| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TreeTransform.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ExprOpenMP.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/AnalysisBasedWarnings.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/DelayedDiagnostic.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Overload.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaFixItUtils.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Template.h" |
| #include "llvm/Support/ConvertUTF.h" |
| using namespace clang; |
| using namespace sema; |
| |
| /// Determine whether the use of this declaration is valid, without |
| /// emitting diagnostics. |
| bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { |
| // See if this is an auto-typed variable whose initializer we are parsing. |
| if (ParsingInitForAutoVars.count(D)) |
| return false; |
| |
| // See if this is a deleted function. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isDeleted()) |
| return false; |
| |
| // If the function has a deduced return type, and we can't deduce it, |
| // then we can't use it either. |
| if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
| DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) |
| return false; |
| } |
| |
| // See if this function is unavailable. |
| if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && |
| cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) |
| return false; |
| |
| return true; |
| } |
| |
| static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { |
| // Warn if this is used but marked unused. |
| if (const auto *A = D->getAttr<UnusedAttr>()) { |
| // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) |
| // should diagnose them. |
| if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && |
| A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { |
| const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext()); |
| if (DC && !DC->hasAttr<UnusedAttr>()) |
| S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName(); |
| } |
| } |
| } |
| |
| /// Emit a note explaining that this function is deleted. |
| void Sema::NoteDeletedFunction(FunctionDecl *Decl) { |
| assert(Decl->isDeleted()); |
| |
| CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl); |
| |
| if (Method && Method->isDeleted() && Method->isDefaulted()) { |
| // If the method was explicitly defaulted, point at that declaration. |
| if (!Method->isImplicit()) |
| Diag(Decl->getLocation(), diag::note_implicitly_deleted); |
| |
| // Try to diagnose why this special member function was implicitly |
| // deleted. This might fail, if that reason no longer applies. |
| CXXSpecialMember CSM = getSpecialMember(Method); |
| if (CSM != CXXInvalid) |
| ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true); |
| |
| return; |
| } |
| |
| auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl); |
| if (Ctor && Ctor->isInheritingConstructor()) |
| return NoteDeletedInheritingConstructor(Ctor); |
| |
| Diag(Decl->getLocation(), diag::note_availability_specified_here) |
| << Decl << true; |
| } |
| |
| /// Determine whether a FunctionDecl was ever declared with an |
| /// explicit storage class. |
| static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { |
| for (auto I : D->redecls()) { |
| if (I->getStorageClass() != SC_None) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check whether we're in an extern inline function and referring to a |
| /// variable or function with internal linkage (C11 6.7.4p3). |
| /// |
| /// This is only a warning because we used to silently accept this code, but |
| /// in many cases it will not behave correctly. This is not enabled in C++ mode |
| /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) |
| /// and so while there may still be user mistakes, most of the time we can't |
| /// prove that there are errors. |
| static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, |
| const NamedDecl *D, |
| SourceLocation Loc) { |
| // This is disabled under C++; there are too many ways for this to fire in |
| // contexts where the warning is a false positive, or where it is technically |
| // correct but benign. |
| if (S.getLangOpts().CPlusPlus) |
| return; |
| |
| // Check if this is an inlined function or method. |
| FunctionDecl *Current = S.getCurFunctionDecl(); |
| if (!Current) |
| return; |
| if (!Current->isInlined()) |
| return; |
| if (!Current->isExternallyVisible()) |
| return; |
| |
| // Check if the decl has internal linkage. |
| if (D->getFormalLinkage() != InternalLinkage) |
| return; |
| |
| // Downgrade from ExtWarn to Extension if |
| // (1) the supposedly external inline function is in the main file, |
| // and probably won't be included anywhere else. |
| // (2) the thing we're referencing is a pure function. |
| // (3) the thing we're referencing is another inline function. |
| // This last can give us false negatives, but it's better than warning on |
| // wrappers for simple C library functions. |
| const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D); |
| bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); |
| if (!DowngradeWarning && UsedFn) |
| DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>(); |
| |
| S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet |
| : diag::ext_internal_in_extern_inline) |
| << /*IsVar=*/!UsedFn << D; |
| |
| S.MaybeSuggestAddingStaticToDecl(Current); |
| |
| S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) |
| << D; |
| } |
| |
| void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { |
| const FunctionDecl *First = Cur->getFirstDecl(); |
| |
| // Suggest "static" on the function, if possible. |
| if (!hasAnyExplicitStorageClass(First)) { |
| SourceLocation DeclBegin = First->getSourceRange().getBegin(); |
| Diag(DeclBegin, diag::note_convert_inline_to_static) |
| << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); |
| } |
| } |
| |
| /// Determine whether the use of this declaration is valid, and |
| /// emit any corresponding diagnostics. |
| /// |
| /// This routine diagnoses various problems with referencing |
| /// declarations that can occur when using a declaration. For example, |
| /// it might warn if a deprecated or unavailable declaration is being |
| /// used, or produce an error (and return true) if a C++0x deleted |
| /// function is being used. |
| /// |
| /// \returns true if there was an error (this declaration cannot be |
| /// referenced), false otherwise. |
| /// |
| bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, |
| const ObjCInterfaceDecl *UnknownObjCClass, |
| bool ObjCPropertyAccess, |
| bool AvoidPartialAvailabilityChecks) { |
| SourceLocation Loc = Locs.front(); |
| if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) { |
| // If there were any diagnostics suppressed by template argument deduction, |
| // emit them now. |
| auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); |
| if (Pos != SuppressedDiagnostics.end()) { |
| for (const PartialDiagnosticAt &Suppressed : Pos->second) |
| Diag(Suppressed.first, Suppressed.second); |
| |
| // Clear out the list of suppressed diagnostics, so that we don't emit |
| // them again for this specialization. However, we don't obsolete this |
| // entry from the table, because we want to avoid ever emitting these |
| // diagnostics again. |
| Pos->second.clear(); |
| } |
| |
| // C++ [basic.start.main]p3: |
| // The function 'main' shall not be used within a program. |
| if (cast<FunctionDecl>(D)->isMain()) |
| Diag(Loc, diag::ext_main_used); |
| } |
| |
| // See if this is an auto-typed variable whose initializer we are parsing. |
| if (ParsingInitForAutoVars.count(D)) { |
| if (isa<BindingDecl>(D)) { |
| Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) |
| << D->getDeclName(); |
| } else { |
| Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) |
| << D->getDeclName() << cast<VarDecl>(D)->getType(); |
| } |
| return true; |
| } |
| |
| // See if this is a deleted function. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isDeleted()) { |
| auto *Ctor = dyn_cast<CXXConstructorDecl>(FD); |
| if (Ctor && Ctor->isInheritingConstructor()) |
| Diag(Loc, diag::err_deleted_inherited_ctor_use) |
| << Ctor->getParent() |
| << Ctor->getInheritedConstructor().getConstructor()->getParent(); |
| else |
| Diag(Loc, diag::err_deleted_function_use); |
| NoteDeletedFunction(FD); |
| return true; |
| } |
| |
| // If the function has a deduced return type, and we can't deduce it, |
| // then we can't use it either. |
| if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
| DeduceReturnType(FD, Loc)) |
| return true; |
| |
| if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) |
| return true; |
| } |
| |
| auto getReferencedObjCProp = [](const NamedDecl *D) -> |
| const ObjCPropertyDecl * { |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) |
| return MD->findPropertyDecl(); |
| return nullptr; |
| }; |
| if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { |
| if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) |
| return true; |
| } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { |
| return true; |
| } |
| |
| // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions |
| // Only the variables omp_in and omp_out are allowed in the combiner. |
| // Only the variables omp_priv and omp_orig are allowed in the |
| // initializer-clause. |
| auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext); |
| if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && |
| isa<VarDecl>(D)) { |
| Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) |
| << getCurFunction()->HasOMPDeclareReductionCombiner; |
| Diag(D->getLocation(), diag::note_entity_declared_at) << D; |
| return true; |
| } |
| |
| DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, |
| AvoidPartialAvailabilityChecks); |
| |
| DiagnoseUnusedOfDecl(*this, D, Loc); |
| |
| diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); |
| |
| return false; |
| } |
| |
| /// Retrieve the message suffix that should be added to a |
| /// diagnostic complaining about the given function being deleted or |
| /// unavailable. |
| std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) { |
| std::string Message; |
| if (FD->getAvailability(&Message)) |
| return ": " + Message; |
| |
| return std::string(); |
| } |
| |
| /// DiagnoseSentinelCalls - This routine checks whether a call or |
| /// message-send is to a declaration with the sentinel attribute, and |
| /// if so, it checks that the requirements of the sentinel are |
| /// satisfied. |
| void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, |
| ArrayRef<Expr *> Args) { |
| const SentinelAttr *attr = D->getAttr<SentinelAttr>(); |
| if (!attr) |
| return; |
| |
| // The number of formal parameters of the declaration. |
| unsigned numFormalParams; |
| |
| // The kind of declaration. This is also an index into a %select in |
| // the diagnostic. |
| enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; |
| |
| if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| numFormalParams = MD->param_size(); |
| calleeType = CT_Method; |
| } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| numFormalParams = FD->param_size(); |
| calleeType = CT_Function; |
| } else if (isa<VarDecl>(D)) { |
| QualType type = cast<ValueDecl>(D)->getType(); |
| const FunctionType *fn = nullptr; |
| if (const PointerType *ptr = type->getAs<PointerType>()) { |
| fn = ptr->getPointeeType()->getAs<FunctionType>(); |
| if (!fn) return; |
| calleeType = CT_Function; |
| } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { |
| fn = ptr->getPointeeType()->castAs<FunctionType>(); |
| calleeType = CT_Block; |
| } else { |
| return; |
| } |
| |
| if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { |
| numFormalParams = proto->getNumParams(); |
| } else { |
| numFormalParams = 0; |
| } |
| } else { |
| return; |
| } |
| |
| // "nullPos" is the number of formal parameters at the end which |
| // effectively count as part of the variadic arguments. This is |
| // useful if you would prefer to not have *any* formal parameters, |
| // but the language forces you to have at least one. |
| unsigned nullPos = attr->getNullPos(); |
| assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"); |
| numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); |
| |
| // The number of arguments which should follow the sentinel. |
| unsigned numArgsAfterSentinel = attr->getSentinel(); |
| |
| // If there aren't enough arguments for all the formal parameters, |
| // the sentinel, and the args after the sentinel, complain. |
| if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { |
| Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); |
| Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); |
| return; |
| } |
| |
| // Otherwise, find the sentinel expression. |
| Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; |
| if (!sentinelExpr) return; |
| if (sentinelExpr->isValueDependent()) return; |
| if (Context.isSentinelNullExpr(sentinelExpr)) return; |
| |
| // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', |
| // or 'NULL' if those are actually defined in the context. Only use |
| // 'nil' for ObjC methods, where it's much more likely that the |
| // variadic arguments form a list of object pointers. |
| SourceLocation MissingNilLoc |
| = getLocForEndOfToken(sentinelExpr->getLocEnd()); |
| std::string NullValue; |
| if (calleeType == CT_Method && PP.isMacroDefined("nil")) |
| NullValue = "nil"; |
| else if (getLangOpts().CPlusPlus11) |
| NullValue = "nullptr"; |
| else if (PP.isMacroDefined("NULL")) |
| NullValue = "NULL"; |
| else |
| NullValue = "(void*) 0"; |
| |
| if (MissingNilLoc.isInvalid()) |
| Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); |
| else |
| Diag(MissingNilLoc, diag::warn_missing_sentinel) |
| << int(calleeType) |
| << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); |
| Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); |
| } |
| |
| SourceRange Sema::getExprRange(Expr *E) const { |
| return E ? E->getSourceRange() : SourceRange(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Standard Promotions and Conversions |
| //===----------------------------------------------------------------------===// |
| |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
| ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { |
| // Handle any placeholder expressions which made it here. |
| if (E->getType()->isPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.get(); |
| } |
| |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); |
| |
| if (Ty->isFunctionType()) { |
| if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) |
| if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) |
| if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) |
| return ExprError(); |
| |
| E = ImpCastExprToType(E, Context.getPointerType(Ty), |
| CK_FunctionToPointerDecay).get(); |
| } else if (Ty->isArrayType()) { |
| // In C90 mode, arrays only promote to pointers if the array expression is |
| // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has |
| // type 'array of type' is converted to an expression that has type 'pointer |
| // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression |
| // that has type 'array of type' ...". The relevant change is "an lvalue" |
| // (C90) to "an expression" (C99). |
| // |
| // C++ 4.2p1: |
| // An lvalue or rvalue of type "array of N T" or "array of unknown bound of |
| // T" can be converted to an rvalue of type "pointer to T". |
| // |
| if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) |
| E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), |
| CK_ArrayToPointerDecay).get(); |
| } |
| return E; |
| } |
| |
| static void CheckForNullPointerDereference(Sema &S, Expr *E) { |
| // Check to see if we are dereferencing a null pointer. If so, |
| // and if not volatile-qualified, this is undefined behavior that the |
| // optimizer will delete, so warn about it. People sometimes try to use this |
| // to get a deterministic trap and are surprised by clang's behavior. This |
| // only handles the pattern "*null", which is a very syntactic check. |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) |
| if (UO->getOpcode() == UO_Deref && |
| UO->getSubExpr()->IgnoreParenCasts()-> |
| isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) && |
| !UO->getType().isVolatileQualified()) { |
| S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| S.PDiag(diag::warn_indirection_through_null) |
| << UO->getSubExpr()->getSourceRange()); |
| S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| S.PDiag(diag::note_indirection_through_null)); |
| } |
| } |
| |
| static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, |
| SourceLocation AssignLoc, |
| const Expr* RHS) { |
| const ObjCIvarDecl *IV = OIRE->getDecl(); |
| if (!IV) |
| return; |
| |
| DeclarationName MemberName = IV->getDeclName(); |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| if (!Member || !Member->isStr("isa")) |
| return; |
| |
| const Expr *Base = OIRE->getBase(); |
| QualType BaseType = Base->getType(); |
| if (OIRE->isArrow()) |
| BaseType = BaseType->getPointeeType(); |
| if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) |
| if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { |
| ObjCInterfaceDecl *ClassDeclared = nullptr; |
| ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); |
| if (!ClassDeclared->getSuperClass() |
| && (*ClassDeclared->ivar_begin()) == IV) { |
| if (RHS) { |
| NamedDecl *ObjectSetClass = |
| S.LookupSingleName(S.TUScope, |
| &S.Context.Idents.get("object_setClass"), |
| SourceLocation(), S.LookupOrdinaryName); |
| if (ObjectSetClass) { |
| SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd()); |
| S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) << |
| FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") << |
| FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(), |
| AssignLoc), ",") << |
| FixItHint::CreateInsertion(RHSLocEnd, ")"); |
| } |
| else |
| S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); |
| } else { |
| NamedDecl *ObjectGetClass = |
| S.LookupSingleName(S.TUScope, |
| &S.Context.Idents.get("object_getClass"), |
| SourceLocation(), S.LookupOrdinaryName); |
| if (ObjectGetClass) |
| S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) << |
| FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") << |
| FixItHint::CreateReplacement( |
| SourceRange(OIRE->getOpLoc(), |
| OIRE->getLocEnd()), ")"); |
| else |
| S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); |
| } |
| S.Diag(IV->getLocation(), diag::note_ivar_decl); |
| } |
| } |
| } |
| |
| ExprResult Sema::DefaultLvalueConversion(Expr *E) { |
| // Handle any placeholder expressions which made it here. |
| if (E->getType()->isPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.get(); |
| } |
| |
| // C++ [conv.lval]p1: |
| // A glvalue of a non-function, non-array type T can be |
| // converted to a prvalue. |
| if (!E->isGLValue()) return E; |
| |
| QualType T = E->getType(); |
| assert(!T.isNull() && "r-value conversion on typeless expression?"); |
| |
| // We don't want to throw lvalue-to-rvalue casts on top of |
| // expressions of certain types in C++. |
