| //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This provides C++ code generation targeting the Itanium C++ ABI.  The class | 
 | // in this file generates structures that follow the Itanium C++ ABI, which is | 
 | // documented at: | 
 | //  http://www.codesourcery.com/public/cxx-abi/abi.html | 
 | //  http://www.codesourcery.com/public/cxx-abi/abi-eh.html | 
 | // | 
 | // It also supports the closely-related ARM ABI, documented at: | 
 | // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CGCXXABI.h" | 
 | #include "CGCleanup.h" | 
 | #include "CGRecordLayout.h" | 
 | #include "CGVTables.h" | 
 | #include "CodeGenFunction.h" | 
 | #include "CodeGenModule.h" | 
 | #include "TargetInfo.h" | 
 | #include "clang/CodeGen/ConstantInitBuilder.h" | 
 | #include "clang/AST/Mangle.h" | 
 | #include "clang/AST/Type.h" | 
 | #include "clang/AST/StmtCXX.h" | 
 | #include "llvm/IR/CallSite.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/Support/ScopedPrinter.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | namespace { | 
 | class ItaniumCXXABI : public CodeGen::CGCXXABI { | 
 |   /// VTables - All the vtables which have been defined. | 
 |   llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables; | 
 |  | 
 | protected: | 
 |   bool UseARMMethodPtrABI; | 
 |   bool UseARMGuardVarABI; | 
 |   bool Use32BitVTableOffsetABI; | 
 |  | 
 |   ItaniumMangleContext &getMangleContext() { | 
 |     return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext()); | 
 |   } | 
 |  | 
 | public: | 
 |   ItaniumCXXABI(CodeGen::CodeGenModule &CGM, | 
 |                 bool UseARMMethodPtrABI = false, | 
 |                 bool UseARMGuardVarABI = false) : | 
 |     CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), | 
 |     UseARMGuardVarABI(UseARMGuardVarABI), | 
 |     Use32BitVTableOffsetABI(false) { } | 
 |  | 
 |   bool classifyReturnType(CGFunctionInfo &FI) const override; | 
 |  | 
 |   bool passClassIndirect(const CXXRecordDecl *RD) const { | 
 |     return !canCopyArgument(RD); | 
 |   } | 
 |  | 
 |   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override { | 
 |     // If C++ prohibits us from making a copy, pass by address. | 
 |     if (passClassIndirect(RD)) | 
 |       return RAA_Indirect; | 
 |     return RAA_Default; | 
 |   } | 
 |  | 
 |   bool isThisCompleteObject(GlobalDecl GD) const override { | 
 |     // The Itanium ABI has separate complete-object vs.  base-object | 
 |     // variants of both constructors and destructors. | 
 |     if (isa<CXXDestructorDecl>(GD.getDecl())) { | 
 |       switch (GD.getDtorType()) { | 
 |       case Dtor_Complete: | 
 |       case Dtor_Deleting: | 
 |         return true; | 
 |  | 
 |       case Dtor_Base: | 
 |         return false; | 
 |  | 
 |       case Dtor_Comdat: | 
 |         llvm_unreachable("emitting dtor comdat as function?"); | 
 |       } | 
 |       llvm_unreachable("bad dtor kind"); | 
 |     } | 
 |     if (isa<CXXConstructorDecl>(GD.getDecl())) { | 
 |       switch (GD.getCtorType()) { | 
 |       case Ctor_Complete: | 
 |         return true; | 
 |  | 
 |       case Ctor_Base: | 
 |         return false; | 
 |  | 
 |       case Ctor_CopyingClosure: | 
 |       case Ctor_DefaultClosure: | 
 |         llvm_unreachable("closure ctors in Itanium ABI?"); | 
 |  | 
 |       case Ctor_Comdat: | 
 |         llvm_unreachable("emitting ctor comdat as function?"); | 
 |       } | 
 |       llvm_unreachable("bad dtor kind"); | 
 |     } | 
 |  | 
 |     // No other kinds. | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool isZeroInitializable(const MemberPointerType *MPT) override; | 
 |  | 
 |   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; | 
 |  | 
 |   CGCallee | 
 |     EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, | 
 |                                     const Expr *E, | 
 |                                     Address This, | 
 |                                     llvm::Value *&ThisPtrForCall, | 
 |                                     llvm::Value *MemFnPtr, | 
 |                                     const MemberPointerType *MPT) override; | 
 |  | 
 |   llvm::Value * | 
 |     EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, | 
 |                                  Address Base, | 
 |                                  llvm::Value *MemPtr, | 
 |                                  const MemberPointerType *MPT) override; | 
 |  | 
 |   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, | 
 |                                            const CastExpr *E, | 
 |                                            llvm::Value *Src) override; | 
 |   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, | 
 |                                               llvm::Constant *Src) override; | 
 |  | 
 |   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; | 
 |  | 
 |   llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; | 
 |   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, | 
 |                                         CharUnits offset) override; | 
 |   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; | 
 |   llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, | 
 |                                      CharUnits ThisAdjustment); | 
 |  | 
 |   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, | 
 |                                            llvm::Value *L, llvm::Value *R, | 
 |                                            const MemberPointerType *MPT, | 
 |                                            bool Inequality) override; | 
 |  | 
 |   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, | 
 |                                          llvm::Value *Addr, | 
 |                                          const MemberPointerType *MPT) override; | 
 |  | 
 |   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, | 
 |                                Address Ptr, QualType ElementType, | 
 |                                const CXXDestructorDecl *Dtor) override; | 
 |  | 
 |   /// Itanium says that an _Unwind_Exception has to be "double-word" | 
 |   /// aligned (and thus the end of it is also so-aligned), meaning 16 | 
 |   /// bytes.  Of course, that was written for the actual Itanium, | 
 |   /// which is a 64-bit platform.  Classically, the ABI doesn't really | 
 |   /// specify the alignment on other platforms, but in practice | 
 |   /// libUnwind declares the struct with __attribute__((aligned)), so | 
 |   /// we assume that alignment here.  (It's generally 16 bytes, but | 
 |   /// some targets overwrite it.) | 
 |   CharUnits getAlignmentOfExnObject() { | 
 |     auto align = CGM.getContext().getTargetDefaultAlignForAttributeAligned(); | 
 |     return CGM.getContext().toCharUnitsFromBits(align); | 
 |   } | 
 |  | 
 |   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; | 
 |   void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; | 
 |  | 
 |   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; | 
 |  | 
 |   llvm::CallInst * | 
 |   emitTerminateForUnexpectedException(CodeGenFunction &CGF, | 
 |                                       llvm::Value *Exn) override; | 
 |  | 
 |   void EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD); | 
 |   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; | 
 |   CatchTypeInfo | 
 |   getAddrOfCXXCatchHandlerType(QualType Ty, | 
 |                                QualType CatchHandlerType) override { | 
 |     return CatchTypeInfo{getAddrOfRTTIDescriptor(Ty), 0}; | 
 |   } | 
 |  | 
 |   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; | 
 |   void EmitBadTypeidCall(CodeGenFunction &CGF) override; | 
 |   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, | 
 |                           Address ThisPtr, | 
 |                           llvm::Type *StdTypeInfoPtrTy) override; | 
 |  | 
 |   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, | 
 |                                           QualType SrcRecordTy) override; | 
 |  | 
 |   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, | 
 |                                    QualType SrcRecordTy, QualType DestTy, | 
 |                                    QualType DestRecordTy, | 
 |                                    llvm::BasicBlock *CastEnd) override; | 
 |  | 
 |   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, | 
 |                                      QualType SrcRecordTy, | 
 |                                      QualType DestTy) override; | 
 |  | 
 |   bool EmitBadCastCall(CodeGenFunction &CGF) override; | 
 |  | 
 |   llvm::Value * | 
 |     GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, | 
 |                               const CXXRecordDecl *ClassDecl, | 
 |                               const CXXRecordDecl *BaseClassDecl) override; | 
 |  | 
 |   void EmitCXXConstructors(const CXXConstructorDecl *D) override; | 
 |  | 
 |   AddedStructorArgs | 
 |   buildStructorSignature(const CXXMethodDecl *MD, StructorType T, | 
 |                          SmallVectorImpl<CanQualType> &ArgTys) override; | 
 |  | 
 |   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, | 
 |                               CXXDtorType DT) const override { | 
 |     // Itanium does not emit any destructor variant as an inline thunk. | 
 |     // Delegating may occur as an optimization, but all variants are either | 
 |     // emitted with external linkage or as linkonce if they are inline and used. | 
 |     return false; | 
 |   } | 
 |  | 
 |   void EmitCXXDestructors(const CXXDestructorDecl *D) override; | 
 |  | 
 |   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, | 
 |                                  FunctionArgList &Params) override; | 
 |  | 
 |   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; | 
 |  | 
 |   AddedStructorArgs | 
 |   addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, | 
 |                              CXXCtorType Type, bool ForVirtualBase, | 
 |                              bool Delegating, CallArgList &Args) override; | 
 |  | 
 |   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, | 
 |                           CXXDtorType Type, bool ForVirtualBase, | 
 |                           bool Delegating, Address This) override; | 
 |  | 
 |   void emitVTableDefinitions(CodeGenVTables &CGVT, | 
 |                              const CXXRecordDecl *RD) override; | 
 |  | 
 |   bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, | 
 |                                            CodeGenFunction::VPtr Vptr) override; | 
 |  | 
 |   bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { | 
 |     return true; | 
 |   } | 
 |  | 
 |   llvm::Constant * | 
 |   getVTableAddressPoint(BaseSubobject Base, | 
 |                         const CXXRecordDecl *VTableClass) override; | 
 |  | 
 |   llvm::Value *getVTableAddressPointInStructor( | 
 |       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, | 
 |       BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; | 
 |  | 
 |   llvm::Value *getVTableAddressPointInStructorWithVTT( | 
 |       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, | 
 |       BaseSubobject Base, const CXXRecordDecl *NearestVBase); | 
 |  | 
 |   llvm::Constant * | 
 |   getVTableAddressPointForConstExpr(BaseSubobject Base, | 
 |                                     const CXXRecordDecl *VTableClass) override; | 
 |  | 
 |   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, | 
 |                                         CharUnits VPtrOffset) override; | 
 |  | 
 |   CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, | 
 |                                      Address This, llvm::Type *Ty, | 
 |                                      SourceLocation Loc) override; | 
 |  | 
 |   llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, | 
 |                                          const CXXDestructorDecl *Dtor, | 
 |                                          CXXDtorType DtorType, | 
 |                                          Address This, | 
 |                                          const CXXMemberCallExpr *CE) override; | 
 |  | 
 |   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; | 
 |  | 
 |   bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override; | 
 |  | 
 |   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, | 
 |                        bool ReturnAdjustment) override { | 
 |     // Allow inlining of thunks by emitting them with available_externally | 
 |     // linkage together with vtables when needed. | 
 |     if (ForVTable && !Thunk->hasLocalLinkage()) | 
 |       Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); | 
 |     CGM.setGVProperties(Thunk, GD); | 
 |   } | 
 |  | 
 |   bool exportThunk() override { return true; } | 
 |  | 
 |   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, | 
 |                                      const ThisAdjustment &TA) override; | 
 |  | 
 |   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, | 
 |                                        const ReturnAdjustment &RA) override; | 
 |  | 
 |   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *, | 
 |                               FunctionArgList &Args) const override { | 
 |     assert(!Args.empty() && "expected the arglist to not be empty!"); | 
 |     return Args.size() - 1; | 
 |   } | 
 |  | 
 |   StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; } | 
 |   StringRef GetDeletedVirtualCallName() override | 
 |     { return "__cxa_deleted_virtual"; } | 
 |  | 
 |   CharUnits getArrayCookieSizeImpl(QualType elementType) override; | 
 |   Address InitializeArrayCookie(CodeGenFunction &CGF, | 
 |                                 Address NewPtr, | 
 |                                 llvm::Value *NumElements, | 
 |                                 const CXXNewExpr *expr, | 
 |                                 QualType ElementType) override; | 
 |   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, | 
 |                                    Address allocPtr, | 
 |                                    CharUnits cookieSize) override; | 
 |  | 
 |   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, | 
 |                        llvm::GlobalVariable *DeclPtr, | 
 |                        bool PerformInit) override; | 
 |   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, | 
 |                           llvm::Constant *dtor, llvm::Constant *addr) override; | 
 |  | 
 |   llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, | 
 |                                                 llvm::Value *Val); | 
 |   void EmitThreadLocalInitFuncs( | 
 |       CodeGenModule &CGM, | 
 |       ArrayRef<const VarDecl *> CXXThreadLocals, | 
 |       ArrayRef<llvm::Function *> CXXThreadLocalInits, | 
 |       ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; | 
 |  | 
 |   bool usesThreadWrapperFunction() const override { return true; } | 
 |   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, | 
 |                                       QualType LValType) override; | 
 |  | 
 |   bool NeedsVTTParameter(GlobalDecl GD) override; | 
 |  | 
 |   /**************************** RTTI Uniqueness ******************************/ | 
 |  | 
 | protected: | 
 |   /// Returns true if the ABI requires RTTI type_info objects to be unique | 
 |   /// across a program. | 
 |   virtual bool shouldRTTIBeUnique() const { return true; } | 
 |  | 
 | public: | 
 |   /// What sort of unique-RTTI behavior should we use? | 
 |   enum RTTIUniquenessKind { | 
 |     /// We are guaranteeing, or need to guarantee, that the RTTI string | 
 |     /// is unique. | 
 |     RUK_Unique, | 
 |  | 
 |     /// We are not guaranteeing uniqueness for the RTTI string, so we | 
 |     /// can demote to hidden visibility but must use string comparisons. | 
 |     RUK_NonUniqueHidden, | 
 |  | 
 |     /// We are not guaranteeing uniqueness for the RTTI string, so we | 
 |     /// have to use string comparisons, but we also have to emit it with | 
 |     /// non-hidden visibility. | 
 |     RUK_NonUniqueVisible | 
 |   }; | 
 |  | 
 |   /// Return the required visibility status for the given type and linkage in | 
 |   /// the current ABI. | 
 |   RTTIUniquenessKind | 
 |   classifyRTTIUniqueness(QualType CanTy, | 
 |                          llvm::GlobalValue::LinkageTypes Linkage) const; | 
 |   friend class ItaniumRTTIBuilder; | 
 |  | 
 |   void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override; | 
 |  | 
 |   std::pair<llvm::Value *, const CXXRecordDecl *> | 
 |   LoadVTablePtr(CodeGenFunction &CGF, Address This, | 
 |                 const CXXRecordDecl *RD) override; | 
 |  | 
 |  private: | 
 |    bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl *RD) const { | 
 |      const auto &VtableLayout = | 
 |          CGM.getItaniumVTableContext().getVTableLayout(RD); | 
 |  | 
 |      for (const auto &VtableComponent : VtableLayout.vtable_components()) { | 
 |        // Skip empty slot. | 
 |        if (!VtableComponent.isUsedFunctionPointerKind()) | 
 |          continue; | 
 |  | 
 |        const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); | 
 |        if (!Method->getCanonicalDecl()->isInlined()) | 
 |          continue; | 
 |  | 
 |        StringRef Name = CGM.getMangledName(VtableComponent.getGlobalDecl()); | 
 |        auto *Entry = CGM.GetGlobalValue(Name); | 
 |        // This checks if virtual inline function has already been emitted. | 
 |        // Note that it is possible that this inline function would be emitted | 
 |        // after trying to emit vtable speculatively. Because of this we do | 
 |        // an extra pass after emitting all deferred vtables to find and emit | 
 |        // these vtables opportunistically. | 
 |        if (!Entry || Entry->isDeclaration()) | 
 |          return true; | 
 |      } | 
 |      return false; | 
 |   } | 
 |  | 
 |   bool isVTableHidden(const CXXRecordDecl *RD) const { | 
 |     const auto &VtableLayout = | 
 |             CGM.getItaniumVTableContext().getVTableLayout(RD); | 
 |  | 
 |     for (const auto &VtableComponent : VtableLayout.vtable_components()) { | 
 |       if (VtableComponent.isRTTIKind()) { | 
 |         const CXXRecordDecl *RTTIDecl = VtableComponent.getRTTIDecl(); | 
 |         if (RTTIDecl->getVisibility() == Visibility::HiddenVisibility) | 
 |           return true; | 
 |       } else if (VtableComponent.isUsedFunctionPointerKind()) { | 
 |         const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); | 
 |         if (Method->getVisibility() == Visibility::HiddenVisibility && | 
 |             !Method->isDefined()) | 
 |           return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | class ARMCXXABI : public ItaniumCXXABI { | 
 | public: | 
 |   ARMCXXABI(CodeGen::CodeGenModule &CGM) : | 
 |     ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, | 
 |                   /* UseARMGuardVarABI = */ true) {} | 
 |  | 
 |   bool HasThisReturn(GlobalDecl GD) const override { | 
 |     return (isa<CXXConstructorDecl>(GD.getDecl()) || ( | 
 |               isa<CXXDestructorDecl>(GD.getDecl()) && | 
 |               GD.getDtorType() != Dtor_Deleting)); | 
 |   } | 
 |  | 
 |   void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, | 
 |                            QualType ResTy) override; | 
 |  | 
 |   CharUnits getArrayCookieSizeImpl(QualType elementType) override; | 
 |   Address InitializeArrayCookie(CodeGenFunction &CGF, | 
 |                                 Address NewPtr, | 
 |                                 llvm::Value *NumElements, | 
 |                                 const CXXNewExpr *expr, | 
 |                                 QualType ElementType) override; | 
 |   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, | 
 |                                    CharUnits cookieSize) override; | 
 | }; | 
 |  | 
 | class iOS64CXXABI : public ARMCXXABI { | 
 | public: | 
 |   iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) { | 
 |     Use32BitVTableOffsetABI = true; | 
 |   } | 
 |  | 
 |   // ARM64 libraries are prepared for non-unique RTTI. | 
 |   bool shouldRTTIBeUnique() const override { return false; } | 
 | }; | 
 |  | 
 | class WebAssemblyCXXABI final : public ItaniumCXXABI { | 
 | public: | 
 |   explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM) | 
 |       : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, | 
 |                       /*UseARMGuardVarABI=*/true) {} | 
 |   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; | 
 |  | 
 | private: | 
 |   bool HasThisReturn(GlobalDecl GD) const override { | 
 |     return isa<CXXConstructorDecl>(GD.getDecl()) || | 
 |            (isa<CXXDestructorDecl>(GD.getDecl()) && | 
 |             GD.getDtorType() != Dtor_Deleting); | 
 |   } | 
 |   bool canCallMismatchedFunctionType() const override { return false; } | 
 | }; | 
 | } | 
 |  | 
 | CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { | 
 |   switch (CGM.getTarget().getCXXABI().getKind()) { | 
 |   // For IR-generation purposes, there's no significant difference | 
 |   // between the ARM and iOS ABIs. | 
 |   case TargetCXXABI::GenericARM: | 
 |   case TargetCXXABI::iOS: | 
 |   case TargetCXXABI::WatchOS: | 
 |     return new ARMCXXABI(CGM); | 
 |  | 
 |   case TargetCXXABI::iOS64: | 
 |     return new iOS64CXXABI(CGM); | 
 |  | 
 |   // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't | 
 |   // include the other 32-bit ARM oddities: constructor/destructor return values | 
 |   // and array cookies. | 
 |   case TargetCXXABI::GenericAArch64: | 
 |     return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, | 
 |                              /* UseARMGuardVarABI = */ true); | 
 |  | 
 |   case TargetCXXABI::GenericMIPS: | 
 |     return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true); | 
 |  | 
 |   case TargetCXXABI::WebAssembly: | 
 |     return new WebAssemblyCXXABI(CGM); | 
 |  | 
 |   case TargetCXXABI::GenericItanium: | 
 |     if (CGM.getContext().getTargetInfo().getTriple().getArch() | 
 |         == llvm::Triple::le32) { | 
 |       // For PNaCl, use ARM-style method pointers so that PNaCl code | 
 |       // does not assume anything about the alignment of function | 
 |       // pointers. | 
 |       return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true, | 
 |                                /* UseARMGuardVarABI = */ false); | 
 |     } | 
 |     return new ItaniumCXXABI(CGM); | 
 |  | 
 |   case TargetCXXABI::Microsoft: | 
 |     llvm_unreachable("Microsoft ABI is not Itanium-based"); | 
 |   } | 
 |   llvm_unreachable("bad ABI kind"); | 
 | } | 
 |  | 
 | llvm::Type * | 
 | ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { | 
 |   if (MPT->isMemberDataPointer()) | 
 |     return CGM.PtrDiffTy; | 
 |   return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy); | 
 | } | 
 |  | 
 | /// In the Itanium and ARM ABIs, method pointers have the form: | 
 | ///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; | 
 | /// | 
 | /// In the Itanium ABI: | 
