blob: f1d15e66918b6a8611c6afd3b8a4edbd73349ce2 [file] [log] [blame]
//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides X86 specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "X86MCTargetDesc.h"
#include "InstPrinter/X86ATTInstPrinter.h"
#include "InstPrinter/X86IntelInstPrinter.h"
#include "X86BaseInfo.h"
#include "X86MCAsmInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Triple.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetRegistry.h"
#if _MSC_VER
#include <intrin.h>
#endif
using namespace llvm;
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_MC_DESC
#define GET_GENINSTRINFO_MC_HELPERS
#include "X86GenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "X86GenSubtargetInfo.inc"
std::string X86_MC::ParseX86Triple(const Triple &TT) {
std::string FS;
if (TT.getArch() == Triple::x86_64)
FS = "+64bit-mode,-32bit-mode,-16bit-mode";
else if (TT.getEnvironment() != Triple::CODE16)
FS = "-64bit-mode,+32bit-mode,-16bit-mode";
else
FS = "-64bit-mode,-32bit-mode,+16bit-mode";
return FS;
}
unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
if (TT.getArch() == Triple::x86_64)
return DWARFFlavour::X86_64;
if (TT.isOSDarwin())
return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
if (TT.isOSCygMing())
// Unsupported by now, just quick fallback
return DWARFFlavour::X86_32_Generic;
return DWARFFlavour::X86_32_Generic;
}
void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
// FIXME: TableGen these.
for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
unsigned SEH = MRI->getEncodingValue(Reg);
MRI->mapLLVMRegToSEHReg(Reg, SEH);
}
// Mapping from CodeView to MC register id.
static const struct {
codeview::RegisterId CVReg;
MCPhysReg Reg;
} RegMap[] = {
{ codeview::RegisterId::CVRegAL, X86::AL},
{ codeview::RegisterId::CVRegCL, X86::CL},
{ codeview::RegisterId::CVRegDL, X86::DL},
{ codeview::RegisterId::CVRegBL, X86::BL},
{ codeview::RegisterId::CVRegAH, X86::AH},
{ codeview::RegisterId::CVRegCH, X86::CH},
{ codeview::RegisterId::CVRegDH, X86::DH},
{ codeview::RegisterId::CVRegBH, X86::BH},
{ codeview::RegisterId::CVRegAX, X86::AX},
{ codeview::RegisterId::CVRegCX, X86::CX},
{ codeview::RegisterId::CVRegDX, X86::DX},
{ codeview::RegisterId::CVRegBX, X86::BX},
{ codeview::RegisterId::CVRegSP, X86::SP},
{ codeview::RegisterId::CVRegBP, X86::BP},
{ codeview::RegisterId::CVRegSI, X86::SI},
{ codeview::RegisterId::CVRegDI, X86::DI},
{ codeview::RegisterId::CVRegEAX, X86::EAX},
{ codeview::RegisterId::CVRegECX, X86::ECX},
{ codeview::RegisterId::CVRegEDX, X86::EDX},
{ codeview::RegisterId::CVRegEBX, X86::EBX},
{ codeview::RegisterId::CVRegESP, X86::ESP},
{ codeview::RegisterId::CVRegEBP, X86::EBP},
{ codeview::RegisterId::CVRegESI, X86::ESI},
{ codeview::RegisterId::CVRegEDI, X86::EDI},
{ codeview::RegisterId::CVRegEFLAGS, X86::EFLAGS},
{ codeview::RegisterId::CVRegST0, X86::FP0},
{ codeview::RegisterId::CVRegST1, X86::FP1},
{ codeview::RegisterId::CVRegST2, X86::FP2},
{ codeview::RegisterId::CVRegST3, X86::FP3},
{ codeview::RegisterId::CVRegST4, X86::FP4},
{ codeview::RegisterId::CVRegST5, X86::FP5},
{ codeview::RegisterId::CVRegST6, X86::FP6},
{ codeview::RegisterId::CVRegST7, X86::FP7},
{ codeview::RegisterId::CVRegXMM0, X86::XMM0},
{ codeview::RegisterId::CVRegXMM1, X86::XMM1},
{ codeview::RegisterId::CVRegXMM2, X86::XMM2},
{ codeview::RegisterId::CVRegXMM3, X86::XMM3},
{ codeview::RegisterId::CVRegXMM4, X86::XMM4},
{ codeview::RegisterId::CVRegXMM5, X86::XMM5},
{ codeview::RegisterId::CVRegXMM6, X86::XMM6},
{ codeview::RegisterId::CVRegXMM7, X86::XMM7},
{ codeview::RegisterId::CVRegXMM8, X86::XMM8},
{ codeview::RegisterId::CVRegXMM9, X86::XMM9},
{ codeview::RegisterId::CVRegXMM10, X86::XMM10},
{ codeview::RegisterId::CVRegXMM11, X86::XMM11},
