blob: 1653287430ad64c52c17e9d27168ffaff34322a6 [file] [log] [blame]
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__)
#if __DARWIN_UNIX03
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) __##reg
#else
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) reg
#endif
#include "MacOSX/ppc/DNBArchImpl.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachThread.h"
static const uint8_t g_breakpoint_opcode[] = {0x7F, 0xC0, 0x00, 0x08};
const uint8_t *DNBArchMachPPC::SoftwareBreakpointOpcode(nub_size_t size) {
if (size == 4)
return g_breakpoint_opcode;
return NULL;
}
uint32_t DNBArchMachPPC::GetCPUType() { return CPU_TYPE_POWERPC; }
uint64_t DNBArchMachPPC::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0);
return failValue;
}
kern_return_t DNBArchMachPPC::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0) = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchMachPPC::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(r1);
return failValue;
}
kern_return_t DNBArchMachPPC::GetGPRState(bool force) {
if (force || m_state.GetError(e_regSetGPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr, &count));
}
return m_state.GetError(e_regSetGPR, Read);
}
kern_return_t DNBArchMachPPC::GetFPRState(bool force) {
if (force || m_state.GetError(e_regSetFPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeFPR;
m_state.SetError(e_regSetFPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr, &count));
}
return m_state.GetError(e_regSetFPR, Read);
}
kern_return_t DNBArchMachPPC::GetEXCState(bool force) {
if (force || m_state.GetError(e_regSetEXC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t DNBArchMachPPC::GetVECState(bool force) {
if (force || m_state.GetError(e_regSetVEC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeVEC;
m_state.SetError(e_regSetVEC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec, &count));
}
return m_state.GetError(e_regSetVEC, Read);
}
kern_return_t DNBArchMachPPC::SetGPRState() {
m_state.SetError(e_regSetGPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr,
e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t DNBArchMachPPC::SetFPRState() {
m_state.SetError(e_regSetFPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr,
e_regSetWordSizeFPR));
return m_state.GetError(e_regSetFPR, Write);
}
kern_return_t DNBArchMachPPC::SetEXCState() {
m_state.SetError(e_regSetEXC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc,
e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t DNBArchMachPPC::SetVECState() {
m_state.SetError(e_regSetVEC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec,
e_regSetWordSizeVEC));
return m_state.GetError(e_regSetVEC, Write);
}
bool DNBArchMachPPC::ThreadWillResume() {
bool success = true;
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
// This is the primary thread, let the arch do anything it needs
success = EnableHardwareSingleStep(true) == KERN_SUCCESS;
}
return success;
}
bool DNBArchMachPPC::ThreadDidStop() {
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchMachPPC::EnableHardwareSingleStep(bool enable) {
DNBLogThreadedIf(LOG_STEP,
"DNBArchMachPPC::EnableHardwareSingleStep( enable = %d )",
enable);
if (GetGPRState(false) == KERN_SUCCESS) {
const uint32_t trace_bit = 0x400;
if (enable)
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) |= trace_bit;
else
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information definitions for 32 bit PowerPC.
//----------------------------------------------------------------------
enum gpr_regnums {
e_regNumGPR_srr0,
e_regNumGPR_srr1,
e_regNumGPR_r0,
e_regNumGPR_r1,
e_regNumGPR_r2,
e_regNumGPR_r3,
e_regNumGPR_r4,
e_regNumGPR_r5,
e_regNumGPR_r6,
e_regNumGPR_r7,
e_regNumGPR_r8,
e_regNumGPR_r9,
e_regNumGPR_r10,
e_regNumGPR_r11,
e_regNumGPR_r12,
e_regNumGPR_r13,
e_regNumGPR_r14,
e_regNumGPR_r15,
e_regNumGPR_r16,
e_regNumGPR_r17,
e_regNumGPR_r18,