 | ///  - method pointers are virtual if (memptr.ptr & 1) is nonzero | 
 | ///  - the this-adjustment is (memptr.adj) | 
 | ///  - the virtual offset is (memptr.ptr - 1) | 
 | /// | 
 | /// In the ARM ABI: | 
 | ///  - method pointers are virtual if (memptr.adj & 1) is nonzero | 
 | ///  - the this-adjustment is (memptr.adj >> 1) | 
 | ///  - the virtual offset is (memptr.ptr) | 
 | /// ARM uses 'adj' for the virtual flag because Thumb functions | 
 | /// may be only single-byte aligned. | 
 | /// | 
 | /// If the member is virtual, the adjusted 'this' pointer points | 
 | /// to a vtable pointer from which the virtual offset is applied. | 
 | /// | 
 | /// If the member is non-virtual, memptr.ptr is the address of | 
 | /// the function to call. | 
 | CGCallee ItaniumCXXABI::EmitLoadOfMemberFunctionPointer( | 
 |     CodeGenFunction &CGF, const Expr *E, Address ThisAddr, | 
 |     llvm::Value *&ThisPtrForCall, | 
 |     llvm::Value *MemFnPtr, const MemberPointerType *MPT) { | 
 |   CGBuilderTy &Builder = CGF.Builder; | 
 |  | 
 |   const FunctionProtoType *FPT = | 
 |     MPT->getPointeeType()->getAs<FunctionProtoType>(); | 
 |   const CXXRecordDecl *RD = | 
 |     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); | 
 |  | 
 |   llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( | 
 |       CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); | 
 |  | 
 |   llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); | 
 |  | 
 |   llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); | 
 |   llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); | 
 |   llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); | 
 |  | 
 |   // Extract memptr.adj, which is in the second field. | 
 |   llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); | 
 |  | 
 |   // Compute the true adjustment. | 
 |   llvm::Value *Adj = RawAdj; | 
 |   if (UseARMMethodPtrABI) | 
 |     Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); | 
 |  | 
 |   // Apply the adjustment and cast back to the original struct type | 
 |   // for consistency. | 
 |   llvm::Value *This = ThisAddr.getPointer(); | 
 |   llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); | 
 |   Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); | 
 |   This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); | 
 |   ThisPtrForCall = This; | 
 |  | 
 |   // Load the function pointer. | 
 |   llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); | 
 |  | 
 |   // If the LSB in the function pointer is 1, the function pointer points to | 
 |   // a virtual function. | 
 |   llvm::Value *IsVirtual; | 
 |   if (UseARMMethodPtrABI) | 
 |     IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); | 
 |   else | 
 |     IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); | 
 |   IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); | 
 |   Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); | 
 |  | 
 |   // In the virtual path, the adjustment left 'This' pointing to the | 
 |   // vtable of the correct base subobject.  The "function pointer" is an | 
 |   // offset within the vtable (+1 for the virtual flag on non-ARM). | 
 |   CGF.EmitBlock(FnVirtual); | 
 |  | 
 |   // Cast the adjusted this to a pointer to vtable pointer and load. | 
 |   llvm::Type *VTableTy = Builder.getInt8PtrTy(); | 
 |   CharUnits VTablePtrAlign = | 
 |     CGF.CGM.getDynamicOffsetAlignment(ThisAddr.getAlignment(), RD, | 
 |                                       CGF.getPointerAlign()); | 
 |   llvm::Value *VTable = | 
 |     CGF.GetVTablePtr(Address(This, VTablePtrAlign), VTableTy, RD); | 
 |  | 
 |   // Apply the offset. | 
 |   // On ARM64, to reserve extra space in virtual member function pointers, | 
 |   // we only pay attention to the low 32 bits of the offset. | 
 |   llvm::Value *VTableOffset = FnAsInt; | 
 |   if (!UseARMMethodPtrABI) | 
 |     VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); | 
 |   if (Use32BitVTableOffsetABI) { | 
 |     VTableOffset = Builder.CreateTrunc(VTableOffset, CGF.Int32Ty); | 
 |     VTableOffset = Builder.CreateZExt(VTableOffset, CGM.PtrDiffTy); | 
 |   } | 
 |   // Compute the address of the virtual function pointer. | 
 |   llvm::Value *VFPAddr = Builder.CreateGEP(VTable, VTableOffset); | 
 |  | 
 |   // Check the address of the function pointer if CFI on member function | 
 |   // pointers is enabled. | 
 |   llvm::Constant *CheckSourceLocation; | 
 |   llvm::Constant *CheckTypeDesc; | 
 |   bool ShouldEmitCFICheck = CGF.SanOpts.has(SanitizerKind::CFIMFCall) && | 
 |                             CGM.HasHiddenLTOVisibility(RD); | 
 |   if (ShouldEmitCFICheck) { | 
 |     CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |  | 
 |     CheckSourceLocation = CGF.EmitCheckSourceLocation(E->getLocStart()); | 
 |     CheckTypeDesc = CGF.EmitCheckTypeDescriptor(QualType(MPT, 0)); | 
 |     llvm::Constant *StaticData[] = { | 
 |         llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_VMFCall), | 
 |         CheckSourceLocation, | 
 |         CheckTypeDesc, | 
 |     }; | 
 |  | 
 |     llvm::Metadata *MD = | 
 |         CGM.CreateMetadataIdentifierForVirtualMemPtrType(QualType(MPT, 0)); | 
 |     llvm::Value *TypeId = llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); | 
 |  | 
 |     llvm::Value *TypeTest = Builder.CreateCall( | 
 |         CGM.getIntrinsic(llvm::Intrinsic::type_test), {VFPAddr, TypeId}); | 
 |  | 
 |     if (CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIMFCall)) { | 
 |       CGF.EmitTrapCheck(TypeTest); | 
 |     } else { | 
 |       llvm::Value *AllVtables = llvm::MetadataAsValue::get( | 
 |           CGM.getLLVMContext(), | 
 |           llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); | 
 |       llvm::Value *ValidVtable = Builder.CreateCall( | 
 |           CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables}); | 
 |       CGF.EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIMFCall), | 
 |                     SanitizerHandler::CFICheckFail, StaticData, | 
 |                     {VTable, ValidVtable}); | 
 |     } | 
 |  | 
 |     FnVirtual = Builder.GetInsertBlock(); | 
 |   } | 
 |  | 
 |   // Load the virtual function to call. | 
 |   VFPAddr = Builder.CreateBitCast(VFPAddr, FTy->getPointerTo()->getPointerTo()); | 
 |   llvm::Value *VirtualFn = Builder.CreateAlignedLoad( | 
 |       VFPAddr, CGF.getPointerAlign(), "memptr.virtualfn"); | 
 |   CGF.EmitBranch(FnEnd); | 
 |  | 
 |   // In the non-virtual path, the function pointer is actually a | 
 |   // function pointer. | 
 |   CGF.EmitBlock(FnNonVirtual); | 
 |   llvm::Value *NonVirtualFn = | 
 |     Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); | 
 |  | 
 |   // Check the function pointer if CFI on member function pointers is enabled. | 
 |   if (ShouldEmitCFICheck) { | 
 |     CXXRecordDecl *RD = MPT->getClass()->getAsCXXRecordDecl(); | 
 |     if (RD->hasDefinition()) { | 
 |       CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |  | 
 |       llvm::Constant *StaticData[] = { | 
 |           llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_NVMFCall), | 
 |           CheckSourceLocation, | 
 |           CheckTypeDesc, | 
 |       }; | 
 |  | 
 |       llvm::Value *Bit = Builder.getFalse(); | 
 |       llvm::Value *CastedNonVirtualFn = | 
 |           Builder.CreateBitCast(NonVirtualFn, CGF.Int8PtrTy); | 
 |       for (const CXXRecordDecl *Base : CGM.getMostBaseClasses(RD)) { | 
 |         llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType( | 
 |             getContext().getMemberPointerType( | 
 |                 MPT->getPointeeType(), | 
 |                 getContext().getRecordType(Base).getTypePtr())); | 
 |         llvm::Value *TypeId = | 
 |             llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); | 
 |  | 
 |         llvm::Value *TypeTest = | 
 |             Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), | 
 |                                {CastedNonVirtualFn, TypeId}); | 
 |         Bit = Builder.CreateOr(Bit, TypeTest); | 
 |       } | 
 |  | 
 |       CGF.EmitCheck(std::make_pair(Bit, SanitizerKind::CFIMFCall), | 
 |                     SanitizerHandler::CFICheckFail, StaticData, | 
 |                     {CastedNonVirtualFn, llvm::UndefValue::get(CGF.IntPtrTy)}); | 
 |  | 
 |       FnNonVirtual = Builder.GetInsertBlock(); | 
 |     } | 
 |   } | 
 |  | 
 |   // We're done. | 
 |   CGF.EmitBlock(FnEnd); | 
 |   llvm::PHINode *CalleePtr = Builder.CreatePHI(FTy->getPointerTo(), 2); | 
 |   CalleePtr->addIncoming(VirtualFn, FnVirtual); | 
 |   CalleePtr->addIncoming(NonVirtualFn, FnNonVirtual); | 
 |  | 
 |   CGCallee Callee(FPT, CalleePtr); | 
 |   return Callee; | 
 | } | 
 |  | 
 | /// Compute an l-value by applying the given pointer-to-member to a | 
 | /// base object. | 
 | llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress( | 
 |     CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, | 
 |     const MemberPointerType *MPT) { | 
 |   assert(MemPtr->getType() == CGM.PtrDiffTy); | 
 |  | 
 |   CGBuilderTy &Builder = CGF.Builder; | 
 |  | 
 |   // Cast to char*. | 
 |   Base = Builder.CreateElementBitCast(Base, CGF.Int8Ty); | 
 |  | 
 |   // Apply the offset, which we assume is non-null. | 
 |   llvm::Value *Addr = | 
 |     Builder.CreateInBoundsGEP(Base.getPointer(), MemPtr, "memptr.offset"); | 
 |  | 
 |   // Cast the address to the appropriate pointer type, adopting the | 
 |   // address space of the base pointer. | 
 |   llvm::Type *PType = CGF.ConvertTypeForMem(MPT->getPointeeType()) | 
 |                             ->getPointerTo(Base.getAddressSpace()); | 
 |   return Builder.CreateBitCast(Addr, PType); | 
 | } | 
 |  | 
 | /// Perform a bitcast, derived-to-base, or base-to-derived member pointer | 
 | /// conversion. | 
 | /// | 
 | /// Bitcast conversions are always a no-op under Itanium. | 
 | /// | 
 | /// Obligatory offset/adjustment diagram: | 
 | ///         <-- offset -->          <-- adjustment --> | 
 | ///   |--------------------------|----------------------|--------------------| | 
 | ///   ^Derived address point     ^Base address point    ^Member address point | 
 | /// | 
 | /// So when converting a base member pointer to a derived member pointer, | 
 | /// we add the offset to the adjustment because the address point has | 
 | /// decreased;  and conversely, when converting a derived MP to a base MP | 
 | /// we subtract the offset from the adjustment because the address point | 
 | /// has increased. | 
 | /// | 
 | /// The standard forbids (at compile time) conversion to and from | 
 | /// virtual bases, which is why we don't have to consider them here. | 
 | /// | 
 | /// The standard forbids (at run time) casting a derived MP to a base | 
 | /// MP when the derived MP does not point to a member of the base. | 
 | /// This is why -1 is a reasonable choice for null data member | 
 | /// pointers. | 
 | llvm::Value * | 
 | ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, | 
 |                                            const CastExpr *E, | 
 |                                            llvm::Value *src) { | 
 |   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || | 
 |          E->getCastKind() == CK_BaseToDerivedMemberPointer || | 
 |          E->getCastKind() == CK_ReinterpretMemberPointer); | 
 |  | 
 |   // Under Itanium, reinterprets don't require any additional processing. | 
 |   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; | 
 |  | 
 |   // Use constant emission if we can. | 
 |   if (isa<llvm::Constant>(src)) | 
 |     return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); | 
 |  | 
 |   llvm::Constant *adj = getMemberPointerAdjustment(E); | 
 |   if (!adj) return src; | 
 |  | 
 |   CGBuilderTy &Builder = CGF.Builder; | 
 |   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); | 
 |  | 
 |   const MemberPointerType *destTy = | 
 |     E->getType()->castAs<MemberPointerType>(); | 
 |  | 
 |   // For member data pointers, this is just a matter of adding the | 
 |   // offset if the source is non-null. | 
 |   if (destTy->isMemberDataPointer()) { | 
 |     llvm::Value *dst; | 
 |     if (isDerivedToBase) | 
 |       dst = Builder.CreateNSWSub(src, adj, "adj"); | 
 |     else | 
 |       dst = Builder.CreateNSWAdd(src, adj, "adj"); | 
 |  | 
 |     // Null check. | 
 |     llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); | 
 |     llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); | 
 |     return Builder.CreateSelect(isNull, src, dst); | 
 |   } | 
 |  | 
 |   // The this-adjustment is left-shifted by 1 on ARM. | 
 |   if (UseARMMethodPtrABI) { | 
 |     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); | 
 |     offset <<= 1; | 
 |     adj = llvm::ConstantInt::get(adj->getType(), offset); | 
 |   } | 
 |  | 
 |   llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); | 
 |   llvm::Value *dstAdj; | 
 |   if (isDerivedToBase) | 
 |     dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); | 
 |   else | 
 |     dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); | 
 |  | 
 |   return Builder.CreateInsertValue(src, dstAdj, 1); | 
 | } | 
 |  | 
 | llvm::Constant * | 
 | ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, | 
 |                                            llvm::Constant *src) { | 
 |   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || | 
 |          E->getCastKind() == CK_BaseToDerivedMemberPointer || | 
 |          E->getCastKind() == CK_ReinterpretMemberPointer); | 
 |  | 
 |   // Under Itanium, reinterprets don't require any additional processing. | 
 |   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; | 
 |  | 
 |   // If the adjustment is trivial, we don't need to do anything. | 
 |   llvm::Constant *adj = getMemberPointerAdjustment(E); | 
 |   if (!adj) return src; | 
 |  | 
 |   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); | 
 |  | 
 |   const MemberPointerType *destTy = | 
 |     E->getType()->castAs<MemberPointerType>(); | 
 |  | 
 |   // For member data pointers, this is just a matter of adding the | 
 |   // offset if the source is non-null. | 
 |   if (destTy->isMemberDataPointer()) { | 
 |     // null maps to null. | 
 |     if (src->isAllOnesValue()) return src; | 
 |  | 
 |     if (isDerivedToBase) | 
 |       return llvm::ConstantExpr::getNSWSub(src, adj); | 
 |     else | 
 |       return llvm::ConstantExpr::getNSWAdd(src, adj); | 
 |   } | 
 |  | 
 |   // The this-adjustment is left-shifted by 1 on ARM. | 
 |   if (UseARMMethodPtrABI) { | 
 |     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); | 
 |     offset <<= 1; | 
 |     adj = llvm::ConstantInt::get(adj->getType(), offset); | 
 |   } | 
 |  | 
 |   llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); | 
 |   llvm::Constant *dstAdj; | 
 |   if (isDerivedToBase) | 
 |     dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); | 
 |   else | 
 |     dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); | 
 |  | 
 |   return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); | 
 | } | 
 |  | 
 | llvm::Constant * | 
 | ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { | 
 |   // Itanium C++ ABI 2.3: | 
 |   //   A NULL pointer is represented as -1. | 
 |   if (MPT->isMemberDataPointer()) | 
 |     return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); | 
 |  | 
 |   llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); | 
 |   llvm::Constant *Values[2] = { Zero, Zero }; | 
 |   return llvm::ConstantStruct::getAnon(Values); | 
 | } | 
 |  | 
 | llvm::Constant * | 
 | ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, | 
 |                                      CharUnits offset) { | 
 |   // Itanium C++ ABI 2.3: | 
 |   //   A pointer to data member is an offset from the base address of | 
 |   //   the class object containing it, represented as a ptrdiff_t | 
 |   return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); | 
 | } | 
 |  | 
 | llvm::Constant * | 
 | ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { | 
 |   return BuildMemberPointer(MD, CharUnits::Zero()); | 
 | } | 
 |  | 
 | llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, | 
 |                                                   CharUnits ThisAdjustment) { | 
 |   assert(MD->isInstance() && "Member function must not be static!"); | 
 |  | 
 |   CodeGenTypes &Types = CGM.getTypes(); | 
 |  | 
 |   // Get the function pointer (or index if this is a virtual function). | 
 |   llvm::Constant *MemPtr[2]; | 
 |   if (MD->isVirtual()) { | 
 |     uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD); | 
 |  | 
 |     const ASTContext &Context = getContext(); | 
 |     CharUnits PointerWidth = | 
 |       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); | 
 |     uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); | 
 |  | 
 |     if (UseARMMethodPtrABI) { | 
 |       // ARM C++ ABI 3.2.1: | 
 |       //   This ABI specifies that adj contains twice the this | 
 |       //   adjustment, plus 1 if the member function is virtual. The | 
 |       //   least significant bit of adj then makes exactly the same | 
 |       //   discrimination as the least significant bit of ptr does for | 
 |       //   Itanium. | 
 |       MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); | 
 |       MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, | 
 |                                          2 * ThisAdjustment.getQuantity() + 1); | 
 |     } else { | 
 |       // Itanium C++ ABI 2.3: | 
 |       //   For a virtual function, [the pointer field] is 1 plus the | 
 |       //   virtual table offset (in bytes) of the function, | 
 |       //   represented as a ptrdiff_t. | 
 |       MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); | 
 |       MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, | 
 |                                          ThisAdjustment.getQuantity()); | 
 |     } | 
 |   } else { | 
 |     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); | 
 |     llvm::Type *Ty; | 
 |     // Check whether the function has a computable LLVM signature. | 
 |     if (Types.isFuncTypeConvertible(FPT)) { | 
 |       // The function has a computable LLVM signature; use the correct type. | 
 |       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); | 
 |     } else { | 
 |       // Use an arbitrary non-function type to tell GetAddrOfFunction that the | 
 |       // function type is incomplete. | 
 |       Ty = CGM.PtrDiffTy; | 
 |     } | 
 |     llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); | 
 |  | 
 |     MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); | 
 |     MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, | 
 |                                        (UseARMMethodPtrABI ? 2 : 1) * | 
 |                                        ThisAdjustment.getQuantity()); | 
 |   } | 
 |  | 
 |   return llvm::ConstantStruct::getAnon(MemPtr); | 
 | } | 
 |  | 
 | llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, | 
 |                                                  QualType MPType) { | 
 |   const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); | 
 |   const ValueDecl *MPD = MP.getMemberPointerDecl(); | 
 |   if (!MPD) | 
 |     return EmitNullMemberPointer(MPT); | 
 |  | 
 |   CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); | 
 |  | 
 |   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) | 
 |     return BuildMemberPointer(MD, ThisAdjustment); | 
 |  | 
 |   CharUnits FieldOffset = | 
 |     getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); | 
 |   return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); | 
 | } | 
 |  | 
 | /// The comparison algorithm is pretty easy: the member pointers are | 
 | /// the same if they're either bitwise identical *or* both null. | 
 | /// | 
 | /// ARM is different here only because null-ness is more complicated. | 
 | llvm::Value * | 
 | ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, | 
 |                                            llvm::Value *L, | 
 |                                            llvm::Value *R, | 
 |                                            const MemberPointerType *MPT, | 
 |                                            bool Inequality) { | 
 |   CGBuilderTy &Builder = CGF.Builder; | 
 |  | 
 |   llvm::ICmpInst::Predicate Eq; | 
 |   llvm::Instruction::BinaryOps And, Or; | 
 |   if (Inequality) { | 
 |     Eq = llvm::ICmpInst::ICMP_NE; | 
 |     And = llvm::Instruction::Or; | 
 |     Or = llvm::Instruction::And; | 
 |   } else { | 
 |     Eq = llvm::ICmpInst::ICMP_EQ; | 
 |     And = llvm::Instruction::And; | 
 |     Or = llvm::Instruction::Or; | 
 |   } | 
 |  | 
 |   // Member data pointers are easy because there's a unique null | 
 |   // value, so it just comes down to bitwise equality. | 
 |   if (MPT->isMemberDataPointer()) | 
 |     return Builder.CreateICmp(Eq, L, R); | 
 |  | 
 |   // For member function pointers, the tautologies are more complex. | 
 |   // The Itanium tautology is: | 
 |   //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) | 
 |   // The ARM tautology is: | 
 |   //   (L == R) <==> (L.ptr == R.ptr && | 
 |   //                  (L.adj == R.adj || | 
 |   //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) | 
 |   // The inequality tautologies have exactly the same structure, except | 
 |   // applying De Morgan's laws. | 
 |  | 
 |   llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); | 
 |   llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); | 
 |  | 
 |   // This condition tests whether L.ptr == R.ptr.  This must always be | 
 |   // true for equality to hold. | 
 |   llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); | 
 |  | 
 |   // This condition, together with the assumption that L.ptr == R.ptr, | 
 |   // tests whether the pointers are both null.  ARM imposes an extra | 
 |   // condition. | 
 |   llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); | 
 |   llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); | 
 |  | 
 |   // This condition tests whether L.adj == R.adj.  If this isn't | 
 |   // true, the pointers are unequal unless they're both null. | 
 |   llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); | 
 |   llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); | 
 |   llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); | 
 |  | 
 |   // Null member function pointers on ARM clear the low bit of Adj, | 
 |   // so the zero condition has to check that neither low bit is set. | 
 |   if (UseARMMethodPtrABI) { | 
 |     llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); | 
 |  | 
 |     // Compute (l.adj | r.adj) & 1 and test it against zero. | 
 |     llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); | 
 |     llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); | 
 |     llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, | 
 |                                                       "cmp.or.adj"); | 