| if (getLangOpts().CPlusPlus && |
| (E->getType() == Context.OverloadTy || |
| T->isDependentType() || |
| T->isRecordType())) |
| return E; |
| |
| // The C standard is actually really unclear on this point, and |
| // DR106 tells us what the result should be but not why. It's |
| // generally best to say that void types just doesn't undergo |
| // lvalue-to-rvalue at all. Note that expressions of unqualified |
| // 'void' type are never l-values, but qualified void can be. |
| if (T->isVoidType()) |
| return E; |
| |
| // OpenCL usually rejects direct accesses to values of 'half' type. |
| if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") && |
| T->isHalfType()) { |
| Diag(E->getExprLoc(), diag::err_opencl_half_load_store) |
| << 0 << T; |
| return ExprError(); |
| } |
| |
| CheckForNullPointerDereference(*this, E); |
| if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) { |
| NamedDecl *ObjectGetClass = LookupSingleName(TUScope, |
| &Context.Idents.get("object_getClass"), |
| SourceLocation(), LookupOrdinaryName); |
| if (ObjectGetClass) |
| Diag(E->getExprLoc(), diag::warn_objc_isa_use) << |
| FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") << |
| FixItHint::CreateReplacement( |
| SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); |
| else |
| Diag(E->getExprLoc(), diag::warn_objc_isa_use); |
| } |
| else if (const ObjCIvarRefExpr *OIRE = |
| dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts())) |
| DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); |
| |
| // C++ [conv.lval]p1: |
| // [...] If T is a non-class type, the type of the prvalue is the |
| // cv-unqualified version of T. Otherwise, the type of the |
| // rvalue is T. |
| // |
| // C99 6.3.2.1p2: |
| // If the lvalue has qualified type, the value has the unqualified |
| // version of the type of the lvalue; otherwise, the value has the |
| // type of the lvalue. |
| if (T.hasQualifiers()) |
| T = T.getUnqualifiedType(); |
| |
| // Under the MS ABI, lock down the inheritance model now. |
| if (T->isMemberPointerType() && |
| Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| (void)isCompleteType(E->getExprLoc(), T); |
| |
| UpdateMarkingForLValueToRValue(E); |
| |
| // Loading a __weak object implicitly retains the value, so we need a cleanup to |
| // balance that. |
| if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
| Cleanup.setExprNeedsCleanups(true); |
| |
| ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E, |
| nullptr, VK_RValue); |
| |
| // C11 6.3.2.1p2: |
| // ... if the lvalue has atomic type, the value has the non-atomic version |
| // of the type of the lvalue ... |
| if (const AtomicType *Atomic = T->getAs<AtomicType>()) { |
| T = Atomic->getValueType().getUnqualifiedType(); |
| Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), |
| nullptr, VK_RValue); |
| } |
| |
| return Res; |
| } |
| |
| ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { |
| ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); |
| if (Res.isInvalid()) |
| return ExprError(); |
| Res = DefaultLvalueConversion(Res.get()); |
| if (Res.isInvalid()) |
| return ExprError(); |
| return Res; |
| } |
| |
| /// CallExprUnaryConversions - a special case of an unary conversion |
| /// performed on a function designator of a call expression. |
| ExprResult Sema::CallExprUnaryConversions(Expr *E) { |
| QualType Ty = E->getType(); |
| ExprResult Res = E; |
| // Only do implicit cast for a function type, but not for a pointer |
| // to function type. |
| if (Ty->isFunctionType()) { |
| Res = ImpCastExprToType(E, Context.getPointerType(Ty), |
| CK_FunctionToPointerDecay).get(); |
| if (Res.isInvalid()) |
| return ExprError(); |
| } |
| Res = DefaultLvalueConversion(Res.get()); |
| if (Res.isInvalid()) |
| return ExprError(); |
| return Res.get(); |
| } |
| |
| /// UsualUnaryConversions - Performs various conversions that are common to most |
| /// operators (C99 6.3). The conversions of array and function types are |
| /// sometimes suppressed. For example, the array->pointer conversion doesn't |
| /// apply if the array is an argument to the sizeof or address (&) operators. |
| /// In these instances, this routine should *not* be called. |
| ExprResult Sema::UsualUnaryConversions(Expr *E) { |
| // First, convert to an r-value. |
| ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
| if (Res.isInvalid()) |
| return ExprError(); |
| E = Res.get(); |
| |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); |
| |
| // Half FP have to be promoted to float unless it is natively supported |
| if (Ty->isHalfType() && !getLangOpts().NativeHalfType) |
| return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); |
| |
| // Try to perform integral promotions if the object has a theoretically |
| // promotable type. |
| if (Ty->isIntegralOrUnscopedEnumerationType()) { |
| // C99 6.3.1.1p2: |
| // |
| // The following may be used in an expression wherever an int or |
| // unsigned int may be used: |
| // - an object or expression with an integer type whose integer |
| // conversion rank is less than or equal to the rank of int |
| // and unsigned int. |
| // - A bit-field of type _Bool, int, signed int, or unsigned int. |
| // |
| // If an int can represent all values of the original type, the |
| // value is converted to an int; otherwise, it is converted to an |
| // unsigned int. These are called the integer promotions. All |
| // other types are unchanged by the integer promotions. |
| |
| QualType PTy = Context.isPromotableBitField(E); |
| if (!PTy.isNull()) { |
| E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); |
| return E; |
| } |
| if (Ty->isPromotableIntegerType()) { |
| QualType PT = Context.getPromotedIntegerType(Ty); |
| E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); |
| return E; |
| } |
| } |
| return E; |
| } |
| |
| /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that |
| /// do not have a prototype. Arguments that have type float or __fp16 |
| /// are promoted to double. All other argument types are converted by |
| /// UsualUnaryConversions(). |
| ExprResult Sema::DefaultArgumentPromotion(Expr *E) { |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); |
| |
| ExprResult Res = UsualUnaryConversions(E); |
| if (Res.isInvalid()) |
| return ExprError(); |
| E = Res.get(); |
| |
| // If this is a 'float' or '__fp16' (CVR qualified or typedef) |
| // promote to double. |
| // Note that default argument promotion applies only to float (and |
| // half/fp16); it does not apply to _Float16. |
| const BuiltinType *BTy = Ty->getAs<BuiltinType>(); |
| if (BTy && (BTy->getKind() == BuiltinType::Half || |
| BTy->getKind() == BuiltinType::Float)) { |
| if (getLangOpts().OpenCL && |
| !getOpenCLOptions().isEnabled("cl_khr_fp64")) { |
| if (BTy->getKind() == BuiltinType::Half) { |
| E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); |
| } |
| } else { |
| E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); |
| } |
| } |
| |
| // C++ performs lvalue-to-rvalue conversion as a default argument |
| // promotion, even on class types, but note: |
| // C++11 [conv.lval]p2: |
| // When an lvalue-to-rvalue conversion occurs in an unevaluated |
| // operand or a subexpression thereof the value contained in the |
| // referenced object is not accessed. Otherwise, if the glvalue |
| // has a class type, the conversion copy-initializes a temporary |
| // of type T from the glvalue and the result of the conversion |
| // is a prvalue for the temporary. |
| // FIXME: add some way to gate this entire thing for correctness in |
| // potentially potentially evaluated contexts. |
| if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { |
| ExprResult Temp = PerformCopyInitialization( |
| InitializedEntity::InitializeTemporary(E->getType()), |
| E->getExprLoc(), E); |
| if (Temp.isInvalid()) |
| return ExprError(); |
| E = Temp.get(); |
| } |
| |
| return E; |
| } |
| |
| /// Determine the degree of POD-ness for an expression. |
| /// Incomplete types are considered POD, since this check can be performed |
| /// when we're in an unevaluated context. |
| Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { |
| if (Ty->isIncompleteType()) { |
| // C++11 [expr.call]p7: |
| // After these conversions, if the argument does not have arithmetic, |
| // enumeration, pointer, pointer to member, or class type, the program |
| // is ill-formed. |
| // |
| // Since we've already performed array-to-pointer and function-to-pointer |
| // decay, the only such type in C++ is cv void. This also handles |
| // initializer lists as variadic arguments. |
| if (Ty->isVoidType()) |
| return VAK_Invalid; |
| |
| if (Ty->isObjCObjectType()) |
| return VAK_Invalid; |
| return VAK_Valid; |
| } |
| |
| if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) |
| return VAK_Invalid; |
| |
| if (Ty.isCXX98PODType(Context)) |
| return VAK_Valid; |
| |
| // C++11 [expr.call]p7: |
| // Passing a potentially-evaluated argument of class type (Clause 9) |
| // having a non-trivial copy constructor, a non-trivial move constructor, |
| // or a non-trivial destructor, with no corresponding parameter, |
| // is conditionally-supported with implementation-defined semantics. |
| if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) |
| if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) |
| if (!Record->hasNonTrivialCopyConstructor() && |
| !Record->hasNonTrivialMoveConstructor() && |
| !Record->hasNonTrivialDestructor()) |
| return VAK_ValidInCXX11; |
| |
| if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) |
| return VAK_Valid; |
| |
| if (Ty->isObjCObjectType()) |
| return VAK_Invalid; |
| |
| if (getLangOpts().MSVCCompat) |
| return VAK_MSVCUndefined; |
| |
| // FIXME: In C++11, these cases are conditionally-supported, meaning we're |
| // permitted to reject them. We should consider doing so. |
| return VAK_Undefined; |
| } |
| |
| void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { |
| // Don't allow one to pass an Objective-C interface to a vararg. |
| const QualType &Ty = E->getType(); |
| VarArgKind VAK = isValidVarArgType(Ty); |
| |
| // Complain about passing non-POD types through varargs. |
| switch (VAK) { |
| case VAK_ValidInCXX11: |
| DiagRuntimeBehavior( |
| E->getLocStart(), nullptr, |
| PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) |
| << Ty << CT); |
| LLVM_FALLTHROUGH; |
| case VAK_Valid: |
| if (Ty->isRecordType()) { |
| // This is unlikely to be what the user intended. If the class has a |
| // 'c_str' member function, the user probably meant to call that. |
| DiagRuntimeBehavior(E->getLocStart(), nullptr, |
| PDiag(diag::warn_pass_class_arg_to_vararg) |
| << Ty << CT << hasCStrMethod(E) << ".c_str()"); |
| } |
| break; |
| |
| case VAK_Undefined: |
| case VAK_MSVCUndefined: |
| DiagRuntimeBehavior( |
| E->getLocStart(), nullptr, |
| PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) |
| << getLangOpts().CPlusPlus11 << Ty << CT); |
| break; |
| |
| case VAK_Invalid: |
| if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) |
| Diag(E->getLocStart(), |
| diag::err_cannot_pass_non_trivial_c_struct_to_vararg) << Ty << CT; |
| else if (Ty->isObjCObjectType()) |
| DiagRuntimeBehavior( |
| E->getLocStart(), nullptr, |
| PDiag(diag::err_cannot_pass_objc_interface_to_vararg) |
| << Ty << CT); |
| else |
| Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg) |
| << isa<InitListExpr>(E) << Ty << CT; |
| break; |
| } |
| } |
| |
| /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but |
| /// will create a trap if the resulting type is not a POD type. |
| ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, |
| FunctionDecl *FDecl) { |
| if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { |
| // Strip the unbridged-cast placeholder expression off, if applicable. |
| if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && |
| (CT == VariadicMethod || |
| (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { |
| E = stripARCUnbridgedCast(E); |
| |
| // Otherwise, do normal placeholder checking. |
| } else { |
| ExprResult ExprRes = CheckPlaceholderExpr(E); |
| if (ExprRes.isInvalid()) |
| return ExprError(); |
| E = ExprRes.get(); |
| } |
| } |
| |
| ExprResult ExprRes = DefaultArgumentPromotion(E); |
| if (ExprRes.isInvalid()) |
| return ExprError(); |
| E = ExprRes.get(); |
| |
| // Diagnostics regarding non-POD argument types are |
| // emitted along with format string checking in Sema::CheckFunctionCall(). |
| if (isValidVarArgType(E->getType()) == VAK_Undefined) { |
| // Turn this into a trap. |
| CXXScopeSpec SS; |
| SourceLocation TemplateKWLoc; |
| UnqualifiedId Name; |
| Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), |
| E->getLocStart()); |
| ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, |
| Name, true, false); |
| if (TrapFn.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), |
| E->getLocStart(), None, |
| E->getLocEnd()); |
| if (Call.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma, |
| Call.get(), E); |
| if (Comma.isInvalid()) |
| return ExprError(); |
| return Comma.get(); |
| } |
| |
| if (!getLangOpts().CPlusPlus && |
| RequireCompleteType(E->getExprLoc(), E->getType(), |
| diag::err_call_incomplete_argument)) |
| return ExprError(); |
| |
| return E; |
| } |
| |
| /// Converts an integer to complex float type. Helper function of |
| /// UsualArithmeticConversions() |
| /// |
| /// \return false if the integer expression is an integer type and is |
| /// successfully converted to the complex type. |
| static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, |
| ExprResult &ComplexExpr, |
| QualType IntTy, |
| QualType ComplexTy, |
| bool SkipCast) { |
| if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; |
| if (SkipCast) return false; |
| if (IntTy->isIntegerType()) { |
| QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType(); |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, |
| CK_FloatingRealToComplex); |
| } else { |
| assert(IntTy->isComplexIntegerType()); |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, |
| CK_IntegralComplexToFloatingComplex); |
| } |
| return false; |
| } |
| |
| /// Handle arithmetic conversion with complex types. Helper function of |
| /// UsualArithmeticConversions() |
| static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, |
| bool IsCompAssign) { |
| // if we have an integer operand, the result is the complex type. |
| if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, |
| /*skipCast*/false)) |
| return LHSType; |
| if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*skipCast*/IsCompAssign)) |
| return RHSType; |
| |
| // This handles complex/complex, complex/float, or float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| |
| // Compute the rank of the two types, regardless of whether they are complex. |
| int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
| |
| auto *LHSComplexType = dyn_cast<ComplexType>(LHSType); |
| auto *RHSComplexType = dyn_cast<ComplexType>(RHSType); |
| QualType LHSElementType = |
| LHSComplexType ? LHSComplexType->getElementType() : LHSType; |
| QualType RHSElementType = |
| RHSComplexType ? RHSComplexType->getElementType() : RHSType; |
| |
| QualType ResultType = S.Context.getComplexType(LHSElementType); |
| if (Order < 0) { |
| // Promote the precision of the LHS if not an assignment. |
| ResultType = S.Context.getComplexType(RHSElementType); |
| if (!IsCompAssign) { |
| if (LHSComplexType) |
| LHS = |
| S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast); |
| else |
| LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast); |
| } |
| } else if (Order > 0) { |
| // Promote the precision of the RHS. |
| if (RHSComplexType) |
| RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast); |
| else |
| RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast); |
| } |
| return ResultType; |
| } |
| |
| /// Handle arithmetic conversion from integer to float. Helper function |
| /// of UsualArithmeticConversions() |
| static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, |
| ExprResult &IntExpr, |
| QualType FloatTy, QualType IntTy, |
| bool ConvertFloat, bool ConvertInt) { |
| if (IntTy->isIntegerType()) { |
| if (ConvertInt) |
| // Convert intExpr to the lhs floating point type. |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, |
| CK_IntegralToFloating); |
| return FloatTy; |
| } |
| |
| // Convert both sides to the appropriate complex float. |
| assert(IntTy->isComplexIntegerType()); |
| QualType result = S.Context.getComplexType(FloatTy); |
| |
| // _Complex int -> _Complex float |
| if (ConvertInt) |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), result, |
| CK_IntegralComplexToFloatingComplex); |
| |
| // float -> _Complex float |
| if (ConvertFloat) |
| FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, |
| CK_FloatingRealToComplex); |
| |
| return result; |
| } |
| |
| /// Handle arithmethic conversion with floating point types. Helper |
| /// function of UsualArithmeticConversions() |
| static QualType handleFloatConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, bool IsCompAssign) { |
| bool LHSFloat = LHSType->isRealFloatingType(); |
| bool RHSFloat = RHSType->isRealFloatingType(); |
| |
| // If we have two real floating types, convert the smaller operand |
| // to the bigger result. |
| if (LHSFloat && RHSFloat) { |
| int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
| if (order > 0) { |
| RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); |
| return LHSType; |
| } |
| |
| assert(order < 0 && "illegal float comparison"); |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); |
| return RHSType; |
| } |
| |
| if (LHSFloat) { |
| // Half FP has to be promoted to float unless it is natively supported |
| if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) |
| LHSType = S.Context.FloatTy; |
| |
| return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*convertFloat=*/!IsCompAssign, |
| /*convertInt=*/ true); |
| } |
| assert(RHSFloat); |
| return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, |
| /*convertInt=*/ true, |
| /*convertFloat=*/!IsCompAssign); |
| } |
| |
| /// Diagnose attempts to convert between __float128 and long double if |
| /// there is no support for such conversion. Helper function of |
| /// UsualArithmeticConversions(). |
| static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, |
| QualType RHSType) { |
| /* No issue converting if at least one of the types is not a floating point |
| type or the two types have the same rank. |
| */ |
| if (!LHSType->isFloatingType() || !RHSType->isFloatingType() || |
| S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0) |
| return false; |
| |
| assert(LHSType->isFloatingType() && RHSType->isFloatingType() && |
| "The remaining types must be floating point types."); |
| |
| auto *LHSComplex = LHSType->getAs<ComplexType>(); |
| auto *RHSComplex = RHSType->getAs<ComplexType>(); |
| |
| QualType LHSElemType = LHSComplex ? |
| LHSComplex->getElementType() : LHSType; |
| QualType RHSElemType = RHSComplex ? |
| RHSComplex->getElementType() : RHSType; |
| |
| // No issue if the two types have the same representation |
| if (&S.Context.getFloatTypeSemantics(LHSElemType) == |
