| // Copyright 2012 the V8 project authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef V8_DATE_H_ | 
 | #define V8_DATE_H_ | 
 |  | 
 | #include "src/allocation.h" | 
 | #include "src/base/platform/platform.h" | 
 | #include "src/base/timezone-cache.h" | 
 | #include "src/globals.h" | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | class DateCache { | 
 |  public: | 
 |   static const int kMsPerMin = 60 * 1000; | 
 |   static const int kSecPerDay = 24 * 60 * 60; | 
 |   static const int64_t kMsPerDay = kSecPerDay * 1000; | 
 |   static const int64_t kMsPerMonth = kMsPerDay * 30; | 
 |  | 
 |   // The largest time that can be passed to OS date-time library functions. | 
 |   static const int kMaxEpochTimeInSec = kMaxInt; | 
 |   static const int64_t kMaxEpochTimeInMs = | 
 |       static_cast<int64_t>(kMaxInt) * 1000; | 
 |  | 
 |   // The largest time that can be stored in JSDate. | 
 |   static const int64_t kMaxTimeInMs = | 
 |       static_cast<int64_t>(864000000) * 10000000; | 
 |  | 
 |   // Conservative upper bound on time that can be stored in JSDate | 
 |   // before UTC conversion. | 
 |   static const int64_t kMaxTimeBeforeUTCInMs = kMaxTimeInMs + kMsPerMonth; | 
 |  | 
 |   // Sentinel that denotes an invalid local offset. | 
 |   static const int kInvalidLocalOffsetInMs = kMaxInt; | 
 |   // Sentinel that denotes an invalid cache stamp. | 
 |   // It is an invariant of DateCache that cache stamp is non-negative. | 
 |   static const int kInvalidStamp = -1; | 
 |  | 
 |   DateCache(); | 
 |  | 
 |   virtual ~DateCache() { | 
 |     delete tz_cache_; | 
 |     tz_cache_ = nullptr; | 
 |   } | 
 |  | 
 |  | 
 |   // Clears cached timezone information and increments the cache stamp. | 
 |   void ResetDateCache(); | 
 |  | 
 |  | 
 |   // Computes floor(time_ms / kMsPerDay). | 
 |   static int DaysFromTime(int64_t time_ms) { | 
 |     if (time_ms < 0) time_ms -= (kMsPerDay - 1); | 
 |     return static_cast<int>(time_ms / kMsPerDay); | 
 |   } | 
 |  | 
 |  | 
 |   // Computes modulo(time_ms, kMsPerDay) given that | 
 |   // days = floor(time_ms / kMsPerDay). | 
 |   static int TimeInDay(int64_t time_ms, int days) { | 
 |     return static_cast<int>(time_ms - days * kMsPerDay); | 
 |   } | 
 |  | 
 |  | 
 |   // Given the number of days since the epoch, computes the weekday. | 
 |   // ECMA 262 - 15.9.1.6. | 
 |   int Weekday(int days) { | 
 |     int result = (days + 4) % 7; | 
 |     return result >= 0 ? result : result + 7; | 
 |   } | 
 |  | 
 |  | 
 |   bool IsLeap(int year) { | 
 |     return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); | 
 |   } | 
 |  | 
 |  | 
 |   // ECMA 262 - 15.9.1.7. | 
 |   int LocalOffsetInMs() { | 
 |     if (local_offset_ms_ == kInvalidLocalOffsetInMs)  { | 
 |       local_offset_ms_ = GetLocalOffsetFromOS(); | 
 |     } | 
 |     return local_offset_ms_; | 
 |   } | 
 |  | 
 |  | 
 |   const char* LocalTimezone(int64_t time_ms) { | 
 |     if (time_ms < 0 || time_ms > kMaxEpochTimeInMs) { | 
 |       time_ms = EquivalentTime(time_ms); | 
 |     } | 
 |     bool is_dst = DaylightSavingsOffsetInMs(time_ms) != 0; | 
 |     const char** name = is_dst ? &dst_tz_name_ : &tz_name_; | 
 |     if (*name == nullptr) { | 
 |       *name = tz_cache_->LocalTimezone(static_cast<double>(time_ms)); | 
 |     } | 
 |     return *name; | 
 |   } | 
 |  | 
 |   // ECMA 262 - 15.9.5.26 | 
 |   int TimezoneOffset(int64_t time_ms) { | 
 |     int64_t local_ms = ToLocal(time_ms); | 
 |     return static_cast<int>((time_ms - local_ms) / kMsPerMin); | 
 |   } | 
 |  | 
 |   // ECMA 262 - 15.9.1.9 | 
 |   // LocalTime(t) = t + LocalTZA + DaylightSavingTA(t) | 
 |   int64_t ToLocal(int64_t time_ms) { | 
 |     return time_ms + LocalOffsetInMs() + DaylightSavingsOffsetInMs(time_ms); | 
 |   } | 
 |  | 
 |   // ECMA 262 - 15.9.1.9 | 
 |   // UTC(t) = t - LocalTZA - DaylightSavingTA(t - LocalTZA) | 
 |   int64_t ToUTC(int64_t time_ms) { | 