 |     EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); | 
 |   } | 
 |  | 
 |   // Tie together all our conditions. | 
 |   llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); | 
 |   Result = Builder.CreateBinOp(And, PtrEq, Result, | 
 |                                Inequality ? "memptr.ne" : "memptr.eq"); | 
 |   return Result; | 
 | } | 
 |  | 
 | llvm::Value * | 
 | ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, | 
 |                                           llvm::Value *MemPtr, | 
 |                                           const MemberPointerType *MPT) { | 
 |   CGBuilderTy &Builder = CGF.Builder; | 
 |  | 
 |   /// For member data pointers, this is just a check against -1. | 
 |   if (MPT->isMemberDataPointer()) { | 
 |     assert(MemPtr->getType() == CGM.PtrDiffTy); | 
 |     llvm::Value *NegativeOne = | 
 |       llvm::Constant::getAllOnesValue(MemPtr->getType()); | 
 |     return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); | 
 |   } | 
 |  | 
 |   // In Itanium, a member function pointer is not null if 'ptr' is not null. | 
 |   llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); | 
 |  | 
 |   llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); | 
 |   llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); | 
 |  | 
 |   // On ARM, a member function pointer is also non-null if the low bit of 'adj' | 
 |   // (the virtual bit) is set. | 
 |   if (UseARMMethodPtrABI) { | 
 |     llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); | 
 |     llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); | 
 |     llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); | 
 |     llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, | 
 |                                                   "memptr.isvirtual"); | 
 |     Result = Builder.CreateOr(Result, IsVirtual); | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const { | 
 |   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); | 
 |   if (!RD) | 
 |     return false; | 
 |  | 
 |   // If C++ prohibits us from making a copy, return by address. | 
 |   if (passClassIndirect(RD)) { | 
 |     auto Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); | 
 |     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// The Itanium ABI requires non-zero initialization only for data | 
 | /// member pointers, for which '0' is a valid offset. | 
 | bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { | 
 |   return MPT->isMemberFunctionPointer(); | 
 | } | 
 |  | 
 | /// The Itanium ABI always places an offset to the complete object | 
 | /// at entry -2 in the vtable. | 
 | void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, | 
 |                                             const CXXDeleteExpr *DE, | 
 |                                             Address Ptr, | 
 |                                             QualType ElementType, | 
 |                                             const CXXDestructorDecl *Dtor) { | 
 |   bool UseGlobalDelete = DE->isGlobalDelete(); | 
 |   if (UseGlobalDelete) { | 
 |     // Derive the complete-object pointer, which is what we need | 
 |     // to pass to the deallocation function. | 
 |  | 
 |     // Grab the vtable pointer as an intptr_t*. | 
 |     auto *ClassDecl = | 
 |         cast<CXXRecordDecl>(ElementType->getAs<RecordType>()->getDecl()); | 
 |     llvm::Value *VTable = | 
 |         CGF.GetVTablePtr(Ptr, CGF.IntPtrTy->getPointerTo(), ClassDecl); | 
 |  | 
 |     // Track back to entry -2 and pull out the offset there. | 
 |     llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( | 
 |         VTable, -2, "complete-offset.ptr"); | 
 |     llvm::Value *Offset = | 
 |       CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign()); | 
 |  | 
 |     // Apply the offset. | 
 |     llvm::Value *CompletePtr = | 
 |       CGF.Builder.CreateBitCast(Ptr.getPointer(), CGF.Int8PtrTy); | 
 |     CompletePtr = CGF.Builder.CreateInBoundsGEP(CompletePtr, Offset); | 
 |  | 
 |     // If we're supposed to call the global delete, make sure we do so | 
 |     // even if the destructor throws. | 
 |     CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr, | 
 |                                     ElementType); | 
 |   } | 
 |  | 
 |   // FIXME: Provide a source location here even though there's no | 
 |   // CXXMemberCallExpr for dtor call. | 
 |   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; | 
 |   EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr); | 
 |  | 
 |   if (UseGlobalDelete) | 
 |     CGF.PopCleanupBlock(); | 
 | } | 
 |  | 
 | void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { | 
 |   // void __cxa_rethrow(); | 
 |  | 
 |   llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); | 
 |  | 
 |   llvm::Constant *Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); | 
 |  | 
 |   if (isNoReturn) | 
 |     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, None); | 
 |   else | 
 |     CGF.EmitRuntimeCallOrInvoke(Fn); | 
 | } | 
 |  | 
 | static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) { | 
 |   // void *__cxa_allocate_exception(size_t thrown_size); | 
 |  | 
 |   llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false); | 
 |  | 
 |   return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); | 
 | } | 
 |  | 
 | static llvm::Constant *getThrowFn(CodeGenModule &CGM) { | 
 |   // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, | 
 |   //                  void (*dest) (void *)); | 
 |  | 
 |   llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy }; | 
 |   llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false); | 
 |  | 
 |   return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); | 
 | } | 
 |  | 
 | void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { | 
 |   QualType ThrowType = E->getSubExpr()->getType(); | 
 |   // Now allocate the exception object. | 
 |   llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType()); | 
 |   uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); | 
 |  | 
 |   llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM); | 
 |   llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall( | 
 |       AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception"); | 
 |  | 
 |   CharUnits ExnAlign = getAlignmentOfExnObject(); | 
 |   CGF.EmitAnyExprToExn(E->getSubExpr(), Address(ExceptionPtr, ExnAlign)); | 
 |  | 
 |   // Now throw the exception. | 
 |   llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, | 
 |                                                          /*ForEH=*/true); | 
 |  | 
 |   // The address of the destructor.  If the exception type has a | 
 |   // trivial destructor (or isn't a record), we just pass null. | 
 |   llvm::Constant *Dtor = nullptr; | 
 |   if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { | 
 |     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
 |     if (!Record->hasTrivialDestructor()) { | 
 |       CXXDestructorDecl *DtorD = Record->getDestructor(); | 
 |       Dtor = CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete); | 
 |       Dtor = llvm::ConstantExpr::getBitCast(Dtor, CGM.Int8PtrTy); | 
 |     } | 
 |   } | 
 |   if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); | 
 |  | 
 |   llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; | 
 |   CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); | 
 | } | 
 |  | 
 | static llvm::Constant *getItaniumDynamicCastFn(CodeGenFunction &CGF) { | 
 |   // void *__dynamic_cast(const void *sub, | 
 |   //                      const abi::__class_type_info *src, | 
 |   //                      const abi::__class_type_info *dst, | 
 |   //                      std::ptrdiff_t src2dst_offset); | 
 |  | 
 |   llvm::Type *Int8PtrTy = CGF.Int8PtrTy; | 
 |   llvm::Type *PtrDiffTy = | 
 |     CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
 |  | 
 |   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; | 
 |  | 
 |   llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); | 
 |  | 
 |   // Mark the function as nounwind readonly. | 
 |   llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, | 
 |                                             llvm::Attribute::ReadOnly }; | 
 |   llvm::AttributeList Attrs = llvm::AttributeList::get( | 
 |       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs); | 
 |  | 
 |   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); | 
 | } | 
 |  | 
 | static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { | 
 |   // void __cxa_bad_cast(); | 
 |   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); | 
 |   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); | 
 | } | 
 |  | 
 | /// Compute the src2dst_offset hint as described in the | 
 | /// Itanium C++ ABI [2.9.7] | 
 | static CharUnits computeOffsetHint(ASTContext &Context, | 
 |                                    const CXXRecordDecl *Src, | 
 |                                    const CXXRecordDecl *Dst) { | 
 |   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
 |                      /*DetectVirtual=*/false); | 
 |  | 
 |   // If Dst is not derived from Src we can skip the whole computation below and | 
 |   // return that Src is not a public base of Dst.  Record all inheritance paths. | 
 |   if (!Dst->isDerivedFrom(Src, Paths)) | 
 |     return CharUnits::fromQuantity(-2ULL); | 
 |  | 
 |   unsigned NumPublicPaths = 0; | 
 |   CharUnits Offset; | 
 |  | 
 |   // Now walk all possible inheritance paths. | 
 |   for (const CXXBasePath &Path : Paths) { | 
 |     if (Path.Access != AS_public)  // Ignore non-public inheritance. | 
 |       continue; | 
 |  | 
 |     ++NumPublicPaths; | 
 |  | 
 |     for (const CXXBasePathElement &PathElement : Path) { | 
 |       // If the path contains a virtual base class we can't give any hint. | 
 |       // -1: no hint. | 
 |       if (PathElement.Base->isVirtual()) | 
 |         return CharUnits::fromQuantity(-1ULL); | 
 |  | 
 |       if (NumPublicPaths > 1) // Won't use offsets, skip computation. | 
 |         continue; | 
 |  | 
 |       // Accumulate the base class offsets. | 
 |       const ASTRecordLayout &L = Context.getASTRecordLayout(PathElement.Class); | 
 |       Offset += L.getBaseClassOffset( | 
 |           PathElement.Base->getType()->getAsCXXRecordDecl()); | 
 |     } | 
 |   } | 
 |  | 
 |   // -2: Src is not a public base of Dst. | 
 |   if (NumPublicPaths == 0) | 
 |     return CharUnits::fromQuantity(-2ULL); | 
 |  | 
 |   // -3: Src is a multiple public base type but never a virtual base type. | 
 |   if (NumPublicPaths > 1) | 
 |     return CharUnits::fromQuantity(-3ULL); | 
 |  | 
 |   // Otherwise, the Src type is a unique public nonvirtual base type of Dst. | 
 |   // Return the offset of Src from the origin of Dst. | 
 |   return Offset; | 
 | } | 
 |  | 
 | static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { | 
 |   // void __cxa_bad_typeid(); | 
 |   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); | 
 |  | 
 |   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); | 
 | } | 
 |  | 
 | bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref, | 
 |                                               QualType SrcRecordTy) { | 
 |   return IsDeref; | 
 | } | 
 |  | 
 | void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { | 
 |   llvm::Value *Fn = getBadTypeidFn(CGF); | 
 |   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); | 
 |   CGF.Builder.CreateUnreachable(); | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF, | 
 |                                        QualType SrcRecordTy, | 
 |                                        Address ThisPtr, | 
 |                                        llvm::Type *StdTypeInfoPtrTy) { | 
 |   auto *ClassDecl = | 
 |       cast<CXXRecordDecl>(SrcRecordTy->getAs<RecordType>()->getDecl()); | 
 |   llvm::Value *Value = | 
 |       CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo(), ClassDecl); | 
 |  | 
 |   // Load the type info. | 
 |   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); | 
 |   return CGF.Builder.CreateAlignedLoad(Value, CGF.getPointerAlign()); | 
 | } | 
 |  | 
 | bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, | 
 |                                                        QualType SrcRecordTy) { | 
 |   return SrcIsPtr; | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::EmitDynamicCastCall( | 
 |     CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, | 
 |     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { | 
 |   llvm::Type *PtrDiffLTy = | 
 |       CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
 |   llvm::Type *DestLTy = CGF.ConvertType(DestTy); | 
 |  | 
 |   llvm::Value *SrcRTTI = | 
 |       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); | 
 |   llvm::Value *DestRTTI = | 
 |       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); | 
 |  | 
 |   // Compute the offset hint. | 
 |   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); | 
 |   const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); | 
 |   llvm::Value *OffsetHint = llvm::ConstantInt::get( | 
 |       PtrDiffLTy, | 
 |       computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity()); | 
 |  | 
 |   // Emit the call to __dynamic_cast. | 
 |   llvm::Value *Value = ThisAddr.getPointer(); | 
 |   Value = CGF.EmitCastToVoidPtr(Value); | 
 |  | 
 |   llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint}; | 
 |   Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args); | 
 |   Value = CGF.Builder.CreateBitCast(Value, DestLTy); | 
 |  | 
 |   /// C++ [expr.dynamic.cast]p9: | 
 |   ///   A failed cast to reference type throws std::bad_cast | 
 |   if (DestTy->isReferenceType()) { | 
 |     llvm::BasicBlock *BadCastBlock = | 
 |         CGF.createBasicBlock("dynamic_cast.bad_cast"); | 
 |  | 
 |     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); | 
 |     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); | 
 |  | 
 |     CGF.EmitBlock(BadCastBlock); | 
 |     EmitBadCastCall(CGF); | 
 |   } | 
 |  | 
 |   return Value; | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, | 
 |                                                   Address ThisAddr, | 
 |                                                   QualType SrcRecordTy, | 
 |                                                   QualType DestTy) { | 
 |   llvm::Type *PtrDiffLTy = | 
 |       CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
 |   llvm::Type *DestLTy = CGF.ConvertType(DestTy); | 
 |  | 
 |   auto *ClassDecl = | 
 |       cast<CXXRecordDecl>(SrcRecordTy->getAs<RecordType>()->getDecl()); | 
 |   // Get the vtable pointer. | 
 |   llvm::Value *VTable = CGF.GetVTablePtr(ThisAddr, PtrDiffLTy->getPointerTo(), | 
 |       ClassDecl); | 
 |  | 
 |   // Get the offset-to-top from the vtable. | 
 |   llvm::Value *OffsetToTop = | 
 |       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); | 
 |   OffsetToTop = | 
 |     CGF.Builder.CreateAlignedLoad(OffsetToTop, CGF.getPointerAlign(), | 
 |                                   "offset.to.top"); | 
 |  | 
 |   // Finally, add the offset to the pointer. | 
 |   llvm::Value *Value = ThisAddr.getPointer(); | 
 |   Value = CGF.EmitCastToVoidPtr(Value); | 
 |   Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); | 
 |  | 
 |   return CGF.Builder.CreateBitCast(Value, DestLTy); | 
 | } | 
 |  | 
 | bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { | 
 |   llvm::Value *Fn = getBadCastFn(CGF); | 
 |   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); | 
 |   CGF.Builder.CreateUnreachable(); | 
 |   return true; | 
 | } | 
 |  | 
 | llvm::Value * | 
 | ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, | 
 |                                          Address This, | 
 |                                          const CXXRecordDecl *ClassDecl, | 
 |                                          const CXXRecordDecl *BaseClassDecl) { | 
 |   llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy, ClassDecl); | 
 |   CharUnits VBaseOffsetOffset = | 
 |       CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl, | 
 |                                                                BaseClassDecl); | 
 |  | 
 |   llvm::Value *VBaseOffsetPtr = | 
 |     CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(), | 
 |                                    "vbase.offset.ptr"); | 
 |   VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr, | 
 |                                              CGM.PtrDiffTy->getPointerTo()); | 
 |  | 
 |   llvm::Value *VBaseOffset = | 
 |     CGF.Builder.CreateAlignedLoad(VBaseOffsetPtr, CGF.getPointerAlign(), | 
 |                                   "vbase.offset"); | 
 |  | 
 |   return VBaseOffset; | 
 | } | 
 |  | 
 | void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { | 
 |   // Just make sure we're in sync with TargetCXXABI. | 
 |   assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); | 
 |  | 
 |   // The constructor used for constructing this as a base class; | 
 |   // ignores virtual bases. | 
 |   CGM.EmitGlobal(GlobalDecl(D, Ctor_Base)); | 
 |  | 
 |   // The constructor used for constructing this as a complete class; | 
 |   // constructs the virtual bases, then calls the base constructor. | 
 |   if (!D->getParent()->isAbstract()) { | 
 |     // We don't need to emit the complete ctor if the class is abstract. | 
 |     CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); | 
 |   } | 
 | } | 
 |  | 
 | CGCXXABI::AddedStructorArgs | 
 | ItaniumCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T, | 
 |                                       SmallVectorImpl<CanQualType> &ArgTys) { | 
 |   ASTContext &Context = getContext(); | 
 |  | 
 |   // All parameters are already in place except VTT, which goes after 'this'. | 
 |   // These are Clang types, so we don't need to worry about sret yet. | 
 |  | 
 |   // Check if we need to add a VTT parameter (which has type void **). | 
 |   if (T == StructorType::Base && MD->getParent()->getNumVBases() != 0) { | 
 |     ArgTys.insert(ArgTys.begin() + 1, | 
 |                   Context.getPointerType(Context.VoidPtrTy)); | 
 |     return AddedStructorArgs::prefix(1); | 
 |   } | 
 |   return AddedStructorArgs{}; | 
 | } | 
 |  | 
 | void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { | 
 |   // The destructor used for destructing this as a base class; ignores | 
 |   // virtual bases. | 
 |   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); | 
 |  | 
 |   // The destructor used for destructing this as a most-derived class; | 
 |   // call the base destructor and then destructs any virtual bases. | 
 |   CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); | 
 |  | 
 |   // The destructor in a virtual table is always a 'deleting' | 
 |   // destructor, which calls the complete destructor and then uses the | 
 |   // appropriate operator delete. | 
 |   if (D->isVirtual()) | 
 |     CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); | 
 | } | 
 |  | 
 | void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, | 
 |                                               QualType &ResTy, | 
 |                                               FunctionArgList &Params) { | 
 |   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); | 
 |   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); | 
 |  | 
 |   // Check if we need a VTT parameter as well. | 
 |   if (NeedsVTTParameter(CGF.CurGD)) { | 
 |     ASTContext &Context = getContext(); | 
 |  | 
 |     // FIXME: avoid the fake decl | 
 |     QualType T = Context.getPointerType(Context.VoidPtrTy); | 
 |     auto *VTTDecl = ImplicitParamDecl::Create( | 
 |         Context, /*DC=*/nullptr, MD->getLocation(), &Context.Idents.get("vtt"), | 
 |         T, ImplicitParamDecl::CXXVTT); | 
 |     Params.insert(Params.begin() + 1, VTTDecl); | 
 |     getStructorImplicitParamDecl(CGF) = VTTDecl; | 
 |   } | 
 | } | 
 |  | 
 | void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { | 
 |   // Naked functions have no prolog. | 
 |   if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) | 
 |     return; | 
 |  | 
 |   /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue | 
 |   /// adjustments are required, because they are all handled by thunks. | 
 |   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); | 
 |  | 
 |   /// Initialize the 'vtt' slot if needed. | 
 |   if (getStructorImplicitParamDecl(CGF)) { | 
 |     getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( | 
 |         CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt"); | 
 |   } | 
 |  | 
 |   /// If this is a function that the ABI specifies returns 'this', initialize | 
 |   /// the return slot to 'this' at the start of the function. | 
 |   /// | 
 |   /// Unlike the setting of return types, this is done within the ABI | 
 |   /// implementation instead of by clients of CGCXXABI because: | 
 |   /// 1) getThisValue is currently protected | 
 |   /// 2) in theory, an ABI could implement 'this' returns some other way; | 
 |   ///    HasThisReturn only specifies a contract, not the implementation | 
 |   if (HasThisReturn(CGF.CurGD)) | 
 |     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); | 
 | } | 
 |  | 
 | CGCXXABI::AddedStructorArgs ItaniumCXXABI::addImplicitConstructorArgs( | 
 |     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, | 
 |     bool ForVirtualBase, bool Delegating, CallArgList &Args) { | 
 |   if (!NeedsVTTParameter(GlobalDecl(D, Type))) | 
 |     return AddedStructorArgs{}; | 
 |  | 
 |   // Insert the implicit 'vtt' argument as the second argument. | 
 |   llvm::Value *VTT = | 
 |       CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating); | 
 |   QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); | 
 |   Args.insert(Args.begin() + 1, CallArg(RValue::get(VTT), VTTTy)); | 
 |   return AddedStructorArgs::prefix(1);  // Added one arg. | 
 | } | 
 |  | 
 | void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF, | 
 |                                        const CXXDestructorDecl *DD, | 
 |                                        CXXDtorType Type, bool ForVirtualBase, | 
 |                                        bool Delegating, Address This) { | 
 |   GlobalDecl GD(DD, Type); | 
 |   llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating); | 
 |   QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); | 
 |  | 
 |   CGCallee Callee; | 
 |   if (getContext().getLangOpts().AppleKext && | 
 |       Type != Dtor_Base && DD->isVirtual()) | 
 |     Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent()); | 
 |   else | 
 |     Callee = | 
 |       CGCallee::forDirect(CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type)), | 
 |                           DD); | 
 |  | 
 |   CGF.EmitCXXMemberOrOperatorCall(DD, Callee, ReturnValueSlot(), | 
 |                                   This.getPointer(), VTT, VTTTy, | 
 |                                   nullptr, nullptr); | 
 | } | 