| &S.Context.getFloatTypeSemantics(RHSElemType)) |
| return false; |
| |
| bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty && |
| RHSElemType == S.Context.LongDoubleTy); |
| Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy && |
| RHSElemType == S.Context.Float128Ty); |
| |
| // We've handled the situation where __float128 and long double have the same |
| // representation. We allow all conversions for all possible long double types |
| // except PPC's double double. |
| return Float128AndLongDouble && |
| (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == |
| &llvm::APFloat::PPCDoubleDouble()); |
| } |
| |
| typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); |
| |
| namespace { |
| /// These helper callbacks are placed in an anonymous namespace to |
| /// permit their use as function template parameters. |
| ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { |
| return S.ImpCastExprToType(op, toType, CK_IntegralCast); |
| } |
| |
| ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { |
| return S.ImpCastExprToType(op, S.Context.getComplexType(toType), |
| CK_IntegralComplexCast); |
| } |
| } |
| |
| /// Handle integer arithmetic conversions. Helper function of |
| /// UsualArithmeticConversions() |
| template <PerformCastFn doLHSCast, PerformCastFn doRHSCast> |
| static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, bool IsCompAssign) { |
| // The rules for this case are in C99 6.3.1.8 |
| int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); |
| bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); |
| bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); |
| if (LHSSigned == RHSSigned) { |
| // Same signedness; use the higher-ranked type |
| if (order >= 0) { |
| RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
| return RHSType; |
| } else if (order != (LHSSigned ? 1 : -1)) { |
| // The unsigned type has greater than or equal rank to the |
| // signed type, so use the unsigned type |
| if (RHSSigned) { |
| RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
| return RHSType; |
| } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { |
| // The two types are different widths; if we are here, that |
| // means the signed type is larger than the unsigned type, so |
| // use the signed type. |
| if (LHSSigned) { |
| RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
| return RHSType; |
| } else { |
| // The signed type is higher-ranked than the unsigned type, |
| // but isn't actually any bigger (like unsigned int and long |
| // on most 32-bit systems). Use the unsigned type corresponding |
| // to the signed type. |
| QualType result = |
| S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); |
| RHS = (*doRHSCast)(S, RHS.get(), result); |
| if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), result); |
| return result; |
| } |
| } |
| |
| /// Handle conversions with GCC complex int extension. Helper function |
| /// of UsualArithmeticConversions() |
| static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, |
| bool IsCompAssign) { |
| const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); |
| const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); |
| |
| if (LHSComplexInt && RHSComplexInt) { |
| QualType LHSEltType = LHSComplexInt->getElementType(); |
| QualType RHSEltType = RHSComplexInt->getElementType(); |
| QualType ScalarType = |
| handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast> |
| (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); |
| |
| return S.Context.getComplexType(ScalarType); |
| } |
| |
| if (LHSComplexInt) { |
| QualType LHSEltType = LHSComplexInt->getElementType(); |
| QualType ScalarType = |
| handleIntegerConversion<doComplexIntegralCast, doIntegralCast> |
| (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); |
| QualType ComplexType = S.Context.getComplexType(ScalarType); |
| RHS = S.ImpCastExprToType(RHS.get(), ComplexType, |
| CK_IntegralRealToComplex); |
| |
| return ComplexType; |
| } |
| |
| assert(RHSComplexInt); |
| |
| QualType RHSEltType = RHSComplexInt->getElementType(); |
| QualType ScalarType = |
| handleIntegerConversion<doIntegralCast, doComplexIntegralCast> |
| (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); |
| QualType ComplexType = S.Context.getComplexType(ScalarType); |
| |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.get(), ComplexType, |
| CK_IntegralRealToComplex); |
| return ComplexType; |
| } |
| |
| /// UsualArithmeticConversions - Performs various conversions that are common to |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
| /// routine returns the first non-arithmetic type found. The client is |
| /// responsible for emitting appropriate error diagnostics. |
| QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, |
| bool IsCompAssign) { |
| if (!IsCompAssign) { |
| LHS = UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| |
| RHS = UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = |
| Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); |
| QualType RHSType = |
| Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); |
| |
| // For conversion purposes, we ignore any atomic qualifier on the LHS. |
| if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>()) |
| LHSType = AtomicLHS->getValueType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) |
| return QualType(); |
| |
| // Apply unary and bitfield promotions to the LHS's type. |
| QualType LHSUnpromotedType = LHSType; |
| if (LHSType->isPromotableIntegerType()) |
| LHSType = Context.getPromotedIntegerType(LHSType); |
| QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); |
| if (!LHSBitfieldPromoteTy.isNull()) |
| LHSType = LHSBitfieldPromoteTy; |
| if (LHSType != LHSUnpromotedType && !IsCompAssign) |
| LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Diagnose attempts to convert between __float128 and long double where |
| // such conversions currently can't be handled. |
| if (unsupportedTypeConversion(*this, LHSType, RHSType)) |
| return QualType(); |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| if (LHSType->isComplexType() || RHSType->isComplexType()) |
| return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
| IsCompAssign); |
| |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) |
| return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
| IsCompAssign); |
| |
| // Handle GCC complex int extension. |
| if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) |
| return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, |
| IsCompAssign); |
| |
| // Finally, we have two differing integer types. |
| return handleIntegerConversion<doIntegralCast, doIntegralCast> |
| (*this, LHS, RHS, LHSType, RHSType, IsCompAssign); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic Analysis for various Expression Types |
| //===----------------------------------------------------------------------===// |
| |
| |
| ExprResult |
| Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| ArrayRef<ParsedType> ArgTypes, |
| ArrayRef<Expr *> ArgExprs) { |
| unsigned NumAssocs = ArgTypes.size(); |
| assert(NumAssocs == ArgExprs.size()); |
| |
| TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (ArgTypes[i]) |
| (void) GetTypeFromParser(ArgTypes[i], &Types[i]); |
| else |
| Types[i] = nullptr; |
| } |
| |
| ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| ControllingExpr, |
| llvm::makeArrayRef(Types, NumAssocs), |
| ArgExprs); |
| delete [] Types; |
| return ER; |
| } |
| |
| ExprResult |
| Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| ArrayRef<TypeSourceInfo *> Types, |
| ArrayRef<Expr *> Exprs) { |
| unsigned NumAssocs = Types.size(); |
| assert(NumAssocs == Exprs.size()); |
| |
| // Decay and strip qualifiers for the controlling expression type, and handle |
| // placeholder type replacement. See committee discussion from WG14 DR423. |
| { |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); |
| if (R.isInvalid()) |
| return ExprError(); |
| ControllingExpr = R.get(); |
| } |
| |
| // The controlling expression is an unevaluated operand, so side effects are |
| // likely unintended. |
| if (!inTemplateInstantiation() && |
| ControllingExpr->HasSideEffects(Context, false)) |
| Diag(ControllingExpr->getExprLoc(), |
| diag::warn_side_effects_unevaluated_context); |
| |
| bool TypeErrorFound = false, |
| IsResultDependent = ControllingExpr->isTypeDependent(), |
| ContainsUnexpandedParameterPack |
| = ControllingExpr->containsUnexpandedParameterPack(); |
| |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (Exprs[i]->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]) { |
| if (Types[i]->getType()->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]->getType()->isDependentType()) { |
| IsResultDependent = true; |
| } else { |
| // C11 6.5.1.1p2 "The type name in a generic association shall specify a |
| // complete object type other than a variably modified type." |
| unsigned D = 0; |
| if (Types[i]->getType()->isIncompleteType()) |
| D = diag::err_assoc_type_incomplete; |
| else if (!Types[i]->getType()->isObjectType()) |
| D = diag::err_assoc_type_nonobject; |
| else if (Types[i]->getType()->isVariablyModifiedType()) |
| D = diag::err_assoc_type_variably_modified; |
| |
| if (D != 0) { |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), D) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| |
| // C11 6.5.1.1p2 "No two generic associations in the same generic |
| // selection shall specify compatible types." |
| for (unsigned j = i+1; j < NumAssocs; ++j) |
| if (Types[j] && !Types[j]->getType()->isDependentType() && |
| Context.typesAreCompatible(Types[i]->getType(), |
| Types[j]->getType())) { |
| Diag(Types[j]->getTypeLoc().getBeginLoc(), |
| diag::err_assoc_compatible_types) |
| << Types[j]->getTypeLoc().getSourceRange() |
| << Types[j]->getType() |
| << Types[i]->getType(); |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| } |
| } |
| } |
| if (TypeErrorFound) |
| return ExprError(); |
| |
| // If we determined that the generic selection is result-dependent, don't |
| // try to compute the result expression. |
| if (IsResultDependent) |
| return new (Context) GenericSelectionExpr( |
| Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, |
| ContainsUnexpandedParameterPack); |
| |
| SmallVector<unsigned, 1> CompatIndices; |
| unsigned DefaultIndex = -1U; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (!Types[i]) |
| DefaultIndex = i; |
| else if (Context.typesAreCompatible(ControllingExpr->getType(), |
| Types[i]->getType())) |
| CompatIndices.push_back(i); |
| } |
| |
| // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have |
| // type compatible with at most one of the types named in its generic |
| // association list." |
| if (CompatIndices.size() > 1) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType() |
| << (unsigned) CompatIndices.size(); |
| for (unsigned I : CompatIndices) { |
| Diag(Types[I]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[I]->getTypeLoc().getSourceRange() |
| << Types[I]->getType(); |
| } |
| return ExprError(); |
| } |
| |
| // C11 6.5.1.1p2 "If a generic selection has no default generic association, |
| // its controlling expression shall have type compatible with exactly one of |
| // the types named in its generic association list." |
| if (DefaultIndex == -1U && CompatIndices.size() == 0) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType(); |
| return ExprError(); |
| } |
| |
| // C11 6.5.1.1p3 "If a generic selection has a generic association with a |
| // type name that is compatible with the type of the controlling expression, |
| // then the result expression of the generic selection is the expression |
| // in that generic association. Otherwise, the result expression of the |
| // generic selection is the expression in the default generic association." |
| unsigned ResultIndex = |
| CompatIndices.size() ? CompatIndices[0] : DefaultIndex; |
| |
| return new (Context) GenericSelectionExpr( |
| Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, |
| ContainsUnexpandedParameterPack, ResultIndex); |
| } |
| |
| /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the |
| /// location of the token and the offset of the ud-suffix within it. |
| static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, |
| unsigned Offset) { |
| return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), |
| S.getLangOpts()); |
| } |
| |
| /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up |
| /// the corresponding cooked (non-raw) literal operator, and build a call to it. |
| static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, |
| IdentifierInfo *UDSuffix, |
| SourceLocation UDSuffixLoc, |
| ArrayRef<Expr*> Args, |
| SourceLocation LitEndLoc) { |
| assert(Args.size() <= 2 && "too many arguments for literal operator"); |
| |
| QualType ArgTy[2]; |
| for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { |
| ArgTy[ArgIdx] = Args[ArgIdx]->getType(); |
| if (ArgTy[ArgIdx]->isArrayType()) |
| ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); |
| } |
| |
| DeclarationName OpName = |
| S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
| DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
| OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
| |
| LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); |
| if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()), |
| /*AllowRaw*/ false, /*AllowTemplate*/ false, |
| /*AllowStringTemplate*/ false, |
| /*DiagnoseMissing*/ true) == Sema::LOLR_Error) |
| return ExprError(); |
| |
| return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); |
| } |
| |
| /// ActOnStringLiteral - The specified tokens were lexed as pasted string |
| /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
| /// multiple tokens. However, the common case is that StringToks points to one |
| /// string. |
| /// |
| ExprResult |
| Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) { |
| assert(!StringToks.empty() && "Must have at least one string!"); |
| |
| StringLiteralParser Literal(StringToks, PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| SmallVector<SourceLocation, 4> StringTokLocs; |
| for (const Token &Tok : StringToks) |
| StringTokLocs.push_back(Tok.getLocation()); |
| |
| QualType CharTy = Context.CharTy; |
| StringLiteral::StringKind Kind = StringLiteral::Ascii; |
| if (Literal.isWide()) { |
| CharTy = Context.getWideCharType(); |
| Kind = StringLiteral::Wide; |
| } else if (Literal.isUTF8()) { |
| if (getLangOpts().Char8) |
| CharTy = Context.Char8Ty; |
| Kind = StringLiteral::UTF8; |
| } else if (Literal.isUTF16()) { |
| CharTy = Context.Char16Ty; |
| Kind = StringLiteral::UTF16; |
| } else if (Literal.isUTF32()) { |
| CharTy = Context.Char32Ty; |
| Kind = StringLiteral::UTF32; |
| } else if (Literal.isPascal()) { |
| CharTy = Context.UnsignedCharTy; |
| } |
| |
| QualType CharTyConst = CharTy; |
| // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
| if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) |
| CharTyConst.addConst(); |
| |
| CharTyConst = Context.adjustStringLiteralBaseType(CharTyConst); |
| |
| // Get an array type for the string, according to C99 6.4.5. This includes |
| // the nul terminator character as well as the string length for pascal |
| // strings. |
| QualType StrTy = Context.getConstantArrayType( |
| CharTyConst, llvm::APInt(32, Literal.GetNumStringChars() + 1), |
| ArrayType::Normal, 0); |
| |
| // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
| StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), |
| Kind, Literal.Pascal, StrTy, |
| &StringTokLocs[0], |
| StringTokLocs.size()); |
| if (Literal.getUDSuffix().empty()) |
| return Lit; |
| |
| // We're building a user-defined literal. |
| IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
| SourceLocation UDSuffixLoc = |
| getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], |
| Literal.getUDSuffixOffset()); |
| |
| // Make sure we're allowed user-defined literals here. |
| if (!UDLScope) |
| return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); |
| |
| // C++11 [lex.ext]p5: The literal L is treated as a call of the form |
| // operator "" X (str, len) |
| QualType SizeType = Context.getSizeType(); |
| |
| DeclarationName OpName = |
| Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
| DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
| OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
| |
| QualType ArgTy[] = { |
| Context.getArrayDecayedType(StrTy), SizeType |
| }; |
| |
| LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); |
| switch (LookupLiteralOperator(UDLScope, R, ArgTy, |
| /*AllowRaw*/ false, /*AllowTemplate*/ false, |
| /*AllowStringTemplate*/ true, |
| /*DiagnoseMissing*/ true)) { |
| |
| case LOLR_Cooked: { |
| llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); |
| IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, |
| StringTokLocs[0]); |
| Expr *Args[] = { Lit, LenArg }; |
| |
| return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); |
| } |
| |
| case LOLR_StringTemplate: { |
| TemplateArgumentListInfo ExplicitArgs; |
| |
| unsigned CharBits = Context.getIntWidth(CharTy); |
| bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); |
| llvm::APSInt Value(CharBits, CharIsUnsigned); |
| |
| TemplateArgument TypeArg(CharTy); |
| TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); |
| ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); |
| |
| for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { |
| Value = Lit->getCodeUnit(I); |
| TemplateArgument Arg(Context, Value, CharTy); |
| TemplateArgumentLocInfo ArgInfo; |
| ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
| } |
| return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), |
| &ExplicitArgs); |
| } |
| case LOLR_Raw: |
| case LOLR_Template: |
| case LOLR_ErrorNoDiagnostic: |
| llvm_unreachable("unexpected literal operator lookup result"); |
| case LOLR_Error: |
| return ExprError(); |
| } |
| llvm_unreachable("unexpected literal operator lookup result"); |
| } |
| |
| ExprResult |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| SourceLocation Loc, |
| const CXXScopeSpec *SS) { |
| DeclarationNameInfo NameInfo(D->getDeclName(), Loc); |
| return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); |
| } |
| |
| /// BuildDeclRefExpr - Build an expression that references a |
| /// declaration that does not require a closure capture. |
| ExprResult |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| const DeclarationNameInfo &NameInfo, |
| const CXXScopeSpec *SS, NamedDecl *FoundD, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| bool RefersToCapturedVariable = |
| isa<VarDecl>(D) && |
| NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc()); |
| |
| DeclRefExpr *E; |
| if (isa<VarTemplateSpecializationDecl>(D)) { |
| VarTemplateSpecializationDecl *VarSpec = |
| cast<VarTemplateSpecializationDecl>(D); |
| |
| E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context) |
| : NestedNameSpecifierLoc(), |
| VarSpec->getTemplateKeywordLoc(), D, |
| RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK, |
| FoundD, TemplateArgs); |
| } else { |
| assert(!TemplateArgs && "No template arguments for non-variable" |