 |     // We need to compute UTC time that corresponds to the given local time. | 
 |     // Literally following spec here leads to incorrect time computation at | 
 |     // the points were we transition to and from DST. | 
 |     // | 
 |     // The following shows that using DST for (t - LocalTZA - hour) produces | 
 |     // correct conversion. | 
 |     // | 
 |     // Consider transition to DST at local time L1. | 
 |     // Let L0 = L1 - hour, L2 = L1 + hour, | 
 |     //     U1 = UTC time that corresponds to L1, | 
 |     //     U0 = U1 - hour. | 
 |     // Transitioning to DST moves local clock one hour forward L1 => L2, so | 
 |     // U0 = UTC time that corresponds to L0 = L0 - LocalTZA, | 
 |     // U1 = UTC time that corresponds to L1 = L1 - LocalTZA, | 
 |     // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour. | 
 |     // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1. | 
 |     // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour), | 
 |     // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour), | 
 |     // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour). | 
 |     // | 
 |     // Consider transition from DST at local time L1. | 
 |     // Let L0 = L1 - hour, | 
 |     //     U1 = UTC time that corresponds to L1, | 
 |     //     U0 = U1 - hour, U2 = U1 + hour. | 
 |     // Transitioning from DST moves local clock one hour back L1 => L0, so | 
 |     // U0 = UTC time that corresponds to L0 (before transition) | 
 |     //    = L0 - LocalTZA - hour. | 
 |     // U1 = UTC time that corresponds to L0 (after transition) | 
 |     //    = L0 - LocalTZA = L1 - LocalTZA - hour | 
 |     // U2 = UTC time that corresponds to L1 = L1 - LocalTZA. | 
 |     // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0. | 
 |     // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0). | 
 |     // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1). | 
 |     // It is impossible to get U1 from local time. | 
 |  | 
 |     const int kMsPerHour = 3600 * 1000; | 
 |     time_ms -= LocalOffsetInMs(); | 
 |     return time_ms - DaylightSavingsOffsetInMs(time_ms - kMsPerHour); | 
 |   } | 
 |  | 
 |  | 
 |   // Computes a time equivalent to the given time according | 
 |   // to ECMA 262 - 15.9.1.9. | 
 |   // The issue here is that some library calls don't work right for dates | 
 |   // that cannot be represented using a non-negative signed 32 bit integer | 
 |   // (measured in whole seconds based on the 1970 epoch). | 
 |   // We solve this by mapping the time to a year with same leap-year-ness | 
 |   // and same starting day for the year. The ECMAscript specification says | 
 |   // we must do this, but for compatibility with other browsers, we use | 
 |   // the actual year if it is in the range 1970..2037 | 
 |   int64_t EquivalentTime(int64_t time_ms) { | 
 |     int days = DaysFromTime(time_ms); | 
 |     int time_within_day_ms = static_cast<int>(time_ms - days * kMsPerDay); | 
 |     int year, month, day; | 
 |     YearMonthDayFromDays(days, &year, &month, &day); | 
 |     int new_days = DaysFromYearMonth(EquivalentYear(year), month) + day - 1; | 
 |     return static_cast<int64_t>(new_days) * kMsPerDay + time_within_day_ms; | 
 |   } | 
 |  | 
 |   // Returns an equivalent year in the range [2008-2035] matching | 
 |   // - leap year, | 
 |   // - week day of first day. | 
 |   // ECMA 262 - 15.9.1.9. | 
 |   int EquivalentYear(int year) { | 
 |     int week_day = Weekday(DaysFromYearMonth(year, 0)); | 
 |     int recent_year = (IsLeap(year) ? 1956 : 1967) + (week_day * 12) % 28; | 
 |     // Find the year in the range 2008..2037 that is equivalent mod 28. | 
 |     // Add 3*28 to give a positive argument to the modulus operator. | 
 |     return 2008 + (recent_year + 3 * 28 - 2008) % 28; | 
 |   } | 
 |  | 
 |   // Given the number of days since the epoch, computes | 
 |   // the corresponding year, month, and day. | 
