpu_##reg) + \
offsetof(DNBArchImplI386::Context, fpu.avx512f))
#define EXC_OFFSET(reg) \
(offsetof(DNBArchImplI386::EXC, __##reg) + \
offsetof(DNBArchImplI386::Context, exc))
#define GPR_SIZE(reg) (sizeof(((DNBArchImplI386::GPR *)NULL)->__##reg))
#define FPU_SIZE_UINT(reg) (sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg))
#define FPU_SIZE_MMST(reg) \
(sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__mmst_reg))
#define FPU_SIZE_XMM(reg) \
(sizeof(((DNBArchImplI386::FPU *)NULL)->__fpu_##reg.__xmm_reg))
#define FPU_SIZE_YMM(reg) (32)
#define FPU_SIZE_ZMM(reg) (64)
#define EXC_SIZE(reg) (sizeof(((DNBArchImplI386::EXC *)NULL)->__##reg))
// This does not accurately identify the location of ymm0...7 in
// Context.fpu.avx. That is because there is a bunch of padding
// in Context.fpu.avx that we don't need. Offset macros lay out
// the register state that Debugserver transmits to the debugger
// -- not to interpret the thread_get_state info.
#define AVX_OFFSET_YMM(n) (AVX_OFFSET(xmm7) + FPU_SIZE_XMM(xmm7) + (32 * n))
// TODO: Test this and come back.
#define AVX512F_OFFSET_ZMM(n) (AVX_OFFSET_YMM(7) + FPU_SIZE_XMM(xmm7) + (64 * n))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
const char *g_contained_eax[] = {"eax", NULL};
const char *g_contained_ebx[] = {"ebx", NULL};
const char *g_contained_ecx[] = {"ecx", NULL};
const char *g_contained_edx[] = {"edx", NULL};
const char *g_contained_edi[] = {"edi", NULL};
const char *g_contained_esi[] = {"esi", NULL};
const char *g_contained_ebp[] = {"ebp", NULL};
const char *g_contained_esp[] = {"esp", NULL};
const char *g_invalidate_eax[] = {"eax", "ax", "ah", "al", NULL};
const char *g_invalidate_ebx[] = {"ebx", "bx", "bh", "bl", NULL};
const char *g_invalidate_ecx[] = {"ecx", "cx", "ch", "cl", NULL};
const char *g_invalidate_edx[] = {"edx", "dx", "dh", "dl", NULL};
const char *g_invalidate_edi[] = {"edi", "di", "dil", NULL};
const char *g_invalidate_esi[] = {"esi", "si", "sil", NULL};
const char *g_invalidate_ebp[] = {"ebp", "bp", "bpl", NULL};
const char *g_invalidate_esp[] = {"esp", "sp", "spl", NULL};
// General purpose registers for 64 bit
const DNBRegisterInfo DNBArchImplI386::g_gpr_registers[] = {
{e_regSetGPR, gpr_eax, "eax", NULL, Uint, Hex, GPR_SIZE(eax),
GPR_OFFSET(eax), ehframe_eax, dwarf_eax, INVALID_NUB_REGNUM,
debugserver_eax, NULL, g_invalidate_eax},
{e_regSetGPR, gpr_ebx, "ebx", NULL, Uint, Hex, GPR_SIZE(ebx),
GPR_OFFSET(ebx), ehframe_ebx, dwarf_ebx, INVALID_NUB_REGNUM,
debugserver_ebx, NULL, g_invalidate_ebx},
{e_regSetGPR, gpr_ecx, "ecx", NULL, Uint, Hex, GPR_SIZE(ecx),
GPR_OFFSET(ecx), ehframe_ecx, dwarf_ecx, INVALID_NUB_REGNUM,
debugserver_ecx, NULL, g_invalidate_ecx},
{e_regSetGPR, gpr_edx, "edx", NULL, Uint, Hex, GPR_SIZE(edx),
GPR_OFFSET(edx), ehframe_edx, dwarf_edx, INVALID_NUB_REGNUM,
debugserver_edx, NULL, g_invalidate_edx},
{e_regSetGPR, gpr_edi, "edi", NULL, Uint, Hex, GPR_SIZE(edi),
GPR_OFFSET(edi), ehframe_edi, dwarf_edi, INVALID_NUB_REGNUM,
debugserver_edi, NULL, g_invalidate_edi},
{e_regSetGPR, gpr_esi, "esi", NULL, Uint, Hex, GPR_SIZE(esi),
GPR_OFFSET(esi), ehframe_esi, dwarf_esi, INVALID_NUB_REGNUM,
debugserver_esi, NULL, g_invalidate_esi},
{e_regSetGPR, gpr_ebp, "ebp", "fp", Uint, Hex, GPR_SIZE(ebp),
GPR_OFFSET(ebp), ehframe_ebp, dwarf_ebp, GENERIC_REGNUM_FP,
debugserver_ebp, NULL, g_invalidate_ebp},
{e_regSetGPR, gpr_esp, "esp", "sp", Uint, Hex, GPR_SIZE(esp),
GPR_OFFSET(esp), ehframe_esp, dwarf_esp, GENERIC_REGNUM_SP,
debugserver_esp, NULL, g_invalidate_esp},
{e_regSetGPR, gpr_ss, "ss", NULL, Uint, Hex, GPR_SIZE(ss), GPR_OFFSET(ss),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_ss,
NULL, NULL},
{e_regSetGPR, gpr_eflags, "eflags", "flags", Uint, Hex, GPR_SIZE(eflags),
GPR_OFFSET(eflags), ehframe_eflags, dwarf_eflags, GENERIC_REGNUM_FLAGS,
debugserver_eflags, NULL, NULL},
{e_regSetGPR, gpr_eip, "eip", "pc", Uint, Hex, GPR_SIZE(eip),
GPR_OFFSET(eip), ehframe_eip, dwarf_eip, GENERIC_REGNUM_PC,
debugserver_eip, NULL, NULL},
{e_regSetGPR, gpr_cs, "cs", NULL, Uint, Hex, GPR_SIZE(cs), GPR_OFFSET(cs),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_cs,
NULL, NULL},
{e_regSetGPR, gpr_ds, "ds", NULL, Uint, Hex, GPR_SIZE(ds), GPR_OFFSET(ds),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_ds,
NULL, NULL},
{e_regSetGPR, gpr_es, "es", NULL, Uint, Hex, GPR_SIZE(es), GPR_OFFSET(es),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_es,
NULL, NULL},
{e_regSetGPR, gpr_fs, "fs", NULL, Uint, Hex, GPR_SIZE(fs), GPR_OFFSET(fs),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_fs,
NULL, NULL},
{e_regSetGPR, gpr_gs, "gs", NULL, Uint, Hex, GPR_SIZE(gs), GPR_OFFSET(gs),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, debugserver_gs,
NULL, NULL},
DEFINE_GPR_PSEUDO_16(ax, eax),
DEFINE_GPR_PSEUDO_16(bx, ebx),
DEFINE_GPR_PSEUDO_16(cx, ecx),
DEFINE_GPR_PSEUDO_16(dx, edx),
DEFINE_GPR_PSEUDO_16(di, edi),
DEFINE_GPR_PSEUDO_16(si, esi),
DEFINE_GPR_PSEUDO_16(bp, ebp),
DEFINE_GPR_PSEUDO_16(sp, esp),
DEFINE_GPR_PSEUDO_8H(ah, eax),
DEFINE_GPR_PSEUDO_8H(bh, ebx),
DEFINE_GPR_PSEUDO_8H(ch, ecx),
DEFINE_GPR_PSEUDO_8H(dh, edx),
DEFINE_GPR_PSEUDO_8L(al, eax),
DEFINE_GPR_PSEUDO_8L(bl, ebx),