| " template specialization references"); |
| E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context) |
| : NestedNameSpecifierLoc(), |
| SourceLocation(), D, RefersToCapturedVariable, |
| NameInfo, Ty, VK, FoundD); |
| } |
| |
| MarkDeclRefReferenced(E); |
| |
| if (getLangOpts().ObjCWeak && isa<VarDecl>(D) && |
| Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && |
| !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart())) |
| getCurFunction()->recordUseOfWeak(E); |
| |
| FieldDecl *FD = dyn_cast<FieldDecl>(D); |
| if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) |
| FD = IFD->getAnonField(); |
| if (FD) { |
| UnusedPrivateFields.remove(FD); |
| // Just in case we're building an illegal pointer-to-member. |
| if (FD->isBitField()) |
| E->setObjectKind(OK_BitField); |
| } |
| |
| // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier |
| // designates a bit-field. |
| if (auto *BD = dyn_cast<BindingDecl>(D)) |
| if (auto *BE = BD->getBinding()) |
| E->setObjectKind(BE->getObjectKind()); |
| |
| return E; |
| } |
| |
| /// Decomposes the given name into a DeclarationNameInfo, its location, and |
| /// possibly a list of template arguments. |
| /// |
| /// If this produces template arguments, it is permitted to call |
| /// DecomposeTemplateName. |
| /// |
| /// This actually loses a lot of source location information for |
| /// non-standard name kinds; we should consider preserving that in |
| /// some way. |
| void |
| Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, |
| TemplateArgumentListInfo &Buffer, |
| DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *&TemplateArgs) { |
| if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { |
| Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); |
| Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); |
| |
| ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), |
| Id.TemplateId->NumArgs); |
| translateTemplateArguments(TemplateArgsPtr, Buffer); |
| |
| TemplateName TName = Id.TemplateId->Template.get(); |
| SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; |
| NameInfo = Context.getNameForTemplate(TName, TNameLoc); |
| TemplateArgs = &Buffer; |
| } else { |
| NameInfo = GetNameFromUnqualifiedId(Id); |
| TemplateArgs = nullptr; |
| } |
| } |
| |
| static void emitEmptyLookupTypoDiagnostic( |
| const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, |
| DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args, |
| unsigned DiagnosticID, unsigned DiagnosticSuggestID) { |
| DeclContext *Ctx = |
| SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); |
| if (!TC) { |
| // Emit a special diagnostic for failed member lookups. |
| // FIXME: computing the declaration context might fail here (?) |
| if (Ctx) |
| SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx |
| << SS.getRange(); |
| else |
| SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; |
| return; |
| } |
| |
| std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); |
| bool DroppedSpecifier = |
| TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; |
| unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>() |
| ? diag::note_implicit_param_decl |
| : diag::note_previous_decl; |
| if (!Ctx) |
| SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, |
| SemaRef.PDiag(NoteID)); |
| else |
| SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) |
| << Typo << Ctx << DroppedSpecifier |
| << SS.getRange(), |
| SemaRef.PDiag(NoteID)); |
| } |
| |
| /// Diagnose an empty lookup. |
| /// |
| /// \return false if new lookup candidates were found |
| bool |
| Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, |
| std::unique_ptr<CorrectionCandidateCallback> CCC, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| ArrayRef<Expr *> Args, TypoExpr **Out) { |
| DeclarationName Name = R.getLookupName(); |
| |
| unsigned diagnostic = diag::err_undeclared_var_use; |
| unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; |
| if (Name.getNameKind() == DeclarationName::CXXOperatorName || |
| Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || |
| Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
| diagnostic = diag::err_undeclared_use; |
| diagnostic_suggest = diag::err_undeclared_use_suggest; |
| } |
| |
| // If the original lookup was an unqualified lookup, fake an |
| // unqualified lookup. This is useful when (for example) the |
| // original lookup would not have found something because it was a |
| // dependent name. |
| DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; |
| while (DC) { |
| if (isa<CXXRecordDecl>(DC)) { |
| LookupQualifiedName(R, DC); |
| |
| if (!R.empty()) { |
| // Don't give errors about ambiguities in this lookup. |
| R.suppressDiagnostics(); |
| |
| // During a default argument instantiation the CurContext points |
| // to a CXXMethodDecl; but we can't apply a this-> fixit inside a |
| // function parameter list, hence add an explicit check. |
| bool isDefaultArgument = |
| !CodeSynthesisContexts.empty() && |
| CodeSynthesisContexts.back().Kind == |
| CodeSynthesisContext::DefaultFunctionArgumentInstantiation; |
| CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); |
| bool isInstance = CurMethod && |
| CurMethod->isInstance() && |
| DC == CurMethod->getParent() && !isDefaultArgument; |
| |
| // Give a code modification hint to insert 'this->'. |
| // TODO: fixit for inserting 'Base<T>::' in the other cases. |
| // Actually quite difficult! |
| if (getLangOpts().MSVCCompat) |
| diagnostic = diag::ext_found_via_dependent_bases_lookup; |
| if (isInstance) { |
| Diag(R.getNameLoc(), diagnostic) << Name |
| << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); |
| CheckCXXThisCapture(R.getNameLoc()); |
| } else { |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| } |
| |
| // Do we really want to note all of these? |
| for (NamedDecl *D : R) |
| Diag(D->getLocation(), diag::note_dependent_var_use); |
| |
| // Return true if we are inside a default argument instantiation |
| // and the found name refers to an instance member function, otherwise |
| // the function calling DiagnoseEmptyLookup will try to create an |
| // implicit member call and this is wrong for default argument. |
| if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { |
| Diag(R.getNameLoc(), diag::err_member_call_without_object); |
| return true; |
| } |
| |
| // Tell the callee to try to recover. |
| return false; |
| } |
| |
| R.clear(); |
| } |
| |
| // In Microsoft mode, if we are performing lookup from within a friend |
| // function definition declared at class scope then we must set |
| // DC to the lexical parent to be able to search into the parent |
| // class. |
| if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) && |
| cast<FunctionDecl>(DC)->getFriendObjectKind() && |
| DC->getLexicalParent()->isRecord()) |
| DC = DC->getLexicalParent(); |
| else |
| DC = DC->getParent(); |
| } |
| |
| // We didn't find anything, so try to correct for a typo. |
| TypoCorrection Corrected; |
| if (S && Out) { |
| SourceLocation TypoLoc = R.getNameLoc(); |
| assert(!ExplicitTemplateArgs && |
| "Diagnosing an empty lookup with explicit template args!"); |
| *Out = CorrectTypoDelayed( |
| R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC), |
| [=](const TypoCorrection &TC) { |
| emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, |
| diagnostic, diagnostic_suggest); |
| }, |
| nullptr, CTK_ErrorRecovery); |
| if (*Out) |
| return true; |
| } else if (S && (Corrected = |
| CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, |
| &SS, std::move(CCC), CTK_ErrorRecovery))) { |
| std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
| bool DroppedSpecifier = |
| Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; |
| R.setLookupName(Corrected.getCorrection()); |
| |
| bool AcceptableWithRecovery = false; |
| bool AcceptableWithoutRecovery = false; |
| NamedDecl *ND = Corrected.getFoundDecl(); |
| if (ND) { |
| if (Corrected.isOverloaded()) { |
| OverloadCandidateSet OCS(R.getNameLoc(), |
| OverloadCandidateSet::CSK_Normal); |
| OverloadCandidateSet::iterator Best; |
| for (NamedDecl *CD : Corrected) { |
| if (FunctionTemplateDecl *FTD = |
| dyn_cast<FunctionTemplateDecl>(CD)) |
| AddTemplateOverloadCandidate( |
| FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, |
| Args, OCS); |
| else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) |
| if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) |
| AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), |
| Args, OCS); |
| } |
| switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { |
| case OR_Success: |
| ND = Best->FoundDecl; |
| Corrected.setCorrectionDecl(ND); |
| break; |
| default: |
| // FIXME: Arbitrarily pick the first declaration for the note. |
| Corrected.setCorrectionDecl(ND); |
| break; |
| } |
| } |
| R.addDecl(ND); |
| if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { |
| CXXRecordDecl *Record = nullptr; |
| if (Corrected.getCorrectionSpecifier()) { |
| const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); |
| Record = Ty->getAsCXXRecordDecl(); |
| } |
| if (!Record) |
| Record = cast<CXXRecordDecl>( |
| ND->getDeclContext()->getRedeclContext()); |
| R.setNamingClass(Record); |
| } |
| |
| auto *UnderlyingND = ND->getUnderlyingDecl(); |
| AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) || |
| isa<FunctionTemplateDecl>(UnderlyingND); |
| // FIXME: If we ended up with a typo for a type name or |
| // Objective-C class name, we're in trouble because the parser |
| // is in the wrong place to recover. Suggest the typo |
| // correction, but don't make it a fix-it since we're not going |
| // to recover well anyway. |
| AcceptableWithoutRecovery = |
| isa<TypeDecl>(UnderlyingND) || isa<ObjCInterfaceDecl>(UnderlyingND); |
| } else { |
| // FIXME: We found a keyword. Suggest it, but don't provide a fix-it |
| // because we aren't able to recover. |
| AcceptableWithoutRecovery = true; |
| } |
| |
| if (AcceptableWithRecovery || AcceptableWithoutRecovery) { |
| unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>() |
| ? diag::note_implicit_param_decl |
| : diag::note_previous_decl; |
| if (SS.isEmpty()) |
| diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, |
| PDiag(NoteID), AcceptableWithRecovery); |
| else |
| diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) |
| << DroppedSpecifier << SS.getRange(), |
| PDiag(NoteID), AcceptableWithRecovery); |
| |
| // Tell the callee whether to try to recover. |
| return !AcceptableWithRecovery; |
| } |
| } |
| R.clear(); |
| |
| // Emit a special diagnostic for failed member lookups. |
| // FIXME: computing the declaration context might fail here (?) |
| if (!SS.isEmpty()) { |
| Diag(R.getNameLoc(), diag::err_no_member) |
| << Name << computeDeclContext(SS, false) |
| << SS.getRange(); |
| return true; |
| } |
| |
| // Give up, we can't recover. |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| return true; |
| } |
| |
| /// In Microsoft mode, if we are inside a template class whose parent class has |
| /// dependent base classes, and we can't resolve an unqualified identifier, then |
| /// assume the identifier is a member of a dependent base class. We can only |
| /// recover successfully in static methods, instance methods, and other contexts |
| /// where 'this' is available. This doesn't precisely match MSVC's |
| /// instantiation model, but it's close enough. |
| static Expr * |
| recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, |
| DeclarationNameInfo &NameInfo, |
| SourceLocation TemplateKWLoc, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| // Only try to recover from lookup into dependent bases in static methods or |
| // contexts where 'this' is available. |
| QualType ThisType = S.getCurrentThisType(); |
| const CXXRecordDecl *RD = nullptr; |
| if (!ThisType.isNull()) |
| RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); |
| else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) |
| RD = MD->getParent(); |
| if (!RD || !RD->hasAnyDependentBases()) |
| return nullptr; |
| |
| // Diagnose this as unqualified lookup into a dependent base class. If 'this' |
| // is available, suggest inserting 'this->' as a fixit. |
| SourceLocation Loc = NameInfo.getLoc(); |
| auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); |
| DB << NameInfo.getName() << RD; |
| |
| if (!ThisType.isNull()) { |
| DB << FixItHint::CreateInsertion(Loc, "this->"); |
| return CXXDependentScopeMemberExpr::Create( |
| Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, |
| /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, |
| /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs); |
| } |
| |
| // Synthesize a fake NNS that points to the derived class. This will |
| // perform name lookup during template instantiation. |
| CXXScopeSpec SS; |
| auto *NNS = |
| NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); |
| SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); |
| return DependentScopeDeclRefExpr::Create( |
| Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
| TemplateArgs); |
| } |
| |
| ExprResult |
| Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, UnqualifiedId &Id, |
| bool HasTrailingLParen, bool IsAddressOfOperand, |
| std::unique_ptr<CorrectionCandidateCallback> CCC, |
| bool IsInlineAsmIdentifier, Token *KeywordReplacement) { |
| assert(!(IsAddressOfOperand && HasTrailingLParen) && |
| "cannot be direct & operand and have a trailing lparen"); |
| if (SS.isInvalid()) |
| return ExprError(); |
| |
| TemplateArgumentListInfo TemplateArgsBuffer; |
| |
| // Decompose the UnqualifiedId into the following data. |
| DeclarationNameInfo NameInfo; |
| const TemplateArgumentListInfo *TemplateArgs; |
| DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); |
| |
| DeclarationName Name = NameInfo.getName(); |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| SourceLocation NameLoc = NameInfo.getLoc(); |
| |
| if (II && II->isEditorPlaceholder()) { |
| // FIXME: When typed placeholders are supported we can create a typed |
| // placeholder expression node. |
| return ExprError(); |
| } |
| |
| // C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // -- an identifier that was declared with a dependent type, |
| // (note: handled after lookup) |
| // -- a template-id that is dependent, |
| // (note: handled in BuildTemplateIdExpr) |
| // -- a conversion-function-id that specifies a dependent type, |
| // -- a nested-name-specifier that contains a class-name that |
| // names a dependent type. |
| // Determine whether this is a member of an unknown specialization; |
| // we need to handle these differently. |
| bool DependentID = false; |
| if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| Name.getCXXNameType()->isDependentType()) { |
| DependentID = true; |
| } else if (SS.isSet()) { |
| if (DeclContext *DC = computeDeclContext(SS, false)) { |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| } else { |
| DependentID = true; |
| } |
| } |
| |
| if (DependentID) |
| return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
| IsAddressOfOperand, TemplateArgs); |
| |
| // Perform the required lookup. |
| LookupResult R(*this, NameInfo, |
| (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) |
| ? LookupObjCImplicitSelfParam |
| : LookupOrdinaryName); |
| if (TemplateKWLoc.isValid() || TemplateArgs) { |
| // Lookup the template name again to correctly establish the context in |
| // which it was found. This is really unfortunate as we already did the |
| // lookup to determine that it was a template name in the first place. If |
| // this becomes a performance hit, we can work harder to preserve those |
| // results until we get here but it's likely not worth it. |
| bool MemberOfUnknownSpecialization; |
| if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, |
| MemberOfUnknownSpecialization, TemplateKWLoc)) |
| return ExprError(); |
| |
| if (MemberOfUnknownSpecialization || |
| (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) |
| return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
| IsAddressOfOperand, TemplateArgs); |
| } else { |
| bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); |
| LookupParsedName(R, S, &SS, !IvarLookupFollowUp); |
| |
| // If the result might be in a dependent base class, this is a dependent |
| // id-expression. |
| if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
| return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
| IsAddressOfOperand, TemplateArgs); |
| |
| // If this reference is in an Objective-C method, then we need to do |
| // some special Objective-C lookup, too. |
| if (IvarLookupFollowUp) { |
| ExprResult E(LookupInObjCMethod(R, S, II, true)); |
| if (E.isInvalid()) |
| return ExprError(); |
| |
| if (Expr *Ex = E.getAs<Expr>()) |
| return Ex; |
| } |
| } |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| // This could be an implicitly declared function reference (legal in C90, |
| // extension in C99, forbidden in C++). |
| if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) { |
| NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); |
| if (D) R.addDecl(D); |
| } |
| |
| // Determine whether this name might be a candidate for |
| // argument-dependent lookup. |
| bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); |
| |
| if (R.empty() && !ADL) { |
| if (SS.isEmpty() && getLangOpts().MSVCCompat) { |
| if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, |
| TemplateKWLoc, TemplateArgs)) |
| return E; |
| } |
| |
| // Don't diagnose an empty lookup for inline assembly. |
| if (IsInlineAsmIdentifier) |
| return ExprError(); |
| |
| // If this name wasn't predeclared and if this is not a function |
| // call, diagnose the problem. |
| TypoExpr *TE = nullptr; |
| auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>( |
| II, SS.isValid() ? SS.getScopeRep() : nullptr); |
| DefaultValidator->IsAddressOfOperand = IsAddressOfOperand; |
| assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && |
| "Typo correction callback misconfigured"); |
| if (CCC) { |
| // Make sure the callback knows what the typo being diagnosed is. |
| CCC->setTypoName(II); |
| if (SS.isValid()) |
| CCC->setTypoNNS(SS.getScopeRep()); |
| } |
| // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for |
| // a template name, but we happen to have always already looked up the name |
| // before we get here if it must be a template name. |
| if (DiagnoseEmptyLookup(S, SS, R, |
| CCC ? std::move(CCC) : std::move(DefaultValidator), |
| nullptr, None, &TE)) { |
| if (TE && KeywordReplacement) { |
| auto &State = getTypoExprState(TE); |
| auto BestTC = State.Consumer->getNextCorrection(); |
| if (BestTC.isKeyword()) { |
| auto *II = BestTC.getCorrectionAsIdentifierInfo(); |
| if (State.DiagHandler) |
| State.DiagHandler(BestTC); |
| KeywordReplacement->startToken(); |
| KeywordReplacement->setKind(II->getTokenID()); |
| KeywordReplacement->setIdentifierInfo(II); |
| KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); |
| // Clean up the state associated with the TypoExpr, since it has |
| // now been diagnosed (without a call to CorrectDelayedTyposInExpr). |
| clearDelayedTypo(TE); |