 |   void YearMonthDayFromDays(int days, int* year, int* month, int* day); | 
 |  | 
 |   // Computes the number of days since the epoch for | 
 |   // the first day of the given month in the given year. | 
 |   int DaysFromYearMonth(int year, int month); | 
 |  | 
 |   // Breaks down the time value. | 
 |   void BreakDownTime(int64_t time_ms, int* year, int* month, int* day, | 
 |                      int* weekday, int* hour, int* min, int* sec, int* ms); | 
 |  | 
 |   // Cache stamp is used for invalidating caches in JSDate. | 
 |   // We increment the stamp each time when the timezone information changes. | 
 |   // JSDate objects perform stamp check and invalidate their caches if | 
 |   // their saved stamp is not equal to the current stamp. | 
 |   Smi* stamp() { return stamp_; } | 
 |   void* stamp_address() { return &stamp_; } | 
 |  | 
 |   // These functions are virtual so that we can override them when testing. | 
 |   virtual int GetDaylightSavingsOffsetFromOS(int64_t time_sec) { | 
 |     double time_ms = static_cast<double>(time_sec * 1000); | 
 |     return static_cast<int>(tz_cache_->DaylightSavingsOffset(time_ms)); | 
 |   } | 
 |  | 
 |   virtual int GetLocalOffsetFromOS() { | 
 |     double offset = tz_cache_->LocalTimeOffset(); | 
 |     DCHECK_LT(offset, kInvalidLocalOffsetInMs); | 
 |     return static_cast<int>(offset); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The implementation relies on the fact that no time zones have | 
 |   // more than one daylight savings offset change per 19 days. | 
 |   // In Egypt in 2010 they decided to suspend DST during Ramadan. This | 
 |   // led to a short interval where DST is in effect from September 10 to | 
 |   // September 30. | 
 |   static const int kDefaultDSTDeltaInSec = 19 * kSecPerDay; | 
 |  | 
 |   // Size of the Daylight Savings Time cache. | 
 |   static const int kDSTSize = 32; | 
 |  | 
 |   // Daylight Savings Time segment stores a segment of time where | 
 |   // daylight savings offset does not change. | 
 |   struct DST { | 
 |     int start_sec; | 
 |     int end_sec; | 
 |     int offset_ms; | 
 |     int last_used; | 
 |   }; | 
 |  | 
 |   // Computes the daylight savings offset for the given time. | 
 |   // ECMA 262 - 15.9.1.8 | 
 |   int DaylightSavingsOffsetInMs(int64_t time_ms); | 
 |  | 
 |   // Sets the before_ and the after_ segments from the DST cache such that | 
 |   // the before_ segment starts earlier than the given time and | 
 |   // the after_ segment start later than the given time. | 
 |   // Both segments might be invalid. | 
 |   // The last_used counters of the before_ and after_ are updated. | 
 |   void ProbeDST(int time_sec); | 
 |  | 
 |   // Finds the least recently used segment from the DST cache that is not | 
 |   // equal to the given 'skip' segment. | 
 |   DST* LeastRecentlyUsedDST(DST* skip); | 
 |  | 
 |   // Extends the after_ segment with the given point or resets it | 
 |   // if it starts later than the given time + kDefaultDSTDeltaInSec. | 
 |   inline void ExtendTheAfterSegment(int time_sec, int offset_ms); | 
 |  | 
 |   // Makes the given segment invalid. | 
 |   inline void ClearSegment(DST* segment); | 
 |  | 
 |   bool InvalidSegment(DST* segment) { | 
 |     return segment->start_sec > segment->end_sec; | 
 |   } | 
 |  | 
 |   Smi* stamp_; | 
 |  | 
 |   // Daylight Saving Time cache. | 
 |   DST dst_[kDSTSize]; | 
 |   int dst_usage_counter_; | 
 |   DST* before_; | 
 |   DST* after_; | 
 |  | 
 |   int local_offset_ms_; | 
 |  | 
 |   // Year/Month/Day cache. | 
 |   bool ymd_valid_; | 
 |   int ymd_days_; | 
 |   int ymd_year_; | 
 |   int ymd_month_; | 
 |   int ymd_day_; | 
 |  | 
 |   // Timezone name cache | 
 |   const char* tz_name_; | 
 |   const char* dst_tz_name_; | 
 |  | 
 |   base::TimezoneCache* tz_cache_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace v8 | 
 |  | 
 | #endif |