| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * This is an example demonstrating how to implement a multi-layer |
| * VP9 encoding scheme based on spatial scalability for video applications |
| * that benefit from a scalable bitstream. |
| */ |
| |
| #include <math.h> |
| #include <stdarg.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include "../args.h" |
| #include "../tools_common.h" |
| #include "../video_writer.h" |
| |
| #include "../vpx_ports/vpx_timer.h" |
| #include "./svc_context.h" |
| #include "vpx/vp8cx.h" |
| #include "vpx/vpx_encoder.h" |
| #include "../vpxstats.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "./y4minput.h" |
| |
| #define OUTPUT_RC_STATS 1 |
| |
| #define SIMULCAST_MODE 0 |
| |
| static const arg_def_t outputfile = |
| ARG_DEF("o", "output", 1, "Output filename"); |
| static const arg_def_t skip_frames_arg = |
| ARG_DEF("s", "skip-frames", 1, "input frames to skip"); |
| static const arg_def_t frames_arg = |
| ARG_DEF("f", "frames", 1, "number of frames to encode"); |
| static const arg_def_t threads_arg = |
| ARG_DEF("th", "threads", 1, "number of threads to use"); |
| #if OUTPUT_RC_STATS |
| static const arg_def_t output_rc_stats_arg = |
| ARG_DEF("rcstat", "output_rc_stats", 1, "output rc stats"); |
| #endif |
| static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width"); |
| static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height"); |
| static const arg_def_t timebase_arg = |
| ARG_DEF("t", "timebase", 1, "timebase (num/den)"); |
| static const arg_def_t bitrate_arg = ARG_DEF( |
| "b", "target-bitrate", 1, "encoding bitrate, in kilobits per second"); |
| static const arg_def_t spatial_layers_arg = |
| ARG_DEF("sl", "spatial-layers", 1, "number of spatial SVC layers"); |
| static const arg_def_t temporal_layers_arg = |
| ARG_DEF("tl", "temporal-layers", 1, "number of temporal SVC layers"); |
| static const arg_def_t temporal_layering_mode_arg = |
| ARG_DEF("tlm", "temporal-layering-mode", 1, |
| "temporal layering scheme." |
| "VP9E_TEMPORAL_LAYERING_MODE"); |
| static const arg_def_t kf_dist_arg = |
| ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes"); |
| static const arg_def_t scale_factors_arg = |
| ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)"); |
| static const arg_def_t passes_arg = |
| ARG_DEF("p", "passes", 1, "Number of passes (1/2)"); |
| static const arg_def_t pass_arg = |
| ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)"); |
| static const arg_def_t fpf_name_arg = |
| ARG_DEF(NULL, "fpf", 1, "First pass statistics file name"); |
| static const arg_def_t min_q_arg = |
| ARG_DEF(NULL, "min-q", 1, "Minimum quantizer"); |
| static const arg_def_t max_q_arg = |
| ARG_DEF(NULL, "max-q", 1, "Maximum quantizer"); |
| static const arg_def_t min_bitrate_arg = |
| ARG_DEF(NULL, "min-bitrate", 1, "Minimum bitrate"); |
| static const arg_def_t max_bitrate_arg = |
| ARG_DEF(NULL, "max-bitrate", 1, "Maximum bitrate"); |
| static const arg_def_t lag_in_frame_arg = |
| ARG_DEF(NULL, "lag-in-frames", 1, |
| "Number of frame to input before " |
| "generating any outputs"); |
| static const arg_def_t rc_end_usage_arg = |
| ARG_DEF(NULL, "rc-end-usage", 1, "0 - 3: VBR, CBR, CQ, Q"); |
| static const arg_def_t speed_arg = |
| ARG_DEF("sp", "speed", 1, "speed configuration"); |
| static const arg_def_t aqmode_arg = |
| ARG_DEF("aq", "aqmode", 1, "aq-mode off/on"); |
| static const arg_def_t bitrates_arg = |
| ARG_DEF("bl", "bitrates", 1, "bitrates[sl * num_tl + tl]"); |
| static const arg_def_t dropframe_thresh_arg = |
| ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)"); |
| static const struct arg_enum_list tune_content_enum[] = { |
| { "default", VP9E_CONTENT_DEFAULT }, |
| { "screen", VP9E_CONTENT_SCREEN }, |
| { "film", VP9E_CONTENT_FILM }, |
| { NULL, 0 } |
| }; |
| |
| static const arg_def_t tune_content_arg = ARG_DEF_ENUM( |
| NULL, "tune-content", 1, "Tune content type", tune_content_enum); |
| static const arg_def_t inter_layer_pred_arg = ARG_DEF( |
| NULL, "inter-layer-pred", 1, "0 - 3: On, Off, Key-frames, Constrained"); |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static const struct arg_enum_list bitdepth_enum[] = { |
| { "8", VPX_BITS_8 }, { "10", VPX_BITS_10 }, { "12", VPX_BITS_12 }, { NULL, 0 } |
| }; |
| |
| static const arg_def_t bitdepth_arg = ARG_DEF_ENUM( |
| "d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| static const arg_def_t *svc_args[] = { &frames_arg, |
| &outputfile, |
| &width_arg, |
| &height_arg, |
| &timebase_arg, |
| &bitrate_arg, |
| &skip_frames_arg, |
| &spatial_layers_arg, |
| &kf_dist_arg, |
| &scale_factors_arg, |
| &passes_arg, |
| &pass_arg, |
| &fpf_name_arg, |
| &min_q_arg, |
| &max_q_arg, |
| &min_bitrate_arg, |
| &max_bitrate_arg, |
| &temporal_layers_arg, |
| &temporal_layering_mode_arg, |
| &lag_in_frame_arg, |
| &threads_arg, |
| &aqmode_arg, |
| #if OUTPUT_RC_STATS |
| &output_rc_stats_arg, |
| #endif |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| &bitdepth_arg, |
| #endif |
| &speed_arg, |
| &rc_end_usage_arg, |
| &bitrates_arg, |
| &dropframe_thresh_arg, |
| &tune_content_arg, |
| &inter_layer_pred_arg, |
| NULL }; |
| |
| static const uint32_t default_frames_to_skip = 0; |
| static const uint32_t default_frames_to_code = 60 * 60; |
| static const uint32_t default_width = 1920; |
| static const uint32_t default_height = 1080; |
| static const uint32_t default_timebase_num = 1; |
| static const uint32_t default_timebase_den = 60; |
| static const uint32_t default_bitrate = 1000; |
| static const uint32_t default_spatial_layers = 5; |
| static const uint32_t default_temporal_layers = 1; |
| static const uint32_t default_kf_dist = 100; |
| static const uint32_t default_temporal_layering_mode = 0; |