DEFINE_GPR_PSEUDO_8L(cl, ecx),
DEFINE_GPR_PSEUDO_8L(dl, edx),
DEFINE_GPR_PSEUDO_8L(dil, edi),
DEFINE_GPR_PSEUDO_8L(sil, esi),
DEFINE_GPR_PSEUDO_8L(bpl, ebp),
DEFINE_GPR_PSEUDO_8L(spl, esp)};
const DNBRegisterInfo DNBArchImplI386::g_fpu_registers_no_avx[] = {
{e_regSetFPU, fpu_fcw, "fctrl", NULL, Uint, Hex, FPU_SIZE_UINT(fcw),
FPU_OFFSET(fcw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_fsw, "fstat", NULL, Uint, Hex, FPU_SIZE_UINT(fsw),
FPU_OFFSET(fsw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ftw, "ftag", NULL, Uint, Hex, 2 /* sizeof __fpu_ftw + sizeof __fpu_rsrv1 */,
FPU_OFFSET(ftw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_fop, "fop", NULL, Uint, Hex, FPU_SIZE_UINT(fop),
FPU_OFFSET(fop), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ip, "fioff", NULL, Uint, Hex, FPU_SIZE_UINT(ip),
FPU_OFFSET(ip), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_cs, "fiseg", NULL, Uint, Hex, FPU_SIZE_UINT(cs),
FPU_OFFSET(cs), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_dp, "fooff", NULL, Uint, Hex, FPU_SIZE_UINT(dp),
FPU_OFFSET(dp), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ds, "foseg", NULL, Uint, Hex, FPU_SIZE_UINT(ds),
FPU_OFFSET(ds), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_mxcsr, "mxcsr", NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr),
FPU_OFFSET(mxcsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_mxcsrmask, "mxcsrmask", NULL, Uint, Hex,
FPU_SIZE_UINT(mxcsrmask), FPU_OFFSET(mxcsrmask), INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm0), FPU_OFFSET(stmm0), INVALID_NUB_REGNUM, dwarf_stmm0,
INVALID_NUB_REGNUM, debugserver_stmm0, NULL, NULL},
{e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm1), FPU_OFFSET(stmm1), INVALID_NUB_REGNUM, dwarf_stmm1,
INVALID_NUB_REGNUM, debugserver_stmm1, NULL, NULL},
{e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm2), FPU_OFFSET(stmm2), INVALID_NUB_REGNUM, dwarf_stmm2,
INVALID_NUB_REGNUM, debugserver_stmm2, NULL, NULL},
{e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm3), FPU_OFFSET(stmm3), INVALID_NUB_REGNUM, dwarf_stmm3,
INVALID_NUB_REGNUM, debugserver_stmm3, NULL, NULL},
{e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm4), FPU_OFFSET(stmm4), INVALID_NUB_REGNUM, dwarf_stmm4,
INVALID_NUB_REGNUM, debugserver_stmm4, NULL, NULL},
{e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm5), FPU_OFFSET(stmm5), INVALID_NUB_REGNUM, dwarf_stmm5,
INVALID_NUB_REGNUM, debugserver_stmm5, NULL, NULL},
{e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm6), FPU_OFFSET(stmm6), INVALID_NUB_REGNUM, dwarf_stmm6,
INVALID_NUB_REGNUM, debugserver_stmm6, NULL, NULL},
{e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm7), FPU_OFFSET(stmm7), INVALID_NUB_REGNUM, dwarf_stmm7,
INVALID_NUB_REGNUM, debugserver_stmm7, NULL, NULL},
{e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm0), FPU_OFFSET(xmm0), INVALID_NUB_REGNUM, dwarf_xmm0,
INVALID_NUB_REGNUM, debugserver_xmm0, NULL, NULL},
{e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm1), FPU_OFFSET(xmm1), INVALID_NUB_REGNUM, dwarf_xmm1,
INVALID_NUB_REGNUM, debugserver_xmm1, NULL, NULL},
{e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm2), FPU_OFFSET(xmm2), INVALID_NUB_REGNUM, dwarf_xmm2,
INVALID_NUB_REGNUM, debugserver_xmm2, NULL, NULL},
{e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm3), FPU_OFFSET(xmm3), INVALID_NUB_REGNUM, dwarf_xmm3,
INVALID_NUB_REGNUM, debugserver_xmm3, NULL, NULL},
{e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm4), FPU_OFFSET(xmm4), INVALID_NUB_REGNUM, dwarf_xmm4,
INVALID_NUB_REGNUM, debugserver_xmm4, NULL, NULL},
{e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm5), FPU_OFFSET(xmm5), INVALID_NUB_REGNUM, dwarf_xmm5,
INVALID_NUB_REGNUM, debugserver_xmm5, NULL, NULL},
{e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm6), FPU_OFFSET(xmm6), INVALID_NUB_REGNUM, dwarf_xmm6,
INVALID_NUB_REGNUM, debugserver_xmm6, NULL, NULL},
{e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm7), FPU_OFFSET(xmm7), INVALID_NUB_REGNUM, dwarf_xmm7,
INVALID_NUB_REGNUM, debugserver_xmm7, NULL, NULL}};
static const char *g_contained_ymm0[] = {"ymm0", NULL};
static const char *g_contained_ymm1[] = {"ymm1", NULL};
static const char *g_contained_ymm2[] = {"ymm2", NULL};
static const char *g_contained_ymm3[] = {"ymm3", NULL};
static const char *g_contained_ymm4[] = {"ymm4", NULL};
static const char *g_contained_ymm5[] = {"ymm5", NULL};
static const char *g_contained_ymm6[] = {"ymm6", NULL};
static const char *g_contained_ymm7[] = {"ymm7", NULL};
const DNBRegisterInfo DNBArchImplI386::g_fpu_registers_avx[] = {
{e_regSetFPU, fpu_fcw, "fctrl", NULL, Uint, Hex, FPU_SIZE_UINT(fcw),
AVX_OFFSET(fcw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_fsw, "fstat", NULL, Uint, Hex, FPU_SIZE_UINT(fsw),
AVX_OFFSET(fsw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ftw, "ftag", NULL, Uint, Hex, 2 /* sizeof __fpu_ftw + sizeof __fpu_rsrv1 */,
AVX_OFFSET(ftw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_fop, "fop", NULL, Uint, Hex, FPU_SIZE_UINT(fop),
AVX_OFFSET(fop), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ip, "fioff", NULL, Uint, Hex, FPU_SIZE_UINT(ip),