{ codeview::RegisterId::CVRegXMM12, X86::XMM12},
{ codeview::RegisterId::CVRegXMM13, X86::XMM13},
{ codeview::RegisterId::CVRegXMM14, X86::XMM14},
{ codeview::RegisterId::CVRegXMM15, X86::XMM15},
{ codeview::RegisterId::CVRegSIL, X86::SIL},
{ codeview::RegisterId::CVRegDIL, X86::DIL},
{ codeview::RegisterId::CVRegBPL, X86::BPL},
{ codeview::RegisterId::CVRegSPL, X86::SPL},
{ codeview::RegisterId::CVRegRAX, X86::RAX},
{ codeview::RegisterId::CVRegRBX, X86::RBX},
{ codeview::RegisterId::CVRegRCX, X86::RCX},
{ codeview::RegisterId::CVRegRDX, X86::RDX},
{ codeview::RegisterId::CVRegRSI, X86::RSI},
{ codeview::RegisterId::CVRegRDI, X86::RDI},
{ codeview::RegisterId::CVRegRBP, X86::RBP},
{ codeview::RegisterId::CVRegRSP, X86::RSP},
{ codeview::RegisterId::CVRegR8, X86::R8},
{ codeview::RegisterId::CVRegR9, X86::R9},
{ codeview::RegisterId::CVRegR10, X86::R10},
{ codeview::RegisterId::CVRegR11, X86::R11},
{ codeview::RegisterId::CVRegR12, X86::R12},
{ codeview::RegisterId::CVRegR13, X86::R13},
{ codeview::RegisterId::CVRegR14, X86::R14},
{ codeview::RegisterId::CVRegR15, X86::R15},
{ codeview::RegisterId::CVRegR8B, X86::R8B},
{ codeview::RegisterId::CVRegR9B, X86::R9B},
{ codeview::RegisterId::CVRegR10B, X86::R10B},
{ codeview::RegisterId::CVRegR11B, X86::R11B},
{ codeview::RegisterId::CVRegR12B, X86::R12B},
{ codeview::RegisterId::CVRegR13B, X86::R13B},
{ codeview::RegisterId::CVRegR14B, X86::R14B},
{ codeview::RegisterId::CVRegR15B, X86::R15B},
{ codeview::RegisterId::CVRegR8W, X86::R8W},
{ codeview::RegisterId::CVRegR9W, X86::R9W},
{ codeview::RegisterId::CVRegR10W, X86::R10W},
{ codeview::RegisterId::CVRegR11W, X86::R11W},
{ codeview::RegisterId::CVRegR12W, X86::R12W},
{ codeview::RegisterId::CVRegR13W, X86::R13W},
{ codeview::RegisterId::CVRegR14W, X86::R14W},
{ codeview::RegisterId::CVRegR15W, X86::R15W},
{ codeview::RegisterId::CVRegR8D, X86::R8D},
{ codeview::RegisterId::CVRegR9D, X86::R9D},
{ codeview::RegisterId::CVRegR10D, X86::R10D},
{ codeview::RegisterId::CVRegR11D, X86::R11D},
{ codeview::RegisterId::CVRegR12D, X86::R12D},
{ codeview::RegisterId::CVRegR13D, X86::R13D},
{ codeview::RegisterId::CVRegR14D, X86::R14D},
{ codeview::RegisterId::CVRegR15D, X86::R15D},
{ codeview::RegisterId::CVRegAMD64_YMM0, X86::YMM0},
{ codeview::RegisterId::CVRegAMD64_YMM1, X86::YMM1},
{ codeview::RegisterId::CVRegAMD64_YMM2, X86::YMM2},
{ codeview::RegisterId::CVRegAMD64_YMM3, X86::YMM3},
{ codeview::RegisterId::CVRegAMD64_YMM4, X86::YMM4},
{ codeview::RegisterId::CVRegAMD64_YMM5, X86::YMM5},
{ codeview::RegisterId::CVRegAMD64_YMM6, X86::YMM6},
{ codeview::RegisterId::CVRegAMD64_YMM7, X86::YMM7},
{ codeview::RegisterId::CVRegAMD64_YMM8, X86::YMM8},
{ codeview::RegisterId::CVRegAMD64_YMM9, X86::YMM9},
{ codeview::RegisterId::CVRegAMD64_YMM10, X86::YMM10},
{ codeview::RegisterId::CVRegAMD64_YMM11, X86::YMM11},
{ codeview::RegisterId::CVRegAMD64_YMM12, X86::YMM12},
{ codeview::RegisterId::CVRegAMD64_YMM13, X86::YMM13},
{ codeview::RegisterId::CVRegAMD64_YMM14, X86::YMM14},
{ codeview::RegisterId::CVRegAMD64_YMM15, X86::YMM15},
};
for (unsigned I = 0; I < array_lengthof(RegMap); ++I)
MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg));
}
MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
StringRef CPU, StringRef FS) {
std::string ArchFS = X86_MC::ParseX86Triple(TT);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
else
ArchFS = FS;
}
std::string CPUName = CPU;
if (CPUName.empty())
CPUName = "generic";
return createX86MCSubtargetInfoImpl(TT, CPUName, ArchFS);
}
static MCInstrInfo *createX86MCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitX86MCInstrInfo(X);
return X;
}
static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
unsigned RA = (TT.getArch() == Triple::x86_64)
? X86::RIP // Should have dwarf #16.