| static const uint32_t default_output_rc_stats = 0; |
| static const int32_t default_speed = -1; // -1 means use library default. |
| static const uint32_t default_threads = 0; // zero means use library default. |
| |
| typedef struct { |
| const char *output_filename; |
| uint32_t frames_to_code; |
| uint32_t frames_to_skip; |
| struct VpxInputContext input_ctx; |
| stats_io_t rc_stats; |
| int passes; |
| int pass; |
| int tune_content; |
| int inter_layer_pred; |
| } AppInput; |
| |
| static const char *exec_name; |
| |
| void usage_exit(void) { |
| fprintf(stderr, "Usage: %s <options> input_filename -o output_filename\n", |
| exec_name); |
| fprintf(stderr, "Options:\n"); |
| arg_show_usage(stderr, svc_args); |
| exit(EXIT_FAILURE); |
| } |
| |
| static void parse_command_line(int argc, const char **argv_, |
| AppInput *app_input, SvcContext *svc_ctx, |
| vpx_codec_enc_cfg_t *enc_cfg) { |
| struct arg arg; |
| char **argv = NULL; |
| char **argi = NULL; |
| char **argj = NULL; |
| vpx_codec_err_t res; |
| int passes = 0; |
| int pass = 0; |
| const char *fpf_file_name = NULL; |
| unsigned int min_bitrate = 0; |
| unsigned int max_bitrate = 0; |
| char string_options[1024] = { 0 }; |
| |
| // initialize SvcContext with parameters that will be passed to vpx_svc_init |
| svc_ctx->log_level = SVC_LOG_DEBUG; |
| svc_ctx->spatial_layers = default_spatial_layers; |
| svc_ctx->temporal_layers = default_temporal_layers; |
| svc_ctx->temporal_layering_mode = default_temporal_layering_mode; |
| #if OUTPUT_RC_STATS |
| svc_ctx->output_rc_stat = default_output_rc_stats; |
| #endif |
| svc_ctx->speed = default_speed; |
| svc_ctx->threads = default_threads; |
| |
| // start with default encoder configuration |
| res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0); |
| if (res) { |
| die("Failed to get config: %s\n", vpx_codec_err_to_string(res)); |
| } |
| // update enc_cfg with app default values |
| enc_cfg->g_w = default_width; |
| enc_cfg->g_h = default_height; |
| enc_cfg->g_timebase.num = default_timebase_num; |
| enc_cfg->g_timebase.den = default_timebase_den; |
| enc_cfg->rc_target_bitrate = default_bitrate; |
| enc_cfg->kf_min_dist = default_kf_dist; |
| enc_cfg->kf_max_dist = default_kf_dist; |
| enc_cfg->rc_end_usage = VPX_CQ; |
| |
| // initialize AppInput with default values |
| app_input->frames_to_code = default_frames_to_code; |
| app_input->frames_to_skip = default_frames_to_skip; |
| |
| // process command line options |
| argv = argv_dup(argc - 1, argv_ + 1); |
| for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { |
| arg.argv_step = 1; |
| |
| if (arg_match(&arg, &frames_arg, argi)) { |
| app_input->frames_to_code = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &outputfile, argi)) { |
| app_input->output_filename = arg.val; |
| } else if (arg_match(&arg, &width_arg, argi)) { |
| enc_cfg->g_w = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &height_arg, argi)) { |
| enc_cfg->g_h = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &timebase_arg, argi)) { |
| enc_cfg->g_timebase = arg_parse_rational(&arg); |
| } else if (arg_match(&arg, &bitrate_arg, argi)) { |
| enc_cfg->rc_target_bitrate = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &skip_frames_arg, argi)) { |
| app_input->frames_to_skip = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &spatial_layers_arg, argi)) { |
| svc_ctx->spatial_layers = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &temporal_layers_arg, argi)) { |
| svc_ctx->temporal_layers = arg_parse_uint(&arg); |
| #if OUTPUT_RC_STATS |
| } else if (arg_match(&arg, &output_rc_stats_arg, argi)) { |
| svc_ctx->output_rc_stat = arg_parse_uint(&arg); |
| #endif |
| } else if (arg_match(&arg, &speed_arg, argi)) { |
| svc_ctx->speed = arg_parse_uint(&arg); |
| if (svc_ctx->speed > 9) { |
| warn("Mapping speed %d to speed 9.\n", svc_ctx->speed); |
| } |
| } else if (arg_match(&arg, &aqmode_arg, argi)) { |
| svc_ctx->aqmode = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &threads_arg, argi)) { |
| svc_ctx->threads = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &temporal_layering_mode_arg, argi)) { |
| svc_ctx->temporal_layering_mode = enc_cfg->temporal_layering_mode = |
| arg_parse_int(&arg); |
| if (svc_ctx->temporal_layering_mode) { |
| enc_cfg->g_error_resilient = 1; |
| } |
| } else if (arg_match(&arg, &kf_dist_arg, argi)) { |
| enc_cfg->kf_min_dist = arg_parse_uint(&arg); |
| enc_cfg->kf_max_dist = enc_cfg->kf_min_dist; |
| } else if (arg_match(&arg, &scale_factors_arg, argi)) { |
| strncat(string_options, " scale-factors=", |
| sizeof(string_options) - strlen(string_options) - 1); |
| strncat(string_options, arg.val, |
| sizeof(string_options) - strlen(string_options) - 1); |
| } else if (arg_match(&arg, &bitrates_arg, argi)) { |
| strncat(string_options, " bitrates=", |
| sizeof(string_options) - strlen(string_options) - 1); |
| strncat(string_options, arg.val, |
| sizeof(string_options) - strlen(string_options) - 1); |
| } else if (arg_match(&arg, &passes_arg, argi)) { |
| passes = arg_parse_uint(&arg); |
| if (passes < 1 || passes > 2) { |
| die("Error: Invalid number of passes (%d)\n", passes); |
| } |
| } else if (arg_match(&arg, &pass_arg, argi)) { |
| pass = arg_parse_uint(&arg); |
| if (pass < 1 || pass > 2) { |
| die("Error: Invalid pass selected (%d)\n", pass); |
| } |
| } else if (arg_match(&arg, &fpf_name_arg, argi)) { |
| fpf_file_name = arg.val; |
| } else if (arg_match(&arg, &min_q_arg, argi)) { |
| strncat(string_options, " min-quantizers=", |
| sizeof(string_options) - strlen(string_options) - 1); |
| strncat(string_options, arg.val, |
| sizeof(string_options) - strlen(string_options) - 1); |
| } else if (arg_match(&arg, &max_q_arg, argi)) { |