| // Signal that a correction to a keyword was performed by returning a |
| // valid-but-null ExprResult. |
| return (Expr*)nullptr; |
| } |
| State.Consumer->resetCorrectionStream(); |
| } |
| return TE ? TE : ExprError(); |
| } |
| |
| assert(!R.empty() && |
| "DiagnoseEmptyLookup returned false but added no results"); |
| |
| // If we found an Objective-C instance variable, let |
| // LookupInObjCMethod build the appropriate expression to |
| // reference the ivar. |
| if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { |
| R.clear(); |
| ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); |
| // In a hopelessly buggy code, Objective-C instance variable |
| // lookup fails and no expression will be built to reference it. |
| if (!E.isInvalid() && !E.get()) |
| return ExprError(); |
| return E; |
| } |
| } |
| |
| // This is guaranteed from this point on. |
| assert(!R.empty() || ADL); |
| |
| // Check whether this might be a C++ implicit instance member access. |
| // C++ [class.mfct.non-static]p3: |
| // When an id-expression that is not part of a class member access |
| // syntax and not used to form a pointer to member is used in the |
| // body of a non-static member function of class X, if name lookup |
| // resolves the name in the id-expression to a non-static non-type |
| // member of some class C, the id-expression is transformed into a |
| // class member access expression using (*this) as the |
| // postfix-expression to the left of the . operator. |
| // |
| // But we don't actually need to do this for '&' operands if R |
| // resolved to a function or overloaded function set, because the |
| // expression is ill-formed if it actually works out to be a |
| // non-static member function: |
| // |
| // C++ [expr.ref]p4: |
| // Otherwise, if E1.E2 refers to a non-static member function. . . |
| // [t]he expression can be used only as the left-hand operand of a |
| // member function call. |
| // |
| // There are other safeguards against such uses, but it's important |
| // to get this right here so that we don't end up making a |
| // spuriously dependent expression if we're inside a dependent |
| // instance method. |
| if (!R.empty() && (*R.begin())->isCXXClassMember()) { |
| bool MightBeImplicitMember; |
| if (!IsAddressOfOperand) |
| MightBeImplicitMember = true; |
| else if (!SS.isEmpty()) |
| MightBeImplicitMember = false; |
| else if (R.isOverloadedResult()) |
| MightBeImplicitMember = false; |
| else if (R.isUnresolvableResult()) |
| MightBeImplicitMember = true; |
| else |
| MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || |
| isa<IndirectFieldDecl>(R.getFoundDecl()) || |
| isa<MSPropertyDecl>(R.getFoundDecl()); |
| |
| if (MightBeImplicitMember) |
| return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, |
| R, TemplateArgs, S); |
| } |
| |
| if (TemplateArgs || TemplateKWLoc.isValid()) { |
| |
| // In C++1y, if this is a variable template id, then check it |
| // in BuildTemplateIdExpr(). |
| // The single lookup result must be a variable template declaration. |
| if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && |
| Id.TemplateId->Kind == TNK_Var_template) { |
| assert(R.getAsSingle<VarTemplateDecl>() && |
| "There should only be one declaration found."); |
| } |
| |
| return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); |
| } |
| |
| return BuildDeclarationNameExpr(SS, R, ADL); |
| } |
| |
| /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified |
| /// declaration name, generally during template instantiation. |
| /// There's a large number of things which don't need to be done along |
| /// this path. |
| ExprResult Sema::BuildQualifiedDeclarationNameExpr( |
| CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, |
| bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { |
| DeclContext *DC = computeDeclContext(SS, false); |
| if (!DC) |
| return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), |
| NameInfo, /*TemplateArgs=*/nullptr); |
| |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| |
| LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| LookupQualifiedName(R, DC); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
| return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), |
| NameInfo, /*TemplateArgs=*/nullptr); |
| |
| if (R.empty()) { |
| Diag(NameInfo.getLoc(), diag::err_no_member) |
| << NameInfo.getName() << DC << SS.getRange(); |
| return ExprError(); |
| } |
| |
| if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) { |
| // Diagnose a missing typename if this resolved unambiguously to a type in |
| // a dependent context. If we can recover with a type, downgrade this to |
| // a warning in Microsoft compatibility mode. |
| unsigned DiagID = diag::err_typename_missing; |
| if (RecoveryTSI && getLangOpts().MSVCCompat) |
| DiagID = diag::ext_typename_missing; |
| SourceLocation Loc = SS.getBeginLoc(); |
| auto D = Diag(Loc, DiagID); |
| D << SS.getScopeRep() << NameInfo.getName().getAsString() |
| << SourceRange(Loc, NameInfo.getEndLoc()); |
| |
| // Don't recover if the caller isn't expecting us to or if we're in a SFINAE |
| // context. |
| if (!RecoveryTSI) |
| return ExprError(); |
| |
| // Only issue the fixit if we're prepared to recover. |
| D << FixItHint::CreateInsertion(Loc, "typename "); |
| |
| // Recover by pretending this was an elaborated type. |
| QualType Ty = Context.getTypeDeclType(TD); |
| TypeLocBuilder TLB; |
| TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); |
| |
| QualType ET = getElaboratedType(ETK_None, SS, Ty); |
| ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET); |
| QTL.setElaboratedKeywordLoc(SourceLocation()); |
| QTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| |
| *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); |
| |
| return ExprEmpty(); |
| } |
| |
| // Defend against this resolving to an implicit member access. We usually |
| // won't get here if this might be a legitimate a class member (we end up in |
| // BuildMemberReferenceExpr instead), but this can be valid if we're forming |
| // a pointer-to-member or in an unevaluated context in C++11. |
| if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) |
| return BuildPossibleImplicitMemberExpr(SS, |
| /*TemplateKWLoc=*/SourceLocation(), |
| R, /*TemplateArgs=*/nullptr, S); |
| |
| return BuildDeclarationNameExpr(SS, R, /* ADL */ false); |
| } |
| |
| /// LookupInObjCMethod - The parser has read a name in, and Sema has |
| /// detected that we're currently inside an ObjC method. Perform some |
| /// additional lookup. |
| /// |
| /// Ideally, most of this would be done by lookup, but there's |
| /// actually quite a lot of extra work involved. |
| /// |
| /// Returns a null sentinel to indicate trivial success. |
| ExprResult |
| Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, |
| IdentifierInfo *II, bool AllowBuiltinCreation) { |
| SourceLocation Loc = Lookup.getNameLoc(); |
| ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
| |
| // Check for error condition which is already reported. |
| if (!CurMethod) |
| return ExprError(); |
| |
| // There are two cases to handle here. 1) scoped lookup could have failed, |
| // in which case we should look for an ivar. 2) scoped lookup could have |
| // found a decl, but that decl is outside the current instance method (i.e. |
| // a global variable). In these two cases, we do a lookup for an ivar with |
| // this name, if the lookup sucedes, we replace it our current decl. |
| |
| // If we're in a class method, we don't normally want to look for |
| // ivars. But if we don't find anything else, and there's an |
| // ivar, that's an error. |
| bool IsClassMethod = CurMethod->isClassMethod(); |
| |
| bool LookForIvars; |
| if (Lookup.empty()) |
| LookForIvars = true; |
| else if (IsClassMethod) |
| LookForIvars = false; |
| else |
| LookForIvars = (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); |
| ObjCInterfaceDecl *IFace = nullptr; |
| if (LookForIvars) { |
| IFace = CurMethod->getClassInterface(); |
| ObjCInterfaceDecl *ClassDeclared; |
| ObjCIvarDecl *IV = nullptr; |
| if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { |
| // Diagnose using an ivar in a class method. |
| if (IsClassMethod) |
| return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method) |
| << IV->getDeclName()); |
| |
| // If we're referencing an invalid decl, just return this as a silent |
| // error node. The error diagnostic was already emitted on the decl. |
| if (IV->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check if referencing a field with __attribute__((deprecated)). |
| if (DiagnoseUseOfDecl(IV, Loc)) |
| return ExprError(); |
| |
| // Diagnose the use of an ivar outside of the declaring class. |
| if (IV->getAccessControl() == ObjCIvarDecl::Private && |
| !declaresSameEntity(ClassDeclared, IFace) && |
| !getLangOpts().DebuggerSupport) |
| Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); |
| |
| // FIXME: This should use a new expr for a direct reference, don't |
| // turn this into Self->ivar, just return a BareIVarExpr or something. |
| IdentifierInfo &II = Context.Idents.get("self"); |
| UnqualifiedId SelfName; |
| SelfName.setIdentifier(&II, SourceLocation()); |
| SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam); |
| CXXScopeSpec SelfScopeSpec; |
| SourceLocation TemplateKWLoc; |
| ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, |
| SelfName, false, false); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| SelfExpr = DefaultLvalueConversion(SelfExpr.get()); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| MarkAnyDeclReferenced(Loc, IV, true); |
| |
| ObjCMethodFamily MF = CurMethod->getMethodFamily(); |
| if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && |
| !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) |
| Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); |
| |
| ObjCIvarRefExpr *Result = new (Context) |
| ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, |
| IV->getLocation(), SelfExpr.get(), true, true); |
| |
| if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| if (!isUnevaluatedContext() && |
| !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) |
| getCurFunction()->recordUseOfWeak(Result); |
| } |
| if (getLangOpts().ObjCAutoRefCount) { |
| if (CurContext->isClosure()) |
| Diag(Loc, diag::warn_implicitly_retains_self) |
| << FixItHint::CreateInsertion(Loc, "self->"); |
| } |
| |
| return Result; |
| } |
| } else if (CurMethod->isInstanceMethod()) { |
| // We should warn if a local variable hides an ivar. |
| if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { |
| if (IV->getAccessControl() != ObjCIvarDecl::Private || |
| declaresSameEntity(IFace, ClassDeclared)) |
| Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); |
| } |
| } |
| } else if (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { |
| // If accessing a stand-alone ivar in a class method, this is an error. |
| if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) |
| return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method) |
| << IV->getDeclName()); |
| } |
| |
| if (Lookup.empty() && II && AllowBuiltinCreation) { |
| // FIXME. Consolidate this with similar code in LookupName. |
| if (unsigned BuiltinID = II->getBuiltinID()) { |
| if (!(getLangOpts().CPlusPlus && |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) { |
| NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, |
| S, Lookup.isForRedeclaration(), |
| Lookup.getNameLoc()); |
| if (D) Lookup.addDecl(D); |
| } |
| } |
| } |
| // Sentinel value saying that we didn't do anything special. |
| return ExprResult((Expr *)nullptr); |
| } |
| |
| /// Cast a base object to a member's actual type. |
| /// |
| /// Logically this happens in three phases: |
| /// |
| /// * First we cast from the base type to the naming class. |
| /// The naming class is the class into which we were looking |
| /// when we found the member; it's the qualifier type if a |
| /// qualifier was provided, and otherwise it's the base type. |
| /// |
| /// * Next we cast from the naming class to the declaring class. |
| /// If the member we found was brought into a class's scope by |
| /// a using declaration, this is that class; otherwise it's |
| /// the class declaring the member. |
| /// |
| /// * Finally we cast from the declaring class to the "true" |
| /// declaring class of the member. This conversion does not |
| /// obey access control. |
| ExprResult |
| Sema::PerformObjectMemberConversion(Expr *From, |
| NestedNameSpecifier *Qualifier, |
| NamedDecl *FoundDecl, |
| NamedDecl *Member) { |
| CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); |
| if (!RD) |
| return From; |
| |
| QualType DestRecordType; |
| QualType DestType; |
| QualType FromRecordType; |
| QualType FromType = From->getType(); |
| bool PointerConversions = false; |
| if (isa<FieldDecl>(Member)) { |
| DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); |
| |
| if (FromType->getAs<PointerType>()) { |
| DestType = Context.getPointerType(DestRecordType); |
| FromRecordType = FromType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| DestType = DestRecordType; |
| FromRecordType = FromType; |
| } |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { |
| if (Method->isStatic()) |
| return From; |
| |
| DestType = Method->getThisType(Context); |
| DestRecordType = DestType->getPointeeType(); |
| |
| if (FromType->getAs<PointerType>()) { |
| FromRecordType = FromType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| FromRecordType = FromType; |
| DestType = DestRecordType; |
| } |
| } else { |
| // No conversion necessary. |
| return From; |
| } |
| |
| if (DestType->isDependentType() || FromType->isDependentType()) |
| return From; |
| |
| // If the unqualified types are the same, no conversion is necessary. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return From; |
| |
| SourceRange FromRange = From->getSourceRange(); |
| SourceLocation FromLoc = FromRange.getBegin(); |
| |
| ExprValueKind VK = From->getValueKind(); |
| |
| // C++ [class.member.lookup]p8: |
| // [...] Ambiguities can often be resolved by qualifying a name with its |
| // class name. |
| // |
| // If the member was a qualified name and the qualified referred to a |
| // specific base subobject type, we'll cast to that intermediate type |
| // first and then to the object in which the member is declared. That allows |
| // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: |
| // |
| // class Base { public: int x; }; |
| // class Derived1 : public Base { }; |
| // class Derived2 : public Base { }; |
| // class VeryDerived : public Derived1, public Derived2 { void f(); }; |
| // |
| // void VeryDerived::f() { |
| // x = 17; // error: ambiguous base subobjects |
| // Derived1::x = 17; // okay, pick the Base subobject of Derived1 |
| // } |
| if (Qualifier && Qualifier->getAsType()) { |
| QualType QType = QualType(Qualifier->getAsType(), 0); |
| assert(QType->isRecordType() && "lookup done with non-record type"); |
| |
| QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); |
| |
| // In C++98, the qualifier type doesn't actually have to be a base |
| // type of the object type, in which case we just ignore it. |
| // Otherwise build the appropriate casts. |
| if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, |
| FromLoc, FromRange, &BasePath)) |
| return ExprError(); |
| |
| if (PointerConversions) |
| QType = Context.getPointerType(QType); |
| From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, |
| VK, &BasePath).get(); |
| |
| FromType = QType; |
| FromRecordType = QRecordType; |
| |
| // If the qualifier type was the same as the destination type, |
| // we're done. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return From; |
| } |
| } |
| |
| bool IgnoreAccess = false; |
| |
| // If we actually found the member through a using declaration, cast |
| // down to the using declaration's type. |
| // |
| // Pointer equality is fine here because only one declaration of a |
| // class ever has member declarations. |
| if (FoundDecl->getDeclContext() != Member->getDeclContext()) { |
| assert(isa<UsingShadowDecl>(FoundDecl)); |
| QualType URecordType = Context.getTypeDeclType( |
| cast<CXXRecordDecl>(FoundDecl->getDeclContext())); |
| |
| // We only need to do this if the naming-class to declaring-class |
| // conversion is non-trivial. |
| if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { |
| assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType)); |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, URecordType, |
| FromLoc, FromRange, &BasePath)) |
| return ExprError(); |
| |
| QualType UType = URecordType; |
| if (PointerConversions) |
| UType = Context.getPointerType(UType); |
| From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase, |
| VK, &BasePath).get(); |
| FromType = UType; |
| FromRecordType = URecordType; |
| } |
| |
| // We don't do access control for the conversion from the |
| // declaring class to the true declaring class. |
| IgnoreAccess = true; |
| } |
| |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, |
| FromLoc, FromRange, &BasePath, |
| IgnoreAccess)) |
| return ExprError(); |
| |
| return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, |
| VK, &BasePath); |
| } |
| |
| bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, |
| const LookupResult &R, |
| bool HasTrailingLParen) { |
| // Only when used directly as the postfix-expression of a call. |
| if (!HasTrailingLParen) |
| return false; |
| |
| // Never if a scope specifier was provided. |
| if (SS.isSet()) |
| return false; |
| |
| // Only in C++ or ObjC++. |
| if (!getLangOpts().CPlusPlus) |
| return false; |
| |
| // Turn off ADL when we find certain kinds of declarations during |
| // normal lookup: |
| for (NamedDecl *D : R) { |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration of a class member |
| // Since using decls preserve this property, we check this on the |
| // original decl. |
| if (D->isCXXClassMember()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a block-scope function declaration that is not a |
| // using-declaration |
| // NOTE: we also trigger this for function templates (in fact, we |
| // don't check the decl type at all, since all other decl types |
| // turn off ADL anyway). |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| else if (D->getLexicalDeclContext()->isFunctionOrMethod()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration that is neither a function or a function |
| // template |
| // And also for builtin functions. |
| if (isa<FunctionDecl>(D)) { |
| FunctionDecl *FDecl = cast<FunctionDecl>(D); |
| |
| // But also builtin functions. |
| if (FDecl->getBuiltinID() && FDecl->isImplicit()) |
| return false; |
| } else if (!isa<FunctionTemplateDecl>(D)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /// Diagnoses obvious problems with the use of the given declaration |
| /// as an expression. This is only actually called for lookups that |
| /// were not overloaded, and it doesn't promise that the declaration |
| /// will in fact be used. |
| static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { |
| if (D->isInvalidDecl()) |
| return true; |
| |