AVX_OFFSET(ip), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_cs, "fiseg", NULL, Uint, Hex, FPU_SIZE_UINT(cs),
AVX_OFFSET(cs), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_dp, "fooff", NULL, Uint, Hex, FPU_SIZE_UINT(dp),
AVX_OFFSET(dp), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ds, "foseg", NULL, Uint, Hex, FPU_SIZE_UINT(ds),
AVX_OFFSET(ds), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_mxcsr, "mxcsr", NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr),
AVX_OFFSET(mxcsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_mxcsrmask, "mxcsrmask", NULL, Uint, Hex,
FPU_SIZE_UINT(mxcsrmask), AVX_OFFSET(mxcsrmask), INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), INVALID_NUB_REGNUM, dwarf_stmm0,
INVALID_NUB_REGNUM, debugserver_stmm0, NULL, NULL},
{e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), INVALID_NUB_REGNUM, dwarf_stmm1,
INVALID_NUB_REGNUM, debugserver_stmm1, NULL, NULL},
{e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), INVALID_NUB_REGNUM, dwarf_stmm2,
INVALID_NUB_REGNUM, debugserver_stmm2, NULL, NULL},
{e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), INVALID_NUB_REGNUM, dwarf_stmm3,
INVALID_NUB_REGNUM, debugserver_stmm3, NULL, NULL},
{e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), INVALID_NUB_REGNUM, dwarf_stmm4,
INVALID_NUB_REGNUM, debugserver_stmm4, NULL, NULL},
{e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), INVALID_NUB_REGNUM, dwarf_stmm5,
INVALID_NUB_REGNUM, debugserver_stmm5, NULL, NULL},
{e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), INVALID_NUB_REGNUM, dwarf_stmm6,
INVALID_NUB_REGNUM, debugserver_stmm6, NULL, NULL},
{e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), INVALID_NUB_REGNUM, dwarf_stmm7,
INVALID_NUB_REGNUM, debugserver_stmm7, NULL, NULL},
{e_regSetFPU, fpu_ymm0, "ymm0", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm0), AVX_OFFSET_YMM(0), INVALID_NUB_REGNUM, dwarf_ymm0,
INVALID_NUB_REGNUM, debugserver_ymm0, NULL, NULL},
{e_regSetFPU, fpu_ymm1, "ymm1", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm1), AVX_OFFSET_YMM(1), INVALID_NUB_REGNUM, dwarf_ymm1,
INVALID_NUB_REGNUM, debugserver_ymm1, NULL, NULL},
{e_regSetFPU, fpu_ymm2, "ymm2", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm2), AVX_OFFSET_YMM(2), INVALID_NUB_REGNUM, dwarf_ymm2,
INVALID_NUB_REGNUM, debugserver_ymm2, NULL, NULL},
{e_regSetFPU, fpu_ymm3, "ymm3", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm3), AVX_OFFSET_YMM(3), INVALID_NUB_REGNUM, dwarf_ymm3,
INVALID_NUB_REGNUM, debugserver_ymm3, NULL, NULL},
{e_regSetFPU, fpu_ymm4, "ymm4", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm4), AVX_OFFSET_YMM(4), INVALID_NUB_REGNUM, dwarf_ymm4,
INVALID_NUB_REGNUM, debugserver_ymm4, NULL, NULL},
{e_regSetFPU, fpu_ymm5, "ymm5", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm5), AVX_OFFSET_YMM(5), INVALID_NUB_REGNUM, dwarf_ymm5,
INVALID_NUB_REGNUM, debugserver_ymm5, NULL, NULL},
{e_regSetFPU, fpu_ymm6, "ymm6", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm6), AVX_OFFSET_YMM(6), INVALID_NUB_REGNUM, dwarf_ymm6,
INVALID_NUB_REGNUM, debugserver_ymm6, NULL, NULL},
{e_regSetFPU, fpu_ymm7, "ymm7", NULL, Vector, VectorOfUInt8,
FPU_SIZE_YMM(ymm7), AVX_OFFSET_YMM(7), INVALID_NUB_REGNUM, dwarf_ymm7,
INVALID_NUB_REGNUM, debugserver_ymm7, NULL, NULL},
{e_regSetFPU, fpu_xmm0, "xmm0", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm0), 0, INVALID_NUB_REGNUM, dwarf_xmm0, INVALID_NUB_REGNUM,
debugserver_xmm0, g_contained_ymm0, NULL},
{e_regSetFPU, fpu_xmm1, "xmm1", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm1), 0, INVALID_NUB_REGNUM, dwarf_xmm1, INVALID_NUB_REGNUM,
debugserver_xmm1, g_contained_ymm1, NULL},
{e_regSetFPU, fpu_xmm2, "xmm2", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm2), 0, INVALID_NUB_REGNUM, dwarf_xmm2, INVALID_NUB_REGNUM,
debugserver_xmm2, g_contained_ymm2, NULL},
{e_regSetFPU, fpu_xmm3, "xmm3", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm3), 0, INVALID_NUB_REGNUM, dwarf_xmm3, INVALID_NUB_REGNUM,
debugserver_xmm3, g_contained_ymm3, NULL},
{e_regSetFPU, fpu_xmm4, "xmm4", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm4), 0, INVALID_NUB_REGNUM, dwarf_xmm4, INVALID_NUB_REGNUM,
debugserver_xmm4, g_contained_ymm4, NULL},
{e_regSetFPU, fpu_xmm5, "xmm5", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm5), 0, INVALID_NUB_REGNUM, dwarf_xmm5, INVALID_NUB_REGNUM,
debugserver_xmm5, g_contained_ymm5, NULL},
{e_regSetFPU, fpu_xmm6, "xmm6", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm6), 0, INVALID_NUB_REGNUM, dwarf_xmm6, INVALID_NUB_REGNUM,
debugserver_xmm6, g_contained_ymm6, NULL},
{e_regSetFPU, fpu_xmm7, "xmm7", NULL, Vector, VectorOfUInt8,
FPU_SIZE_XMM(xmm7), 0, INVALID_NUB_REGNUM, dwarf_xmm7, INVALID_NUB_REGNUM,
debugserver_xmm7, g_contained_ymm7, NULL},
};
#define STR(s) #s
#define ZMM_REG_DEF(reg) \
{ \
e_regSetFPU, fpu_zmm##reg, STR(zmm##reg), NULL, Vector, VectorOfUInt8, \
FPU_SIZE_ZMM(zmm##reg), AVX512F_OFFSET_ZMM(reg), INVALID_NUB_REGNUM, \
dwarf_zmm##reg, INVALID_NUB_REGNUM, debugserver_zmm##reg, NULL, NULL \
}
#define YMM_REG_ALIAS(reg) \
{ \
e_regSetFPU, fpu_ymm##reg, STR(ymm##reg), NULL, Vector, VectorOfUInt8, \