| strncat(string_options, " max-quantizers=", |
| sizeof(string_options) - strlen(string_options) - 1); |
| strncat(string_options, arg.val, |
| sizeof(string_options) - strlen(string_options) - 1); |
| } else if (arg_match(&arg, &min_bitrate_arg, argi)) { |
| min_bitrate = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &max_bitrate_arg, argi)) { |
| max_bitrate = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &lag_in_frame_arg, argi)) { |
| enc_cfg->g_lag_in_frames = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &rc_end_usage_arg, argi)) { |
| enc_cfg->rc_end_usage = arg_parse_uint(&arg); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } else if (arg_match(&arg, &bitdepth_arg, argi)) { |
| enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg); |
| switch (enc_cfg->g_bit_depth) { |
| case VPX_BITS_8: |
| enc_cfg->g_input_bit_depth = 8; |
| enc_cfg->g_profile = 0; |
| break; |
| case VPX_BITS_10: |
| enc_cfg->g_input_bit_depth = 10; |
| enc_cfg->g_profile = 2; |
| break; |
| case VPX_BITS_12: |
| enc_cfg->g_input_bit_depth = 12; |
| enc_cfg->g_profile = 2; |
| break; |
| default: |
| die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth); |
| break; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } else if (arg_match(&arg, &dropframe_thresh_arg, argi)) { |
| enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &tune_content_arg, argi)) { |
| app_input->tune_content = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &inter_layer_pred_arg, argi)) { |
| app_input->inter_layer_pred = arg_parse_uint(&arg); |
| } else { |
| ++argj; |
| } |
| } |
| |
| // There will be a space in front of the string options |
| if (strlen(string_options) > 0) |
| vpx_svc_set_options(svc_ctx, string_options + 1); |
| |
| if (passes == 0 || passes == 1) { |
| if (pass) { |
| fprintf(stderr, "pass is ignored since there's only one pass\n"); |
| } |
| enc_cfg->g_pass = VPX_RC_ONE_PASS; |
| } else { |
| if (pass == 0) { |
| die("pass must be specified when passes is 2\n"); |
| } |
| |
| if (fpf_file_name == NULL) { |
| die("fpf must be specified when passes is 2\n"); |
| } |
| |
| if (pass == 1) { |
| enc_cfg->g_pass = VPX_RC_FIRST_PASS; |
| if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 0)) { |
| fatal("Failed to open statistics store"); |
| } |
| } else { |
| enc_cfg->g_pass = VPX_RC_LAST_PASS; |
| if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 1)) { |
| fatal("Failed to open statistics store"); |
| } |
| enc_cfg->rc_twopass_stats_in = stats_get(&app_input->rc_stats); |
| } |
| app_input->passes = passes; |
| app_input->pass = pass; |
| } |
| |
| if (enc_cfg->rc_target_bitrate > 0) { |
| if (min_bitrate > 0) { |
| enc_cfg->rc_2pass_vbr_minsection_pct = |
| min_bitrate * 100 / enc_cfg->rc_target_bitrate; |
| } |
| if (max_bitrate > 0) { |
| enc_cfg->rc_2pass_vbr_maxsection_pct = |
| max_bitrate * 100 / enc_cfg->rc_target_bitrate; |
| } |
| } |
| |
| // Check for unrecognized options |
| for (argi = argv; *argi; ++argi) |
| if (argi[0][0] == '-' && strlen(argi[0]) > 1) |
| die("Error: Unrecognized option %s\n", *argi); |
| |
| if (argv[0] == NULL) { |
| usage_exit(); |
| } |
| app_input->input_ctx.filename = argv[0]; |
| free(argv); |
| |
| open_input_file(&app_input->input_ctx); |
| if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) { |
| enc_cfg->g_w = app_input->input_ctx.width; |
| enc_cfg->g_h = app_input->input_ctx.height; |
| } |
| |
| if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 || |
| enc_cfg->g_h % 2) |
| die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h); |
| |
| printf( |
| "Codec %s\nframes: %d, skip: %d\n" |
| "layers: %d\n" |
| "width %d, height: %d,\n" |
| "num: %d, den: %d, bitrate: %d,\n" |
| "gop size: %d\n", |
| vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code, |
| app_input->frames_to_skip, svc_ctx->spatial_layers, enc_cfg->g_w, |
| enc_cfg->g_h, enc_cfg->g_timebase.num, enc_cfg->g_timebase.den, |
| enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist); |
| } |
| |
| #if OUTPUT_RC_STATS |
| // For rate control encoding stats. |
| struct RateControlStats { |
| // Number of input frames per layer. |
| int layer_input_frames[VPX_MAX_LAYERS]; |
| // Total (cumulative) number of encoded frames per layer. |
| int layer_tot_enc_frames[VPX_MAX_LAYERS]; |
| // Number of encoded non-key frames per layer. |
| int layer_enc_frames[VPX_MAX_LAYERS]; |
| // Framerate per layer (cumulative). |
| double layer_framerate[VPX_MAX_LAYERS]; |
| // Target average frame size per layer (per-frame-bandwidth per layer). |
| double layer_pfb[VPX_MAX_LAYERS]; |
| // Actual average frame size per layer. |
| double layer_avg_frame_size[VPX_MAX_LAYERS]; |
| // Average rate mismatch per layer (|target - actual| / target). |
| double layer_avg_rate_mismatch[VPX_MAX_LAYERS]; |
| // Actual encoding bitrate per layer (cumulative). |
| double layer_encoding_bitrate[VPX_MAX_LAYERS]; |
| // Average of the short-time encoder actual bitrate. |
| // TODO(marpan): Should we add these short-time stats for each layer? |
| double avg_st_encoding_bitrate; |
| // Variance of the short-time encoder actual bitrate. |
| double variance_st_encoding_bitrate; |
| // Window (number of frames) for computing short-time encoding bitrate. |
| int window_size; |
| // Number of window measurements. |
| int window_count; |
| }; |
| |
| // Note: these rate control stats assume only 1 key frame in the |
| // sequence (i.e., first frame only). |
| static void set_rate_control_stats(struct RateControlStats *rc, |
| vpx_codec_enc_cfg_t *cfg) { |
| unsigned int sl, tl; |
| // Set the layer (cumulative) framerate and the target layer (non-cumulative) |
| // per-frame-bandwidth, for the rate control encoding stats below. |