| if (isa<TypedefNameDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<ObjCInterfaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<NamespaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Certain multiversion types should be treated as overloaded even when there is |
| // only one result. |
| static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { |
| assert(R.isSingleResult() && "Expected only a single result"); |
| const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); |
| return FD && |
| (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); |
| } |
| |
| ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| LookupResult &R, bool NeedsADL, |
| bool AcceptInvalidDecl) { |
| // If this is a single, fully-resolved result and we don't need ADL, |
| // just build an ordinary singleton decl ref. |
| if (!NeedsADL && R.isSingleResult() && |
| !R.getAsSingle<FunctionTemplateDecl>() && |
| !ShouldLookupResultBeMultiVersionOverload(R)) |
| return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), |
| R.getRepresentativeDecl(), nullptr, |
| AcceptInvalidDecl); |
| |
| // We only need to check the declaration if there's exactly one |
| // result, because in the overloaded case the results can only be |
| // functions and function templates. |
| if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && |
| CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) |
| return ExprError(); |
| |
| // Otherwise, just build an unresolved lookup expression. Suppress |
| // any lookup-related diagnostics; we'll hash these out later, when |
| // we've picked a target. |
| R.suppressDiagnostics(); |
| |
| UnresolvedLookupExpr *ULE |
| = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), |
| SS.getWithLocInContext(Context), |
| R.getLookupNameInfo(), |
| NeedsADL, R.isOverloadedResult(), |
| R.begin(), R.end()); |
| |
| return ULE; |
| } |
| |
| static void |
| diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, |
| ValueDecl *var, DeclContext *DC); |
| |
| /// Complete semantic analysis for a reference to the given declaration. |
| ExprResult Sema::BuildDeclarationNameExpr( |
| const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, |
| NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, |
| bool AcceptInvalidDecl) { |
| assert(D && "Cannot refer to a NULL declaration"); |
| assert(!isa<FunctionTemplateDecl>(D) && |
| "Cannot refer unambiguously to a function template"); |
| |
| SourceLocation Loc = NameInfo.getLoc(); |
| if (CheckDeclInExpr(*this, Loc, D)) |
| return ExprError(); |
| |
| if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { |
| // Specifically diagnose references to class templates that are missing |
| // a template argument list. |
| diagnoseMissingTemplateArguments(TemplateName(Template), Loc); |
| return ExprError(); |
| } |
| |
| // Make sure that we're referring to a value. |
| ValueDecl *VD = dyn_cast<ValueDecl>(D); |
| if (!VD) { |
| Diag(Loc, diag::err_ref_non_value) |
| << D << SS.getRange(); |
| Diag(D->getLocation(), diag::note_declared_at); |
| return ExprError(); |
| } |
| |
| // Check whether this declaration can be used. Note that we suppress |
| // this check when we're going to perform argument-dependent lookup |
| // on this function name, because this might not be the function |
| // that overload resolution actually selects. |
| if (DiagnoseUseOfDecl(VD, Loc)) |
| return ExprError(); |
| |
| // Only create DeclRefExpr's for valid Decl's. |
| if (VD->isInvalidDecl() && !AcceptInvalidDecl) |
| return ExprError(); |
| |
| // Handle members of anonymous structs and unions. If we got here, |
| // and the reference is to a class member indirect field, then this |
| // must be the subject of a pointer-to-member expression. |
| if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) |
| if (!indirectField->isCXXClassMember()) |
| return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), |
| indirectField); |
| |
| { |
| QualType type = VD->getType(); |
| if (type.isNull()) |
| return ExprError(); |
| if (auto *FPT = type->getAs<FunctionProtoType>()) { |
| // C++ [except.spec]p17: |
| // An exception-specification is considered to be needed when: |
| // - in an expression, the function is the unique lookup result or |
| // the selected member of a set of overloaded functions. |
| ResolveExceptionSpec(Loc, FPT); |
| type = VD->getType(); |
| } |
| ExprValueKind valueKind = VK_RValue; |
| |
| switch (D->getKind()) { |
| // Ignore all the non-ValueDecl kinds. |
| #define ABSTRACT_DECL(kind) |
| #define VALUE(type, base) |
| #define DECL(type, base) \ |
| case Decl::type: |
| #include "clang/AST/DeclNodes.inc" |
| llvm_unreachable("invalid value decl kind"); |
| |
| // These shouldn't make it here. |
| case Decl::ObjCAtDefsField: |
| case Decl::ObjCIvar: |
| llvm_unreachable("forming non-member reference to ivar?"); |
| |
| // Enum constants are always r-values and never references. |
| // Unresolved using declarations are dependent. |
| case Decl::EnumConstant: |
| case Decl::UnresolvedUsingValue: |
| case Decl::OMPDeclareReduction: |
| valueKind = VK_RValue; |
| break; |
| |
| // Fields and indirect fields that got here must be for |
| // pointer-to-member expressions; we just call them l-values for |
| // internal consistency, because this subexpression doesn't really |
| // exist in the high-level semantics. |
| case Decl::Field: |
| case Decl::IndirectField: |
| assert(getLangOpts().CPlusPlus && |
| "building reference to field in C?"); |
| |
| // These can't have reference type in well-formed programs, but |
| // for internal consistency we do this anyway. |
| type = type.getNonReferenceType(); |
| valueKind = VK_LValue; |
| break; |
| |
| // Non-type template parameters are either l-values or r-values |
| // depending on the type. |
| case Decl::NonTypeTemplateParm: { |
| if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { |
| type = reftype->getPointeeType(); |
| valueKind = VK_LValue; // even if the parameter is an r-value reference |
| break; |
| } |
| |
| // For non-references, we need to strip qualifiers just in case |
| // the template parameter was declared as 'const int' or whatever. |
| valueKind = VK_RValue; |
| type = type.getUnqualifiedType(); |
| break; |
| } |
| |
| case Decl::Var: |
| case Decl::VarTemplateSpecialization: |
| case Decl::VarTemplatePartialSpecialization: |
| case Decl::Decomposition: |
| case Decl::OMPCapturedExpr: |
| // In C, "extern void blah;" is valid and is an r-value. |
| if (!getLangOpts().CPlusPlus && |
| !type.hasQualifiers() && |
| type->isVoidType()) { |
| valueKind = VK_RValue; |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| |
| case Decl::ImplicitParam: |
| case Decl::ParmVar: { |
| // These are always l-values. |
| valueKind = VK_LValue; |
| type = type.getNonReferenceType(); |
| |
| // FIXME: Does the addition of const really only apply in |
| // potentially-evaluated contexts? Since the variable isn't actually |
| // captured in an unevaluated context, it seems that the answer is no. |
| if (!isUnevaluatedContext()) { |
| QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc); |
| if (!CapturedType.isNull()) |
| type = CapturedType; |
| } |
| |
| break; |
| } |
| |
| case Decl::Binding: { |
| // These are always lvalues. |
| valueKind = VK_LValue; |
| type = type.getNonReferenceType(); |
| // FIXME: Support lambda-capture of BindingDecls, once CWG actually |
| // decides how that's supposed to work. |
| auto *BD = cast<BindingDecl>(VD); |
| if (BD->getDeclContext()->isFunctionOrMethod() && |
| BD->getDeclContext() != CurContext) |
| diagnoseUncapturableValueReference(*this, Loc, BD, CurContext); |
| break; |
| } |
| |
| case Decl::Function: { |
| if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) { |
| if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) { |
| type = Context.BuiltinFnTy; |
| valueKind = VK_RValue; |
| break; |
| } |
| } |
| |
| const FunctionType *fty = type->castAs<FunctionType>(); |
| |
| // If we're referring to a function with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| if (fty->getReturnType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| // Functions are l-values in C++. |
| if (getLangOpts().CPlusPlus) { |
| valueKind = VK_LValue; |
| break; |
| } |
| |
| // C99 DR 316 says that, if a function type comes from a |
| // function definition (without a prototype), that type is only |
| // used for checking compatibility. Therefore, when referencing |
| // the function, we pretend that we don't have the full function |
| // type. |
| if (!cast<FunctionDecl>(VD)->hasPrototype() && |
| isa<FunctionProtoType>(fty)) |
| type = Context.getFunctionNoProtoType(fty->getReturnType(), |
| fty->getExtInfo()); |
| |
| // Functions are r-values in C. |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| case Decl::CXXDeductionGuide: |
| llvm_unreachable("building reference to deduction guide"); |
| |
| case Decl::MSProperty: |
| valueKind = VK_LValue; |
| break; |
| |
| case Decl::CXXMethod: |
| // If we're referring to a method with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| // This should only be possible with a type written directly. |
| if (const FunctionProtoType *proto |
| = dyn_cast<FunctionProtoType>(VD->getType())) |
| if (proto->getReturnType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| // C++ methods are l-values if static, r-values if non-static. |
| if (cast<CXXMethodDecl>(VD)->isStatic()) { |
| valueKind = VK_LValue; |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| |
| case Decl::CXXConversion: |
| case Decl::CXXDestructor: |
| case Decl::CXXConstructor: |
| valueKind = VK_RValue; |
| break; |
| } |
| |
| return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, |
| TemplateArgs); |
| } |
| } |
| |
| static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, |
| SmallString<32> &Target) { |
| Target.resize(CharByteWidth * (Source.size() + 1)); |
| char *ResultPtr = &Target[0]; |
| const llvm::UTF8 *ErrorPtr; |
| bool success = |
| llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); |
| (void)success; |
| assert(success); |
| Target.resize(ResultPtr - &Target[0]); |
| } |
| |
| ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, |
| PredefinedExpr::IdentType IT) { |
| // Pick the current block, lambda, captured statement or function. |
| Decl *currentDecl = nullptr; |
| if (const BlockScopeInfo *BSI = getCurBlock()) |
| currentDecl = BSI->TheDecl; |
| else if (const LambdaScopeInfo *LSI = getCurLambda()) |
| currentDecl = LSI->CallOperator; |
| else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) |
| currentDecl = CSI->TheCapturedDecl; |
| else |
| currentDecl = getCurFunctionOrMethodDecl(); |
| |
| if (!currentDecl) { |
| Diag(Loc, diag::ext_predef_outside_function); |
| currentDecl = Context.getTranslationUnitDecl(); |
| } |
| |
| QualType ResTy; |
| StringLiteral *SL = nullptr; |
| if (cast<DeclContext>(currentDecl)->isDependentContext()) |
| ResTy = Context.DependentTy; |
| else { |
| // Pre-defined identifiers are of type char[x], where x is the length of |
| // the string. |
| auto Str = PredefinedExpr::ComputeName(IT, currentDecl); |
| unsigned Length = Str.length(); |
| |
| llvm::APInt LengthI(32, Length + 1); |
| if (IT == PredefinedExpr::LFunction || IT == PredefinedExpr::LFuncSig) { |
| ResTy = |
| Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); |
| SmallString<32> RawChars; |
| ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), |
| Str, RawChars); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, |
| /*IndexTypeQuals*/ 0); |
| SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, |
| /*Pascal*/ false, ResTy, Loc); |
| } else { |
| ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, |
| /*IndexTypeQuals*/ 0); |
| SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii, |
| /*Pascal*/ false, ResTy, Loc); |
| } |
| } |
| |
| return new (Context) PredefinedExpr(Loc, ResTy, IT, SL); |
| } |
| |
| ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { |
| PredefinedExpr::IdentType IT; |
| |
| switch (Kind) { |
| default: llvm_unreachable("Unknown simple primary expr!"); |
| case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] |
| case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; |
| case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS] |
| case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS] |
| case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break; // [MS] |
| case tok::kw_L__FUNCSIG__: IT = PredefinedExpr::LFuncSig; break; // [MS] |
| case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; |
| } |
| |
| return BuildPredefinedExpr(Loc, IT); |
| } |
| |
| ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { |
| SmallString<16> CharBuffer; |
| bool Invalid = false; |
| StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), |
| PP, Tok.getKind()); |
| if (Literal.hadError()) |
| return ExprError(); |
| |
| QualType Ty; |
| if (Literal.isWide()) |
| Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. |
| else if (Literal.isUTF8() && getLangOpts().Char8) |
| Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. |
| else if (Literal.isUTF16()) |
| Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. |
| else if (Literal.isUTF32()) |
| Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. |
| else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) |
| Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. |
| else |
| Ty = Context.CharTy; // 'x' -> char in C++ |
| |
| CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; |
| if (Literal.isWide()) |
| Kind = CharacterLiteral::Wide; |
| else if (Literal.isUTF16()) |
| Kind = CharacterLiteral::UTF16; |
| else if (Literal.isUTF32()) |
| Kind = CharacterLiteral::UTF32; |
| else if (Literal.isUTF8()) |
| Kind = CharacterLiteral::UTF8; |
| |
| Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, |
| Tok.getLocation()); |
| |
| if (Literal.getUDSuffix().empty()) |
| return Lit; |
| |
| // We're building a user-defined literal. |
| IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
| SourceLocation UDSuffixLoc = |
| getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); |
| |
| // Make sure we're allowed user-defined literals here. |
| if (!UDLScope) |
| return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); |
| |
| // C++11 [lex.ext]p6: The literal L is treated as a call of the form |
| // operator "" X (ch) |
| return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, |
| Lit, Tok.getLocation()); |
| } |
| |
| ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { |
| unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
| return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), |
| Context.IntTy, Loc); |
| } |
| |
| static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, |
| QualType Ty, SourceLocation Loc) { |
| const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); |
| |
| using llvm::APFloat; |
| APFloat Val(Format); |
| |
| APFloat::opStatus result = Literal.GetFloatValue(Val); |
| |
| // Overflow is always an error, but underflow is only an error if |
| // we underflowed to zero (APFloat reports denormals as underflow). |
| if ((result & APFloat::opOverflow) || |
| ((result & APFloat::opUnderflow) && Val.isZero())) { |
| unsigned diagnostic; |
| SmallString<20> buffer; |
| if (result & APFloat::opOverflow) { |
| diagnostic = diag::warn_float_overflow; |
| APFloat::getLargest(Format).toString(buffer); |
| } else { |
| diagnostic = diag::warn_float_underflow; |
| APFloat::getSmallest(Format).toString(buffer); |
| } |
| |
| S.Diag(Loc, diagnostic) |
| << Ty |
| << StringRef(buffer.data(), buffer.size()); |
| } |
| |
| bool isExact = (result == APFloat::opOK); |
| return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); |
| } |
| |
| bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { |
| assert(E && "Invalid expression"); |
| |
| if (E->isValueDependent()) |
| return false; |
| |
| QualType QT = E->getType(); |
| if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { |
| Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; |
| return true; |
| } |
| |
| llvm::APSInt ValueAPS; |
| ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); |
| |
| if (R.isInvalid()) |
| return true; |
| |
| bool ValueIsPositive = ValueAPS.isStrictlyPositive(); |
| if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { |
| Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) |
| << ValueAPS.toString(10) << ValueIsPositive; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { |
| // Fast path for a single digit (which is quite common). A single digit |
| // cannot have a trigraph, escaped newline, radix prefix, or suffix. |
| if (Tok.getLength() == 1) { |
| const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); |
| return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); |
| } |
| |
| SmallString<128> SpellingBuffer; |
| // NumericLiteralParser wants to overread by one character. Add padding to |
| // the buffer in case the token is copied to the buffer. If getSpelling() |
| // returns a StringRef to the memory buffer, it should have a null char at |
| // the EOF, so it is also safe. |
| SpellingBuffer.resize(Tok.getLength() + 1); |
| |
| // Get the spelling of the token, which eliminates trigraphs, etc. |
| bool Invalid = false; |
| StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| if (Literal.hasUDSuffix()) { |
| // We're building a user-defined literal. |
| IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
| SourceLocation UDSuffixLoc = |
| getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); |
| |
| // Make sure we're allowed user-defined literals here. |
| if (!UDLScope) |
| return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); |
| |
| QualType CookedTy; |
| if (Literal.isFloatingLiteral()) { |
| // C++11 [lex.ext]p4: If S contains a literal operator with parameter type |
| // long double, the literal is treated as a call of the form |
| // operator "" X (f L) |
| CookedTy = Context.LongDoubleTy; |
| } else { |
| // C++11 [lex.ext]p3: If S contains a literal operator with parameter type |
| // unsigned long long, the literal is treated as a call of the form |
| // operator "" X (n ULL) |
| CookedTy = Context.UnsignedLongLongTy; |
| } |
| |
| DeclarationName OpName = |
| Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
| DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
| OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
| |
| SourceLocation TokLoc = Tok.getLocation(); |
| |
| // Perform literal operator lookup to determine if we're building a raw |
| // literal or a cooked one. |
| LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); |
| switch (LookupLiteralOperator(UDLScope, R, CookedTy, |
| /*AllowRaw*/ true, /*AllowTemplate*/ true, |
| /*AllowStringTemplate*/ false, |
| /*DiagnoseMissing*/ !Literal.isImaginary)) { |
| case LOLR_ErrorNoDiagnostic: |
| // Lookup failure for imaginary constants isn't fatal, there's still the |
| // GNU extension producing _Complex types. |
| break; |
| case LOLR_Error: |
| return ExprError(); |
| case LOLR_Cooked: { |
| Expr *Lit; |
| if (Literal.isFloatingLiteral()) { |
| Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); |
| } else { |
| llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); |