: X86::EIP; // Should have dwarf #8.
MCRegisterInfo *X = new MCRegisterInfo();
InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
X86_MC::getDwarfRegFlavour(TT, true), RA);
X86_MC::initLLVMToSEHAndCVRegMapping(X);
return X;
}
static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
const Triple &TheTriple) {
bool is64Bit = TheTriple.getArch() == Triple::x86_64;
MCAsmInfo *MAI;
if (TheTriple.isOSBinFormatMachO()) {
if (is64Bit)
MAI = new X86_64MCAsmInfoDarwin(TheTriple);
else
MAI = new X86MCAsmInfoDarwin(TheTriple);
} else if (TheTriple.isOSBinFormatELF()) {
// Force the use of an ELF container.
MAI = new X86ELFMCAsmInfo(TheTriple);
} else if (TheTriple.isWindowsMSVCEnvironment() ||
TheTriple.isWindowsCoreCLREnvironment()) {
MAI = new X86MCAsmInfoMicrosoft(TheTriple);
} else if (TheTriple.isOSCygMing() ||
TheTriple.isWindowsItaniumEnvironment()) {
MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
} else {
// The default is ELF.
MAI = new X86ELFMCAsmInfo(TheTriple);
}
// Initialize initial frame state.
// Calculate amount of bytes used for return address storing
int stackGrowth = is64Bit ? -8 : -4;
// Initial state of the frame pointer is esp+stackGrowth.
unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(
nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
MAI->addInitialFrameState(Inst);
// Add return address to move list
unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
MAI->addInitialFrameState(Inst2);
return MAI;
}
static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI) {
if (SyntaxVariant == 0)
return new X86ATTInstPrinter(MAI, MII, MRI);
if (SyntaxVariant == 1)
return new X86IntelInstPrinter(MAI, MII, MRI);
return nullptr;
}
static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
MCContext &Ctx) {
// Default to the stock relocation info.
return llvm::createMCRelocationInfo(TheTriple, Ctx);
}
namespace llvm {
namespace X86_MC {
class X86MCInstrAnalysis : public MCInstrAnalysis {
X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
virtual ~X86MCInstrAnalysis() = default;
public:
X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
bool isDependencyBreaking(const MCSubtargetInfo &STI,
const MCInst &Inst) const override;
bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
APInt &Mask) const override;
};
bool X86MCInstrAnalysis::isDependencyBreaking(const MCSubtargetInfo &STI,
const MCInst &Inst) const {
if (STI.getCPU() == "btver2") {
// Reference: Agner Fog's microarchitecture.pdf - Section 20 "AMD Bobcat and
// Jaguar pipeline", subsection 8 "Dependency-breaking instructions".