| const double framerate = cfg->g_timebase.den / cfg->g_timebase.num; |
| |
| for (sl = 0; sl < cfg->ss_number_layers; ++sl) { |
| for (tl = 0; tl < cfg->ts_number_layers; ++tl) { |
| const int layer = sl * cfg->ts_number_layers + tl; |
| if (cfg->ts_number_layers == 1) |
| rc->layer_framerate[layer] = framerate; |
| else |
| rc->layer_framerate[layer] = framerate / cfg->ts_rate_decimator[tl]; |
| if (tl > 0) { |
| rc->layer_pfb[layer] = |
| 1000.0 * |
| (cfg->layer_target_bitrate[layer] - |
| cfg->layer_target_bitrate[layer - 1]) / |
| (rc->layer_framerate[layer] - rc->layer_framerate[layer - 1]); |
| } else { |
| rc->layer_pfb[layer] = 1000.0 * cfg->layer_target_bitrate[layer] / |
| rc->layer_framerate[layer]; |
| } |
| rc->layer_input_frames[layer] = 0; |
| rc->layer_enc_frames[layer] = 0; |
| rc->layer_tot_enc_frames[layer] = 0; |
| rc->layer_encoding_bitrate[layer] = 0.0; |
| rc->layer_avg_frame_size[layer] = 0.0; |
| rc->layer_avg_rate_mismatch[layer] = 0.0; |
| } |
| } |
| rc->window_count = 0; |
| rc->window_size = 15; |
| rc->avg_st_encoding_bitrate = 0.0; |
| rc->variance_st_encoding_bitrate = 0.0; |
| } |
| |
| static void printout_rate_control_summary(struct RateControlStats *rc, |
| vpx_codec_enc_cfg_t *cfg, |
| int frame_cnt) { |
| unsigned int sl, tl; |
| double perc_fluctuation = 0.0; |
| int tot_num_frames = 0; |
| printf("Total number of processed frames: %d\n\n", frame_cnt - 1); |
| printf("Rate control layer stats for sl%d tl%d layer(s):\n\n", |
| cfg->ss_number_layers, cfg->ts_number_layers); |
| for (sl = 0; sl < cfg->ss_number_layers; ++sl) { |
| tot_num_frames = 0; |
| for (tl = 0; tl < cfg->ts_number_layers; ++tl) { |
| const int layer = sl * cfg->ts_number_layers + tl; |
| const int num_dropped = |
| (tl > 0) |
| ? (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer]) |
| : (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer] - |
| 1); |
| tot_num_frames += rc->layer_input_frames[layer]; |
| rc->layer_encoding_bitrate[layer] = 0.001 * rc->layer_framerate[layer] * |
| rc->layer_encoding_bitrate[layer] / |
| tot_num_frames; |
| rc->layer_avg_frame_size[layer] = |
| rc->layer_avg_frame_size[layer] / rc->layer_enc_frames[layer]; |
| rc->layer_avg_rate_mismatch[layer] = 100.0 * |
| rc->layer_avg_rate_mismatch[layer] / |
| rc->layer_enc_frames[layer]; |
| printf("For layer#: sl%d tl%d \n", sl, tl); |
| printf("Bitrate (target vs actual): %d %f.0 kbps\n", |
| cfg->layer_target_bitrate[layer], |
| rc->layer_encoding_bitrate[layer]); |
| printf("Average frame size (target vs actual): %f %f bits\n", |
| rc->layer_pfb[layer], rc->layer_avg_frame_size[layer]); |
| printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[layer]); |
| printf( |
| "Number of input frames, encoded (non-key) frames, " |
| "and percent dropped frames: %d %d %f.0 \n", |
| rc->layer_input_frames[layer], rc->layer_enc_frames[layer], |
| 100.0 * num_dropped / rc->layer_input_frames[layer]); |
| printf("\n"); |
| } |
| } |
| rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; |
| rc->variance_st_encoding_bitrate = |
| rc->variance_st_encoding_bitrate / rc->window_count - |
| (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); |
| perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / |
| rc->avg_st_encoding_bitrate; |
| printf("Short-time stats, for window of %d frames: \n", rc->window_size); |
| printf("Average, rms-variance, and percent-fluct: %f %f %f \n", |
| rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate), |
| perc_fluctuation); |
| printf("Num of input, num of encoded (super) frames: %d %d \n", frame_cnt, |
| tot_num_frames); |
| } |
| |
| static vpx_codec_err_t parse_superframe_index(const uint8_t *data, |
| size_t data_sz, uint64_t sizes[8], |
| int *count) { |
| // A chunk ending with a byte matching 0xc0 is an invalid chunk unless |
| // it is a super frame index. If the last byte of real video compression |
| // data is 0xc0 the encoder must add a 0 byte. If we have the marker but |
| // not the associated matching marker byte at the front of the index we have |
| // an invalid bitstream and need to return an error. |
| |
| uint8_t marker; |
| |
| marker = *(data + data_sz - 1); |
| *count = 0; |
| |
| if ((marker & 0xe0) == 0xc0) { |
| const uint32_t frames = (marker & 0x7) + 1; |
| const uint32_t mag = ((marker >> 3) & 0x3) + 1; |
| const size_t index_sz = 2 + mag * frames; |
| |
| // This chunk is marked as having a superframe index but doesn't have |
| // enough data for it, thus it's an invalid superframe index. |
| if (data_sz < index_sz) return VPX_CODEC_CORRUPT_FRAME; |
| |
| { |
| const uint8_t marker2 = *(data + data_sz - index_sz); |
| |
| // This chunk is marked as having a superframe index but doesn't have |
| // the matching marker byte at the front of the index therefore it's an |
| // invalid chunk. |
| if (marker != marker2) return VPX_CODEC_CORRUPT_FRAME; |
| } |
| |
| { |
| // Found a valid superframe index. |
| uint32_t i, j; |
| const uint8_t *x = &data[data_sz - index_sz + 1]; |
| |
| for (i = 0; i < frames; ++i) { |
| uint32_t this_sz = 0; |
| |
| for (j = 0; j < mag; ++j) this_sz |= (*x++) << (j * 8); |
| sizes[i] = this_sz; |
| } |
| *count = frames; |
| } |
| } |
| return VPX_CODEC_OK; |
| } |
| #endif |
| |
| // Example pattern for spatial layers and 2 temporal layers used in the |
| // bypass/flexible mode. The pattern corresponds to the pattern |
| // VP9E_TEMPORAL_LAYERING_MODE_0101 (temporal_layering_mode == 2) used in |
| // non-flexible mode. |
| static void set_frame_flags_bypass_mode_ex0( |
| int tl, int num_spatial_layers, int is_key_frame, |
| vpx_svc_ref_frame_config_t *ref_frame_config) { |
| int sl; |
| for (sl = 0; sl < num_spatial_layers; ++sl) |