 |  | 
 | void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, | 
 |                                           const CXXRecordDecl *RD) { | 
 |   llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits()); | 
 |   if (VTable->hasInitializer()) | 
 |     return; | 
 |  | 
 |   ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); | 
 |   const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); | 
 |   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); | 
 |   llvm::Constant *RTTI = | 
 |       CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD)); | 
 |  | 
 |   // Create and set the initializer. | 
 |   ConstantInitBuilder Builder(CGM); | 
 |   auto Components = Builder.beginStruct(); | 
 |   CGVT.createVTableInitializer(Components, VTLayout, RTTI); | 
 |   Components.finishAndSetAsInitializer(VTable); | 
 |  | 
 |   // Set the correct linkage. | 
 |   VTable->setLinkage(Linkage); | 
 |  | 
 |   if (CGM.supportsCOMDAT() && VTable->isWeakForLinker()) | 
 |     VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName())); | 
 |  | 
 |   // Set the right visibility. | 
 |   CGM.setGVProperties(VTable, RD); | 
 |  | 
 |   // Use pointer alignment for the vtable. Otherwise we would align them based | 
 |   // on the size of the initializer which doesn't make sense as only single | 
 |   // values are read. | 
 |   unsigned PAlign = CGM.getTarget().getPointerAlign(0); | 
 |   VTable->setAlignment(getContext().toCharUnitsFromBits(PAlign).getQuantity()); | 
 |  | 
 |   // If this is the magic class __cxxabiv1::__fundamental_type_info, | 
 |   // we will emit the typeinfo for the fundamental types. This is the | 
 |   // same behaviour as GCC. | 
 |   const DeclContext *DC = RD->getDeclContext(); | 
 |   if (RD->getIdentifier() && | 
 |       RD->getIdentifier()->isStr("__fundamental_type_info") && | 
 |       isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() && | 
 |       cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") && | 
 |       DC->getParent()->isTranslationUnit()) | 
 |     EmitFundamentalRTTIDescriptors(RD); | 
 |  | 
 |   if (!VTable->isDeclarationForLinker()) | 
 |     CGM.EmitVTableTypeMetadata(VTable, VTLayout); | 
 | } | 
 |  | 
 | bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField( | 
 |     CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { | 
 |   if (Vptr.NearestVBase == nullptr) | 
 |     return false; | 
 |   return NeedsVTTParameter(CGF.CurGD); | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor( | 
 |     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, | 
 |     const CXXRecordDecl *NearestVBase) { | 
 |  | 
 |   if ((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && | 
 |       NeedsVTTParameter(CGF.CurGD)) { | 
 |     return getVTableAddressPointInStructorWithVTT(CGF, VTableClass, Base, | 
 |                                                   NearestVBase); | 
 |   } | 
 |   return getVTableAddressPoint(Base, VTableClass); | 
 | } | 
 |  | 
 | llvm::Constant * | 
 | ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base, | 
 |                                      const CXXRecordDecl *VTableClass) { | 
 |   llvm::GlobalValue *VTable = getAddrOfVTable(VTableClass, CharUnits()); | 
 |  | 
 |   // Find the appropriate vtable within the vtable group, and the address point | 
 |   // within that vtable. | 
 |   VTableLayout::AddressPointLocation AddressPoint = | 
 |       CGM.getItaniumVTableContext() | 
 |           .getVTableLayout(VTableClass) | 
 |           .getAddressPoint(Base); | 
 |   llvm::Value *Indices[] = { | 
 |     llvm::ConstantInt::get(CGM.Int32Ty, 0), | 
 |     llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.VTableIndex), | 
 |     llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.AddressPointIndex), | 
 |   }; | 
 |  | 
 |   return llvm::ConstantExpr::getGetElementPtr(VTable->getValueType(), VTable, | 
 |                                               Indices, /*InBounds=*/true, | 
 |                                               /*InRangeIndex=*/1); | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructorWithVTT( | 
 |     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, | 
 |     const CXXRecordDecl *NearestVBase) { | 
 |   assert((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && | 
 |          NeedsVTTParameter(CGF.CurGD) && "This class doesn't have VTT"); | 
 |  | 
 |   // Get the secondary vpointer index. | 
 |   uint64_t VirtualPointerIndex = | 
 |       CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base); | 
 |  | 
 |   /// Load the VTT. | 
 |   llvm::Value *VTT = CGF.LoadCXXVTT(); | 
 |   if (VirtualPointerIndex) | 
 |     VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex); | 
 |  | 
 |   // And load the address point from the VTT. | 
 |   return CGF.Builder.CreateAlignedLoad(VTT, CGF.getPointerAlign()); | 
 | } | 
 |  | 
 | llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr( | 
 |     BaseSubobject Base, const CXXRecordDecl *VTableClass) { | 
 |   return getVTableAddressPoint(Base, VTableClass); | 
 | } | 
 |  | 
 | llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, | 
 |                                                      CharUnits VPtrOffset) { | 
 |   assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets"); | 
 |  | 
 |   llvm::GlobalVariable *&VTable = VTables[RD]; | 
 |   if (VTable) | 
 |     return VTable; | 
 |  | 
 |   // Queue up this vtable for possible deferred emission. | 
 |   CGM.addDeferredVTable(RD); | 
 |  | 
 |   SmallString<256> Name; | 
 |   llvm::raw_svector_ostream Out(Name); | 
 |   getMangleContext().mangleCXXVTable(RD, Out); | 
 |  | 
 |   const VTableLayout &VTLayout = | 
 |       CGM.getItaniumVTableContext().getVTableLayout(RD); | 
 |   llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); | 
 |  | 
 |   VTable = CGM.CreateOrReplaceCXXRuntimeVariable( | 
 |       Name, VTableType, llvm::GlobalValue::ExternalLinkage); | 
 |   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
 |  | 
 |   CGM.setGVProperties(VTable, RD); | 
 |  | 
 |   return VTable; | 
 | } | 
 |  | 
 | CGCallee ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, | 
 |                                                   GlobalDecl GD, | 
 |                                                   Address This, | 
 |                                                   llvm::Type *Ty, | 
 |                                                   SourceLocation Loc) { | 
 |   Ty = Ty->getPointerTo()->getPointerTo(); | 
 |   auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); | 
 |   llvm::Value *VTable = CGF.GetVTablePtr(This, Ty, MethodDecl->getParent()); | 
 |  | 
 |   uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD); | 
 |   llvm::Value *VFunc; | 
 |   if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { | 
 |     VFunc = CGF.EmitVTableTypeCheckedLoad( | 
 |         MethodDecl->getParent(), VTable, | 
 |         VTableIndex * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); | 
 |   } else { | 
 |     CGF.EmitTypeMetadataCodeForVCall(MethodDecl->getParent(), VTable, Loc); | 
 |  | 
 |     llvm::Value *VFuncPtr = | 
 |         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn"); | 
 |     auto *VFuncLoad = | 
 |         CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); | 
 |  | 
 |     // Add !invariant.load md to virtual function load to indicate that | 
 |     // function didn't change inside vtable. | 
 |     // It's safe to add it without -fstrict-vtable-pointers, but it would not | 
 |     // help in devirtualization because it will only matter if we will have 2 | 
 |     // the same virtual function loads from the same vtable load, which won't | 
 |     // happen without enabled devirtualization with -fstrict-vtable-pointers. | 
 |     if (CGM.getCodeGenOpts().OptimizationLevel > 0 && | 
 |         CGM.getCodeGenOpts().StrictVTablePointers) | 
 |       VFuncLoad->setMetadata( | 
 |           llvm::LLVMContext::MD_invariant_load, | 
 |           llvm::MDNode::get(CGM.getLLVMContext(), | 
 |                             llvm::ArrayRef<llvm::Metadata *>())); | 
 |     VFunc = VFuncLoad; | 
 |   } | 
 |  | 
 |   CGCallee Callee(MethodDecl->getCanonicalDecl(), VFunc); | 
 |   return Callee; | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall( | 
 |     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, | 
 |     Address This, const CXXMemberCallExpr *CE) { | 
 |   assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); | 
 |   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); | 
 |  | 
 |   const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( | 
 |       Dtor, getFromDtorType(DtorType)); | 
 |   llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); | 
 |   CGCallee Callee = | 
 |       CGCallee::forVirtual(CE, GlobalDecl(Dtor, DtorType), This, Ty); | 
 |  | 
 |   CGF.EmitCXXMemberOrOperatorCall(Dtor, Callee, ReturnValueSlot(), | 
 |                                   This.getPointer(), /*ImplicitParam=*/nullptr, | 
 |                                   QualType(), CE, nullptr); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { | 
 |   CodeGenVTables &VTables = CGM.getVTables(); | 
 |   llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); | 
 |   VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD); | 
 | } | 
 |  | 
 | bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const { | 
 |   // We don't emit available_externally vtables if we are in -fapple-kext mode | 
 |   // because kext mode does not permit devirtualization. | 
 |   if (CGM.getLangOpts().AppleKext) | 
 |     return false; | 
 |  | 
 |   // If the vtable is hidden then it is not safe to emit an available_externally | 
 |   // copy of vtable. | 
 |   if (isVTableHidden(RD)) | 
 |     return false; | 
 |  | 
 |   if (CGM.getCodeGenOpts().ForceEmitVTables) | 
 |     return true; | 
 |  | 
 |   // If we don't have any not emitted inline virtual function then we are safe | 
 |   // to emit an available_externally copy of vtable. | 
 |   // FIXME we can still emit a copy of the vtable if we | 
 |   // can emit definition of the inline functions. | 
 |   return !hasAnyUnusedVirtualInlineFunction(RD); | 
 | } | 
 | static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF, | 
 |                                           Address InitialPtr, | 
 |                                           int64_t NonVirtualAdjustment, | 
 |                                           int64_t VirtualAdjustment, | 
 |                                           bool IsReturnAdjustment) { | 
 |   if (!NonVirtualAdjustment && !VirtualAdjustment) | 
 |     return InitialPtr.getPointer(); | 
 |  | 
 |   Address V = CGF.Builder.CreateElementBitCast(InitialPtr, CGF.Int8Ty); | 
 |  | 
 |   // In a base-to-derived cast, the non-virtual adjustment is applied first. | 
 |   if (NonVirtualAdjustment && !IsReturnAdjustment) { | 
 |     V = CGF.Builder.CreateConstInBoundsByteGEP(V, | 
 |                               CharUnits::fromQuantity(NonVirtualAdjustment)); | 
 |   } | 
 |  | 
 |   // Perform the virtual adjustment if we have one. | 
 |   llvm::Value *ResultPtr; | 
 |   if (VirtualAdjustment) { | 
 |     llvm::Type *PtrDiffTy = | 
 |         CGF.ConvertType(CGF.getContext().getPointerDiffType()); | 
 |  | 
 |     Address VTablePtrPtr = CGF.Builder.CreateElementBitCast(V, CGF.Int8PtrTy); | 
 |     llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); | 
 |  | 
 |     llvm::Value *OffsetPtr = | 
 |         CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); | 
 |  | 
 |     OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); | 
 |  | 
 |     // Load the adjustment offset from the vtable. | 
 |     llvm::Value *Offset = | 
 |       CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign()); | 
 |  | 
 |     // Adjust our pointer. | 
 |     ResultPtr = CGF.Builder.CreateInBoundsGEP(V.getPointer(), Offset); | 
 |   } else { | 
 |     ResultPtr = V.getPointer(); | 
 |   } | 
 |  | 
 |   // In a derived-to-base conversion, the non-virtual adjustment is | 
 |   // applied second. | 
 |   if (NonVirtualAdjustment && IsReturnAdjustment) { | 
 |     ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(ResultPtr, | 
 |                                                        NonVirtualAdjustment); | 
 |   } | 
 |  | 
 |   // Cast back to the original type. | 
 |   return CGF.Builder.CreateBitCast(ResultPtr, InitialPtr.getType()); | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF, | 
 |                                                   Address This, | 
 |                                                   const ThisAdjustment &TA) { | 
 |   return performTypeAdjustment(CGF, This, TA.NonVirtual, | 
 |                                TA.Virtual.Itanium.VCallOffsetOffset, | 
 |                                /*IsReturnAdjustment=*/false); | 
 | } | 
 |  | 
 | llvm::Value * | 
 | ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, | 
 |                                        const ReturnAdjustment &RA) { | 
 |   return performTypeAdjustment(CGF, Ret, RA.NonVirtual, | 
 |                                RA.Virtual.Itanium.VBaseOffsetOffset, | 
 |                                /*IsReturnAdjustment=*/true); | 
 | } | 
 |  | 
 | void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, | 
 |                                     RValue RV, QualType ResultType) { | 
 |   if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) | 
 |     return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); | 
 |  | 
 |   // Destructor thunks in the ARM ABI have indeterminate results. | 
 |   llvm::Type *T = CGF.ReturnValue.getElementType(); | 
 |   RValue Undef = RValue::get(llvm::UndefValue::get(T)); | 
 |   return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); | 
 | } | 
 |  | 
 | /************************** Array allocation cookies **************************/ | 
 |  | 
 | CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { | 
 |   // The array cookie is a size_t; pad that up to the element alignment. | 
 |   // The cookie is actually right-justified in that space. | 
 |   return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), | 
 |                   CGM.getContext().getTypeAlignInChars(elementType)); | 
 | } | 
 |  | 
 | Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, | 
 |                                              Address NewPtr, | 
 |                                              llvm::Value *NumElements, | 
 |                                              const CXXNewExpr *expr, | 
 |                                              QualType ElementType) { | 
 |   assert(requiresArrayCookie(expr)); | 
 |  | 
 |   unsigned AS = NewPtr.getAddressSpace(); | 
 |  | 
 |   ASTContext &Ctx = getContext(); | 
 |   CharUnits SizeSize = CGF.getSizeSize(); | 
 |  | 
 |   // The size of the cookie. | 
 |   CharUnits CookieSize = | 
 |     std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); | 
 |   assert(CookieSize == getArrayCookieSizeImpl(ElementType)); | 
 |  | 
 |   // Compute an offset to the cookie. | 
 |   Address CookiePtr = NewPtr; | 
 |   CharUnits CookieOffset = CookieSize - SizeSize; | 
 |   if (!CookieOffset.isZero()) | 
 |     CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(CookiePtr, CookieOffset); | 
 |  | 
 |   // Write the number of elements into the appropriate slot. | 
 |   Address NumElementsPtr = | 
 |       CGF.Builder.CreateElementBitCast(CookiePtr, CGF.SizeTy); | 
 |   llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr); | 
 |  | 
 |   // Handle the array cookie specially in ASan. | 
 |   if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 && | 
 |       (expr->getOperatorNew()->isReplaceableGlobalAllocationFunction() || | 
 |        CGM.getCodeGenOpts().SanitizeAddressPoisonClassMemberArrayNewCookie)) { | 
 |     // The store to the CookiePtr does not need to be instrumented. | 
 |     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(SI); | 
 |     llvm::FunctionType *FTy = | 
 |         llvm::FunctionType::get(CGM.VoidTy, NumElementsPtr.getType(), false); | 
 |     llvm::Constant *F = | 
 |         CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie"); | 
 |     CGF.Builder.CreateCall(F, NumElementsPtr.getPointer()); | 
 |   } | 
 |  | 
 |   // Finally, compute a pointer to the actual data buffer by skipping | 
 |   // over the cookie completely. | 
 |   return CGF.Builder.CreateConstInBoundsByteGEP(NewPtr, CookieSize); | 
 | } | 
 |  | 
 | llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, | 
 |                                                 Address allocPtr, | 
 |                                                 CharUnits cookieSize) { | 
 |   // The element size is right-justified in the cookie. | 
 |   Address numElementsPtr = allocPtr; | 
 |   CharUnits numElementsOffset = cookieSize - CGF.getSizeSize(); | 
 |   if (!numElementsOffset.isZero()) | 
 |     numElementsPtr = | 
 |       CGF.Builder.CreateConstInBoundsByteGEP(numElementsPtr, numElementsOffset); | 
 |  | 
 |   unsigned AS = allocPtr.getAddressSpace(); | 
 |   numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy); | 
 |   if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0) | 
 |     return CGF.Builder.CreateLoad(numElementsPtr); | 
 |   // In asan mode emit a function call instead of a regular load and let the | 
 |   // run-time deal with it: if the shadow is properly poisoned return the | 
 |   // cookie, otherwise return 0 to avoid an infinite loop calling DTORs. | 
 |   // We can't simply ignore this load using nosanitize metadata because | 
 |   // the metadata may be lost. | 
 |   llvm::FunctionType *FTy = | 
 |       llvm::FunctionType::get(CGF.SizeTy, CGF.SizeTy->getPointerTo(0), false); | 
 |   llvm::Constant *F = | 
 |       CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie"); | 
 |   return CGF.Builder.CreateCall(F, numElementsPtr.getPointer()); | 
 | } | 
 |  | 
 | CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { | 
 |   // ARM says that the cookie is always: | 
 |   //   struct array_cookie { | 
 |   //     std::size_t element_size; // element_size != 0 | 
 |   //     std::size_t element_count; | 
 |   //   }; | 
 |   // But the base ABI doesn't give anything an alignment greater than | 
 |   // 8, so we can dismiss this as typical ABI-author blindness to | 
 |   // actual language complexity and round up to the element alignment. | 
 |   return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), | 
 |                   CGM.getContext().getTypeAlignInChars(elementType)); | 
 | } | 
 |  | 
 | Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, | 
 |                                          Address newPtr, | 
 |                                          llvm::Value *numElements, | 
 |                                          const CXXNewExpr *expr, | 
 |                                          QualType elementType) { | 
 |   assert(requiresArrayCookie(expr)); | 
 |  | 
 |   // The cookie is always at the start of the buffer. | 
 |   Address cookie = newPtr; | 
 |  | 
 |   // The first element is the element size. | 
 |   cookie = CGF.Builder.CreateElementBitCast(cookie, CGF.SizeTy); | 
 |   llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, | 
 |                  getContext().getTypeSizeInChars(elementType).getQuantity()); | 
 |   CGF.Builder.CreateStore(elementSize, cookie); | 
 |  | 
 |   // The second element is the element count. | 
 |   cookie = CGF.Builder.CreateConstInBoundsGEP(cookie, 1, CGF.getSizeSize()); | 
 |   CGF.Builder.CreateStore(numElements, cookie); | 
 |  | 
 |   // Finally, compute a pointer to the actual data buffer by skipping | 
 |   // over the cookie completely. | 
 |   CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); | 
 |   return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); | 
 | } | 
 |  | 
 | llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, | 
 |                                             Address allocPtr, | 
 |                                             CharUnits cookieSize) { | 
 |   // The number of elements is at offset sizeof(size_t) relative to | 
 |   // the allocated pointer. | 
 |   Address numElementsPtr | 
 |     = CGF.Builder.CreateConstInBoundsByteGEP(allocPtr, CGF.getSizeSize()); | 
 |  | 
 |   numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy); | 
 |   return CGF.Builder.CreateLoad(numElementsPtr); | 
 | } | 
 |  | 
 | /*********************** Static local initialization **************************/ | 
 |  | 
 | static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, | 
 |                                          llvm::PointerType *GuardPtrTy) { | 
 |   // int __cxa_guard_acquire(__guard *guard_object); | 
 |   llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), | 
 |                             GuardPtrTy, /*isVarArg=*/false); | 
 |   return CGM.CreateRuntimeFunction( | 
 |       FTy, "__cxa_guard_acquire", | 
 |       llvm::AttributeList::get(CGM.getLLVMContext(), | 
 |                                llvm::AttributeList::FunctionIndex, | 
 |                                llvm::Attribute::NoUnwind)); | 
 | } | 
 |  | 
 | static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, | 
 |                                          llvm::PointerType *GuardPtrTy) { | 
 |   // void __cxa_guard_release(__guard *guard_object); | 
 |   llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); | 
 |   return CGM.CreateRuntimeFunction( | 
 |       FTy, "__cxa_guard_release", | 
 |       llvm::AttributeList::get(CGM.getLLVMContext(), | 
 |                                llvm::AttributeList::FunctionIndex, | 
 |                                llvm::Attribute::NoUnwind)); | 
 | } | 
 |  | 
 | static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, | 
 |                                        llvm::PointerType *GuardPtrTy) { | 
 |   // void __cxa_guard_abort(__guard *guard_object); | 
 |   llvm::FunctionType *FTy = | 
 |     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); | 
 |   return CGM.CreateRuntimeFunction( | 
 |       FTy, "__cxa_guard_abort", | 
 |       llvm::AttributeList::get(CGM.getLLVMContext(), | 
 |                                llvm::AttributeList::FunctionIndex, | 
 |                                llvm::Attribute::NoUnwind)); | 
 | } | 
 |  | 
 | namespace { | 
 |   struct CallGuardAbort final : EHScopeStack::Cleanup { | 
 |     llvm::GlobalVariable *Guard; | 
 |     CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} | 
 |  | 
 |     void Emit(CodeGenFunction &CGF, Flags flags) override { | 
 |       CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), | 
 |                                   Guard); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// The ARM code here follows the Itanium code closely enough that we | 
 | /// just special-case it at particular places. | 
 | void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, | 
 |                                     const VarDecl &D, | 