switch (Inst.getOpcode()) {
default:
return false;
case X86::SUB32rr:
case X86::SUB64rr:
case X86::SBB32rr:
case X86::SBB64rr:
case X86::XOR32rr:
case X86::XOR64rr:
case X86::XORPSrr:
case X86::XORPDrr:
case X86::VXORPSrr:
case X86::VXORPDrr:
case X86::ANDNPSrr:
case X86::VANDNPSrr:
case X86::ANDNPDrr:
case X86::VANDNPDrr:
case X86::PXORrr:
case X86::VPXORrr:
case X86::PANDNrr:
case X86::VPANDNrr:
case X86::PSUBBrr:
case X86::PSUBWrr:
case X86::PSUBDrr:
case X86::PSUBQrr:
case X86::VPSUBBrr:
case X86::VPSUBWrr:
case X86::VPSUBDrr:
case X86::VPSUBQrr:
case X86::PCMPEQBrr:
case X86::PCMPEQWrr:
case X86::PCMPEQDrr:
case X86::PCMPEQQrr:
case X86::VPCMPEQBrr:
case X86::VPCMPEQWrr:
case X86::VPCMPEQDrr:
case X86::VPCMPEQQrr:
case X86::PCMPGTBrr:
case X86::PCMPGTWrr:
case X86::PCMPGTDrr:
case X86::PCMPGTQrr:
case X86::VPCMPGTBrr:
case X86::VPCMPGTWrr:
case X86::VPCMPGTDrr:
case X86::VPCMPGTQrr:
case X86::MMX_PXORirr:
case X86::MMX_PANDNirr:
case X86::MMX_PSUBBirr:
case X86::MMX_PSUBDirr:
case X86::MMX_PSUBQirr:
case X86::MMX_PSUBWirr:
case X86::MMX_PCMPGTBirr:
case X86::MMX_PCMPGTDirr:
case X86::MMX_PCMPGTWirr:
case X86::MMX_PCMPEQBirr:
case X86::MMX_PCMPEQDirr:
case X86::MMX_PCMPEQWirr:
return Inst.getOperand(1).getReg() == Inst.getOperand(2).getReg();
case X86::CMP32rr:
case X86::CMP64rr:
return Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg();
}
}
return false;
}
bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
const MCInst &Inst,
APInt &Mask) const {
const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
unsigned NumDefs = Desc.getNumDefs();
unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
"Unexpected number of bits in the mask!");
bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
auto ClearsSuperReg = [=](unsigned RegID) {
// On X86-64, a general purpose integer register is viewed as a 64-bit
// register internal to the processor.
// An update to the lower 32 bits of a 64 bit integer register is
// architecturally defined to zero extend the upper 32 bits.
if (GR32RC.contains(RegID))
return true;
// Early exit if this instruction has no vex/evex/xop prefix.
if (!HasEVEX && !HasVEX && !HasXOP)
return false;
// All VEX and EVEX encoded instructions are defined to zero the high bits
// of the destination register up to VLMAX (i.e. the maximum vector register
// width pertaining to the instruction).
// We assume the same behavior for XOP instructions too.
return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
};
Mask.clearAllBits();
for (unsigned I = 0, E = NumDefs; I < E; ++I) {
const MCOperand &Op = Inst.getOperand(I);
if (ClearsSuperReg(Op.getReg()))
Mask.setBit(I);
}
for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
const MCPhysReg Reg = Desc.getImplicitDefs()[I];
if (ClearsSuperReg(Reg))
Mask.setBit(NumDefs + I);
}
return Mask.getBoolValue();
}
} // end of namespace X86_MC
} // end of namespace llvm
static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
return new X86_MC::X86MCInstrAnalysis(Info);
}
// Force static initialization.
extern "C" void LLVMInitializeX86TargetMC() {
for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
// Register the MC asm info.
RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(*T,
X86_MC::createX86MCSubtargetInfo);
// Register the MC instruction analyzer.
TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
// Register the code emitter.
TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
// Register the obj target streamer.
TargetRegistry::RegisterObjectTargetStreamer(*T,
createX86ObjectTargetStreamer);
// Register the asm target streamer.
TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
// Register the MC relocation info.
TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
}
// Register the asm backend.
TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
createX86_32AsmBackend);
TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
createX86_64AsmBackend);
}
unsigned llvm::getX86SubSuperRegisterOrZero(unsigned Reg, unsigned Size,
bool High) {
switch (Size) {
default: return 0;
case 8:
if (High) {
switch (Reg) {
default: return getX86SubSuperRegisterOrZero(Reg, 64);
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SP;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AH;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DH;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CH;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BH;
}
} else {
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AL;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DL;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CL;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BL;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SIL;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DIL;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BPL;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SPL;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8B;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9B;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10B;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11B;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12B;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13B;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14B;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15B;
}
}
case 16:
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8W;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9W;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10W;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11W;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12W;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13W;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14W;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15W;
}
case 32:
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::EAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::EDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::ECX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::EBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::ESI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::EDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::EBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::ESP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8D;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9D;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10D;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11D;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12D;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13D;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14D;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15D;
}
case 64:
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::RAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::RDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::RCX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::RBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::RSI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::RDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::RBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::RSP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15;
}
}
}
unsigned llvm::getX86SubSuperRegister(unsigned Reg, unsigned Size, bool High) {
unsigned Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
assert(Res != 0 && "Unexpected register or VT");
return Res;
}