| ref_frame_config->update_buffer_slot[sl] = 0; |
| |
| for (sl = 0; sl < num_spatial_layers; ++sl) { |
| // Set the buffer idx. |
| if (tl == 0) { |
| ref_frame_config->lst_fb_idx[sl] = sl; |
| if (sl) { |
| if (is_key_frame) { |
| ref_frame_config->lst_fb_idx[sl] = sl - 1; |
| ref_frame_config->gld_fb_idx[sl] = sl; |
| } else { |
| ref_frame_config->gld_fb_idx[sl] = sl - 1; |
| } |
| } else { |
| ref_frame_config->gld_fb_idx[sl] = 0; |
| } |
| ref_frame_config->alt_fb_idx[sl] = 0; |
| } else if (tl == 1) { |
| ref_frame_config->lst_fb_idx[sl] = sl; |
| ref_frame_config->gld_fb_idx[sl] = num_spatial_layers + sl - 1; |
| ref_frame_config->alt_fb_idx[sl] = num_spatial_layers + sl; |
| } |
| // Set the reference and update flags. |
| if (!tl) { |
| if (!sl) { |
| // Base spatial and base temporal (sl = 0, tl = 0) |
| ref_frame_config->reference_last[sl] = 1; |
| ref_frame_config->reference_golden[sl] = 0; |
| ref_frame_config->reference_alt_ref[sl] = 0; |
| ref_frame_config->update_buffer_slot[sl] |= |
| 1 << ref_frame_config->lst_fb_idx[sl]; |
| } else { |
| if (is_key_frame) { |
| ref_frame_config->reference_last[sl] = 1; |
| ref_frame_config->reference_golden[sl] = 0; |
| ref_frame_config->reference_alt_ref[sl] = 0; |
| ref_frame_config->update_buffer_slot[sl] |= |
| 1 << ref_frame_config->gld_fb_idx[sl]; |
| } else { |
| // Non-zero spatiall layer. |
| ref_frame_config->reference_last[sl] = 1; |
| ref_frame_config->reference_golden[sl] = 1; |
| ref_frame_config->reference_alt_ref[sl] = 1; |
| ref_frame_config->update_buffer_slot[sl] |= |
| 1 << ref_frame_config->lst_fb_idx[sl]; |
| } |
| } |
| } else if (tl == 1) { |
| if (!sl) { |
| // Base spatial and top temporal (tl = 1) |
| ref_frame_config->reference_last[sl] = 1; |
| ref_frame_config->reference_golden[sl] = 0; |
| ref_frame_config->reference_alt_ref[sl] = 0; |
| ref_frame_config->update_buffer_slot[sl] |= |
| 1 << ref_frame_config->alt_fb_idx[sl]; |
| } else { |
| // Non-zero spatial. |
| if (sl < num_spatial_layers - 1) { |
| ref_frame_config->reference_last[sl] = 1; |
| ref_frame_config->reference_golden[sl] = 1; |
| ref_frame_config->reference_alt_ref[sl] = 0; |
| ref_frame_config->update_buffer_slot[sl] |= |
| 1 << ref_frame_config->alt_fb_idx[sl]; |
| } else if (sl == num_spatial_layers - 1) { |
| // Top spatial and top temporal (non-reference -- doesn't update any |
| // reference buffers) |
| ref_frame_config->reference_last[sl] = 1; |
| ref_frame_config->reference_golden[sl] = 1; |
| ref_frame_config->reference_alt_ref[sl] = 0; |
| } |
| } |
| } |
| } |
| } |
| |
| // Example pattern for 2 spatial layers and 2 temporal layers used in the |
| // bypass/flexible mode, except only 1 spatial layer when temporal_layer_id = 1. |
| static void set_frame_flags_bypass_mode_ex1( |
| int tl, int num_spatial_layers, int is_key_frame, |
| vpx_svc_ref_frame_config_t *ref_frame_config) { |
| int sl; |
| for (sl = 0; sl < num_spatial_layers; ++sl) |
| ref_frame_config->update_buffer_slot[sl] = 0; |
| |
| if (tl == 0) { |
| if (is_key_frame) { |
| ref_frame_config->lst_fb_idx[1] = 0; |
| ref_frame_config->gld_fb_idx[1] = 1; |
| } else { |
| ref_frame_config->lst_fb_idx[1] = 1; |
| ref_frame_config->gld_fb_idx[1] = 0; |
| } |
| ref_frame_config->alt_fb_idx[1] = 0; |
| |
| ref_frame_config->lst_fb_idx[0] = 0; |
| ref_frame_config->gld_fb_idx[0] = 0; |
| ref_frame_config->alt_fb_idx[0] = 0; |
| } |
| if (tl == 1) { |
| ref_frame_config->lst_fb_idx[0] = 0; |
| ref_frame_config->gld_fb_idx[0] = 1; |
| ref_frame_config->alt_fb_idx[0] = 2; |
| |
| ref_frame_config->lst_fb_idx[1] = 1; |
| ref_frame_config->gld_fb_idx[1] = 2; |
| ref_frame_config->alt_fb_idx[1] = 3; |
| } |
| // Set the reference and update flags. |
| if (tl == 0) { |
| // Base spatial and base temporal (sl = 0, tl = 0) |
| ref_frame_config->reference_last[0] = 1; |
| ref_frame_config->reference_golden[0] = 0; |
| ref_frame_config->reference_alt_ref[0] = 0; |
| ref_frame_config->update_buffer_slot[0] |= |
| 1 << ref_frame_config->lst_fb_idx[0]; |
| |
| if (is_key_frame) { |
| ref_frame_config->reference_last[1] = 1; |
| ref_frame_config->reference_golden[1] = 0; |
| ref_frame_config->reference_alt_ref[1] = 0; |
| ref_frame_config->update_buffer_slot[1] |= |
| 1 << ref_frame_config->gld_fb_idx[1]; |
| } else { |
| // Non-zero spatiall layer. |
| ref_frame_config->reference_last[1] = 1; |
| ref_frame_config->reference_golden[1] = 1; |
| ref_frame_config->reference_alt_ref[1] = 1; |
| ref_frame_config->update_buffer_slot[1] |= |
| 1 << ref_frame_config->lst_fb_idx[1]; |
| } |
| } |
| if (tl == 1) { |
| // Top spatial and top temporal (non-reference -- doesn't update any |
| // reference buffers) |
| ref_frame_config->reference_last[1] = 1; |
| ref_frame_config->reference_golden[1] = 0; |
| ref_frame_config->reference_alt_ref[1] = 0; |
| } |
| } |
| |
| #if CONFIG_VP9_DECODER && !SIMULCAST_MODE |
| static void test_decode(vpx_codec_ctx_t *encoder, vpx_codec_ctx_t *decoder, |
| const int frames_out, int *mismatch_seen) { |
| vpx_image_t enc_img, dec_img; |
| struct vp9_ref_frame ref_enc, ref_dec; |
| if (*mismatch_seen) return; |
| /* Get the internal reference frame */ |
| ref_enc.idx = 0; |
| ref_dec.idx = 0; |
| vpx_codec_control(encoder, VP9_GET_REFERENCE, &ref_enc); |
| enc_img = ref_enc.img; |
| vpx_codec_control(decoder, VP9_GET_REFERENCE, &ref_dec); |
| dec_img = ref_dec.img; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if ((enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) != |
| (dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH)) { |
| if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) { |
| vpx_img_alloc(&enc_img, enc_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH, |
| enc_img.d_w, enc_img.d_h, 16); |