FPU_SIZE_YMM(ymm##reg), 0, INVALID_NUB_REGNUM, dwarf_ymm##reg, \
INVALID_NUB_REGNUM, debugserver_ymm##reg, g_contained_zmm##reg, NULL \
}
#define XMM_REG_ALIAS(reg) \
{ \
e_regSetFPU, fpu_xmm##reg, STR(xmm##reg), NULL, Vector, VectorOfUInt8, \
FPU_SIZE_XMM(xmm##reg), 0, INVALID_NUB_REGNUM, dwarf_xmm##reg, \
INVALID_NUB_REGNUM, debugserver_xmm##reg, g_contained_zmm##reg, NULL \
}
#define AVX512_K_REG_DEF(reg) \
{ \
e_regSetFPU, fpu_k##reg, STR(k##reg), NULL, Vector, VectorOfUInt8, 8, \
AVX512F_OFFSET(k##reg), dwarf_k##reg, dwarf_k##reg, -1U, \
debugserver_k##reg, NULL, NULL \
}
static const char *g_contained_zmm0[] = {"zmm0", NULL};
static const char *g_contained_zmm1[] = {"zmm1", NULL};
static const char *g_contained_zmm2[] = {"zmm2", NULL};
static const char *g_contained_zmm3[] = {"zmm3", NULL};
static const char *g_contained_zmm4[] = {"zmm4", NULL};
static const char *g_contained_zmm5[] = {"zmm5", NULL};
static const char *g_contained_zmm6[] = {"zmm6", NULL};
static const char *g_contained_zmm7[] = {"zmm7", NULL};
const DNBRegisterInfo DNBArchImplI386::g_fpu_registers_avx512f[] = {
{e_regSetFPU, fpu_fcw, "fctrl", NULL, Uint, Hex, FPU_SIZE_UINT(fcw),
AVX_OFFSET(fcw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_fsw, "fstat", NULL, Uint, Hex, FPU_SIZE_UINT(fsw),
AVX_OFFSET(fsw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ftw, "ftag", NULL, Uint, Hex, 2 /* sizeof __fpu_ftw + sizeof __fpu_rsrv1 */,
FPU_OFFSET(ftw), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_fop, "fop", NULL, Uint, Hex, FPU_SIZE_UINT(fop),
AVX_OFFSET(fop), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ip, "fioff", NULL, Uint, Hex, FPU_SIZE_UINT(ip),
AVX_OFFSET(ip), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_cs, "fiseg", NULL, Uint, Hex, FPU_SIZE_UINT(cs),
AVX_OFFSET(cs), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_dp, "fooff", NULL, Uint, Hex, FPU_SIZE_UINT(dp),
AVX_OFFSET(dp), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_ds, "foseg", NULL, Uint, Hex, FPU_SIZE_UINT(ds),
AVX_OFFSET(ds), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_mxcsr, "mxcsr", NULL, Uint, Hex, FPU_SIZE_UINT(mxcsr),
AVX_OFFSET(mxcsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_mxcsrmask, "mxcsrmask", NULL, Uint, Hex,
FPU_SIZE_UINT(mxcsrmask), AVX_OFFSET(mxcsrmask), INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetFPU, fpu_stmm0, "stmm0", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm0), AVX_OFFSET(stmm0), INVALID_NUB_REGNUM, dwarf_stmm0,
INVALID_NUB_REGNUM, debugserver_stmm0, NULL, NULL},
{e_regSetFPU, fpu_stmm1, "stmm1", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm1), AVX_OFFSET(stmm1), INVALID_NUB_REGNUM, dwarf_stmm1,
INVALID_NUB_REGNUM, debugserver_stmm1, NULL, NULL},
{e_regSetFPU, fpu_stmm2, "stmm2", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm2), AVX_OFFSET(stmm2), INVALID_NUB_REGNUM, dwarf_stmm2,
INVALID_NUB_REGNUM, debugserver_stmm2, NULL, NULL},
{e_regSetFPU, fpu_stmm3, "stmm3", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm3), AVX_OFFSET(stmm3), INVALID_NUB_REGNUM, dwarf_stmm3,
INVALID_NUB_REGNUM, debugserver_stmm3, NULL, NULL},
{e_regSetFPU, fpu_stmm4, "stmm4", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm4), AVX_OFFSET(stmm4), INVALID_NUB_REGNUM, dwarf_stmm4,
INVALID_NUB_REGNUM, debugserver_stmm4, NULL, NULL},
{e_regSetFPU, fpu_stmm5, "stmm5", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm5), AVX_OFFSET(stmm5), INVALID_NUB_REGNUM, dwarf_stmm5,
INVALID_NUB_REGNUM, debugserver_stmm5, NULL, NULL},
{e_regSetFPU, fpu_stmm6, "stmm6", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm6), AVX_OFFSET(stmm6), INVALID_NUB_REGNUM, dwarf_stmm6,
INVALID_NUB_REGNUM, debugserver_stmm6, NULL, NULL},
{e_regSetFPU, fpu_stmm7, "stmm7", NULL, Vector, VectorOfUInt8,
FPU_SIZE_MMST(stmm7), AVX_OFFSET(stmm7), INVALID_NUB_REGNUM, dwarf_stmm7,
INVALID_NUB_REGNUM, debugserver_stmm7, NULL, NULL},
AVX512_K_REG_DEF(0),
AVX512_K_REG_DEF(1),
AVX512_K_REG_DEF(2),
AVX512_K_REG_DEF(3),
AVX512_K_REG_DEF(4),
AVX512_K_REG_DEF(5),
AVX512_K_REG_DEF(6),
AVX512_K_REG_DEF(7),
ZMM_REG_DEF(0),
ZMM_REG_DEF(1),
ZMM_REG_DEF(2),
ZMM_REG_DEF(3),
ZMM_REG_DEF(4),
ZMM_REG_DEF(5),
ZMM_REG_DEF(6),
ZMM_REG_DEF(7),
YMM_REG_ALIAS(0),
YMM_REG_ALIAS(1),
YMM_REG_ALIAS(2),
YMM_REG_ALIAS(3),
YMM_REG_ALIAS(4),
YMM_REG_ALIAS(5),
YMM_REG_ALIAS(6),
YMM_REG_ALIAS(7),
XMM_REG_ALIAS(0),
XMM_REG_ALIAS(1),
XMM_REG_ALIAS(2),
XMM_REG_ALIAS(3),
XMM_REG_ALIAS(4),
XMM_REG_ALIAS(5),
XMM_REG_ALIAS(6),
XMM_REG_ALIAS(7)
};
const DNBRegisterInfo DNBArchImplI386::g_exc_registers[] = {
{e_regSetEXC, exc_trapno, "trapno", NULL, Uint, Hex, EXC_SIZE(trapno),
EXC_OFFSET(trapno), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetEXC, exc_err, "err", NULL, Uint, Hex, EXC_SIZE(err),
EXC_OFFSET(err), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetEXC, exc_faultvaddr, "faultvaddr", NULL, Uint, Hex,
EXC_SIZE(faultvaddr), EXC_OFFSET(faultvaddr), INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}};
// Number of registers in each register set
const size_t DNBArchImplI386::k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_fpu_registers_no_avx =