| if (Literal.GetIntegerValue(ResultVal)) |
| Diag(Tok.getLocation(), diag::err_integer_literal_too_large) |
| << /* Unsigned */ 1; |
| Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, |
| Tok.getLocation()); |
| } |
| return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); |
| } |
| |
| case LOLR_Raw: { |
| // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the |
| // literal is treated as a call of the form |
| // operator "" X ("n") |
| unsigned Length = Literal.getUDSuffixOffset(); |
| QualType StrTy = Context.getConstantArrayType( |
| Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), |
| llvm::APInt(32, Length + 1), ArrayType::Normal, 0); |
| Expr *Lit = StringLiteral::Create( |
| Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii, |
| /*Pascal*/false, StrTy, &TokLoc, 1); |
| return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); |
| } |
| |
| case LOLR_Template: { |
| // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator |
| // template), L is treated as a call fo the form |
| // operator "" X <'c1', 'c2', ... 'ck'>() |
| // where n is the source character sequence c1 c2 ... ck. |
| TemplateArgumentListInfo ExplicitArgs; |
| unsigned CharBits = Context.getIntWidth(Context.CharTy); |
| bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); |
| llvm::APSInt Value(CharBits, CharIsUnsigned); |
| for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { |
| Value = TokSpelling[I]; |
| TemplateArgument Arg(Context, Value, Context.CharTy); |
| TemplateArgumentLocInfo ArgInfo; |
| ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
| } |
| return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc, |
| &ExplicitArgs); |
| } |
| case LOLR_StringTemplate: |
| llvm_unreachable("unexpected literal operator lookup result"); |
| } |
| } |
| |
| Expr *Res; |
| |
| if (Literal.isFixedPointLiteral()) { |
| QualType Ty; |
| |
| if (Literal.isAccum) { |
| if (Literal.isHalf) { |
| Ty = Context.ShortAccumTy; |
| } else if (Literal.isLong) { |
| Ty = Context.LongAccumTy; |
| } else { |
| Ty = Context.AccumTy; |
| } |
| } else if (Literal.isFract) { |
| if (Literal.isHalf) { |
| Ty = Context.ShortFractTy; |
| } else if (Literal.isLong) { |
| Ty = Context.LongFractTy; |
| } else { |
| Ty = Context.FractTy; |
| } |
| } |
| |
| if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); |
| |
| bool isSigned = !Literal.isUnsigned; |
| unsigned scale = Context.getFixedPointScale(Ty); |
| unsigned ibits = Context.getFixedPointIBits(Ty); |
| unsigned bit_width = Context.getTypeInfo(Ty).Width; |
| |
| llvm::APInt Val(bit_width, 0, isSigned); |
| bool Overflowed = Literal.GetFixedPointValue(Val, scale); |
| |
| // Do not use bit_width since some types may have padding like _Fract or |
| // unsigned _Accums if PaddingOnUnsignedFixedPoint is set. |
| auto MaxVal = llvm::APInt::getMaxValue(ibits + scale).zextOrSelf(bit_width); |
| if (Literal.isFract && Val == MaxVal + 1) |
| // Clause 6.4.4 - The value of a constant shall be in the range of |
| // representable values for its type, with exception for constants of a |
| // fract type with a value of exactly 1; such a constant shall denote |
| // the maximal value for the type. |
| --Val; |
| else if (Val.ugt(MaxVal) || Overflowed) |
| Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); |
| |
| Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, |
| Tok.getLocation(), scale); |
| } else if (Literal.isFloatingLiteral()) { |
| QualType Ty; |
| if (Literal.isHalf){ |
| if (getOpenCLOptions().isEnabled("cl_khr_fp16")) |
| Ty = Context.HalfTy; |
| else { |
| Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); |
| return ExprError(); |
| } |
| } else if (Literal.isFloat) |
| Ty = Context.FloatTy; |
| else if (Literal.isLong) |
| Ty = Context.LongDoubleTy; |
| else if (Literal.isFloat16) |
| Ty = Context.Float16Ty; |
| else if (Literal.isFloat128) |
| Ty = Context.Float128Ty; |
| else |
| Ty = Context.DoubleTy; |
| |
| Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); |
| |
| if (Ty == Context.DoubleTy) { |
| if (getLangOpts().SinglePrecisionConstants) { |
| const BuiltinType *BTy = Ty->getAs<BuiltinType>(); |
| if (BTy->getKind() != BuiltinType::Float) { |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); |
| } |
| } else if (getLangOpts().OpenCL && |
| !getOpenCLOptions().isEnabled("cl_khr_fp64")) { |
| // Impose single-precision float type when cl_khr_fp64 is not enabled. |
| Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64); |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); |
| } |
| } |
| } else if (!Literal.isIntegerLiteral()) { |
| return ExprError(); |
| } else { |
| QualType Ty; |
| |
| // 'long long' is a C99 or C++11 feature. |
| if (!getLangOpts().C99 && Literal.isLongLong) { |
| if (getLangOpts().CPlusPlus) |
| Diag(Tok.getLocation(), |
| getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); |
| else |
| Diag(Tok.getLocation(), diag::ext_c99_longlong); |
| } |
| |
| // Get the value in the widest-possible width. |
| unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth(); |
| llvm::APInt ResultVal(MaxWidth, 0); |
| |
| if (Literal.GetIntegerValue(ResultVal)) { |
| // If this value didn't fit into uintmax_t, error and force to ull. |
| Diag(Tok.getLocation(), diag::err_integer_literal_too_large) |
| << /* Unsigned */ 1; |
| Ty = Context.UnsignedLongLongTy; |
| assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && |
| "long long is not intmax_t?"); |
| } else { |
| // If this value fits into a ULL, try to figure out what else it fits into |
| // according to the rules of C99 6.4.4.1p5. |
| |
| // Octal, Hexadecimal, and integers with a U suffix are allowed to |
| // be an unsigned int. |
| bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
| |
| // Check from smallest to largest, picking the smallest type we can. |
| unsigned Width = 0; |
| |
| // Microsoft specific integer suffixes are explicitly sized. |
| if (Literal.MicrosoftInteger) { |
| if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { |
| Width = 8; |
| Ty = Context.CharTy; |
| } else { |
| Width = Literal.MicrosoftInteger; |
| Ty = Context.getIntTypeForBitwidth(Width, |
| /*Signed=*/!Literal.isUnsigned); |
| } |
| } |
| |
| if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) { |
| // Are int/unsigned possibilities? |
| unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
| |
| // Does it fit in a unsigned int? |
| if (ResultVal.isIntN(IntSize)) { |
| // Does it fit in a signed int? |
| if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
| Ty = Context.IntTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedIntTy; |
| Width = IntSize; |
| } |
| } |
| |
| // Are long/unsigned long possibilities? |
| if (Ty.isNull() && !Literal.isLongLong) { |
| unsigned LongSize = Context.getTargetInfo().getLongWidth(); |
| |
| // Does it fit in a unsigned long? |
| if (ResultVal.isIntN(LongSize)) { |
| // Does it fit in a signed long? |
| if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
| Ty = Context.LongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongTy; |
| // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 |
| // is compatible. |
| else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { |
| const unsigned LongLongSize = |
| Context.getTargetInfo().getLongLongWidth(); |
| Diag(Tok.getLocation(), |
| getLangOpts().CPlusPlus |
| ? Literal.isLong |
| ? diag::warn_old_implicitly_unsigned_long_cxx |
| : /*C++98 UB*/ diag:: |
| ext_old_implicitly_unsigned_long_cxx |
| : diag::warn_old_implicitly_unsigned_long) |
| << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 |
| : /*will be ill-formed*/ 1); |
| Ty = Context.UnsignedLongTy; |
| } |
| Width = LongSize; |
| } |
| } |
| |
| // Check long long if needed. |
| if (Ty.isNull()) { |
| unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); |
| |
| // Does it fit in a unsigned long long? |
| if (ResultVal.isIntN(LongLongSize)) { |
| // Does it fit in a signed long long? |
| // To be compatible with MSVC, hex integer literals ending with the |
| // LL or i64 suffix are always signed in Microsoft mode. |
| if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || |
| (getLangOpts().MSVCCompat && Literal.isLongLong))) |
| Ty = Context.LongLongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongLongTy; |
| Width = LongLongSize; |
| } |
| } |
| |
| // If we still couldn't decide a type, we probably have something that |
| // does not fit in a signed long long, but has no U suffix. |
| if (Ty.isNull()) { |
| Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed); |
| Ty = Context.UnsignedLongLongTy; |
| Width = Context.getTargetInfo().getLongLongWidth(); |
| } |
| |
| if (ResultVal.getBitWidth() != Width) |
| ResultVal = ResultVal.trunc(Width); |
| } |
| Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); |
| } |
| |
| // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
| if (Literal.isImaginary) { |
| Res = new (Context) ImaginaryLiteral(Res, |
| Context.getComplexType(Res->getType())); |
| |
| Diag(Tok.getLocation(), diag::ext_imaginary_constant); |
| } |
| return Res; |
| } |
| |
| ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { |
| assert(E && "ActOnParenExpr() missing expr"); |
| return new (Context) ParenExpr(L, R, E); |
| } |
| |
| static bool CheckVecStepTraitOperandType(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange) { |
| // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in |
| // scalar or vector data type argument..." |
| // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic |
| // type (C99 6.2.5p18) or void. |
| if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { |
| S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) |
| << T << ArgRange; |
| return true; |
| } |
| |
| assert((T->isVoidType() || !T->isIncompleteType()) && |
| "Scalar types should always be complete"); |
| return false; |
| } |
| |
| static bool CheckExtensionTraitOperandType(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange, |
| UnaryExprOrTypeTrait TraitKind) { |
| // Invalid types must be hard errors for SFINAE in C++. |
| if (S.LangOpts.CPlusPlus) |
| return true; |
| |
| // C99 6.5.3.4p1: |
| if (T->isFunctionType() && |
| (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) { |
| // sizeof(function)/alignof(function) is allowed as an extension. |
| S.Diag(Loc, diag::ext_sizeof_alignof_function_type) |
| << TraitKind << ArgRange; |
| return false; |
| } |
| |
| // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where |
| // this is an error (OpenCL v1.1 s6.3.k) |
| if (T->isVoidType()) { |
| unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type |
| : diag::ext_sizeof_alignof_void_type; |
| S.Diag(Loc, DiagID) << TraitKind << ArgRange; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange, |
| UnaryExprOrTypeTrait TraitKind) { |
| // Reject sizeof(interface) and sizeof(interface<proto>) if the |
| // runtime doesn't allow it. |
| if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { |
| S.Diag(Loc, diag::err_sizeof_nonfragile_interface) |
| << T << (TraitKind == UETT_SizeOf) |
| << ArgRange; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Check whether E is a pointer from a decayed array type (the decayed |
| /// pointer type is equal to T) and emit a warning if it is. |
| static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, |
| Expr *E) { |
| // Don't warn if the operation changed the type. |
| if (T != E->getType()) |
| return; |
| |
| // Now look for array decays. |
| ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E); |
| if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) |
| return; |
| |
| S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() |
| << ICE->getType() |
| << ICE->getSubExpr()->getType(); |
| } |
| |
| /// Check the constraints on expression operands to unary type expression |
| /// and type traits. |
| /// |
| /// Completes any types necessary and validates the constraints on the operand |
| /// expression. The logic mostly mirrors the type-based overload, but may modify |
| /// the expression as it completes the type for that expression through template |
| /// instantiation, etc. |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, |
| UnaryExprOrTypeTrait ExprKind) { |
| QualType ExprTy = E->getType(); |
| assert(!ExprTy->isReferenceType()); |
| |
| if (ExprKind == UETT_VecStep) |
| return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange()); |
| |
| // Whitelist some types as extensions |
| if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange(), ExprKind)) |
| return false; |
| |
| // 'alignof' applied to an expression only requires the base element type of |
| // the expression to be complete. 'sizeof' requires the expression's type to |
| // be complete (and will attempt to complete it if it's an array of unknown |
| // bound). |
| if (ExprKind == UETT_AlignOf) { |
| if (RequireCompleteType(E->getExprLoc(), |
| Context.getBaseElementType(E->getType()), |
| diag::err_sizeof_alignof_incomplete_type, ExprKind, |
| E->getSourceRange())) |
| return true; |
| } else { |
| if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type, |
| ExprKind, E->getSourceRange())) |
| return true; |
| } |
| |
| // Completing the expression's type may have changed it. |
| ExprTy = E->getType(); |
| assert(!ExprTy->isReferenceType()); |
| |
| if (ExprTy->isFunctionType()) { |
| Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) |
| << ExprKind << E->getSourceRange(); |
| return true; |
| } |
| |
| // The operand for sizeof and alignof is in an unevaluated expression context, |
| // so side effects could result in unintended consequences. |
| if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) && |
| !inTemplateInstantiation() && E->HasSideEffects(Context, false)) |
| Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); |
| |
| if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange(), ExprKind)) |
| return true; |
| |
| if (ExprKind == UETT_SizeOf) { |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { |
| if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { |
| QualType OType = PVD->getOriginalType(); |
| QualType Type = PVD->getType(); |
| if (Type->isPointerType() && OType->isArrayType()) { |
| Diag(E->getExprLoc(), diag::warn_sizeof_array_param) |
| << Type << OType; |
| Diag(PVD->getLocation(), diag::note_declared_at); |
| } |
| } |
| } |
| |
| // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array |
| // decays into a pointer and returns an unintended result. This is most |
| // likely a typo for "sizeof(array) op x". |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) { |
| warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), |
| BO->getLHS()); |
| warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), |
| BO->getRHS()); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Check the constraints on operands to unary expression and type |
| /// traits. |
| /// |
| /// This will complete any types necessary, and validate the various constraints |
| /// on those operands. |
| /// |
| /// The UsualUnaryConversions() function is *not* called by this routine. |
| /// C99 6.3.2.1p[2-4] all state: |
| /// Except when it is the operand of the sizeof operator ... |
| /// |
| /// C++ [expr.sizeof]p4 |
| /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer |
| /// standard conversions are not applied to the operand of sizeof. |
| /// |
| /// This policy is followed for all of the unary trait expressions. |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, |
| SourceLocation OpLoc, |
| SourceRange ExprRange, |
| UnaryExprOrTypeTrait ExprKind) { |
| if (ExprType->isDependentType()) |
| return false; |
| |
| // C++ [expr.sizeof]p2: |
| // When applied to a reference or a reference type, the result |
| // is the size of the referenced type. |
| // C++11 [expr.alignof]p3: |
| // When alignof is applied to a reference type, the result |
| // shall be the alignment of the referenced type. |
| if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) |
| ExprType = Ref->getPointeeType(); |
| |
| // C11 6.5.3.4/3, C++11 [expr.alignof]p3: |
| // When alignof or _Alignof is applied to an array type, the result |
| // is the alignment of the element type. |
| if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign) |
| ExprType = Context.getBaseElementType(ExprType); |
| |
| if (ExprKind == UETT_VecStep) |
| return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); |
| |
| // Whitelist some types as extensions |
| if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, |
| ExprKind)) |
| return false; |
| |
| if (RequireCompleteType(OpLoc, ExprType, |
| diag::err_sizeof_alignof_incomplete_type, |
| ExprKind, ExprRange)) |
| return true; |
| |
| if (ExprType->isFunctionType()) { |
| Diag(OpLoc, diag::err_sizeof_alignof_function_type) |
| << ExprKind << ExprRange; |
| return true; |
| } |
| |
| if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, |
| ExprKind)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool CheckAlignOfExpr(Sema &S, Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| if (E->getObjectKind() == OK_BitField) { |
| S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) |
| << 1 << E->getSourceRange(); |
| return true; |
| } |
| |
| ValueDecl *D = nullptr; |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| D = DRE->getDecl(); |
| } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
| D = ME->getMemberDecl(); |
| } |
| |
| // If it's a field, require the containing struct to have a |
| // complete definition so that we can compute the layout. |
| // |
| // This can happen in C++11 onwards, either by naming the member |
| // in a way that is not transformed into a member access expression |
| // (in an unevaluated operand, for instance), or by naming the member |
| // in a trailing-return-type. |
| // |
| // For the record, since __alignof__ on expressions is a GCC |
| // extension, GCC seems to permit this but always gives the |
| // nonsensical answer 0. |
| // |
| // We don't really need the layout here --- we could instead just |
| // directly check for all the appropriate alignment-lowing |
| // attributes --- but that would require duplicating a lot of |
| // logic that just isn't worth duplicating for such a marginal |
| // use-case. |
| if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) { |
| // Fast path this check, since we at least know the record has a |
| // definition if we can find a member of it. |
| if (!FD->getParent()->isCompleteDefinition()) { |
| S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) |
| << E->getSourceRange(); |
| return true; |
| } |
| |
| // Otherwise, if it's a field, and the field doesn't have |
| // reference type, then it must have a complete type (or be a |
| // flexible array member, which we explicitly want to |
| // white-list anyway), which makes the following checks trivial. |
| if (!FD->getType()->isReferenceType()) |
| return false; |
| } |
| |
| return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf); |
| } |
| |
| bool Sema::CheckVecStepExpr(Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); |
| } |
| |
| static void captureVariablyModifiedType(ASTContext &Context, QualType T, |
| CapturingScopeInfo *CSI) { |