| vpx_img_truncate_16_to_8(&enc_img, &ref_enc.img); |
| } |
| if (dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) { |
| vpx_img_alloc(&dec_img, dec_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH, |
| dec_img.d_w, dec_img.d_h, 16); |
| vpx_img_truncate_16_to_8(&dec_img, &ref_dec.img); |
| } |
| } |
| #endif |
| |
| if (!compare_img(&enc_img, &dec_img)) { |
| int y[4], u[4], v[4]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) { |
| find_mismatch_high(&enc_img, &dec_img, y, u, v); |
| } else { |
| find_mismatch(&enc_img, &dec_img, y, u, v); |
| } |
| #else |
| find_mismatch(&enc_img, &dec_img, y, u, v); |
| #endif |
| decoder->err = 1; |
| printf( |
| "Encode/decode mismatch on frame %d at" |
| " Y[%d, %d] {%d/%d}," |
| " U[%d, %d] {%d/%d}," |
| " V[%d, %d] {%d/%d}\n", |
| frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1], |
| v[2], v[3]); |
| *mismatch_seen = frames_out; |
| } |
| |
| vpx_img_free(&enc_img); |
| vpx_img_free(&dec_img); |
| } |
| #endif |
| |
| #if OUTPUT_RC_STATS |
| static void svc_output_rc_stats( |
| vpx_codec_ctx_t *codec, vpx_codec_enc_cfg_t *enc_cfg, |
| vpx_svc_layer_id_t *layer_id, const vpx_codec_cx_pkt_t *cx_pkt, |
| struct RateControlStats *rc, VpxVideoWriter **outfile, |
| const uint32_t frame_cnt, const double framerate) { |
| int num_layers_encoded = 0; |
| unsigned int sl, tl; |
| uint64_t sizes[8]; |
| uint64_t sizes_parsed[8]; |
| int count = 0; |
| double sum_bitrate = 0.0; |
| double sum_bitrate2 = 0.0; |
| vp9_zero(sizes); |
| vp9_zero(sizes_parsed); |
| vpx_codec_control(codec, VP9E_GET_SVC_LAYER_ID, layer_id); |
| parse_superframe_index(cx_pkt->data.frame.buf, cx_pkt->data.frame.sz, |
| sizes_parsed, &count); |
| if (enc_cfg->ss_number_layers == 1) sizes[0] = cx_pkt->data.frame.sz; |
| for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) { |
| sizes[sl] = 0; |
| if (cx_pkt->data.frame.spatial_layer_encoded[sl]) { |
| sizes[sl] = sizes_parsed[num_layers_encoded]; |
| num_layers_encoded++; |
| } |
| } |
| for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) { |
| unsigned int sl2; |
| uint64_t tot_size = 0; |
| #if SIMULCAST_MODE |
| for (sl2 = 0; sl2 < sl; ++sl2) { |
| if (cx_pkt->data.frame.spatial_layer_encoded[sl2]) tot_size += sizes[sl2]; |
| } |
| vpx_video_writer_write_frame(outfile[sl], |
| (uint8_t *)(cx_pkt->data.frame.buf) + tot_size, |
| (size_t)(sizes[sl]), cx_pkt->data.frame.pts); |
| #else |
| for (sl2 = 0; sl2 <= sl; ++sl2) { |
| if (cx_pkt->data.frame.spatial_layer_encoded[sl2]) tot_size += sizes[sl2]; |
| } |
| if (tot_size > 0) |
| vpx_video_writer_write_frame(outfile[sl], cx_pkt->data.frame.buf, |
| (size_t)(tot_size), cx_pkt->data.frame.pts); |
| #endif // SIMULCAST_MODE |
| } |
| for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) { |
| if (cx_pkt->data.frame.spatial_layer_encoded[sl]) { |
| for (tl = layer_id->temporal_layer_id; tl < enc_cfg->ts_number_layers; |
| ++tl) { |
| const int layer = sl * enc_cfg->ts_number_layers + tl; |
| ++rc->layer_tot_enc_frames[layer]; |
| rc->layer_encoding_bitrate[layer] += 8.0 * sizes[sl]; |
| // Keep count of rate control stats per layer, for non-key |
| // frames. |
| if (tl == (unsigned int)layer_id->temporal_layer_id && |
| !(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)) { |
| rc->layer_avg_frame_size[layer] += 8.0 * sizes[sl]; |
| rc->layer_avg_rate_mismatch[layer] += |
| fabs(8.0 * sizes[sl] - rc->layer_pfb[layer]) / |
| rc->layer_pfb[layer]; |
| ++rc->layer_enc_frames[layer]; |
| } |
| } |
| } |
| } |
| |
| // Update for short-time encoding bitrate states, for moving |
| // window of size rc->window, shifted by rc->window / 2. |
| // Ignore first window segment, due to key frame. |
| if (frame_cnt > (unsigned int)rc->window_size) { |
| for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) { |
| if (cx_pkt->data.frame.spatial_layer_encoded[sl]) |
| sum_bitrate += 0.001 * 8.0 * sizes[sl] * framerate; |
| } |
| if (frame_cnt % rc->window_size == 0) { |
| rc->window_count += 1; |
| rc->avg_st_encoding_bitrate += sum_bitrate / rc->window_size; |
| rc->variance_st_encoding_bitrate += |
| (sum_bitrate / rc->window_size) * (sum_bitrate / rc->window_size); |
| } |
| } |
| |
| // Second shifted window. |
| if (frame_cnt > (unsigned int)(rc->window_size + rc->window_size / 2)) { |
| for (sl = 0; sl < enc_cfg->ss_number_layers; ++sl) { |
| sum_bitrate2 += 0.001 * 8.0 * sizes[sl] * framerate; |
| } |
| |
| if (frame_cnt > (unsigned int)(2 * rc->window_size) && |
| frame_cnt % rc->window_size == 0) { |
| rc->window_count += 1; |
| rc->avg_st_encoding_bitrate += sum_bitrate2 / rc->window_size; |
| rc->variance_st_encoding_bitrate += |
| (sum_bitrate2 / rc->window_size) * (sum_bitrate2 / rc->window_size); |
| } |
| } |
| } |
| #endif |
| |
| int main(int argc, const char **argv) { |
| AppInput app_input; |
| VpxVideoWriter *writer = NULL; |
| VpxVideoInfo info; |
| vpx_codec_ctx_t encoder; |
| vpx_codec_enc_cfg_t enc_cfg; |
| SvcContext svc_ctx; |
| vpx_svc_frame_drop_t svc_drop_frame; |
| uint32_t i; |
| uint32_t frame_cnt = 0; |
| vpx_image_t raw; |
| vpx_codec_err_t res; |
| int pts = 0; /* PTS starts at 0 */ |
| int frame_duration = 1; /* 1 timebase tick per frame */ |
| int end_of_stream = 0; |
| int frames_received = 0; |
| #if OUTPUT_RC_STATS |
| VpxVideoWriter *outfile[VPX_SS_MAX_LAYERS] = { NULL }; |
| struct RateControlStats rc; |
| vpx_svc_layer_id_t layer_id; |
| vpx_svc_ref_frame_config_t ref_frame_config; |
| unsigned int sl; |
| double framerate = 30.0; |
| #endif |
| struct vpx_usec_timer timer; |
| int64_t cx_time = 0; |
| #if CONFIG_INTERNAL_STATS |
| FILE *f = fopen("opsnr.stt", "a"); |
| #endif |
| #if CONFIG_VP9_DECODER && !SIMULCAST_MODE |
| int mismatch_seen = 0; |
| vpx_codec_ctx_t decoder; |