e_regNumGPR_r19,
e_regNumGPR_r20,
e_regNumGPR_r21,
e_regNumGPR_r22,
e_regNumGPR_r23,
e_regNumGPR_r24,
e_regNumGPR_r25,
e_regNumGPR_r26,
e_regNumGPR_r27,
e_regNumGPR_r28,
e_regNumGPR_r29,
e_regNumGPR_r30,
e_regNumGPR_r31,
e_regNumGPR_cr,
e_regNumGPR_xer,
e_regNumGPR_lr,
e_regNumGPR_ctr,
e_regNumGPR_mq,
e_regNumGPR_vrsave
};
// General purpose registers
static DNBRegisterInfo g_gpr_registers[] = {
{"srr0", Uint, 4, Hex}, {"srr1", Uint, 4, Hex}, {"r0", Uint, 4, Hex},
{"r1", Uint, 4, Hex}, {"r2", Uint, 4, Hex}, {"r3", Uint, 4, Hex},
{"r4", Uint, 4, Hex}, {"r5", Uint, 4, Hex}, {"r6", Uint, 4, Hex},
{"r7", Uint, 4, Hex}, {"r8", Uint, 4, Hex}, {"r9", Uint, 4, Hex},
{"r10", Uint, 4, Hex}, {"r11", Uint, 4, Hex}, {"r12", Uint, 4, Hex},
{"r13", Uint, 4, Hex}, {"r14", Uint, 4, Hex}, {"r15", Uint, 4, Hex},
{"r16", Uint, 4, Hex}, {"r17", Uint, 4, Hex}, {"r18", Uint, 4, Hex},
{"r19", Uint, 4, Hex}, {"r20", Uint, 4, Hex}, {"r21", Uint, 4, Hex},
{"r22", Uint, 4, Hex}, {"r23", Uint, 4, Hex}, {"r24", Uint, 4, Hex},
{"r25", Uint, 4, Hex}, {"r26", Uint, 4, Hex}, {"r27", Uint, 4, Hex},
{"r28", Uint, 4, Hex}, {"r29", Uint, 4, Hex}, {"r30", Uint, 4, Hex},
{"r31", Uint, 4, Hex}, {"cr", Uint, 4, Hex}, {"xer", Uint, 4, Hex},
{"lr", Uint, 4, Hex}, {"ctr", Uint, 4, Hex}, {"mq", Uint, 4, Hex},
{"vrsave", Uint, 4, Hex},
};
// Floating point registers
static DNBRegisterInfo g_fpr_registers[] = {
{"fp0", IEEE754, 8, Float}, {"fp1", IEEE754, 8, Float},
{"fp2", IEEE754, 8, Float}, {"fp3", IEEE754, 8, Float},
{"fp4", IEEE754, 8, Float}, {"fp5", IEEE754, 8, Float},
{"fp6", IEEE754, 8, Float}, {"fp7", IEEE754, 8, Float},
{"fp8", IEEE754, 8, Float}, {"fp9", IEEE754, 8, Float},
{"fp10", IEEE754, 8, Float}, {"fp11", IEEE754, 8, Float},
{"fp12", IEEE754, 8, Float}, {"fp13", IEEE754, 8, Float},
{"fp14", IEEE754, 8, Float}, {"fp15", IEEE754, 8, Float},
{"fp16", IEEE754, 8, Float}, {"fp17", IEEE754, 8, Float},
{"fp18", IEEE754, 8, Float}, {"fp19", IEEE754, 8, Float},
{"fp20", IEEE754, 8, Float}, {"fp21", IEEE754, 8, Float},
{"fp22", IEEE754, 8, Float}, {"fp23", IEEE754, 8, Float},
{"fp24", IEEE754, 8, Float}, {"fp25", IEEE754, 8, Float},
{"fp26", IEEE754, 8, Float}, {"fp27", IEEE754, 8, Float},
{"fp28", IEEE754, 8, Float}, {"fp29", IEEE754, 8, Float},
{"fp30", IEEE754, 8, Float}, {"fp31", IEEE754, 8, Float},
{"fpscr", Uint, 4, Hex}};
// Exception registers
static DNBRegisterInfo g_exc_registers[] = {{"dar", Uint, 4, Hex},
{"dsisr", Uint, 4, Hex},
{"exception", Uint, 4, Hex}};
// Altivec registers
static DNBRegisterInfo g_vec_registers[] = {
{"vr0", Vector, 16, VectorOfFloat32},
{"vr1", Vector, 16, VectorOfFloat32},
{"vr2", Vector, 16, VectorOfFloat32},
{"vr3", Vector, 16, VectorOfFloat32},
{"vr4", Vector, 16, VectorOfFloat32},
{"vr5", Vector, 16, VectorOfFloat32},
{"vr6", Vector, 16, VectorOfFloat32},
{"vr7", Vector, 16, VectorOfFloat32},
{"vr8", Vector, 16, VectorOfFloat32},
{"vr9", Vector, 16, VectorOfFloat32},
{"vr10", Vector, 16, VectorOfFloat32},
{"vr11", Vector, 16, VectorOfFloat32},
{"vr12", Vector, 16, VectorOfFloat32},
{"vr13", Vector, 16, VectorOfFloat32},
{"vr14", Vector, 16, VectorOfFloat32},
{"vr15", Vector, 16, VectorOfFloat32},
{"vr16", Vector, 16, VectorOfFloat32},
{"vr17", Vector, 16, VectorOfFloat32},
{"vr18", Vector, 16, VectorOfFloat32},
{"vr19", Vector, 16, VectorOfFloat32},
{"vr20", Vector, 16, VectorOfFloat32},
{"vr21", Vector, 16, VectorOfFloat32},
{"vr22", Vector, 16, VectorOfFloat32},
{"vr23", Vector, 16, VectorOfFloat32},
{"vr24", Vector, 16, VectorOfFloat32},
{"vr25", Vector, 16, VectorOfFloat32},
{"vr26", Vector, 16, VectorOfFloat32},
{"vr27", Vector, 16, VectorOfFloat32},
{"vr28", Vector, 16, VectorOfFloat32},
{"vr29", Vector, 16, VectorOfFloat32},
{"vr30", Vector, 16, VectorOfFloat32},
{"vr31", Vector, 16, VectorOfFloat32},
{"vscr", Uint, 16, Hex},
{"vrvalid", Uint, 4, Hex}};
// Number of registers in each register set