 |                                     llvm::GlobalVariable *var, | 
 |                                     bool shouldPerformInit) { | 
 |   CGBuilderTy &Builder = CGF.Builder; | 
 |  | 
 |   // Inline variables that weren't instantiated from variable templates have | 
 |   // partially-ordered initialization within their translation unit. | 
 |   bool NonTemplateInline = | 
 |       D.isInline() && | 
 |       !isTemplateInstantiation(D.getTemplateSpecializationKind()); | 
 |  | 
 |   // We only need to use thread-safe statics for local non-TLS variables and | 
 |   // inline variables; other global initialization is always single-threaded | 
 |   // or (through lazy dynamic loading in multiple threads) unsequenced. | 
 |   bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && | 
 |                     (D.isLocalVarDecl() || NonTemplateInline) && | 
 |                     !D.getTLSKind(); | 
 |  | 
 |   // If we have a global variable with internal linkage and thread-safe statics | 
 |   // are disabled, we can just let the guard variable be of type i8. | 
 |   bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); | 
 |  | 
 |   llvm::IntegerType *guardTy; | 
 |   CharUnits guardAlignment; | 
 |   if (useInt8GuardVariable) { | 
 |     guardTy = CGF.Int8Ty; | 
 |     guardAlignment = CharUnits::One(); | 
 |   } else { | 
 |     // Guard variables are 64 bits in the generic ABI and size width on ARM | 
 |     // (i.e. 32-bit on AArch32, 64-bit on AArch64). | 
 |     if (UseARMGuardVarABI) { | 
 |       guardTy = CGF.SizeTy; | 
 |       guardAlignment = CGF.getSizeAlign(); | 
 |     } else { | 
 |       guardTy = CGF.Int64Ty; | 
 |       guardAlignment = CharUnits::fromQuantity( | 
 |                              CGM.getDataLayout().getABITypeAlignment(guardTy)); | 
 |     } | 
 |   } | 
 |   llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); | 
 |  | 
 |   // Create the guard variable if we don't already have it (as we | 
 |   // might if we're double-emitting this function body). | 
 |   llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); | 
 |   if (!guard) { | 
 |     // Mangle the name for the guard. | 
 |     SmallString<256> guardName; | 
 |     { | 
 |       llvm::raw_svector_ostream out(guardName); | 
 |       getMangleContext().mangleStaticGuardVariable(&D, out); | 
 |     } | 
 |  | 
 |     // Create the guard variable with a zero-initializer. | 
 |     // Just absorb linkage and visibility from the guarded variable. | 
 |     guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, | 
 |                                      false, var->getLinkage(), | 
 |                                      llvm::ConstantInt::get(guardTy, 0), | 
 |                                      guardName.str()); | 
 |     guard->setDSOLocal(var->isDSOLocal()); | 
 |     guard->setVisibility(var->getVisibility()); | 
 |     // If the variable is thread-local, so is its guard variable. | 
 |     guard->setThreadLocalMode(var->getThreadLocalMode()); | 
 |     guard->setAlignment(guardAlignment.getQuantity()); | 
 |  | 
 |     // The ABI says: "It is suggested that it be emitted in the same COMDAT | 
 |     // group as the associated data object." In practice, this doesn't work for | 
 |     // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm. | 
 |     llvm::Comdat *C = var->getComdat(); | 
 |     if (!D.isLocalVarDecl() && C && | 
 |         (CGM.getTarget().getTriple().isOSBinFormatELF() || | 
 |          CGM.getTarget().getTriple().isOSBinFormatWasm())) { | 
 |       guard->setComdat(C); | 
 |       // An inline variable's guard function is run from the per-TU | 
 |       // initialization function, not via a dedicated global ctor function, so | 
 |       // we can't put it in a comdat. | 
 |       if (!NonTemplateInline) | 
 |         CGF.CurFn->setComdat(C); | 
 |     } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) { | 
 |       guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName())); | 
 |     } | 
 |  | 
 |     CGM.setStaticLocalDeclGuardAddress(&D, guard); | 
 |   } | 
 |  | 
 |   Address guardAddr = Address(guard, guardAlignment); | 
 |  | 
 |   // Test whether the variable has completed initialization. | 
 |   // | 
 |   // Itanium C++ ABI 3.3.2: | 
 |   //   The following is pseudo-code showing how these functions can be used: | 
 |   //     if (obj_guard.first_byte == 0) { | 
 |   //       if ( __cxa_guard_acquire (&obj_guard) ) { | 
 |   //         try { | 
 |   //           ... initialize the object ...; | 
 |   //         } catch (...) { | 
 |   //            __cxa_guard_abort (&obj_guard); | 
 |   //            throw; | 
 |   //         } | 
 |   //         ... queue object destructor with __cxa_atexit() ...; | 
 |   //         __cxa_guard_release (&obj_guard); | 
 |   //       } | 
 |   //     } | 
 |  | 
 |   // Load the first byte of the guard variable. | 
 |   llvm::LoadInst *LI = | 
 |       Builder.CreateLoad(Builder.CreateElementBitCast(guardAddr, CGM.Int8Ty)); | 
 |  | 
 |   // Itanium ABI: | 
 |   //   An implementation supporting thread-safety on multiprocessor | 
 |   //   systems must also guarantee that references to the initialized | 
 |   //   object do not occur before the load of the initialization flag. | 
 |   // | 
 |   // In LLVM, we do this by marking the load Acquire. | 
 |   if (threadsafe) | 
 |     LI->setAtomic(llvm::AtomicOrdering::Acquire); | 
 |  | 
 |   // For ARM, we should only check the first bit, rather than the entire byte: | 
 |   // | 
 |   // ARM C++ ABI 3.2.3.1: | 
 |   //   To support the potential use of initialization guard variables | 
 |   //   as semaphores that are the target of ARM SWP and LDREX/STREX | 
 |   //   synchronizing instructions we define a static initialization | 
 |   //   guard variable to be a 4-byte aligned, 4-byte word with the | 
 |   //   following inline access protocol. | 
 |   //     #define INITIALIZED 1 | 
 |   //     if ((obj_guard & INITIALIZED) != INITIALIZED) { | 
 |   //       if (__cxa_guard_acquire(&obj_guard)) | 
 |   //         ... | 
 |   //     } | 
 |   // | 
 |   // and similarly for ARM64: | 
 |   // | 
 |   // ARM64 C++ ABI 3.2.2: | 
 |   //   This ABI instead only specifies the value bit 0 of the static guard | 
 |   //   variable; all other bits are platform defined. Bit 0 shall be 0 when the | 
 |   //   variable is not initialized and 1 when it is. | 
 |   llvm::Value *V = | 
 |       (UseARMGuardVarABI && !useInt8GuardVariable) | 
 |           ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1)) | 
 |           : LI; | 
 |   llvm::Value *NeedsInit = Builder.CreateIsNull(V, "guard.uninitialized"); | 
 |  | 
 |   llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); | 
 |   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); | 
 |  | 
 |   // Check if the first byte of the guard variable is zero. | 
 |   CGF.EmitCXXGuardedInitBranch(NeedsInit, InitCheckBlock, EndBlock, | 
 |                                CodeGenFunction::GuardKind::VariableGuard, &D); | 
 |  | 
 |   CGF.EmitBlock(InitCheckBlock); | 
 |  | 
 |   // Variables used when coping with thread-safe statics and exceptions. | 
 |   if (threadsafe) { | 
 |     // Call __cxa_guard_acquire. | 
 |     llvm::Value *V | 
 |       = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); | 
 |  | 
 |     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); | 
 |  | 
 |     Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), | 
 |                          InitBlock, EndBlock); | 
 |  | 
 |     // Call __cxa_guard_abort along the exceptional edge. | 
 |     CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); | 
 |  | 
 |     CGF.EmitBlock(InitBlock); | 
 |   } | 
 |  | 
 |   // Emit the initializer and add a global destructor if appropriate. | 
 |   CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); | 
 |  | 
 |   if (threadsafe) { | 
 |     // Pop the guard-abort cleanup if we pushed one. | 
 |     CGF.PopCleanupBlock(); | 
 |  | 
 |     // Call __cxa_guard_release.  This cannot throw. | 
 |     CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), | 
 |                                 guardAddr.getPointer()); | 
 |   } else { | 
 |     Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guardAddr); | 
 |   } | 
 |  | 
 |   CGF.EmitBlock(EndBlock); | 
 | } | 
 |  | 
 | /// Register a global destructor using __cxa_atexit. | 
 | static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, | 
 |                                         llvm::Constant *dtor, | 
 |                                         llvm::Constant *addr, | 
 |                                         bool TLS) { | 
 |   const char *Name = "__cxa_atexit"; | 
 |   if (TLS) { | 
 |     const llvm::Triple &T = CGF.getTarget().getTriple(); | 
 |     Name = T.isOSDarwin() ?  "_tlv_atexit" : "__cxa_thread_atexit"; | 
 |   } | 
 |  | 
 |   // We're assuming that the destructor function is something we can | 
 |   // reasonably call with the default CC.  Go ahead and cast it to the | 
 |   // right prototype. | 
 |   llvm::Type *dtorTy = | 
 |     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo(); | 
 |  | 
 |   // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); | 
 |   llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; | 
 |   llvm::FunctionType *atexitTy = | 
 |     llvm::FunctionType::get(CGF.IntTy, paramTys, false); | 
 |  | 
 |   // Fetch the actual function. | 
 |   llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); | 
 |   if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit)) | 
 |     fn->setDoesNotThrow(); | 
 |  | 
 |   // Create a variable that binds the atexit to this shared object. | 
 |   llvm::Constant *handle = | 
 |       CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); | 
 |   auto *GV = cast<llvm::GlobalValue>(handle->stripPointerCasts()); | 
 |   GV->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
 |  | 
 |   if (!addr) | 
 |     // addr is null when we are trying to register a dtor annotated with | 
 |     // __attribute__((destructor)) in a constructor function. Using null here is | 
 |     // okay because this argument is just passed back to the destructor | 
 |     // function. | 
 |     addr = llvm::Constant::getNullValue(CGF.Int8PtrTy); | 
 |  | 
 |   llvm::Value *args[] = { | 
 |     llvm::ConstantExpr::getBitCast(dtor, dtorTy), | 
 |     llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy), | 
 |     handle | 
 |   }; | 
 |   CGF.EmitNounwindRuntimeCall(atexit, args); | 
 | } | 
 |  | 
 | void CodeGenModule::registerGlobalDtorsWithAtExit() { | 
 |   for (const auto I : DtorsUsingAtExit) { | 
 |     int Priority = I.first; | 
 |     const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second; | 
 |  | 
 |     // Create a function that registers destructors that have the same priority. | 
 |     // | 
 |     // Since constructor functions are run in non-descending order of their | 
 |     // priorities, destructors are registered in non-descending order of their | 
 |     // priorities, and since destructor functions are run in the reverse order | 
 |     // of their registration, destructor functions are run in non-ascending | 
 |     // order of their priorities. | 
 |     CodeGenFunction CGF(*this); | 
 |     std::string GlobalInitFnName = | 
 |         std::string("__GLOBAL_init_") + llvm::to_string(Priority); | 
 |     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); | 
 |     llvm::Function *GlobalInitFn = CreateGlobalInitOrDestructFunction( | 
 |         FTy, GlobalInitFnName, getTypes().arrangeNullaryFunction(), | 
 |         SourceLocation()); | 
 |     ASTContext &Ctx = getContext(); | 
 |     FunctionDecl *FD = FunctionDecl::Create( | 
 |         Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), | 
 |         &Ctx.Idents.get(GlobalInitFnName), Ctx.VoidTy, nullptr, SC_Static, | 
 |         false, false); | 
 |     CGF.StartFunction(GlobalDecl(FD), getContext().VoidTy, GlobalInitFn, | 
 |                       getTypes().arrangeNullaryFunction(), FunctionArgList(), | 
 |                       SourceLocation(), SourceLocation()); | 
 |  | 
 |     for (auto *Dtor : Dtors) { | 
 |       // Register the destructor function calling __cxa_atexit if it is | 
 |       // available. Otherwise fall back on calling atexit. | 
 |       if (getCodeGenOpts().CXAAtExit) | 
 |         emitGlobalDtorWithCXAAtExit(CGF, Dtor, nullptr, false); | 
 |       else | 
 |         CGF.registerGlobalDtorWithAtExit(Dtor); | 
 |     } | 
 |  | 
 |     CGF.FinishFunction(); | 
 |     AddGlobalCtor(GlobalInitFn, Priority, nullptr); | 
 |   } | 
 | } | 
 |  | 
 | /// Register a global destructor as best as we know how. | 
 | void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, | 
 |                                        const VarDecl &D, | 
 |                                        llvm::Constant *dtor, | 
 |                                        llvm::Constant *addr) { | 
 |   // Use __cxa_atexit if available. | 
 |   if (CGM.getCodeGenOpts().CXAAtExit) | 
 |     return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); | 
 |  | 
 |   if (D.getTLSKind()) | 
 |     CGM.ErrorUnsupported(&D, "non-trivial TLS destruction"); | 
 |  | 
 |   // In Apple kexts, we want to add a global destructor entry. | 
 |   // FIXME: shouldn't this be guarded by some variable? | 
 |   if (CGM.getLangOpts().AppleKext) { | 
 |     // Generate a global destructor entry. | 
 |     return CGM.AddCXXDtorEntry(dtor, addr); | 
 |   } | 
 |  | 
 |   CGF.registerGlobalDtorWithAtExit(D, dtor, addr); | 
 | } | 
 |  | 
 | static bool isThreadWrapperReplaceable(const VarDecl *VD, | 
 |                                        CodeGen::CodeGenModule &CGM) { | 
 |   assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!"); | 
 |   // Darwin prefers to have references to thread local variables to go through | 
 |   // the thread wrapper instead of directly referencing the backing variable. | 
 |   return VD->getTLSKind() == VarDecl::TLS_Dynamic && | 
 |          CGM.getTarget().getTriple().isOSDarwin(); | 
 | } | 
 |  | 
 | /// Get the appropriate linkage for the wrapper function. This is essentially | 
 | /// the weak form of the variable's linkage; every translation unit which needs | 
 | /// the wrapper emits a copy, and we want the linker to merge them. | 
 | static llvm::GlobalValue::LinkageTypes | 
 | getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) { | 
 |   llvm::GlobalValue::LinkageTypes VarLinkage = | 
 |       CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false); | 
 |  | 
 |   // For internal linkage variables, we don't need an external or weak wrapper. | 
 |   if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) | 
 |     return VarLinkage; | 
 |  | 
 |   // If the thread wrapper is replaceable, give it appropriate linkage. | 
 |   if (isThreadWrapperReplaceable(VD, CGM)) | 
 |     if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) && | 
 |         !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage)) | 
 |       return VarLinkage; | 
 |   return llvm::GlobalValue::WeakODRLinkage; | 
 | } | 
 |  | 
 | llvm::Function * | 
 | ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, | 
 |                                              llvm::Value *Val) { | 
 |   // Mangle the name for the thread_local wrapper function. | 
 |   SmallString<256> WrapperName; | 
 |   { | 
 |     llvm::raw_svector_ostream Out(WrapperName); | 
 |     getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); | 
 |   } | 
 |  | 
 |   // FIXME: If VD is a definition, we should regenerate the function attributes | 
 |   // before returning. | 
 |   if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName)) | 
 |     return cast<llvm::Function>(V); | 
 |  | 
 |   QualType RetQT = VD->getType(); | 
 |   if (RetQT->isReferenceType()) | 
 |     RetQT = RetQT.getNonReferenceType(); | 
 |  | 
 |   const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( | 
 |       getContext().getPointerType(RetQT), FunctionArgList()); | 
 |  | 
 |   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FI); | 
 |   llvm::Function *Wrapper = | 
 |       llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM), | 
 |                              WrapperName.str(), &CGM.getModule()); | 
 |  | 
 |   CGM.SetLLVMFunctionAttributes(nullptr, FI, Wrapper); | 
 |  | 
 |   if (VD->hasDefinition()) | 
 |     CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper); | 
 |  | 
 |   // Always resolve references to the wrapper at link time. | 
 |   if (!Wrapper->hasLocalLinkage() && !(isThreadWrapperReplaceable(VD, CGM) && | 
 |       !llvm::GlobalVariable::isLinkOnceLinkage(Wrapper->getLinkage()) && | 
 |       !llvm::GlobalVariable::isWeakODRLinkage(Wrapper->getLinkage()))) | 
 |     Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
 |  | 
 |   if (isThreadWrapperReplaceable(VD, CGM)) { | 
 |     Wrapper->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); | 
 |     Wrapper->addFnAttr(llvm::Attribute::NoUnwind); | 
 |   } | 
 |   return Wrapper; | 
 | } | 
 |  | 
 | void ItaniumCXXABI::EmitThreadLocalInitFuncs( | 
 |     CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, | 
 |     ArrayRef<llvm::Function *> CXXThreadLocalInits, | 
 |     ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { | 
 |   llvm::Function *InitFunc = nullptr; | 
 |  | 
 |   // Separate initializers into those with ordered (or partially-ordered) | 
 |   // initialization and those with unordered initialization. | 
 |   llvm::SmallVector<llvm::Function *, 8> OrderedInits; | 
 |   llvm::SmallDenseMap<const VarDecl *, llvm::Function *> UnorderedInits; | 
 |   for (unsigned I = 0; I != CXXThreadLocalInits.size(); ++I) { | 
 |     if (isTemplateInstantiation( | 
 |             CXXThreadLocalInitVars[I]->getTemplateSpecializationKind())) | 
 |       UnorderedInits[CXXThreadLocalInitVars[I]->getCanonicalDecl()] = | 
 |           CXXThreadLocalInits[I]; | 
 |     else | 
 |       OrderedInits.push_back(CXXThreadLocalInits[I]); | 
 |   } | 
 |  | 
 |   if (!OrderedInits.empty()) { | 
 |     // Generate a guarded initialization function. | 
 |     llvm::FunctionType *FTy = | 
 |         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); | 
 |     const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); | 
 |     InitFunc = CGM.CreateGlobalInitOrDestructFunction(FTy, "__tls_init", FI, | 
 |                                                       SourceLocation(), | 
 |                                                       /*TLS=*/true); | 
 |     llvm::GlobalVariable *Guard = new llvm::GlobalVariable( | 
 |         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, | 
 |         llvm::GlobalVariable::InternalLinkage, | 
 |         llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard"); | 
 |     Guard->setThreadLocal(true); | 
 |  | 
 |     CharUnits GuardAlign = CharUnits::One(); | 
 |     Guard->setAlignment(GuardAlign.getQuantity()); | 
 |  | 
 |     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, OrderedInits, | 
 |                                                    Address(Guard, GuardAlign)); | 
 |     // On Darwin platforms, use CXX_FAST_TLS calling convention. | 
 |     if (CGM.getTarget().getTriple().isOSDarwin()) { | 
 |       InitFunc->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); | 
 |       InitFunc->addFnAttr(llvm::Attribute::NoUnwind); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit thread wrappers. | 
 |   for (const VarDecl *VD : CXXThreadLocals) { | 
 |     llvm::GlobalVariable *Var = | 
 |         cast<llvm::GlobalVariable>(CGM.GetGlobalValue(CGM.getMangledName(VD))); | 
 |     llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var); | 
 |  | 
 |     // Some targets require that all access to thread local variables go through | 
 |     // the thread wrapper.  This means that we cannot attempt to create a thread | 
 |     // wrapper or a thread helper. | 
 |     if (isThreadWrapperReplaceable(VD, CGM) && !VD->hasDefinition()) { | 
 |       Wrapper->setLinkage(llvm::Function::ExternalLinkage); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Mangle the name for the thread_local initialization function. | 
 |     SmallString<256> InitFnName; | 
 |     { | 
 |       llvm::raw_svector_ostream Out(InitFnName); | 
 |       getMangleContext().mangleItaniumThreadLocalInit(VD, Out); | 
 |     } | 
 |  | 
 |     // If we have a definition for the variable, emit the initialization | 
 |     // function as an alias to the global Init function (if any). Otherwise, | 
 |     // produce a declaration of the initialization function. | 
 |     llvm::GlobalValue *Init = nullptr; | 
 |     bool InitIsInitFunc = false; | 
 |     if (VD->hasDefinition()) { | 
 |       InitIsInitFunc = true; | 
 |       llvm::Function *InitFuncToUse = InitFunc; | 
 |       if (isTemplateInstantiation(VD->getTemplateSpecializationKind())) | 
 |         InitFuncToUse = UnorderedInits.lookup(VD->getCanonicalDecl()); | 
 |       if (InitFuncToUse) | 
 |         Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(), | 
 |                                          InitFuncToUse); | 
 |     } else { | 
 |       // Emit a weak global function referring to the initialization function. | 
 |       // This function will not exist if the TU defining the thread_local | 
 |       // variable in question does not need any dynamic initialization for | 
 |       // its thread_local variables. | 
 |       llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false); | 
 |       Init = llvm::Function::Create(FnTy, | 
 |                                     llvm::GlobalVariable::ExternalWeakLinkage, | 
 |                                     InitFnName.str(), &CGM.getModule()); | 
 |       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); | 
 |       CGM.SetLLVMFunctionAttributes(nullptr, FI, cast<llvm::Function>(Init)); | 
 |     } | 
 |  | 
 |     if (Init) { | 
 |       Init->setVisibility(Var->getVisibility()); | 
 |       Init->setDSOLocal(Var->isDSOLocal()); | 
 |     } | 
 |  | 
 |     llvm::LLVMContext &Context = CGM.getModule().getContext(); | 
 |     llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); | 
 |     CGBuilderTy Builder(CGM, Entry); | 
 |     if (InitIsInitFunc) { | 
 |       if (Init) { | 
 |         llvm::CallInst *CallVal = Builder.CreateCall(Init); | 
 |         if (isThreadWrapperReplaceable(VD, CGM)) { | 
 |           CallVal->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); | 
 |           llvm::Function *Fn = | 
 |               cast<llvm::Function>(cast<llvm::GlobalAlias>(Init)->getAliasee()); | 
 |           Fn->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       // Don't know whether we have an init function. Call it if it exists. | 
 |       llvm::Value *Have = Builder.CreateIsNotNull(Init); | 
 |       llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); | 
 |       llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); | 
 |       Builder.CreateCondBr(Have, InitBB, ExitBB); | 