| #endif |
| memset(&svc_ctx, 0, sizeof(svc_ctx)); |
| memset(&app_input, 0, sizeof(AppInput)); |
| memset(&info, 0, sizeof(VpxVideoInfo)); |
| memset(&layer_id, 0, sizeof(vpx_svc_layer_id_t)); |
| memset(&rc, 0, sizeof(struct RateControlStats)); |
| exec_name = argv[0]; |
| |
| /* Setup default input stream settings */ |
| app_input.input_ctx.framerate.numerator = 30; |
| app_input.input_ctx.framerate.denominator = 1; |
| app_input.input_ctx.only_i420 = 1; |
| app_input.input_ctx.bit_depth = 0; |
| |
| parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg); |
| |
| // Y4M reader handles its own allocation. |
| if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) { |
| // Allocate image buffer |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (!vpx_img_alloc(&raw, |
| enc_cfg.g_input_bit_depth == 8 ? VPX_IMG_FMT_I420 |
| : VPX_IMG_FMT_I42016, |
| enc_cfg.g_w, enc_cfg.g_h, 32)) { |
| die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h); |
| } |
| #else |
| if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) { |
| die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| // Initialize codec |
| if (vpx_svc_init(&svc_ctx, &encoder, vpx_codec_vp9_cx(), &enc_cfg) != |
| VPX_CODEC_OK) |
| die("Failed to initialize encoder\n"); |
| #if CONFIG_VP9_DECODER && !SIMULCAST_MODE |
| if (vpx_codec_dec_init( |
| &decoder, get_vpx_decoder_by_name("vp9")->codec_interface(), NULL, 0)) |
| die("Failed to initialize decoder\n"); |
| #endif |
| |
| #if OUTPUT_RC_STATS |
| rc.window_count = 1; |
| rc.window_size = 15; // Silence a static analysis warning. |
| rc.avg_st_encoding_bitrate = 0.0; |
| rc.variance_st_encoding_bitrate = 0.0; |
| if (svc_ctx.output_rc_stat) { |
| set_rate_control_stats(&rc, &enc_cfg); |
| framerate = enc_cfg.g_timebase.den / enc_cfg.g_timebase.num; |
| } |
| #endif |
| |
| info.codec_fourcc = VP9_FOURCC; |
| info.frame_width = enc_cfg.g_w; |
| info.frame_height = enc_cfg.g_h; |
| info.time_base.numerator = enc_cfg.g_timebase.num; |
| info.time_base.denominator = enc_cfg.g_timebase.den; |
| |
| if (!(app_input.passes == 2 && app_input.pass == 1)) { |
| // We don't save the bitstream for the 1st pass on two pass rate control |
| writer = |
| vpx_video_writer_open(app_input.output_filename, kContainerIVF, &info); |
| if (!writer) |
| die("Failed to open %s for writing\n", app_input.output_filename); |
| } |
| #if OUTPUT_RC_STATS |
| // Write out spatial layer stream. |
| // TODO(marpan/jianj): allow for writing each spatial and temporal stream. |
| if (svc_ctx.output_rc_stat) { |
| for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { |
| char file_name[PATH_MAX]; |
| |
| snprintf(file_name, sizeof(file_name), "%s_s%d.ivf", |
| app_input.output_filename, sl); |
| outfile[sl] = vpx_video_writer_open(file_name, kContainerIVF, &info); |
| if (!outfile[sl]) die("Failed to open %s for writing", file_name); |
| } |
| } |
| #endif |
| |
| // skip initial frames |
| for (i = 0; i < app_input.frames_to_skip; ++i) |
| read_frame(&app_input.input_ctx, &raw); |
| |
| if (svc_ctx.speed != -1) |
| vpx_codec_control(&encoder, VP8E_SET_CPUUSED, svc_ctx.speed); |
| if (svc_ctx.threads) { |
| vpx_codec_control(&encoder, VP9E_SET_TILE_COLUMNS, |
| get_msb(svc_ctx.threads)); |
| if (svc_ctx.threads > 1) |
| vpx_codec_control(&encoder, VP9E_SET_ROW_MT, 1); |
| else |
| vpx_codec_control(&encoder, VP9E_SET_ROW_MT, 0); |
| } |
| if (svc_ctx.speed >= 5 && svc_ctx.aqmode == 1) |
| vpx_codec_control(&encoder, VP9E_SET_AQ_MODE, 3); |
| if (svc_ctx.speed >= 5) |
| vpx_codec_control(&encoder, VP8E_SET_STATIC_THRESHOLD, 1); |
| vpx_codec_control(&encoder, VP8E_SET_MAX_INTRA_BITRATE_PCT, 900); |
| |
| vpx_codec_control(&encoder, VP9E_SET_SVC_INTER_LAYER_PRED, |
| app_input.inter_layer_pred); |
| |
| vpx_codec_control(&encoder, VP9E_SET_NOISE_SENSITIVITY, 0); |
| |
| vpx_codec_control(&encoder, VP9E_SET_TUNE_CONTENT, app_input.tune_content); |
| |
| svc_drop_frame.framedrop_mode = FULL_SUPERFRAME_DROP; |
| for (sl = 0; sl < (unsigned int)svc_ctx.spatial_layers; ++sl) |
| svc_drop_frame.framedrop_thresh[sl] = enc_cfg.rc_dropframe_thresh; |
| svc_drop_frame.max_consec_drop = INT_MAX; |
| vpx_codec_control(&encoder, VP9E_SET_SVC_FRAME_DROP_LAYER, &svc_drop_frame); |
| |
| // Encode frames |
| while (!end_of_stream) { |
| vpx_codec_iter_t iter = NULL; |
| const vpx_codec_cx_pkt_t *cx_pkt; |
| // Example patterns for bypass/flexible mode: |
| // example_pattern = 0: 2 temporal layers, and spatial_layers = 1,2,3. Exact |
| // to fixed SVC patterns. example_pattern = 1: 2 spatial and 2 temporal |
| // layers, with SL0 only has TL0, and SL1 has both TL0 and TL1. This example |
| // uses the extended API. |
| int example_pattern = 0; |
| if (frame_cnt >= app_input.frames_to_code || |
| !read_frame(&app_input.input_ctx, &raw)) { |
| // We need one extra vpx_svc_encode call at end of stream to flush |
| // encoder and get remaining data |
| end_of_stream = 1; |
| } |
| |
| // For BYPASS/FLEXIBLE mode, set the frame flags (reference and updates) |
| // and the buffer indices for each spatial layer of the current |
| // (super)frame to be encoded. The spatial and temporal layer_id for the |
| // current frame also needs to be set. |
| // TODO(marpan): Should rename the "VP9E_TEMPORAL_LAYERING_MODE_BYPASS" |
| // mode to "VP9E_LAYERING_MODE_BYPASS". |
| if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { |
| layer_id.spatial_layer_id = 0; |
| // Example for 2 temporal layers. |
| if (frame_cnt % 2 == 0) { |
| layer_id.temporal_layer_id = 0; |
| for (i = 0; i < VPX_SS_MAX_LAYERS; i++) |
| layer_id.temporal_layer_id_per_spatial[i] = 0; |
| } else { |
| layer_id.temporal_layer_id = 1; |
| for (i = 0; i < VPX_SS_MAX_LAYERS; i++) |
| layer_id.temporal_layer_id_per_spatial[i] = 1; |