const size_t k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_fpr_registers =
sizeof(g_fpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_vec_registers =
sizeof(g_vec_registers) / sizeof(DNBRegisterInfo);
// Total number of registers for this architecture
const size_t k_num_ppc_registers = k_num_gpr_registers + k_num_fpr_registers +
k_num_exc_registers + k_num_vec_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
static const DNBRegisterSetInfo g_reg_sets[] = {
{"PowerPC Registers", NULL, k_num_ppc_registers},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_fpr_registers, k_num_fpr_registers},
{"Exception State Registers", g_exc_registers, k_num_exc_registers},
{"Altivec Registers", g_vec_registers, k_num_vec_registers}};
// Total number of register sets for this architecture
const size_t k_num_register_sets =
sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachPPC::GetRegisterSetInfo(nub_size_t *num_reg_sets) const {
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool DNBArchMachPPC::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) const {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = e_regNumGPR_srr0;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = e_regNumGPR_r1;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
// Return false for now instead of returning r30 as gcc 3.x would
// use a variety of registers for the FP and it takes inspecting
// the stack to make sure there is a frame pointer before we can
// determine the FP.
return false;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = e_regNumGPR_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = e_regNumGPR_srr1;
break;
default:
return false;
}
}
if (!m_state.RegsAreValid(set))
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
value->value.uint32 =
(&m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0))[reg];
return true;
}
break;
case e_regSetFPR:
if (reg < 32) {
value->value.float64 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpregs)[reg];
return true;
} else if (reg == 32) {
value->value.uint32 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpscr);
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
value->value.uint32 =
(&m_state.exc.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(dar))[reg];
return true;
}
break;
case e_regSetVEC:
if (reg < k_num_vec_registers) {
if (reg < 33) // FP0 - FP31 and VSCR
{
// Copy all 4 uint32 values for this vector register
value->value.v_uint32[0] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[0];
value->value.v_uint32[1] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[1];
value->value.v_uint32[2] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[2];
value->value.v_uint32[3] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[3];
return true;
} else if (reg == 34) // VRVALID
{
value->value.uint32 =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vrvalid);
return true;
}
}
break;
}
}
return false;
}
kern_return_t DNBArchMachPPC::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetFPRState(force) | GetEXCState(force) |
GetVECState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetFPR:
return GetFPRState(force);
case e_regSetEXC:
return GetEXCState(force);
case e_regSetVEC:
return GetVECState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchMachPPC::SetRegisterState(int set) {
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set) {
case e_regSetALL:
return SetGPRState() | SetFPRState() | SetEXCState() | SetVECState();
case e_regSetGPR:
return SetGPRState();
case e_regSetFPR:
return SetFPRState();
case e_regSetEXC:
return SetEXCState();
case e_regSetVEC:
return SetVECState();
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchMachPPC::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
#endif // #if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__)