 |  | 
 |       Builder.SetInsertPoint(InitBB); | 
 |       Builder.CreateCall(Init); | 
 |       Builder.CreateBr(ExitBB); | 
 |  | 
 |       Builder.SetInsertPoint(ExitBB); | 
 |     } | 
 |  | 
 |     // For a reference, the result of the wrapper function is a pointer to | 
 |     // the referenced object. | 
 |     llvm::Value *Val = Var; | 
 |     if (VD->getType()->isReferenceType()) { | 
 |       CharUnits Align = CGM.getContext().getDeclAlign(VD); | 
 |       Val = Builder.CreateAlignedLoad(Val, Align); | 
 |     } | 
 |     if (Val->getType() != Wrapper->getReturnType()) | 
 |       Val = Builder.CreatePointerBitCastOrAddrSpaceCast( | 
 |           Val, Wrapper->getReturnType(), ""); | 
 |     Builder.CreateRet(Val); | 
 |   } | 
 | } | 
 |  | 
 | LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, | 
 |                                                    const VarDecl *VD, | 
 |                                                    QualType LValType) { | 
 |   llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD); | 
 |   llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val); | 
 |  | 
 |   llvm::CallInst *CallVal = CGF.Builder.CreateCall(Wrapper); | 
 |   CallVal->setCallingConv(Wrapper->getCallingConv()); | 
 |  | 
 |   LValue LV; | 
 |   if (VD->getType()->isReferenceType()) | 
 |     LV = CGF.MakeNaturalAlignAddrLValue(CallVal, LValType); | 
 |   else | 
 |     LV = CGF.MakeAddrLValue(CallVal, LValType, | 
 |                             CGF.getContext().getDeclAlign(VD)); | 
 |   // FIXME: need setObjCGCLValueClass? | 
 |   return LV; | 
 | } | 
 |  | 
 | /// Return whether the given global decl needs a VTT parameter, which it does | 
 | /// if it's a base constructor or destructor with virtual bases. | 
 | bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { | 
 |   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); | 
 |  | 
 |   // We don't have any virtual bases, just return early. | 
 |   if (!MD->getParent()->getNumVBases()) | 
 |     return false; | 
 |  | 
 |   // Check if we have a base constructor. | 
 |   if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base) | 
 |     return true; | 
 |  | 
 |   // Check if we have a base destructor. | 
 |   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | namespace { | 
 | class ItaniumRTTIBuilder { | 
 |   CodeGenModule &CGM;  // Per-module state. | 
 |   llvm::LLVMContext &VMContext; | 
 |   const ItaniumCXXABI &CXXABI;  // Per-module state. | 
 |  | 
 |   /// Fields - The fields of the RTTI descriptor currently being built. | 
 |   SmallVector<llvm::Constant *, 16> Fields; | 
 |  | 
 |   /// GetAddrOfTypeName - Returns the mangled type name of the given type. | 
 |   llvm::GlobalVariable * | 
 |   GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); | 
 |  | 
 |   /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI | 
 |   /// descriptor of the given type. | 
 |   llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); | 
 |  | 
 |   /// BuildVTablePointer - Build the vtable pointer for the given type. | 
 |   void BuildVTablePointer(const Type *Ty); | 
 |  | 
 |   /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single | 
 |   /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. | 
 |   void BuildSIClassTypeInfo(const CXXRecordDecl *RD); | 
 |  | 
 |   /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for | 
 |   /// classes with bases that do not satisfy the abi::__si_class_type_info | 
 |   /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. | 
 |   void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); | 
 |  | 
 |   /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used | 
 |   /// for pointer types. | 
 |   void BuildPointerTypeInfo(QualType PointeeTy); | 
 |  | 
 |   /// BuildObjCObjectTypeInfo - Build the appropriate kind of | 
 |   /// type_info for an object type. | 
 |   void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); | 
 |  | 
 |   /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info | 
 |   /// struct, used for member pointer types. | 
 |   void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); | 
 |  | 
 | public: | 
 |   ItaniumRTTIBuilder(const ItaniumCXXABI &ABI) | 
 |       : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {} | 
 |  | 
 |   // Pointer type info flags. | 
 |   enum { | 
 |     /// PTI_Const - Type has const qualifier. | 
 |     PTI_Const = 0x1, | 
 |  | 
 |     /// PTI_Volatile - Type has volatile qualifier. | 
 |     PTI_Volatile = 0x2, | 
 |  | 
 |     /// PTI_Restrict - Type has restrict qualifier. | 
 |     PTI_Restrict = 0x4, | 
 |  | 
 |     /// PTI_Incomplete - Type is incomplete. | 
 |     PTI_Incomplete = 0x8, | 
 |  | 
 |     /// PTI_ContainingClassIncomplete - Containing class is incomplete. | 
 |     /// (in pointer to member). | 
 |     PTI_ContainingClassIncomplete = 0x10, | 
 |  | 
 |     /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS). | 
 |     //PTI_TransactionSafe = 0x20, | 
 |  | 
 |     /// PTI_Noexcept - Pointee is noexcept function (C++1z). | 
 |     PTI_Noexcept = 0x40, | 
 |   }; | 
 |  | 
 |   // VMI type info flags. | 
 |   enum { | 
 |     /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. | 
 |     VMI_NonDiamondRepeat = 0x1, | 
 |  | 
 |     /// VMI_DiamondShaped - Class is diamond shaped. | 
 |     VMI_DiamondShaped = 0x2 | 
 |   }; | 
 |  | 
 |   // Base class type info flags. | 
 |   enum { | 
 |     /// BCTI_Virtual - Base class is virtual. | 
 |     BCTI_Virtual = 0x1, | 
 |  | 
 |     /// BCTI_Public - Base class is public. | 
 |     BCTI_Public = 0x2 | 
 |   }; | 
 |  | 
 |   /// BuildTypeInfo - Build the RTTI type info struct for the given type, or | 
 |   /// link to an existing RTTI descriptor if one already exists. | 
 |   llvm::Constant *BuildTypeInfo(QualType Ty); | 
 |  | 
 |   /// BuildTypeInfo - Build the RTTI type info struct for the given type. | 
 |   llvm::Constant *BuildTypeInfo( | 
 |       QualType Ty, | 
 |       llvm::GlobalVariable::LinkageTypes Linkage, | 
 |       llvm::GlobalValue::VisibilityTypes Visibility, | 
 |       llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass); | 
 | }; | 
 | } | 
 |  | 
 | llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName( | 
 |     QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) { | 
 |   SmallString<256> Name; | 
 |   llvm::raw_svector_ostream Out(Name); | 
 |   CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); | 
 |  | 
 |   // We know that the mangled name of the type starts at index 4 of the | 
 |   // mangled name of the typename, so we can just index into it in order to | 
 |   // get the mangled name of the type. | 
 |   llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, | 
 |                                                             Name.substr(4)); | 
 |  | 
 |   llvm::GlobalVariable *GV = | 
 |     CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage); | 
 |  | 
 |   GV->setInitializer(Init); | 
 |  | 
 |   return GV; | 
 | } | 
 |  | 
 | llvm::Constant * | 
 | ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { | 
 |   // Mangle the RTTI name. | 
 |   SmallString<256> Name; | 
 |   llvm::raw_svector_ostream Out(Name); | 
 |   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); | 
 |  | 
 |   // Look for an existing global. | 
 |   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); | 
 |  | 
 |   if (!GV) { | 
 |     // Create a new global variable. | 
 |     // Note for the future: If we would ever like to do deferred emission of | 
 |     // RTTI, check if emitting vtables opportunistically need any adjustment. | 
 |  | 
 |     GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, | 
 |                                   /*Constant=*/true, | 
 |                                   llvm::GlobalValue::ExternalLinkage, nullptr, | 
 |                                   Name); | 
 |     const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); | 
 |     CGM.setGVProperties(GV, RD); | 
 |   } | 
 |  | 
 |   return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); | 
 | } | 
 |  | 
 | /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type | 
 | /// info for that type is defined in the standard library. | 
 | static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { | 
 |   // Itanium C++ ABI 2.9.2: | 
 |   //   Basic type information (e.g. for "int", "bool", etc.) will be kept in | 
 |   //   the run-time support library. Specifically, the run-time support | 
 |   //   library should contain type_info objects for the types X, X* and | 
 |   //   X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, | 
 |   //   unsigned char, signed char, short, unsigned short, int, unsigned int, | 
 |   //   long, unsigned long, long long, unsigned long long, float, double, | 
 |   //   long double, char16_t, char32_t, and the IEEE 754r decimal and | 
 |   //   half-precision floating point types. | 
 |   // | 
 |   // GCC also emits RTTI for __int128. | 
 |   // FIXME: We do not emit RTTI information for decimal types here. | 
 |  | 
 |   // Types added here must also be added to EmitFundamentalRTTIDescriptors. | 
 |   switch (Ty->getKind()) { | 
 |     case BuiltinType::Void: | 
 |     case BuiltinType::NullPtr: | 
 |     case BuiltinType::Bool: | 
 |     case BuiltinType::WChar_S: | 
 |     case BuiltinType::WChar_U: | 
 |     case BuiltinType::Char_U: | 
 |     case BuiltinType::Char_S: | 
 |     case BuiltinType::UChar: | 
 |     case BuiltinType::SChar: | 
 |     case BuiltinType::Short: | 
 |     case BuiltinType::UShort: | 
 |     case BuiltinType::Int: | 
 |     case BuiltinType::UInt: | 
 |     case BuiltinType::Long: | 
 |     case BuiltinType::ULong: | 
 |     case BuiltinType::LongLong: | 
 |     case BuiltinType::ULongLong: | 
 |     case BuiltinType::Half: | 
 |     case BuiltinType::Float: | 
 |     case BuiltinType::Double: | 
 |     case BuiltinType::LongDouble: | 
 |     case BuiltinType::Float16: | 
 |     case BuiltinType::Float128: | 
 |     case BuiltinType::Char8: | 
 |     case BuiltinType::Char16: | 
 |     case BuiltinType::Char32: | 
 |     case BuiltinType::Int128: | 
 |     case BuiltinType::UInt128: | 
 |       return true; | 
 |  | 
 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
 |     case BuiltinType::Id: | 
 | #include "clang/Basic/OpenCLImageTypes.def" | 
 |     case BuiltinType::OCLSampler: | 
 |     case BuiltinType::OCLEvent: | 
 |     case BuiltinType::OCLClkEvent: | 
 |     case BuiltinType::OCLQueue: | 
 |     case BuiltinType::OCLReserveID: | 
 |     case BuiltinType::ShortAccum: | 
 |     case BuiltinType::Accum: | 
 |     case BuiltinType::LongAccum: | 
 |     case BuiltinType::UShortAccum: | 
 |     case BuiltinType::UAccum: | 
 |     case BuiltinType::ULongAccum: | 
 |     case BuiltinType::ShortFract: | 
 |     case BuiltinType::Fract: | 
 |     case BuiltinType::LongFract: | 
 |     case BuiltinType::UShortFract: | 
 |     case BuiltinType::UFract: | 
 |     case BuiltinType::ULongFract: | 
 |     case BuiltinType::SatShortAccum: | 
 |     case BuiltinType::SatAccum: | 
 |     case BuiltinType::SatLongAccum: | 
 |     case BuiltinType::SatUShortAccum: | 
 |     case BuiltinType::SatUAccum: | 
 |     case BuiltinType::SatULongAccum: | 
 |     case BuiltinType::SatShortFract: | 
 |     case BuiltinType::SatFract: | 
 |     case BuiltinType::SatLongFract: | 
 |     case BuiltinType::SatUShortFract: | 
 |     case BuiltinType::SatUFract: | 
 |     case BuiltinType::SatULongFract: | 
 |       return false; | 
 |  | 
 |     case BuiltinType::Dependent: | 
 | #define BUILTIN_TYPE(Id, SingletonId) | 
 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ | 
 |     case BuiltinType::Id: | 
 | #include "clang/AST/BuiltinTypes.def" | 
 |       llvm_unreachable("asking for RRTI for a placeholder type!"); | 
 |  | 
 |     case BuiltinType::ObjCId: | 
 |     case BuiltinType::ObjCClass: | 
 |     case BuiltinType::ObjCSel: | 
 |       llvm_unreachable("FIXME: Objective-C types are unsupported!"); | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid BuiltinType Kind!"); | 
 | } | 
 |  | 
 | static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { | 
 |   QualType PointeeTy = PointerTy->getPointeeType(); | 
 |   const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy); | 
 |   if (!BuiltinTy) | 
 |     return false; | 
 |  | 
 |   // Check the qualifiers. | 
 |   Qualifiers Quals = PointeeTy.getQualifiers(); | 
 |   Quals.removeConst(); | 
 |  | 
 |   if (!Quals.empty()) | 
 |     return false; | 
 |  | 
 |   return TypeInfoIsInStandardLibrary(BuiltinTy); | 
 | } | 
 |  | 
 | /// IsStandardLibraryRTTIDescriptor - Returns whether the type | 
 | /// information for the given type exists in the standard library. | 
 | static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { | 
 |   // Type info for builtin types is defined in the standard library. | 
 |   if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty)) | 
 |     return TypeInfoIsInStandardLibrary(BuiltinTy); | 
 |  | 
 |   // Type info for some pointer types to builtin types is defined in the | 
 |   // standard library. | 
 |   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) | 
 |     return TypeInfoIsInStandardLibrary(PointerTy); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for | 
 | /// the given type exists somewhere else, and that we should not emit the type | 
 | /// information in this translation unit.  Assumes that it is not a | 
 | /// standard-library type. | 
 | static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, | 
 |                                             QualType Ty) { | 
 |   ASTContext &Context = CGM.getContext(); | 
 |  | 
 |   // If RTTI is disabled, assume it might be disabled in the | 
 |   // translation unit that defines any potential key function, too. | 
 |   if (!Context.getLangOpts().RTTI) return false; | 
 |  | 
 |   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { | 
 |     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
 |     if (!RD->hasDefinition()) | 
 |       return false; | 
 |  | 
 |     if (!RD->isDynamicClass()) | 
 |       return false; | 
 |  | 
 |     // FIXME: this may need to be reconsidered if the key function | 
 |     // changes. | 
 |     // N.B. We must always emit the RTTI data ourselves if there exists a key | 
 |     // function. | 
 |     bool IsDLLImport = RD->hasAttr<DLLImportAttr>(); | 
 |  | 
 |     // Don't import the RTTI but emit it locally. | 
 |     if (CGM.getTriple().isWindowsGNUEnvironment() && IsDLLImport) | 
 |       return false; | 
 |  | 
 |     if (CGM.getVTables().isVTableExternal(RD)) | 
 |       return IsDLLImport && !CGM.getTriple().isWindowsItaniumEnvironment() | 
 |                  ? false | 
 |                  : true; | 
 |  | 
 |     if (IsDLLImport) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// IsIncompleteClassType - Returns whether the given record type is incomplete. | 
 | static bool IsIncompleteClassType(const RecordType *RecordTy) { | 
 |   return !RecordTy->getDecl()->isCompleteDefinition(); | 
 | } | 
 |  | 
 | /// ContainsIncompleteClassType - Returns whether the given type contains an | 
 | /// incomplete class type. This is true if | 
 | /// | 
 | ///   * The given type is an incomplete class type. | 
 | ///   * The given type is a pointer type whose pointee type contains an | 
 | ///     incomplete class type. | 
 | ///   * The given type is a member pointer type whose class is an incomplete | 
 | ///     class type. | 
 | ///   * The given type is a member pointer type whoise pointee type contains an | 
 | ///     incomplete class type. | 
 | /// is an indirect or direct pointer to an incomplete class type. | 
 | static bool ContainsIncompleteClassType(QualType Ty) { | 
 |   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { | 
 |     if (IsIncompleteClassType(RecordTy)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) | 
 |     return ContainsIncompleteClassType(PointerTy->getPointeeType()); | 
 |  | 
 |   if (const MemberPointerType *MemberPointerTy = | 
 |       dyn_cast<MemberPointerType>(Ty)) { | 
 |     // Check if the class type is incomplete. | 
 |     const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass()); | 
 |     if (IsIncompleteClassType(ClassType)) | 
 |       return true; | 
 |  | 
 |     return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // CanUseSingleInheritance - Return whether the given record decl has a "single, | 
 | // public, non-virtual base at offset zero (i.e. the derived class is dynamic | 
 | // iff the base is)", according to Itanium C++ ABI, 2.95p6b. | 
 | static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { | 
 |   // Check the number of bases. | 
 |   if (RD->getNumBases() != 1) | 
 |     return false; | 
 |  | 
 |   // Get the base. | 
 |   CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); | 
 |  | 
 |   // Check that the base is not virtual. | 
 |   if (Base->isVirtual()) | 
 |     return false; | 
 |  | 
 |   // Check that the base is public. | 
 |   if (Base->getAccessSpecifier() != AS_public) | 
 |     return false; | 
 |  | 
 |   // Check that the class is dynamic iff the base is. | 
 |   const CXXRecordDecl *BaseDecl = | 
 |     cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |   if (!BaseDecl->isEmpty() && | 
 |       BaseDecl->isDynamicClass() != RD->isDynamicClass()) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) { | 
 |   // abi::__class_type_info. | 
 |   static const char * const ClassTypeInfo = | 
 |     "_ZTVN10__cxxabiv117__class_type_infoE"; | 
 |   // abi::__si_class_type_info. | 
 |   static const char * const SIClassTypeInfo = | 
 |     "_ZTVN10__cxxabiv120__si_class_type_infoE"; | 
 |   // abi::__vmi_class_type_info. | 
 |   static const char * const VMIClassTypeInfo = | 
 |     "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; | 
 |  | 
 |   const char *VTableName = nullptr; | 
 |  | 
 |   switch (Ty->getTypeClass()) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #include "clang/AST/TypeNodes.def" | 
 |     llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
 |  | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: | 
 |     llvm_unreachable("References shouldn't get here"); | 
 |  | 
 |   case Type::Auto: | 
 |   case Type::DeducedTemplateSpecialization: | 
 |     llvm_unreachable("Undeduced type shouldn't get here"); | 
 |  | 
 |   case Type::Pipe: | 
 |     llvm_unreachable("Pipe types shouldn't get here"); | 
 |  | 
 |   case Type::Builtin: | 
 |   // GCC treats vector and complex types as fundamental types. | 
 |   case Type::Vector: | 
 |   case Type::ExtVector: | 
 |   case Type::Complex: | 
 |   case Type::Atomic: | 
 |   // FIXME: GCC treats block pointers as fundamental types?! | 
 |   case Type::BlockPointer: | 
 |     // abi::__fundamental_type_info. | 
 |     VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; | 
 |     break; | 
 |  | 
 |   case Type::ConstantArray: | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: | 
 |     // abi::__array_type_info. | 
 |     VTableName = "_ZTVN10__cxxabiv117__array_type_infoE"; | 
 |     break; | 
 |  | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |     // abi::__function_type_info. | 
 |     VTableName = "_ZTVN10__cxxabiv120__function_type_infoE"; | 
 |     break; | 
 |  | 
 |   case Type::Enum: | 
 |     // abi::__enum_type_info. | 
 |     VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; | 
 |     break; | 
 |  | 
 |   case Type::Record: { | 
 |     const CXXRecordDecl *RD = | 
 |       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); | 
 |  | 
 |     if (!RD->hasDefinition() || !RD->getNumBases()) { | 
 |       VTableName = ClassTypeInfo; | 
 |     } else if (CanUseSingleInheritance(RD)) { | 
 |       VTableName = SIClassTypeInfo; | 
 |     } else { | 
 |       VTableName = VMIClassTypeInfo; | 
 |     } | 
 |  | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::ObjCObject: | 
 |     // Ignore protocol qualifiers. | 
 |     Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr(); | 
 |  | 
 |     // Handle id and Class. | 
 |     if (isa<BuiltinType>(Ty)) { | 
 |       VTableName = ClassTypeInfo; | 
 |       break; | 
 |     } | 
 |  | 
 |     assert(isa<ObjCInterfaceType>(Ty)); | 
 |     // Fall through. | 
 |  | 
 |   case Type::ObjCInterface: | 
 |     if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) { | 
 |       VTableName = SIClassTypeInfo; | 
 |     } else { | 
 |       VTableName = ClassTypeInfo; | 
 |     } | 
 |     break; | 
 |  | 
 |   case Type::ObjCObjectPointer: | 
 |   case Type::Pointer: | 
 |     // abi::__pointer_type_info. | 
 |     VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; | 
 |     break; | 
 |  | 
 |   case Type::MemberPointer: | 
 |     // abi::__pointer_to_member_type_info. | 
 |     VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; | 
 |     break; | 
 |   } | 
 |  | 
 |   llvm::Constant *VTable = | 
 |     CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy); | 
 |   CGM.setDSOLocal(cast<llvm::GlobalValue>(VTable->stripPointerCasts())); | 
 |  | 
 |   llvm::Type *PtrDiffTy = | 
 |     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); | 
 |  | 
 |   // The vtable address point is 2. | 
 |   llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); | 
 |   VTable = | 
 |       llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8PtrTy, VTable, Two); | 
 |   VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy); | 
 |  | 
 |   Fields.push_back(VTable); | 
 | } | 
 |  | 
 | /// Return the linkage that the type info and type info name constants | 
 | /// should have for the given type. | 
 | static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM, | 
 |                                                              QualType Ty) { | 
 |   // Itanium C++ ABI 2.9.5p7: | 
 |   //   In addition, it and all of the intermediate abi::__pointer_type_info | 
 |   //   structs in the chain down to the abi::__class_type_info for the | 
 |   //   incomplete class type must be prevented from resolving to the | 
 |   //   corresponding type_info structs for the complete class type, possibly | 
 |   //   by making them local static objects. Finally, a dummy class RTTI is | 
 |   //   generated for the incomplete type that will not resolve to the final | 
 |   //   complete class RTTI (because the latter need not exist), possibly by | 
 |   //   making it a local static object. | 
 |   if (ContainsIncompleteClassType(Ty)) | 
 |     return llvm::GlobalValue::InternalLinkage; | 
 |  | 
 |   switch (Ty->getLinkage()) { | 
 |   case NoLinkage: | 
 |   case InternalLinkage: | 
 |   case UniqueExternalLinkage: | 
 |     return llvm::GlobalValue::InternalLinkage; | 
 |  | 
 |   case VisibleNoLinkage: | 
 |   case ModuleInternalLinkage: | 
 |   case ModuleLinkage: | 
 |   case ExternalLinkage: | 
 |     // RTTI is not enabled, which means that this type info struct is going | 
 |     // to be used for exception handling. Give it linkonce_odr linkage. | 