sizeof(g_fpu_registers_no_avx) / sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_fpu_registers_avx =
sizeof(g_fpu_registers_avx) / sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_fpu_registers_avx512f =
sizeof(g_fpu_registers_avx512f) / sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchImplI386::k_num_all_registers_no_avx =
k_num_gpr_registers + k_num_fpu_registers_no_avx + k_num_exc_registers;
const size_t DNBArchImplI386::k_num_all_registers_avx =
k_num_gpr_registers + k_num_fpu_registers_avx + k_num_exc_registers;
const size_t DNBArchImplI386::k_num_all_registers_avx512f =
k_num_gpr_registers + k_num_fpu_registers_avx512f + k_num_exc_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
const DNBRegisterSetInfo DNBArchImplI386::g_reg_sets_no_avx[] = {
{"i386 Registers", NULL, k_num_all_registers_no_avx},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_fpu_registers_no_avx,
k_num_fpu_registers_no_avx},
{"Exception State Registers", g_exc_registers, k_num_exc_registers}};
const DNBRegisterSetInfo DNBArchImplI386::g_reg_sets_avx[] = {
{"i386 Registers", NULL, k_num_all_registers_avx},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_fpu_registers_avx, k_num_fpu_registers_avx},
{"Exception State Registers", g_exc_registers, k_num_exc_registers}};
const DNBRegisterSetInfo DNBArchImplI386::g_reg_sets_avx512f[] = {
{"i386 Registers", NULL, k_num_all_registers_avx512f},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_fpu_registers_avx512f,
k_num_fpu_registers_avx512f},
{"Exception State Registers", g_exc_registers, k_num_exc_registers}};
// Total number of register sets for this architecture
const size_t DNBArchImplI386::k_num_register_sets =
sizeof(g_reg_sets_avx) / sizeof(DNBRegisterSetInfo);
DNBArchProtocol *DNBArchImplI386::Create(MachThread *thread) {
DNBArchImplI386 *obj = new DNBArchImplI386(thread);
return obj;
}
const uint8_t *DNBArchImplI386::SoftwareBreakpointOpcode(nub_size_t byte_size) {
static const uint8_t g_breakpoint_opcode[] = {0xCC};
if (byte_size == 1)
return g_breakpoint_opcode;
return NULL;
}
const DNBRegisterSetInfo *
DNBArchImplI386::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
*num_reg_sets = k_num_register_sets;
if (CPUHasAVX512f() || FORCE_AVX_REGS)
return g_reg_sets_avx512f;
if (CPUHasAVX())
return g_reg_sets_avx;
else
return g_reg_sets_no_avx;
}
void DNBArchImplI386::Initialize() {
DNBArchPluginInfo arch_plugin_info = {
CPU_TYPE_I386, DNBArchImplI386::Create,
DNBArchImplI386::GetRegisterSetInfo,
DNBArchImplI386::SoftwareBreakpointOpcode};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
}
bool DNBArchImplI386::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_eip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_esp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_ebp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_eflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
value->value.uint32 = ((uint32_t *)(&m_state.context.gpr))[reg];
return true;
}
break;
case e_regSetFPU:
if (reg > fpu_xmm7 && !(CPUHasAVX() || FORCE_AVX_REGS))
return false;
if (reg > fpu_ymm7 && !(CPUHasAVX512f() || FORCE_AVX_REGS))
return false;
switch (reg) {
case fpu_fcw:
value->value.uint16 =
*((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw));
return true;
case fpu_fsw:
value->value.uint16 =
*((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw));
return true;
case fpu_ftw:
memcpy (&value->value.uint16, &m_state.context.fpu.no_avx.__fpu_ftw, 2);
return true;
case fpu_fop:
value->value.uint16 = m_state.context.fpu.no_avx.__fpu_fop;
return true;
case fpu_ip:
value->value.uint32 = m_state.context.fpu.no_avx.__fpu_ip;
return true;
case fpu_cs:
value->value.uint16 = m_state.context.fpu.no_avx.__fpu_cs;
return true;
case fpu_dp:
value->value.uint32 = m_state.context.fpu.no_avx.__fpu_dp;
return true;
case fpu_ds:
value->value.uint16 = m_state.context.fpu.no_avx.__fpu_ds;
return true;
case fpu_mxcsr:
value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsr;
return true;
case fpu_mxcsrmask:
value->value.uint32 = m_state.context.fpu.no_avx.__fpu_mxcsrmask;
return true;
case fpu_stmm0:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg, 10);
return true;
case fpu_stmm1:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg, 10);
return true;
case fpu_stmm2:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg, 10);
return true;
case fpu_stmm3:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg, 10);
return true;
case fpu_stmm4:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg, 10);
return true;
case fpu_stmm5:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg, 10);
return true;
case fpu_stmm6:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg, 10);
return true;
case fpu_stmm7:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg, 10);
return true;
case fpu_xmm0:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg, 16);
return true;
case fpu_xmm1:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg, 16);
return true;
case fpu_xmm2:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg, 16);
return true;
case fpu_xmm3:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg, 16);