| } |
| if (example_pattern == 1) { |
| // example_pattern 1 is hard-coded for 2 spatial and 2 temporal layers. |
| assert(svc_ctx.spatial_layers == 2); |
| assert(svc_ctx.temporal_layers == 2); |
| if (frame_cnt % 2 == 0) { |
| // Spatial layer 0 and 1 are encoded. |
| layer_id.temporal_layer_id_per_spatial[0] = 0; |
| layer_id.temporal_layer_id_per_spatial[1] = 0; |
| layer_id.spatial_layer_id = 0; |
| } else { |
| // Only spatial layer 1 is encoded here. |
| layer_id.temporal_layer_id_per_spatial[1] = 1; |
| layer_id.spatial_layer_id = 1; |
| } |
| } |
| vpx_codec_control(&encoder, VP9E_SET_SVC_LAYER_ID, &layer_id); |
| // TODO(jianj): Fix the parameter passing for "is_key_frame" in |
| // set_frame_flags_bypass_model() for case of periodic key frames. |
| if (example_pattern == 0) { |
| set_frame_flags_bypass_mode_ex0(layer_id.temporal_layer_id, |
| svc_ctx.spatial_layers, frame_cnt == 0, |
| &ref_frame_config); |
| } else if (example_pattern == 1) { |
| set_frame_flags_bypass_mode_ex1(layer_id.temporal_layer_id, |
| svc_ctx.spatial_layers, frame_cnt == 0, |
| &ref_frame_config); |
| } |
| ref_frame_config.duration[0] = frame_duration * 1; |
| ref_frame_config.duration[1] = frame_duration * 1; |
| |
| vpx_codec_control(&encoder, VP9E_SET_SVC_REF_FRAME_CONFIG, |
| &ref_frame_config); |
| // Keep track of input frames, to account for frame drops in rate control |
| // stats/metrics. |
| for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { |
| ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + |
| layer_id.temporal_layer_id]; |
| } |
| } else { |
| // For the fixed pattern SVC, temporal layer is given by superframe count. |
| unsigned int tl = 0; |
| if (enc_cfg.ts_number_layers == 2) |
| tl = (frame_cnt % 2 != 0); |
| else if (enc_cfg.ts_number_layers == 3) { |
| if (frame_cnt % 2 != 0) tl = 2; |
| if ((frame_cnt > 1) && ((frame_cnt - 2) % 4 == 0)) tl = 1; |
| } |
| for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) |
| ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + tl]; |
| } |
| |
| vpx_usec_timer_start(&timer); |
| res = vpx_svc_encode( |
| &svc_ctx, &encoder, (end_of_stream ? NULL : &raw), pts, frame_duration, |
| svc_ctx.speed >= 5 ? VPX_DL_REALTIME : VPX_DL_GOOD_QUALITY); |
| vpx_usec_timer_mark(&timer); |
| cx_time += vpx_usec_timer_elapsed(&timer); |
| |
| fflush(stdout); |
| if (res != VPX_CODEC_OK) { |
| die_codec(&encoder, "Failed to encode frame"); |
| } |
| |
| while ((cx_pkt = vpx_codec_get_cx_data(&encoder, &iter)) != NULL) { |
| switch (cx_pkt->kind) { |
| case VPX_CODEC_CX_FRAME_PKT: { |
| SvcInternal_t *const si = (SvcInternal_t *)svc_ctx.internal; |
| if (cx_pkt->data.frame.sz > 0) { |
| vpx_video_writer_write_frame(writer, cx_pkt->data.frame.buf, |
| cx_pkt->data.frame.sz, |
| cx_pkt->data.frame.pts); |
| #if OUTPUT_RC_STATS |
| if (svc_ctx.output_rc_stat) { |
| svc_output_rc_stats(&encoder, &enc_cfg, &layer_id, cx_pkt, &rc, |
| outfile, frame_cnt, framerate); |
| } |
| #endif |
| } |
| /* |
| printf("SVC frame: %d, kf: %d, size: %d, pts: %d\n", frames_received, |
| !!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY), |
| (int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts); |
| */ |
| if (enc_cfg.ss_number_layers == 1 && enc_cfg.ts_number_layers == 1) |
| si->bytes_sum[0] += (int)cx_pkt->data.frame.sz; |
| ++frames_received; |
| #if CONFIG_VP9_DECODER && !SIMULCAST_MODE |
| if (vpx_codec_decode(&decoder, cx_pkt->data.frame.buf, |
| (unsigned int)cx_pkt->data.frame.sz, NULL, 0)) |
| die_codec(&decoder, "Failed to decode frame."); |
| #endif |
| break; |
| } |
| case VPX_CODEC_STATS_PKT: { |
| stats_write(&app_input.rc_stats, cx_pkt->data.twopass_stats.buf, |
| cx_pkt->data.twopass_stats.sz); |
| break; |
| } |
| default: { break; } |
| } |
| |
| #if CONFIG_VP9_DECODER && !SIMULCAST_MODE |
| vpx_codec_control(&encoder, VP9E_GET_SVC_LAYER_ID, &layer_id); |
| // Don't look for mismatch on top spatial and top temporal layers as they |
| // are non reference frames. |
| if ((enc_cfg.ss_number_layers > 1 || enc_cfg.ts_number_layers > 1) && |
| !(layer_id.temporal_layer_id > 0 && |
| layer_id.temporal_layer_id == (int)enc_cfg.ts_number_layers - 1 && |
| cx_pkt->data.frame |
| .spatial_layer_encoded[enc_cfg.ss_number_layers - 1])) { |
| test_decode(&encoder, &decoder, frame_cnt, &mismatch_seen); |
| } |
| #endif |
| } |
| |
| if (!end_of_stream) { |
| ++frame_cnt; |
| pts += frame_duration; |
| } |
| } |
| |
| printf("Processed %d frames\n", frame_cnt); |
| |
| close_input_file(&app_input.input_ctx); |
| |
| #if OUTPUT_RC_STATS |
| if (svc_ctx.output_rc_stat) { |
| printout_rate_control_summary(&rc, &enc_cfg, frame_cnt); |
| printf("\n"); |
| } |
| #endif |
| if (vpx_codec_destroy(&encoder)) |
| die_codec(&encoder, "Failed to destroy codec"); |
| if (app_input.passes == 2) stats_close(&app_input.rc_stats, 1); |
| if (writer) { |
| vpx_video_writer_close(writer); |
| } |
| #if OUTPUT_RC_STATS |
| if (svc_ctx.output_rc_stat) { |
| for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { |
| vpx_video_writer_close(outfile[sl]); |
| } |
| } |
| #endif |
| #if CONFIG_INTERNAL_STATS |
| if (mismatch_seen) { |
| fprintf(f, "First mismatch occurred in frame %d\n", mismatch_seen); |
| } else { |
| fprintf(f, "No mismatch detected in recon buffers\n"); |
| } |
| fclose(f); |
| #endif |
| printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", |
| frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), |
| 1000000 * (double)frame_cnt / (double)cx_time); |
| if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) { |
| vpx_img_free(&raw); |
| } |
| // display average size, psnr |
| vpx_svc_dump_statistics(&svc_ctx); |
| vpx_svc_release(&svc_ctx); |
| return EXIT_SUCCESS; |
| } |