 |     if (!CGM.getLangOpts().RTTI) | 
 |       return llvm::GlobalValue::LinkOnceODRLinkage; | 
 |  | 
 |     if (const RecordType *Record = dyn_cast<RecordType>(Ty)) { | 
 |       const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); | 
 |       if (RD->hasAttr<WeakAttr>()) | 
 |         return llvm::GlobalValue::WeakODRLinkage; | 
 |       if (CGM.getTriple().isWindowsItaniumEnvironment()) | 
 |         if (RD->hasAttr<DLLImportAttr>() && | 
 |             ShouldUseExternalRTTIDescriptor(CGM, Ty)) | 
 |           return llvm::GlobalValue::ExternalLinkage; | 
 |       // MinGW always uses LinkOnceODRLinkage for type info. | 
 |       if (RD->isDynamicClass() && | 
 |           !CGM.getContext() | 
 |                .getTargetInfo() | 
 |                .getTriple() | 
 |                .isWindowsGNUEnvironment()) | 
 |         return CGM.getVTableLinkage(RD); | 
 |     } | 
 |  | 
 |     return llvm::GlobalValue::LinkOnceODRLinkage; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid linkage!"); | 
 | } | 
 |  | 
 | llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty) { | 
 |   // We want to operate on the canonical type. | 
 |   Ty = Ty.getCanonicalType(); | 
 |  | 
 |   // Check if we've already emitted an RTTI descriptor for this type. | 
 |   SmallString<256> Name; | 
 |   llvm::raw_svector_ostream Out(Name); | 
 |   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); | 
 |  | 
 |   llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); | 
 |   if (OldGV && !OldGV->isDeclaration()) { | 
 |     assert(!OldGV->hasAvailableExternallyLinkage() && | 
 |            "available_externally typeinfos not yet implemented"); | 
 |  | 
 |     return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy); | 
 |   } | 
 |  | 
 |   // Check if there is already an external RTTI descriptor for this type. | 
 |   if (IsStandardLibraryRTTIDescriptor(Ty) || | 
 |       ShouldUseExternalRTTIDescriptor(CGM, Ty)) | 
 |     return GetAddrOfExternalRTTIDescriptor(Ty); | 
 |  | 
 |   // Emit the standard library with external linkage. | 
 |   llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty); | 
 |  | 
 |   // Give the type_info object and name the formal visibility of the | 
 |   // type itself. | 
 |   llvm::GlobalValue::VisibilityTypes llvmVisibility; | 
 |   if (llvm::GlobalValue::isLocalLinkage(Linkage)) | 
 |     // If the linkage is local, only default visibility makes sense. | 
 |     llvmVisibility = llvm::GlobalValue::DefaultVisibility; | 
 |   else if (CXXABI.classifyRTTIUniqueness(Ty, Linkage) == | 
 |            ItaniumCXXABI::RUK_NonUniqueHidden) | 
 |     llvmVisibility = llvm::GlobalValue::HiddenVisibility; | 
 |   else | 
 |     llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility()); | 
 |  | 
 |   llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = | 
 |       llvm::GlobalValue::DefaultStorageClass; | 
 |   if (CGM.getTriple().isWindowsItaniumEnvironment()) { | 
 |     auto RD = Ty->getAsCXXRecordDecl(); | 
 |     if (RD && RD->hasAttr<DLLExportAttr>()) | 
 |       DLLStorageClass = llvm::GlobalValue::DLLExportStorageClass; | 
 |   } | 
 |  | 
 |   return BuildTypeInfo(Ty, Linkage, llvmVisibility, DLLStorageClass); | 
 | } | 
 |  | 
 | llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo( | 
 |       QualType Ty, | 
 |       llvm::GlobalVariable::LinkageTypes Linkage, | 
 |       llvm::GlobalValue::VisibilityTypes Visibility, | 
 |       llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass) { | 
 |   // Add the vtable pointer. | 
 |   BuildVTablePointer(cast<Type>(Ty)); | 
 |  | 
 |   // And the name. | 
 |   llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); | 
 |   llvm::Constant *TypeNameField; | 
 |  | 
 |   // If we're supposed to demote the visibility, be sure to set a flag | 
 |   // to use a string comparison for type_info comparisons. | 
 |   ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness = | 
 |       CXXABI.classifyRTTIUniqueness(Ty, Linkage); | 
 |   if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) { | 
 |     // The flag is the sign bit, which on ARM64 is defined to be clear | 
 |     // for global pointers.  This is very ARM64-specific. | 
 |     TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty); | 
 |     llvm::Constant *flag = | 
 |         llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63); | 
 |     TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag); | 
 |     TypeNameField = | 
 |         llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.Int8PtrTy); | 
 |   } else { | 
 |     TypeNameField = llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy); | 
 |   } | 
 |   Fields.push_back(TypeNameField); | 
 |  | 
 |   switch (Ty->getTypeClass()) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #include "clang/AST/TypeNodes.def" | 
 |     llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
 |  | 
 |   // GCC treats vector types as fundamental types. | 
 |   case Type::Builtin: | 
 |   case Type::Vector: | 
 |   case Type::ExtVector: | 
 |   case Type::Complex: | 
 |   case Type::BlockPointer: | 
 |     // Itanium C++ ABI 2.9.5p4: | 
 |     // abi::__fundamental_type_info adds no data members to std::type_info. | 
 |     break; | 
 |  | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: | 
 |     llvm_unreachable("References shouldn't get here"); | 
 |  | 
 |   case Type::Auto: | 
 |   case Type::DeducedTemplateSpecialization: | 
 |     llvm_unreachable("Undeduced type shouldn't get here"); | 
 |  | 
 |   case Type::Pipe: | 
 |     llvm_unreachable("Pipe type shouldn't get here"); | 
 |  | 
 |   case Type::ConstantArray: | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: | 
 |     // Itanium C++ ABI 2.9.5p5: | 
 |     // abi::__array_type_info adds no data members to std::type_info. | 
 |     break; | 
 |  | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |     // Itanium C++ ABI 2.9.5p5: | 
 |     // abi::__function_type_info adds no data members to std::type_info. | 
 |     break; | 
 |  | 
 |   case Type::Enum: | 
 |     // Itanium C++ ABI 2.9.5p5: | 
 |     // abi::__enum_type_info adds no data members to std::type_info. | 
 |     break; | 
 |  | 
 |   case Type::Record: { | 
 |     const CXXRecordDecl *RD = | 
 |       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); | 
 |     if (!RD->hasDefinition() || !RD->getNumBases()) { | 
 |       // We don't need to emit any fields. | 
 |       break; | 
 |     } | 
 |  | 
 |     if (CanUseSingleInheritance(RD)) | 
 |       BuildSIClassTypeInfo(RD); | 
 |     else | 
 |       BuildVMIClassTypeInfo(RD); | 
 |  | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::ObjCObject: | 
 |   case Type::ObjCInterface: | 
 |     BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty)); | 
 |     break; | 
 |  | 
 |   case Type::ObjCObjectPointer: | 
 |     BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); | 
 |     break; | 
 |  | 
 |   case Type::Pointer: | 
 |     BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType()); | 
 |     break; | 
 |  | 
 |   case Type::MemberPointer: | 
 |     BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty)); | 
 |     break; | 
 |  | 
 |   case Type::Atomic: | 
 |     // No fields, at least for the moment. | 
 |     break; | 
 |   } | 
 |  | 
 |   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields); | 
 |  | 
 |   SmallString<256> Name; | 
 |   llvm::raw_svector_ostream Out(Name); | 
 |   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); | 
 |   llvm::Module &M = CGM.getModule(); | 
 |   llvm::GlobalVariable *OldGV = M.getNamedGlobal(Name); | 
 |   llvm::GlobalVariable *GV = | 
 |       new llvm::GlobalVariable(M, Init->getType(), | 
 |                                /*Constant=*/true, Linkage, Init, Name); | 
 |  | 
 |   // If there's already an old global variable, replace it with the new one. | 
 |   if (OldGV) { | 
 |     GV->takeName(OldGV); | 
 |     llvm::Constant *NewPtr = | 
 |       llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); | 
 |     OldGV->replaceAllUsesWith(NewPtr); | 
 |     OldGV->eraseFromParent(); | 
 |   } | 
 |  | 
 |   if (CGM.supportsCOMDAT() && GV->isWeakForLinker()) | 
 |     GV->setComdat(M.getOrInsertComdat(GV->getName())); | 
 |  | 
 |   // The Itanium ABI specifies that type_info objects must be globally | 
 |   // unique, with one exception: if the type is an incomplete class | 
 |   // type or a (possibly indirect) pointer to one.  That exception | 
 |   // affects the general case of comparing type_info objects produced | 
 |   // by the typeid operator, which is why the comparison operators on | 
 |   // std::type_info generally use the type_info name pointers instead | 
 |   // of the object addresses.  However, the language's built-in uses | 
 |   // of RTTI generally require class types to be complete, even when | 
 |   // manipulating pointers to those class types.  This allows the | 
 |   // implementation of dynamic_cast to rely on address equality tests, | 
 |   // which is much faster. | 
 |  | 
 |   // All of this is to say that it's important that both the type_info | 
 |   // object and the type_info name be uniqued when weakly emitted. | 
 |  | 
 |   TypeName->setVisibility(Visibility); | 
 |   CGM.setDSOLocal(TypeName); | 
 |  | 
 |   GV->setVisibility(Visibility); | 
 |   CGM.setDSOLocal(GV); | 
 |  | 
 |   TypeName->setDLLStorageClass(DLLStorageClass); | 
 |   GV->setDLLStorageClass(DLLStorageClass); | 
 |  | 
 |   return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); | 
 | } | 
 |  | 
 | /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info | 
 | /// for the given Objective-C object type. | 
 | void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { | 
 |   // Drop qualifiers. | 
 |   const Type *T = OT->getBaseType().getTypePtr(); | 
 |   assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T)); | 
 |  | 
 |   // The builtin types are abi::__class_type_infos and don't require | 
 |   // extra fields. | 
 |   if (isa<BuiltinType>(T)) return; | 
 |  | 
 |   ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl(); | 
 |   ObjCInterfaceDecl *Super = Class->getSuperClass(); | 
 |  | 
 |   // Root classes are also __class_type_info. | 
 |   if (!Super) return; | 
 |  | 
 |   QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super); | 
 |  | 
 |   // Everything else is single inheritance. | 
 |   llvm::Constant *BaseTypeInfo = | 
 |       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy); | 
 |   Fields.push_back(BaseTypeInfo); | 
 | } | 
 |  | 
 | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single | 
 | /// inheritance, according to the Itanium C++ ABI, 2.95p6b. | 
 | void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { | 
 |   // Itanium C++ ABI 2.9.5p6b: | 
 |   // It adds to abi::__class_type_info a single member pointing to the | 
 |   // type_info structure for the base type, | 
 |   llvm::Constant *BaseTypeInfo = | 
 |     ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType()); | 
 |   Fields.push_back(BaseTypeInfo); | 
 | } | 
 |  | 
 | namespace { | 
 |   /// SeenBases - Contains virtual and non-virtual bases seen when traversing | 
 |   /// a class hierarchy. | 
 |   struct SeenBases { | 
 |     llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases; | 
 |     llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases; | 
 |   }; | 
 | } | 
 |  | 
 | /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in | 
 | /// abi::__vmi_class_type_info. | 
 | /// | 
 | static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, | 
 |                                              SeenBases &Bases) { | 
 |  | 
 |   unsigned Flags = 0; | 
 |  | 
 |   const CXXRecordDecl *BaseDecl = | 
 |     cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); | 
 |  | 
 |   if (Base->isVirtual()) { | 
 |     // Mark the virtual base as seen. | 
 |     if (!Bases.VirtualBases.insert(BaseDecl).second) { | 
 |       // If this virtual base has been seen before, then the class is diamond | 
 |       // shaped. | 
 |       Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped; | 
 |     } else { | 
 |       if (Bases.NonVirtualBases.count(BaseDecl)) | 
 |         Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; | 
 |     } | 
 |   } else { | 
 |     // Mark the non-virtual base as seen. | 
 |     if (!Bases.NonVirtualBases.insert(BaseDecl).second) { | 
 |       // If this non-virtual base has been seen before, then the class has non- | 
 |       // diamond shaped repeated inheritance. | 
 |       Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; | 
 |     } else { | 
 |       if (Bases.VirtualBases.count(BaseDecl)) | 
 |         Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; | 
 |     } | 
 |   } | 
 |  | 
 |   // Walk all bases. | 
 |   for (const auto &I : BaseDecl->bases()) | 
 |     Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); | 
 |  | 
 |   return Flags; | 
 | } | 
 |  | 
 | static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { | 
 |   unsigned Flags = 0; | 
 |   SeenBases Bases; | 
 |  | 
 |   // Walk all bases. | 
 |   for (const auto &I : RD->bases()) | 
 |     Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); | 
 |  | 
 |   return Flags; | 
 | } | 
 |  | 
 | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for | 
 | /// classes with bases that do not satisfy the abi::__si_class_type_info | 
 | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. | 
 | void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { | 
 |   llvm::Type *UnsignedIntLTy = | 
 |     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p6c: | 
 |   //   __flags is a word with flags describing details about the class | 
 |   //   structure, which may be referenced by using the __flags_masks | 
 |   //   enumeration. These flags refer to both direct and indirect bases. | 
 |   unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); | 
 |   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p6c: | 
 |   //   __base_count is a word with the number of direct proper base class | 
 |   //   descriptions that follow. | 
 |   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); | 
 |  | 
 |   if (!RD->getNumBases()) | 
 |     return; | 
 |  | 
 |   // Now add the base class descriptions. | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p6c: | 
 |   //   __base_info[] is an array of base class descriptions -- one for every | 
 |   //   direct proper base. Each description is of the type: | 
 |   // | 
 |   //   struct abi::__base_class_type_info { | 
 |   //   public: | 
 |   //     const __class_type_info *__base_type; | 
 |   //     long __offset_flags; | 
 |   // | 
 |   //     enum __offset_flags_masks { | 
 |   //       __virtual_mask = 0x1, | 
 |   //       __public_mask = 0x2, | 
 |   //       __offset_shift = 8 | 
 |   //     }; | 
 |   //   }; | 
 |  | 
 |   // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long | 
 |   // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on | 
 |   // LLP64 platforms. | 
 |   // FIXME: Consider updating libc++abi to match, and extend this logic to all | 
 |   // LLP64 platforms. | 
 |   QualType OffsetFlagsTy = CGM.getContext().LongTy; | 
 |   const TargetInfo &TI = CGM.getContext().getTargetInfo(); | 
 |   if (TI.getTriple().isOSCygMing() && TI.getPointerWidth(0) > TI.getLongWidth()) | 
 |     OffsetFlagsTy = CGM.getContext().LongLongTy; | 
 |   llvm::Type *OffsetFlagsLTy = | 
 |       CGM.getTypes().ConvertType(OffsetFlagsTy); | 
 |  | 
 |   for (const auto &Base : RD->bases()) { | 
 |     // The __base_type member points to the RTTI for the base type. | 
 |     Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType())); | 
 |  | 
 |     const CXXRecordDecl *BaseDecl = | 
 |       cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); | 
 |  | 
 |     int64_t OffsetFlags = 0; | 
 |  | 
 |     // All but the lower 8 bits of __offset_flags are a signed offset. | 
 |     // For a non-virtual base, this is the offset in the object of the base | 
 |     // subobject. For a virtual base, this is the offset in the virtual table of | 
 |     // the virtual base offset for the virtual base referenced (negative). | 
 |     CharUnits Offset; | 
 |     if (Base.isVirtual()) | 
 |       Offset = | 
 |         CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl); | 
 |     else { | 
 |       const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); | 
 |       Offset = Layout.getBaseClassOffset(BaseDecl); | 
 |     }; | 
 |  | 
 |     OffsetFlags = uint64_t(Offset.getQuantity()) << 8; | 
 |  | 
 |     // The low-order byte of __offset_flags contains flags, as given by the | 
 |     // masks from the enumeration __offset_flags_masks. | 
 |     if (Base.isVirtual()) | 
 |       OffsetFlags |= BCTI_Virtual; | 
 |     if (Base.getAccessSpecifier() == AS_public) | 
 |       OffsetFlags |= BCTI_Public; | 
 |  | 
 |     Fields.push_back(llvm::ConstantInt::get(OffsetFlagsLTy, OffsetFlags)); | 
 |   } | 
 | } | 
 |  | 
 | /// Compute the flags for a __pbase_type_info, and remove the corresponding | 
 | /// pieces from \p Type. | 
 | static unsigned extractPBaseFlags(ASTContext &Ctx, QualType &Type) { | 
 |   unsigned Flags = 0; | 
 |  | 
 |   if (Type.isConstQualified()) | 
 |     Flags |= ItaniumRTTIBuilder::PTI_Const; | 
 |   if (Type.isVolatileQualified()) | 
 |     Flags |= ItaniumRTTIBuilder::PTI_Volatile; | 
 |   if (Type.isRestrictQualified()) | 
 |     Flags |= ItaniumRTTIBuilder::PTI_Restrict; | 
 |   Type = Type.getUnqualifiedType(); | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p7: | 
 |   //   When the abi::__pbase_type_info is for a direct or indirect pointer to an | 
 |   //   incomplete class type, the incomplete target type flag is set. | 
 |   if (ContainsIncompleteClassType(Type)) | 
 |     Flags |= ItaniumRTTIBuilder::PTI_Incomplete; | 
 |  | 
 |   if (auto *Proto = Type->getAs<FunctionProtoType>()) { | 
 |     if (Proto->isNothrow()) { | 
 |       Flags |= ItaniumRTTIBuilder::PTI_Noexcept; | 
 |       Type = Ctx.getFunctionTypeWithExceptionSpec(Type, EST_None); | 
 |     } | 
 |   } | 
 |  | 
 |   return Flags; | 
 | } | 
 |  | 
 | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, | 
 | /// used for pointer types. | 
 | void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { | 
 |   // Itanium C++ ABI 2.9.5p7: | 
 |   //   __flags is a flag word describing the cv-qualification and other | 
 |   //   attributes of the type pointed to | 
 |   unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); | 
 |  | 
 |   llvm::Type *UnsignedIntLTy = | 
 |     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); | 
 |   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p7: | 
 |   //  __pointee is a pointer to the std::type_info derivation for the | 
 |   //  unqualified type being pointed to. | 
 |   llvm::Constant *PointeeTypeInfo = | 
 |       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); | 
 |   Fields.push_back(PointeeTypeInfo); | 
 | } | 
 |  | 
 | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info | 
 | /// struct, used for member pointer types. | 
 | void | 
 | ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { | 
 |   QualType PointeeTy = Ty->getPointeeType(); | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p7: | 
 |   //   __flags is a flag word describing the cv-qualification and other | 
 |   //   attributes of the type pointed to. | 
 |   unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); | 
 |  | 
 |   const RecordType *ClassType = cast<RecordType>(Ty->getClass()); | 
 |   if (IsIncompleteClassType(ClassType)) | 
 |     Flags |= PTI_ContainingClassIncomplete; | 
 |  | 
 |   llvm::Type *UnsignedIntLTy = | 
 |     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); | 
 |   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p7: | 
 |   //   __pointee is a pointer to the std::type_info derivation for the | 
 |   //   unqualified type being pointed to. | 
 |   llvm::Constant *PointeeTypeInfo = | 
 |       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); | 
 |   Fields.push_back(PointeeTypeInfo); | 
 |  | 
 |   // Itanium C++ ABI 2.9.5p9: | 
 |   //   __context is a pointer to an abi::__class_type_info corresponding to the | 
 |   //   class type containing the member pointed to | 
 |   //   (e.g., the "A" in "int A::*"). | 
 |   Fields.push_back( | 
 |       ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0))); | 
 | } | 
 |  | 
 | llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) { | 
 |   return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty); | 
 | } | 
 |  | 
 | void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD) { | 
 |   // Types added here must also be added to TypeInfoIsInStandardLibrary. | 
 |   QualType FundamentalTypes[] = { | 
 |       getContext().VoidTy,             getContext().NullPtrTy, | 
 |       getContext().BoolTy,             getContext().WCharTy, | 
 |       getContext().CharTy,             getContext().UnsignedCharTy, | 
 |       getContext().SignedCharTy,       getContext().ShortTy, | 
 |       getContext().UnsignedShortTy,    getContext().IntTy, | 
 |       getContext().UnsignedIntTy,      getContext().LongTy, | 
 |       getContext().UnsignedLongTy,     getContext().LongLongTy, | 
 |       getContext().UnsignedLongLongTy, getContext().Int128Ty, | 
 |       getContext().UnsignedInt128Ty,   getContext().HalfTy, | 
 |       getContext().FloatTy,            getContext().DoubleTy, | 
 |       getContext().LongDoubleTy,       getContext().Float128Ty, | 
 |       getContext().Char8Ty,            getContext().Char16Ty, | 
 |       getContext().Char32Ty | 
 |   }; | 
 |   llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = | 
 |       RD->hasAttr<DLLExportAttr>() | 
 |       ? llvm::GlobalValue::DLLExportStorageClass | 
 |       : llvm::GlobalValue::DefaultStorageClass; | 
 |   llvm::GlobalValue::VisibilityTypes Visibility = | 
 |       CodeGenModule::GetLLVMVisibility(RD->getVisibility()); | 
 |   for (const QualType &FundamentalType : FundamentalTypes) { | 
 |     QualType PointerType = getContext().getPointerType(FundamentalType); | 
 |     QualType PointerTypeConst = getContext().getPointerType( | 
 |         FundamentalType.withConst()); | 
 |     for (QualType Type : {FundamentalType, PointerType, PointerTypeConst}) | 
 |       ItaniumRTTIBuilder(*this).BuildTypeInfo( | 
 |           Type, llvm::GlobalValue::ExternalLinkage, | 
 |           Visibility, DLLStorageClass); | 
 |   } | 
 | } | 
 |  | 
 | /// What sort of uniqueness rules should we use for the RTTI for the | 
 | /// given type? | 
 | ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness( | 
 |     QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const { | 
 |   if (shouldRTTIBeUnique()) | 
 |     return RUK_Unique; | 
 |  | 
 |   // It's only necessary for linkonce_odr or weak_odr linkage. | 
 |   if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage && | 