return true;
case fpu_xmm4:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg, 16);
return true;
case fpu_xmm5:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg, 16);
return true;
case fpu_xmm6:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg, 16);
return true;
case fpu_xmm7:
memcpy(&value->value.uint8,
m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg, 16);
return true;
#define MEMCPY_YMM(n) \
memcpy(&value->value.uint8, m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg, \
16); \
memcpy((&value->value.uint8) + 16, \
m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg, 16);
case fpu_ymm0:
MEMCPY_YMM(0);
return true;
case fpu_ymm1:
MEMCPY_YMM(1);
return true;
case fpu_ymm2:
MEMCPY_YMM(2);
return true;
case fpu_ymm3:
MEMCPY_YMM(3);
return true;
case fpu_ymm4:
MEMCPY_YMM(4);
return true;
case fpu_ymm5:
MEMCPY_YMM(5);
return true;
case fpu_ymm6:
MEMCPY_YMM(6);
return true;
case fpu_ymm7:
MEMCPY_YMM(7);
return true;
#undef MEMCPY_YMM
case fpu_k0:
case fpu_k1:
case fpu_k2:
case fpu_k3:
case fpu_k4:
case fpu_k5:
case fpu_k6:
case fpu_k7:
memcpy((&value->value.uint8),
&m_state.context.fpu.avx512f.__fpu_k0 + (reg - fpu_k0), 8);
return true;
case fpu_zmm0:
case fpu_zmm1:
case fpu_zmm2:
case fpu_zmm3:
case fpu_zmm4:
case fpu_zmm5:
case fpu_zmm6:
case fpu_zmm7:
memcpy(&value->value.uint8,
&m_state.context.fpu.avx512f.__fpu_xmm0 + (reg - fpu_zmm0), 16);
memcpy(&value->value.uint8 + 16,
&m_state.context.fpu.avx512f.__fpu_ymmh0 + (reg - fpu_zmm0), 16);
memcpy(&value->value.uint8 + 32,
&m_state.context.fpu.avx512f.__fpu_zmmh0 + (reg - fpu_zmm0), 32);
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
value->value.uint32 = (&m_state.context.exc.__trapno)[reg];
return true;
}
break;
}
}
return false;
}
bool DNBArchImplI386::SetRegisterValue(uint32_t set, uint32_t reg,
const DNBRegisterValue *value) {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_eip;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_esp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_ebp;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_eflags;
break;
case GENERIC_REGNUM_RA: // Return Address
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
((uint32_t *)(&m_state.context.gpr))[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetFPU:
if (reg > fpu_xmm7 && !(CPUHasAVX() || FORCE_AVX_REGS))
return false;
if (reg > fpu_ymm7 && !(CPUHasAVX512f() || FORCE_AVX_REGS))
return false;
switch (reg) {
case fpu_fcw:
*((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fcw)) =
value->value.uint16;
success = true;
break;
case fpu_fsw:
*((uint16_t *)(&m_state.context.fpu.no_avx.__fpu_fsw)) =
value->value.uint16;
success = true;
break;
case fpu_ftw:
memcpy (&m_state.context.fpu.no_avx.__fpu_ftw, &value->value.uint16, 2);
success = true;
break;
case fpu_fop:
m_state.context.fpu.no_avx.__fpu_fop = value->value.uint16;
success = true;
break;
case fpu_ip:
m_state.context.fpu.no_avx.__fpu_ip = value->value.uint32;
success = true;
break;
case fpu_cs:
m_state.context.fpu.no_avx.__fpu_cs = value->value.uint16;
success = true;
break;
case fpu_dp:
m_state.context.fpu.no_avx.__fpu_dp = value->value.uint32;
success = true;
break;
case fpu_ds:
m_state.context.fpu.no_avx.__fpu_ds = value->value.uint16;
success = true;
break;
case fpu_mxcsr:
m_state.context.fpu.no_avx.__fpu_mxcsr = value->value.uint32;
success = true;
break;
case fpu_mxcsrmask:
m_state.context.fpu.no_avx.__fpu_mxcsrmask = value->value.uint32;
success = true;
break;
case fpu_stmm0:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm0.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_stmm1:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm1.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_stmm2:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm2.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_stmm3:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm3.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_stmm4:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm4.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_stmm5:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm5.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_stmm6:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm6.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_stmm7:
memcpy(m_state.context.fpu.no_avx.__fpu_stmm7.__mmst_reg,
&value->value.uint8, 10);
success = true;
break;
case fpu_xmm0:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm0.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
case fpu_xmm1:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm1.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
case fpu_xmm2:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm2.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
case fpu_xmm3:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm3.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
case fpu_xmm4:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm4.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
case fpu_xmm5:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm5.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
case fpu_xmm6:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm6.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
case fpu_xmm7:
memcpy(m_state.context.fpu.no_avx.__fpu_xmm7.__xmm_reg,
&value->value.uint8, 16);
success = true;
break;
#define MEMCPY_YMM(n) \
memcpy(m_state.context.fpu.avx.__fpu_xmm##n.__xmm_reg, &value->value.uint8, \
16); \
memcpy(m_state.context.fpu.avx.__fpu_ymmh##n.__xmm_reg, \
(&value->value.uint8) + 16, 16);
case fpu_ymm0:
MEMCPY_YMM(0);
return true;
case fpu_ymm1:
MEMCPY_YMM(1);
return true;
case fpu_ymm2:
MEMCPY_YMM(2);
return true;
case fpu_ymm3:
MEMCPY_YMM(3);
return true;
case fpu_ymm4:
MEMCPY_YMM(4);
return true;
case fpu_ymm5:
MEMCPY_YMM(5);
return true;
case fpu_ymm6:
MEMCPY_YMM(6);
return true;
case fpu_ymm7:
MEMCPY_YMM(7);
return true;
#undef MEMCPY_YMM
case fpu_k0:
case fpu_k1:
case fpu_k2:
case fpu_k3:
case fpu_k4:
case fpu_k5:
case fpu_k6:
case fpu_k7:
memcpy(&m_state.context.fpu.avx512f.__fpu_k0 + (reg - fpu_k0),
&value->value.uint8, 8);
return true;
case fpu_zmm0:
case fpu_zmm1:
case fpu_zmm2:
case fpu_zmm3:
case fpu_zmm4:
case fpu_zmm5:
case fpu_zmm6:
case fpu_zmm7:
memcpy(&m_state.context.fpu.avx512f.__fpu_xmm0 + (reg - fpu_zmm0),
&value->value.uint8, 16);
memcpy(&m_state.context.fpu.avx512f.__fpu_ymmh0 + (reg - fpu_zmm0),
&value->value.uint8 + 16, 16);
memcpy(&m_state.context.fpu.avx512f.__fpu_zmmh0 + (reg - fpu_zmm0),
&value->value.uint8 + 32, 32);
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
(&m_state.context.exc.__trapno)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
uint32_t DNBArchImplI386::GetRegisterContextSize() {
static uint32_t g_cached_size = 0;
if (g_cached_size == 0) {
if(CPUHasAVX512f() || FORCE_AVX_REGS) {
for (size_t i = 0; i < k_num_fpu_registers_avx512f; ++i) {
if (g_fpu_registers_avx512f[i].value_regs == NULL)
g_cached_size += g_fpu_registers_avx512f[i].size;
}
} else
if (CPUHasAVX()) {
for (size_t i = 0; i < k_num_fpu_registers_avx; ++i) {
if (g_fpu_registers_avx[i].value_regs == NULL)
g_cached_size += g_fpu_registers_avx[i].size;
}
} else {
for (size_t i = 0; i < k_num_fpu_registers_no_avx; ++i) {
if (g_fpu_registers_no_avx[i].value_regs == NULL)
g_cached_size += g_fpu_registers_no_avx[i].size;
}
}
DNBLogThreaded("DNBArchImplX86_64::GetRegisterContextSize() - GPR = %zu, "
"FPU = %u, EXC = %zu",
sizeof(GPR), g_cached_size, sizeof(EXC));
g_cached_size += sizeof(GPR);
g_cached_size += sizeof(EXC);
DNBLogThreaded(
"DNBArchImplX86_64::GetRegisterContextSize() - GPR + FPU + EXC = %u",
g_cached_size);
}
return g_cached_size;
}
nub_size_t DNBArchImplI386::GetRegisterContext(void *buf, nub_size_t buf_len) {
uint32_t size = GetRegisterContextSize();
if (buf && buf_len) {
if (size > buf_len)
size = static_cast<uint32_t>(buf_len);
bool force = false;
kern_return_t kret;
if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = "
"%p, len = %llu) error: GPR regs failed to "
"read: %u ",
buf, (uint64_t)buf_len, kret);
size = 0;
} else if ((kret = GetFPUState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(
LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = %p, len = "
"%llu) error: %s regs failed to read: %u",
buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
size = 0;
} else if ((kret = GetEXCState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::GetRegisterContext (buf = "
"%p, len = %llu) error: EXC regs failed to "
"read: %u",
buf, (uint64_t)buf_len, kret);
size = 0;
} else {
uint8_t *p = (uint8_t *)buf;
// Copy the GPR registers
memcpy(p, &m_state.context.gpr, sizeof(GPR));
p += sizeof(GPR);
// Walk around the gaps in the FPU regs
memcpy(p, &m_state.context.fpu.no_avx.__fpu_fcw, 5);
p += 5;
memcpy(p, &m_state.context.fpu.no_avx.__fpu_fop, 8);
p += 8;
memcpy(p, &m_state.context.fpu.no_avx.__fpu_dp, 6);
p += 6;
memcpy(p, &m_state.context.fpu.no_avx.__fpu_mxcsr, 8);
p += 8;
// Work around the padding between the stmm registers as they are 16
// byte structs with 10 bytes of the value in each
for (size_t i = 0; i < 8; ++i) {
memcpy(p, &m_state.context.fpu.no_avx.__fpu_stmm0 + i, 10);
p += 10;
}
if (CPUHasAVX512f() || FORCE_AVX_REGS) {
for (size_t i = 0; i < 8; ++i) {
memcpy(p, &m_state.context.fpu.avx512f.__fpu_k0 + i, 8);
p += 8;
}
}
if (CPUHasAVX() || FORCE_AVX_REGS) {
// Interleave the XMM and YMMH registers to make the YMM registers
for (size_t i = 0; i < 8; ++i) {
memcpy(p, &m_state.context.fpu.avx.__fpu_xmm0 + i, 16);
p += 16;
memcpy(p, &m_state.context.fpu.avx.__fpu_ymmh0 + i, 16);
p += 16;
}
if(CPUHasAVX512f() || FORCE_AVX_REGS) {
for (size_t i = 0; i < 8; ++i) {
memcpy(p, &m_state.context.fpu.avx512f.__fpu_zmmh0 + i, 32);
p += 32;
}
}
} else {
// Copy the XMM registers in a single block
memcpy(p, &m_state.context.fpu.no_avx.__fpu_xmm0, 8 * 16);
p += 8 * 16;
}
// Copy the exception registers
memcpy(p, &m_state.context.exc, sizeof(EXC));
p += sizeof(EXC);
// make sure we end up with exactly what we think we should have
size_t bytes_written = p - (uint8_t *)buf;
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
}
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchImplI386::GetRegisterContext (buf = %p, len = %llu) => %llu", buf,