 |       Linkage != llvm::GlobalValue::WeakODRLinkage) | 
 |     return RUK_Unique; | 
 |  | 
 |   // It's only necessary with default visibility. | 
 |   if (CanTy->getVisibility() != DefaultVisibility) | 
 |     return RUK_Unique; | 
 |  | 
 |   // If we're not required to publish this symbol, hide it. | 
 |   if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) | 
 |     return RUK_NonUniqueHidden; | 
 |  | 
 |   // If we're required to publish this symbol, as we might be under an | 
 |   // explicit instantiation, leave it with default visibility but | 
 |   // enable string-comparisons. | 
 |   assert(Linkage == llvm::GlobalValue::WeakODRLinkage); | 
 |   return RUK_NonUniqueVisible; | 
 | } | 
 |  | 
 | // Find out how to codegen the complete destructor and constructor | 
 | namespace { | 
 | enum class StructorCodegen { Emit, RAUW, Alias, COMDAT }; | 
 | } | 
 | static StructorCodegen getCodegenToUse(CodeGenModule &CGM, | 
 |                                        const CXXMethodDecl *MD) { | 
 |   if (!CGM.getCodeGenOpts().CXXCtorDtorAliases) | 
 |     return StructorCodegen::Emit; | 
 |  | 
 |   // The complete and base structors are not equivalent if there are any virtual | 
 |   // bases, so emit separate functions. | 
 |   if (MD->getParent()->getNumVBases()) | 
 |     return StructorCodegen::Emit; | 
 |  | 
 |   GlobalDecl AliasDecl; | 
 |   if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { | 
 |     AliasDecl = GlobalDecl(DD, Dtor_Complete); | 
 |   } else { | 
 |     const auto *CD = cast<CXXConstructorDecl>(MD); | 
 |     AliasDecl = GlobalDecl(CD, Ctor_Complete); | 
 |   } | 
 |   llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); | 
 |  | 
 |   if (llvm::GlobalValue::isDiscardableIfUnused(Linkage)) | 
 |     return StructorCodegen::RAUW; | 
 |  | 
 |   // FIXME: Should we allow available_externally aliases? | 
 |   if (!llvm::GlobalAlias::isValidLinkage(Linkage)) | 
 |     return StructorCodegen::RAUW; | 
 |  | 
 |   if (llvm::GlobalValue::isWeakForLinker(Linkage)) { | 
 |     // Only ELF and wasm support COMDATs with arbitrary names (C5/D5). | 
 |     if (CGM.getTarget().getTriple().isOSBinFormatELF() || | 
 |         CGM.getTarget().getTriple().isOSBinFormatWasm()) | 
 |       return StructorCodegen::COMDAT; | 
 |     return StructorCodegen::Emit; | 
 |   } | 
 |  | 
 |   return StructorCodegen::Alias; | 
 | } | 
 |  | 
 | static void emitConstructorDestructorAlias(CodeGenModule &CGM, | 
 |                                            GlobalDecl AliasDecl, | 
 |                                            GlobalDecl TargetDecl) { | 
 |   llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); | 
 |  | 
 |   StringRef MangledName = CGM.getMangledName(AliasDecl); | 
 |   llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName); | 
 |   if (Entry && !Entry->isDeclaration()) | 
 |     return; | 
 |  | 
 |   auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(TargetDecl)); | 
 |  | 
 |   // Create the alias with no name. | 
 |   auto *Alias = llvm::GlobalAlias::create(Linkage, "", Aliasee); | 
 |  | 
 |   // Constructors and destructors are always unnamed_addr. | 
 |   Alias->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); | 
 |  | 
 |   // Switch any previous uses to the alias. | 
 |   if (Entry) { | 
 |     assert(Entry->getType() == Aliasee->getType() && | 
 |            "declaration exists with different type"); | 
 |     Alias->takeName(Entry); | 
 |     Entry->replaceAllUsesWith(Alias); | 
 |     Entry->eraseFromParent(); | 
 |   } else { | 
 |     Alias->setName(MangledName); | 
 |   } | 
 |  | 
 |   // Finally, set up the alias with its proper name and attributes. | 
 |   CGM.SetCommonAttributes(AliasDecl, Alias); | 
 | } | 
 |  | 
 | void ItaniumCXXABI::emitCXXStructor(const CXXMethodDecl *MD, | 
 |                                     StructorType Type) { | 
 |   auto *CD = dyn_cast<CXXConstructorDecl>(MD); | 
 |   const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(MD); | 
 |  | 
 |   StructorCodegen CGType = getCodegenToUse(CGM, MD); | 
 |  | 
 |   if (Type == StructorType::Complete) { | 
 |     GlobalDecl CompleteDecl; | 
 |     GlobalDecl BaseDecl; | 
 |     if (CD) { | 
 |       CompleteDecl = GlobalDecl(CD, Ctor_Complete); | 
 |       BaseDecl = GlobalDecl(CD, Ctor_Base); | 
 |     } else { | 
 |       CompleteDecl = GlobalDecl(DD, Dtor_Complete); | 
 |       BaseDecl = GlobalDecl(DD, Dtor_Base); | 
 |     } | 
 |  | 
 |     if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) { | 
 |       emitConstructorDestructorAlias(CGM, CompleteDecl, BaseDecl); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (CGType == StructorCodegen::RAUW) { | 
 |       StringRef MangledName = CGM.getMangledName(CompleteDecl); | 
 |       auto *Aliasee = CGM.GetAddrOfGlobal(BaseDecl); | 
 |       CGM.addReplacement(MangledName, Aliasee); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // The base destructor is equivalent to the base destructor of its | 
 |   // base class if there is exactly one non-virtual base class with a | 
 |   // non-trivial destructor, there are no fields with a non-trivial | 
 |   // destructor, and the body of the destructor is trivial. | 
 |   if (DD && Type == StructorType::Base && CGType != StructorCodegen::COMDAT && | 
 |       !CGM.TryEmitBaseDestructorAsAlias(DD)) | 
 |     return; | 
 |  | 
 |   // FIXME: The deleting destructor is equivalent to the selected operator | 
 |   // delete if: | 
 |   //  * either the delete is a destroying operator delete or the destructor | 
 |   //    would be trivial if it weren't virtual, | 
 |   //  * the conversion from the 'this' parameter to the first parameter of the | 
 |   //    destructor is equivalent to a bitcast, | 
 |   //  * the destructor does not have an implicit "this" return, and | 
 |   //  * the operator delete has the same calling convention and IR function type | 
 |   //    as the destructor. | 
 |   // In such cases we should try to emit the deleting dtor as an alias to the | 
 |   // selected 'operator delete'. | 
 |  | 
 |   llvm::Function *Fn = CGM.codegenCXXStructor(MD, Type); | 
 |  | 
 |   if (CGType == StructorCodegen::COMDAT) { | 
 |     SmallString<256> Buffer; | 
 |     llvm::raw_svector_ostream Out(Buffer); | 
 |     if (DD) | 
 |       getMangleContext().mangleCXXDtorComdat(DD, Out); | 
 |     else | 
 |       getMangleContext().mangleCXXCtorComdat(CD, Out); | 
 |     llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str()); | 
 |     Fn->setComdat(C); | 
 |   } else { | 
 |     CGM.maybeSetTrivialComdat(*MD, *Fn); | 
 |   } | 
 | } | 
 |  | 
 | static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) { | 
 |   // void *__cxa_begin_catch(void*); | 
 |   llvm::FunctionType *FTy = llvm::FunctionType::get( | 
 |       CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); | 
 |  | 
 |   return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); | 
 | } | 
 |  | 
 | static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) { | 
 |   // void __cxa_end_catch(); | 
 |   llvm::FunctionType *FTy = | 
 |       llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false); | 
 |  | 
 |   return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); | 
 | } | 
 |  | 
 | static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) { | 
 |   // void *__cxa_get_exception_ptr(void*); | 
 |   llvm::FunctionType *FTy = llvm::FunctionType::get( | 
 |       CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); | 
 |  | 
 |   return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); | 
 | } | 
 |  | 
 | namespace { | 
 |   /// A cleanup to call __cxa_end_catch.  In many cases, the caught | 
 |   /// exception type lets us state definitively that the thrown exception | 
 |   /// type does not have a destructor.  In particular: | 
 |   ///   - Catch-alls tell us nothing, so we have to conservatively | 
 |   ///     assume that the thrown exception might have a destructor. | 
 |   ///   - Catches by reference behave according to their base types. | 
 |   ///   - Catches of non-record types will only trigger for exceptions | 
 |   ///     of non-record types, which never have destructors. | 
 |   ///   - Catches of record types can trigger for arbitrary subclasses | 
 |   ///     of the caught type, so we have to assume the actual thrown | 
 |   ///     exception type might have a throwing destructor, even if the | 
 |   ///     caught type's destructor is trivial or nothrow. | 
 |   struct CallEndCatch final : EHScopeStack::Cleanup { | 
 |     CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} | 
 |     bool MightThrow; | 
 |  | 
 |     void Emit(CodeGenFunction &CGF, Flags flags) override { | 
 |       if (!MightThrow) { | 
 |         CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); | 
 |         return; | 
 |       } | 
 |  | 
 |       CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// Emits a call to __cxa_begin_catch and enters a cleanup to call | 
 | /// __cxa_end_catch. | 
 | /// | 
 | /// \param EndMightThrow - true if __cxa_end_catch might throw | 
 | static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, | 
 |                                    llvm::Value *Exn, | 
 |                                    bool EndMightThrow) { | 
 |   llvm::CallInst *call = | 
 |     CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); | 
 |  | 
 |   CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); | 
 |  | 
 |   return call; | 
 | } | 
 |  | 
 | /// A "special initializer" callback for initializing a catch | 
 | /// parameter during catch initialization. | 
 | static void InitCatchParam(CodeGenFunction &CGF, | 
 |                            const VarDecl &CatchParam, | 
 |                            Address ParamAddr, | 
 |                            SourceLocation Loc) { | 
 |   // Load the exception from where the landing pad saved it. | 
 |   llvm::Value *Exn = CGF.getExceptionFromSlot(); | 
 |  | 
 |   CanQualType CatchType = | 
 |     CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); | 
 |   llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); | 
 |  | 
 |   // If we're catching by reference, we can just cast the object | 
 |   // pointer to the appropriate pointer. | 
 |   if (isa<ReferenceType>(CatchType)) { | 
 |     QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); | 
 |     bool EndCatchMightThrow = CaughtType->isRecordType(); | 
 |  | 
 |     // __cxa_begin_catch returns the adjusted object pointer. | 
 |     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); | 
 |  | 
 |     // We have no way to tell the personality function that we're | 
 |     // catching by reference, so if we're catching a pointer, | 
 |     // __cxa_begin_catch will actually return that pointer by value. | 
 |     if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { | 
 |       QualType PointeeType = PT->getPointeeType(); | 
 |  | 
 |       // When catching by reference, generally we should just ignore | 
 |       // this by-value pointer and use the exception object instead. | 
 |       if (!PointeeType->isRecordType()) { | 
 |  | 
 |         // Exn points to the struct _Unwind_Exception header, which | 
 |         // we have to skip past in order to reach the exception data. | 
 |         unsigned HeaderSize = | 
 |           CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); | 
 |         AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); | 
 |  | 
 |       // However, if we're catching a pointer-to-record type that won't | 
 |       // work, because the personality function might have adjusted | 
 |       // the pointer.  There's actually no way for us to fully satisfy | 
 |       // the language/ABI contract here:  we can't use Exn because it | 
 |       // might have the wrong adjustment, but we can't use the by-value | 
 |       // pointer because it's off by a level of abstraction. | 
 |       // | 
 |       // The current solution is to dump the adjusted pointer into an | 
 |       // alloca, which breaks language semantics (because changing the | 
 |       // pointer doesn't change the exception) but at least works. | 
 |       // The better solution would be to filter out non-exact matches | 
 |       // and rethrow them, but this is tricky because the rethrow | 
 |       // really needs to be catchable by other sites at this landing | 
 |       // pad.  The best solution is to fix the personality function. | 
 |       } else { | 
 |         // Pull the pointer for the reference type off. | 
 |         llvm::Type *PtrTy = | 
 |           cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); | 
 |  | 
 |         // Create the temporary and write the adjusted pointer into it. | 
 |         Address ExnPtrTmp = | 
 |           CGF.CreateTempAlloca(PtrTy, CGF.getPointerAlign(), "exn.byref.tmp"); | 
 |         llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); | 
 |         CGF.Builder.CreateStore(Casted, ExnPtrTmp); | 
 |  | 
 |         // Bind the reference to the temporary. | 
 |         AdjustedExn = ExnPtrTmp.getPointer(); | 
 |       } | 
 |     } | 
 |  | 
 |     llvm::Value *ExnCast = | 
 |       CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); | 
 |     CGF.Builder.CreateStore(ExnCast, ParamAddr); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Scalars and complexes. | 
 |   TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); | 
 |   if (TEK != TEK_Aggregate) { | 
 |     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); | 
 |  | 
 |     // If the catch type is a pointer type, __cxa_begin_catch returns | 
 |     // the pointer by value. | 
 |     if (CatchType->hasPointerRepresentation()) { | 
 |       llvm::Value *CastExn = | 
 |         CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); | 
 |  | 
 |       switch (CatchType.getQualifiers().getObjCLifetime()) { | 
 |       case Qualifiers::OCL_Strong: | 
 |         CastExn = CGF.EmitARCRetainNonBlock(CastExn); | 
 |         // fallthrough | 
 |  | 
 |       case Qualifiers::OCL_None: | 
 |       case Qualifiers::OCL_ExplicitNone: | 
 |       case Qualifiers::OCL_Autoreleasing: | 
 |         CGF.Builder.CreateStore(CastExn, ParamAddr); | 
 |         return; | 
 |  | 
 |       case Qualifiers::OCL_Weak: | 
 |         CGF.EmitARCInitWeak(ParamAddr, CastExn); | 
 |         return; | 
 |       } | 
 |       llvm_unreachable("bad ownership qualifier!"); | 
 |     } | 
 |  | 
 |     // Otherwise, it returns a pointer into the exception object. | 
 |  | 
 |     llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok | 
 |     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); | 
 |  | 
 |     LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType); | 
 |     LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType); | 
 |     switch (TEK) { | 
 |     case TEK_Complex: | 
 |       CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, | 
 |                              /*init*/ true); | 
 |       return; | 
 |     case TEK_Scalar: { | 
 |       llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); | 
 |       CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); | 
 |       return; | 
 |     } | 
 |     case TEK_Aggregate: | 
 |       llvm_unreachable("evaluation kind filtered out!"); | 
 |     } | 
 |     llvm_unreachable("bad evaluation kind"); | 
 |   } | 
 |  | 
 |   assert(isa<RecordType>(CatchType) && "unexpected catch type!"); | 
 |   auto catchRD = CatchType->getAsCXXRecordDecl(); | 
 |   CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(catchRD); | 
 |  | 
 |   llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok | 
 |  | 
 |   // Check for a copy expression.  If we don't have a copy expression, | 
 |   // that means a trivial copy is okay. | 
 |   const Expr *copyExpr = CatchParam.getInit(); | 
 |   if (!copyExpr) { | 
 |     llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); | 
 |     Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), | 
 |                         caughtExnAlignment); | 
 |     LValue Dest = CGF.MakeAddrLValue(ParamAddr, CatchType); | 
 |     LValue Src = CGF.MakeAddrLValue(adjustedExn, CatchType); | 
 |     CGF.EmitAggregateCopy(Dest, Src, CatchType, AggValueSlot::DoesNotOverlap); | 
 |     return; | 
 |   } | 
 |  | 
 |   // We have to call __cxa_get_exception_ptr to get the adjusted | 
 |   // pointer before copying. | 
 |   llvm::CallInst *rawAdjustedExn = | 
 |     CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); | 
 |  | 
 |   // Cast that to the appropriate type. | 
 |   Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), | 
 |                       caughtExnAlignment); | 
 |  | 
 |   // The copy expression is defined in terms of an OpaqueValueExpr. | 
 |   // Find it and map it to the adjusted expression. | 
 |   CodeGenFunction::OpaqueValueMapping | 
 |     opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), | 
 |            CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); | 
 |  | 
 |   // Call the copy ctor in a terminate scope. | 
 |   CGF.EHStack.pushTerminate(); | 
 |  | 
 |   // Perform the copy construction. | 
 |   CGF.EmitAggExpr(copyExpr, | 
 |                   AggValueSlot::forAddr(ParamAddr, Qualifiers(), | 
 |                                         AggValueSlot::IsNotDestructed, | 
 |                                         AggValueSlot::DoesNotNeedGCBarriers, | 
 |                                         AggValueSlot::IsNotAliased, | 
 |                                         AggValueSlot::DoesNotOverlap)); | 
 |  | 
 |   // Leave the terminate scope. | 
 |   CGF.EHStack.popTerminate(); | 
 |  | 
 |   // Undo the opaque value mapping. | 
 |   opaque.pop(); | 
 |  | 
 |   // Finally we can call __cxa_begin_catch. | 
 |   CallBeginCatch(CGF, Exn, true); | 
 | } | 
 |  | 
 | /// Begins a catch statement by initializing the catch variable and | 
 | /// calling __cxa_begin_catch. | 
 | void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF, | 
 |                                    const CXXCatchStmt *S) { | 
 |   // We have to be very careful with the ordering of cleanups here: | 
 |   //   C++ [except.throw]p4: | 
 |   //     The destruction [of the exception temporary] occurs | 
 |   //     immediately after the destruction of the object declared in | 
 |   //     the exception-declaration in the handler. | 
 |   // | 
 |   // So the precise ordering is: | 
 |   //   1.  Construct catch variable. | 
 |   //   2.  __cxa_begin_catch | 
 |   //   3.  Enter __cxa_end_catch cleanup | 
 |   //   4.  Enter dtor cleanup | 
 |   // | 
 |   // We do this by using a slightly abnormal initialization process. | 
 |   // Delegation sequence: | 
 |   //   - ExitCXXTryStmt opens a RunCleanupsScope | 
 |   //     - EmitAutoVarAlloca creates the variable and debug info | 
 |   //       - InitCatchParam initializes the variable from the exception | 
 |   //       - CallBeginCatch calls __cxa_begin_catch | 
 |   //       - CallBeginCatch enters the __cxa_end_catch cleanup | 
 |   //     - EmitAutoVarCleanups enters the variable destructor cleanup | 
 |   //   - EmitCXXTryStmt emits the code for the catch body | 
 |   //   - EmitCXXTryStmt close the RunCleanupsScope | 
 |  | 
 |   VarDecl *CatchParam = S->getExceptionDecl(); | 
 |   if (!CatchParam) { | 
 |     llvm::Value *Exn = CGF.getExceptionFromSlot(); | 
 |     CallBeginCatch(CGF, Exn, true); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Emit the local. | 
 |   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); | 
 |   InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getLocStart()); | 
 |   CGF.EmitAutoVarCleanups(var); | 
 | } | 
 |  | 
 | /// Get or define the following function: | 
 | ///   void @__clang_call_terminate(i8* %exn) nounwind noreturn | 
 | /// This code is used only in C++. | 
 | static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) { | 
 |   llvm::FunctionType *fnTy = | 
 |     llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false); | 
 |   llvm::Constant *fnRef = CGM.CreateRuntimeFunction( | 
 |       fnTy, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true); | 
 |  | 
 |   llvm::Function *fn = dyn_cast<llvm::Function>(fnRef); | 
 |   if (fn && fn->empty()) { | 
 |     fn->setDoesNotThrow(); | 
 |     fn->setDoesNotReturn(); | 
 |  | 
 |     // What we really want is to massively penalize inlining without | 
 |     // forbidding it completely.  The difference between that and | 
 |     // 'noinline' is negligible. | 
 |     fn->addFnAttr(llvm::Attribute::NoInline); | 
 |  | 
 |     // Allow this function to be shared across translation units, but | 
 |     // we don't want it to turn into an exported symbol. | 
 |     fn->setLinkage(llvm::Function::LinkOnceODRLinkage); | 
 |     fn->setVisibility(llvm::Function::HiddenVisibility); | 
 |     if (CGM.supportsCOMDAT()) | 
 |       fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName())); | 
 |  | 
 |     // Set up the function. | 
 |     llvm::BasicBlock *entry = | 
 |       llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); | 
 |     CGBuilderTy builder(CGM, entry); | 
 |  | 
 |     // Pull the exception pointer out of the parameter list. | 
 |     llvm::Value *exn = &*fn->arg_begin(); | 
 |  | 
 |     // Call __cxa_begin_catch(exn). | 
 |     llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); | 
 |     catchCall->setDoesNotThrow(); | 
 |     catchCall->setCallingConv(CGM.getRuntimeCC()); | 
 |  | 
 |     // Call std::terminate(). | 
 |     llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn()); | 
 |     termCall->setDoesNotThrow(); | 
 |     termCall->setDoesNotReturn(); | 
 |     termCall->setCallingConv(CGM.getRuntimeCC()); | 
 |  | 
 |     // std::terminate cannot return. | 
 |     builder.CreateUnreachable(); | 
 |   } | 
 |  | 
 |   return fnRef; | 
 | } | 
 |  | 
 | llvm::CallInst * | 
 | ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, | 
 |                                                    llvm::Value *Exn) { | 
 |   // In C++, we want to call __cxa_begin_catch() before terminating. | 
 |   if (Exn) { | 
 |     assert(CGF.CGM.getLangOpts().CPlusPlus); | 
 |     return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn); | 
 |   } | 
 |   return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn()); | 
 | } | 
 |  | 
 | std::pair<llvm::Value *, const CXXRecordDecl *> | 
 | ItaniumCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, | 
 |                              const CXXRecordDecl *RD) { | 
 |   return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; | 
 | } | 
 |  | 
 | void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction &CGF, | 
 |                                        const CXXCatchStmt *C) { | 
 |   if (CGF.getTarget().hasFeature("exception-handling")) | 
 |     CGF.EHStack.pushCleanup<CatchRetScope>( | 
 |         NormalCleanup, cast<llvm::CatchPadInst>(CGF.CurrentFuncletPad)); | 
 |   ItaniumCXXABI::emitBeginCatch(CGF, C); | 
 | } |