(uint64_t)buf_len, (uint64_t)size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t DNBArchImplI386::SetRegisterContext(const void *buf,
nub_size_t buf_len) {
nub_size_t size = sizeof(m_state.context);
if (buf == NULL || buf_len == 0)
size = 0;
if (size) {
if (size > buf_len)
size = buf_len;
const uint8_t *p = (const uint8_t *)buf;
// Copy the GPR registers
memcpy(&m_state.context.gpr, p, sizeof(GPR));
p += sizeof(GPR);
// Copy fcw through mxcsrmask as there is no padding
memcpy(&m_state.context.fpu.no_avx.__fpu_fcw, p, 5);
p += 5;
memcpy(&m_state.context.fpu.no_avx.__fpu_fop, p, 8);
p += 8;
memcpy(&m_state.context.fpu.no_avx.__fpu_dp, p, 6);
p += 6;
memcpy(&m_state.context.fpu.no_avx.__fpu_mxcsr, p, 8);
p += 8;
// Work around the padding between the stmm registers as they are 16
// byte structs with 10 bytes of the value in each
for (size_t i = 0; i < 8; ++i) {
memcpy(&m_state.context.fpu.no_avx.__fpu_stmm0 + i, p, 10);
p += 10;
}
if(CPUHasAVX512f() || FORCE_AVX_REGS) {
for (size_t i = 0; i < 8; ++i) {
memcpy(&m_state.context.fpu.avx512f.__fpu_k0 + i, p, 8);
p += 8;
}
}
if (CPUHasAVX() || FORCE_AVX_REGS) {
// Interleave the XMM and YMMH registers to make the YMM registers
for (size_t i = 0; i < 8; ++i) {
memcpy(&m_state.context.fpu.avx.__fpu_xmm0 + i, p, 16);
p += 16;
memcpy(&m_state.context.fpu.avx.__fpu_ymmh0 + i, p, 16);
p += 16;
}
if(CPUHasAVX512f() || FORCE_AVX_REGS) {
for (size_t i = 0; i < 8; ++i) {
memcpy(&m_state.context.fpu.avx512f.__fpu_zmmh0 + i, p, 32);
p += 32;
}
}
} else {
// Copy the XMM registers in a single block
memcpy(&m_state.context.fpu.no_avx.__fpu_xmm0, p, 8 * 16);
p += 8 * 16;
}
// Copy the exception registers
memcpy(&m_state.context.exc, p, sizeof(EXC));
p += sizeof(EXC);
// make sure we end up with exactly what we think we should have
size_t bytes_written = p - (const uint8_t *)buf;
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
kern_return_t kret;
if ((kret = SetGPRState()) != KERN_SUCCESS)
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = "
"%p, len = %llu) error: GPR regs failed to "
"write: %u",
buf, (uint64_t)buf_len, kret);
if ((kret = SetFPUState()) != KERN_SUCCESS)
DNBLogThreadedIf(
LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = %p, len = "
"%llu) error: %s regs failed to write: %u",
buf, (uint64_t)buf_len, CPUHasAVX() ? "AVX" : "FPU", kret);
if ((kret = SetEXCState()) != KERN_SUCCESS)
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SetRegisterContext (buf = "
"%p, len = %llu) error: EXP regs failed to "
"write: %u",
buf, (uint64_t)buf_len, kret);
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchImplI386::SetRegisterContext (buf = %p, len = %llu) => %llu", buf,
(uint64_t)buf_len, (uint64_t)size);
return size;
}
uint32_t DNBArchImplI386::SaveRegisterState() {
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf(
LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
"(SetGPRState() for stop_count = %u)",
m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
bool force = true;
if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SaveRegisterState () error: "
"GPR regs failed to read: %u ",
kret);
} else if ((kret = GetFPUState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::SaveRegisterState () error: "
"%s regs failed to read: %u",
CPUHasAVX() ? "AVX" : "FPU", kret);
} else {
const uint32_t save_id = GetNextRegisterStateSaveID();
m_saved_register_states[save_id] = m_state.context;
return save_id;
}
return 0;
}
bool DNBArchImplI386::RestoreRegisterState(uint32_t save_id) {
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
if (pos != m_saved_register_states.end()) {
m_state.context.gpr = pos->second.gpr;
m_state.context.fpu = pos->second.fpu;
m_state.context.exc = pos->second.exc;
m_state.SetError(e_regSetGPR, Read, 0);
m_state.SetError(e_regSetFPU, Read, 0);
m_state.SetError(e_regSetEXC, Read, 0);
kern_return_t kret;
bool success = true;
if ((kret = SetGPRState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::RestoreRegisterState "
"(save_id = %u) error: GPR regs failed to "
"write: %u",
save_id, kret);
success = false;
} else if ((kret = SetFPUState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchImplI386::RestoreRegisterState "
"(save_id = %u) error: %s regs failed to "
"write: %u",
save_id, CPUHasAVX() ? "AVX" : "FPU", kret);
success = false;
}
m_saved_register_states.erase(pos);
return success;
}
return false;
}
kern_return_t DNBArchImplI386::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetFPUState(force) | GetEXCState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetFPU:
return GetFPUState(force);
case e_regSetEXC:
return GetEXCState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchImplI386::SetRegisterState(int set) {
// Make sure we have a valid context to set.
if (RegisterSetStateIsValid(set)) {
switch (set) {
case e_regSetALL:
return SetGPRState() | SetFPUState() | SetEXCState();
case e_regSetGPR:
return SetGPRState();
case e_regSetFPU:
return SetFPUState();
case e_regSetEXC:
return SetEXCState();
default:
break;
}
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchImplI386::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
#endif // #if defined (__i386__)