| assert(T->isVariablyModifiedType()); |
| assert(CSI != nullptr); |
| |
| // We're going to walk down into the type and look for VLA expressions. |
| do { |
| const Type *Ty = T.getTypePtr(); |
| switch (Ty->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.def" |
| T = QualType(); |
| break; |
| // These types are never variably-modified. |
| case Type::Builtin: |
| case Type::Complex: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::Record: |
| case Type::Enum: |
| case Type::Elaborated: |
| case Type::TemplateSpecialization: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::ObjCTypeParam: |
| case Type::Pipe: |
| llvm_unreachable("type class is never variably-modified!"); |
| case Type::Adjusted: |
| T = cast<AdjustedType>(Ty)->getOriginalType(); |
| break; |
| case Type::Decayed: |
| T = cast<DecayedType>(Ty)->getPointeeType(); |
| break; |
| case Type::Pointer: |
| T = cast<PointerType>(Ty)->getPointeeType(); |
| break; |
| case Type::BlockPointer: |
| T = cast<BlockPointerType>(Ty)->getPointeeType(); |
| break; |
| case Type::LValueReference: |
| case Type::RValueReference: |
| T = cast<ReferenceType>(Ty)->getPointeeType(); |
| break; |
| case Type::MemberPointer: |
| T = cast<MemberPointerType>(Ty)->getPointeeType(); |
| break; |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| // Losing element qualification here is fine. |
| T = cast<ArrayType>(Ty)->getElementType(); |
| break; |
| case Type::VariableArray: { |
| // Losing element qualification here is fine. |
| const VariableArrayType *VAT = cast<VariableArrayType>(Ty); |
| |
| // Unknown size indication requires no size computation. |
| // Otherwise, evaluate and record it. |
| if (auto Size = VAT->getSizeExpr()) { |
| if (!CSI->isVLATypeCaptured(VAT)) { |
| RecordDecl *CapRecord = nullptr; |
| if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) { |
| CapRecord = LSI->Lambda; |
| } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { |
| CapRecord = CRSI->TheRecordDecl; |
| } |
| if (CapRecord) { |
| auto ExprLoc = Size->getExprLoc(); |
| auto SizeType = Context.getSizeType(); |
| // Build the non-static data member. |
| auto Field = |
| FieldDecl::Create(Context, CapRecord, ExprLoc, ExprLoc, |
| /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr, |
| /*BW*/ nullptr, /*Mutable*/ false, |
| /*InitStyle*/ ICIS_NoInit); |
| Field->setImplicit(true); |
| Field->setAccess(AS_private); |
| Field->setCapturedVLAType(VAT); |
| CapRecord->addDecl(Field); |
| |
| CSI->addVLATypeCapture(ExprLoc, SizeType); |
| } |
| } |
| } |
| T = VAT->getElementType(); |
| break; |
| } |
| case Type::FunctionProto: |
| case Type::FunctionNoProto: |
| T = cast<FunctionType>(Ty)->getReturnType(); |
| break; |
| case Type::Paren: |
| case Type::TypeOf: |
| case Type::UnaryTransform: |
| case Type::Attributed: |
| case Type::SubstTemplateTypeParm: |
| case Type::PackExpansion: |
| // Keep walking after single level desugaring. |
| T = T.getSingleStepDesugaredType(Context); |
| break; |
| case Type::Typedef: |
| T = cast<TypedefType>(Ty)->desugar(); |
| break; |
| case Type::Decltype: |
| T = cast<DecltypeType>(Ty)->desugar(); |
| break; |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| T = cast<DeducedType>(Ty)->getDeducedType(); |
| break; |
| case Type::TypeOfExpr: |
| T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType(); |
| break; |
| case Type::Atomic: |
| T = cast<AtomicType>(Ty)->getValueType(); |
| break; |
| } |
| } while (!T.isNull() && T->isVariablyModifiedType()); |
| } |
| |
| /// Build a sizeof or alignof expression given a type operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, |
| SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| if (!TInfo) |
| return ExprError(); |
| |
| QualType T = TInfo->getType(); |
| |
| if (!T->isDependentType() && |
| CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) |
| return ExprError(); |
| |
| if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { |
| if (auto *TT = T->getAs<TypedefType>()) { |
| for (auto I = FunctionScopes.rbegin(), |
| E = std::prev(FunctionScopes.rend()); |
| I != E; ++I) { |
| auto *CSI = dyn_cast<CapturingScopeInfo>(*I); |
| if (CSI == nullptr) |
| break; |
| DeclContext *DC = nullptr; |
| if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) |
| DC = LSI->CallOperator; |
| else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) |
| DC = CRSI->TheCapturedDecl; |
| else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) |
| DC = BSI->TheDecl; |
| if (DC) { |
| if (DC->containsDecl(TT->getDecl())) |
| break; |
| captureVariablyModifiedType(Context, T, CSI); |
| } |
| } |
| } |
| } |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return new (Context) UnaryExprOrTypeTraitExpr( |
| ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); |
| } |
| |
| /// Build a sizeof or alignof expression given an expression |
| /// operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind) { |
| ExprResult PE = CheckPlaceholderExpr(E); |
| if (PE.isInvalid()) |
| return ExprError(); |
| |
| E = PE.get(); |
| |
| // Verify that the operand is valid. |
| bool isInvalid = false; |
| if (E->isTypeDependent()) { |
| // Delay type-checking for type-dependent expressions. |
| } else if (ExprKind == UETT_AlignOf) { |
| isInvalid = CheckAlignOfExpr(*this, E); |
| } else if (ExprKind == UETT_VecStep) { |
| isInvalid = CheckVecStepExpr(E); |
| } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { |
| Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); |
| isInvalid = true; |
| } else if (E->refersToBitField()) { // C99 6.5.3.4p1. |
| Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; |
| isInvalid = true; |
| } else { |
| isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); |
| } |
| |
| if (isInvalid) |
| return ExprError(); |
| |
| if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { |
| PE = TransformToPotentiallyEvaluated(E); |
| if (PE.isInvalid()) return ExprError(); |
| E = PE.get(); |
| } |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return new (Context) UnaryExprOrTypeTraitExpr( |
| ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); |
| } |
| |
| /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c |
| /// expr and the same for @c alignof and @c __alignof |
| /// Note that the ArgRange is invalid if isType is false. |
| ExprResult |
| Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, bool IsType, |
| void *TyOrEx, SourceRange ArgRange) { |
| // If error parsing type, ignore. |
| if (!TyOrEx) return ExprError(); |
| |
| if (IsType) { |
| TypeSourceInfo *TInfo; |
| (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); |
| return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); |
| } |
| |
| Expr *ArgEx = (Expr *)TyOrEx; |
| ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); |
| return Result; |
| } |
| |
| static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, |
| bool IsReal) { |
| if (V.get()->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| // _Real and _Imag are only l-values for normal l-values. |
| if (V.get()->getObjectKind() != OK_Ordinary) { |
| V = S.DefaultLvalueConversion(V.get()); |
| if (V.isInvalid()) |
| return QualType(); |
| } |
| |
| // These operators return the element type of a complex type. |
| if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) |
| return CT->getElementType(); |
| |
| // Otherwise they pass through real integer and floating point types here. |
| if (V.get()->getType()->isArithmeticType()) |
| return V.get()->getType(); |
| |
| // Test for placeholders. |
| ExprResult PR = S.CheckPlaceholderExpr(V.get()); |
| if (PR.isInvalid()) return QualType(); |
| if (PR.get() != V.get()) { |
| V = PR; |
| return CheckRealImagOperand(S, V, Loc, IsReal); |
| } |
| |
| // Reject anything else. |
| S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() |
| << (IsReal ? "__real" : "__imag"); |
| return QualType(); |
| } |
| |
| |
| |
| ExprResult |
| Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Kind, Expr *Input) { |
| UnaryOperatorKind Opc; |
| switch (Kind) { |
| default: llvm_unreachable("Unknown unary op!"); |
| case tok::plusplus: Opc = UO_PostInc; break; |
| case tok::minusminus: Opc = UO_PostDec; break; |
| } |
| |
| // Since this might is a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); |
| if (Result.isInvalid()) return ExprError(); |
| Input = Result.get(); |
| |
| return BuildUnaryOp(S, OpLoc, Opc, Input); |
| } |
| |
| /// Diagnose if arithmetic on the given ObjC pointer is illegal. |
| /// |
| /// \return true on error |
| static bool checkArithmeticOnObjCPointer(Sema &S, |
| SourceLocation opLoc, |
| Expr *op) { |
| assert(op->getType()->isObjCObjectPointerType()); |
| if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && |
| !S.LangOpts.ObjCSubscriptingLegacyRuntime) |
| return false; |
| |
| S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) |
| << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType() |
| << op->getSourceRange(); |
| return true; |
| } |
| |
| static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { |
| auto *BaseNoParens = Base->IgnoreParens(); |
| if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens)) |
| return MSProp->getPropertyDecl()->getType()->isArrayType(); |
| return isa<MSPropertySubscriptExpr>(BaseNoParens); |
| } |
| |
| ExprResult |
| Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc, |
| Expr *idx, SourceLocation rbLoc) { |
| if (base && !base->getType().isNull() && |
| base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection)) |
| return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(), |
| /*Length=*/nullptr, rbLoc); |
| |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| if (isa<ParenListExpr>(base)) { |
| ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); |
| if (result.isInvalid()) return ExprError(); |
| base = result.get(); |
| } |
| |
| // Handle any non-overload placeholder types in the base and index |
| // expressions. We can't handle overloads here because the other |
| // operand might be an overloadable type, in which case the overload |
| // resolution for the operator overload should get the first crack |
| // at the overload. |
| bool IsMSPropertySubscript = false; |
| if (base->getType()->isNonOverloadPlaceholderType()) { |
| IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); |
| if (!IsMSPropertySubscript) { |
| ExprResult result = CheckPlaceholderExpr(base); |
| if (result.isInvalid()) |
| return ExprError(); |
| base = result.get(); |
| } |
| } |
| if (idx->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(idx); |
| if (result.isInvalid()) return ExprError(); |
| idx = result.get(); |
| } |
| |
| // Build an unanalyzed expression if either operand is type-dependent. |
| if (getLangOpts().CPlusPlus && |
| (base->isTypeDependent() || idx->isTypeDependent())) { |
| return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy, |
| VK_LValue, OK_Ordinary, rbLoc); |
| } |
| |
| // MSDN, property (C++) |
| // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx |
| // This attribute can also be used in the declaration of an empty array in a |
| // class or structure definition. For example: |
| // __declspec(property(get=GetX, put=PutX)) int x[]; |
| // The above statement indicates that x[] can be used with one or more array |
| // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), |
| // and p->x[a][b] = i will be turned into p->PutX(a, b, i); |
| if (IsMSPropertySubscript) { |
| // Build MS property subscript expression if base is MS property reference |
| // or MS property subscript. |
| return new (Context) MSPropertySubscriptExpr( |
| base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc); |
| } |
| |
| // Use C++ overloaded-operator rules if either operand has record |
| // type. The spec says to do this if either type is *overloadable*, |
| // but enum types can't declare subscript operators or conversion |
| // operators, so there's nothing interesting for overload resolution |
| // to do if there aren't any record types involved. |
| // |
| // ObjC pointers have their own subscripting logic that is not tied |
| // to overload resolution and so should not take this path. |
| if (getLangOpts().CPlusPlus && |
| (base->getType()->isRecordType() || |
| (!base->getType()->isObjCObjectPointerType() && |
| idx->getType()->isRecordType()))) { |
| return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx); |
| } |
| |
| return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc); |
| } |
| |
| ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, |
| Expr *LowerBound, |
| SourceLocation ColonLoc, Expr *Length, |
| SourceLocation RBLoc) { |
| if (Base->getType()->isPlaceholderType() && |
| !Base->getType()->isSpecificPlaceholderType( |
| BuiltinType::OMPArraySection)) { |
| ExprResult Result = CheckPlaceholderExpr(Base); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Base = Result.get(); |
| } |
| if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult Result = CheckPlaceholderExpr(LowerBound); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Result = DefaultLvalueConversion(Result.get()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LowerBound = Result.get(); |
| } |
| if (Length && Length->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult Result = CheckPlaceholderExpr(Length); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Result = DefaultLvalueConversion(Result.get()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Length = Result.get(); |
| } |
| |
| // Build an unanalyzed expression if either operand is type-dependent. |
| if (Base->isTypeDependent() || |
| (LowerBound && |
| (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || |
| (Length && (Length->isTypeDependent() || Length->isValueDependent()))) { |
| return new (Context) |
| OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy, |
| VK_LValue, OK_Ordinary, ColonLoc, RBLoc); |
| } |
| |
| // Perform default conversions. |
| QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); |
| QualType ResultTy; |
| if (OriginalTy->isAnyPointerType()) { |
| ResultTy = OriginalTy->getPointeeType(); |
| } else if (OriginalTy->isArrayType()) { |
| ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); |
| } else { |
| return ExprError( |
| Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) |
| << Base->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (LowerBound) { |
| auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), |
| LowerBound); |
| if (Res.isInvalid()) |
| return ExprError(Diag(LowerBound->getExprLoc(), |
| diag::err_omp_typecheck_section_not_integer) |
| << 0 << LowerBound->getSourceRange()); |
| LowerBound = Res.get(); |
| |
| if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) |
| << 0 << LowerBound->getSourceRange(); |
| } |
| if (Length) { |
| auto Res = |
| PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); |
| if (Res.isInvalid()) |
| return ExprError(Diag(Length->getExprLoc(), |
| diag::err_omp_typecheck_section_not_integer) |
| << 1 << Length->getSourceRange()); |
| Length = Res.get(); |
| |
| if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) |
| << 1 << Length->getSourceRange(); |
| } |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
| // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
| // type. Note that functions are not objects, and that (in C99 parlance) |
| // incomplete types are not object types. |
| if (ResultTy->isFunctionType()) { |
| Diag(Base->getExprLoc(), diag::err_omp_section_function_type) |
| << ResultTy << Base->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (RequireCompleteType(Base->getExprLoc(), ResultTy, |
| diag::err_omp_section_incomplete_type, Base)) |
| return ExprError(); |
| |
| if (LowerBound && !OriginalTy->isAnyPointerType()) { |
| llvm::APSInt LowerBoundValue; |
| if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) { |
| // OpenMP 4.5, [2.4 Array Sections] |
| // The array section must be a subset of the original array. |
| if (LowerBoundValue.isNegative()) { |
| Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) |
| << LowerBound->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } |
| |
| if (Length) { |
| llvm::APSInt LengthValue; |
| if (Length->EvaluateAsInt(LengthValue, Context)) { |
| // OpenMP 4.5, [2.4 Array Sections] |
| // The length must evaluate to non-negative integers. |
| if (LengthValue.isNegative()) { |
| Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) |
| << LengthValue.toString(/*Radix=*/10, /*Signed=*/true) |
| << Length->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } else if (ColonLoc.isValid() && |
| (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && |
| !OriginalTy->isVariableArrayType()))) { |
| // OpenMP 4.5, [2.4 Array Sections] |
| // When the size of the array dimension is not known, the length must be |
| // specified explicitly. |
| Diag(ColonLoc, diag::err_omp_section_length_undefined) |
| << (!OriginalTy.isNull() && OriginalTy->isArrayType()); |
| return ExprError(); |
| } |
| |
| if (!Base->getType()->isSpecificPlaceholderType( |
| BuiltinType::OMPArraySection)) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Base = Result.get(); |
| } |
| return new (Context) |
| OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy, |
| VK_LValue, OK_Ordinary, ColonLoc, RBLoc); |
| } |
| |
| ExprResult |
| Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, |
| Expr *Idx, SourceLocation RLoc) { |
| Expr *LHSExp = Base; |
| Expr *RHSExp = Idx; |
| |
| ExprValueKind VK = VK_LValue; |
| ExprObjectKind OK = OK_Ordinary; |
| |
| // Per C++ core issue 1213, the result is an xvalue if either operand is |
| // a non-lvalue array, and an lvalue otherwise. |
| if (getLangOpts().CPlusPlus11) { |
| for (auto *Op : {LHSExp, RHSExp}) { |
| Op = Op->IgnoreImplicit(); |
| if (Op->getType()->isArrayType() && !Op->isLValue()) |
| VK = VK_XValue; |
| } |
| } |
| |
| // Perform default conversions. |
| if (!LHSExp->getType()->getAs<VectorType>()) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LHSExp = Result.get(); |
| } |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| RHSExp = Result.get(); |
| |
| QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
| |
| // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
| // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
| // in the subscript position. As a result, we need to derive the array base |
| // and index from the expression types. |
| Expr *BaseExpr, *IndexExpr; |
| QualType ResultType; |
| if (LHSTy->isDependentType() || RHSTy->isDependentType()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = Context.DependentTy; |
| } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| LHSTy->getAs<ObjCObjectPointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| |
| // Use custom logic if this should be the pseudo-object subscript |
| // expression. |
| if (!LangOpts.isSubscriptPointerArithmetic()) |
| return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, |
| nullptr); |
| |
| ResultType = PTy->getPointeeType(); |
| } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| RHSTy->getAs<ObjCObjectPointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| if (!LangOpts.isSubscriptPointerArithmetic()) { |
| Diag(LLoc, diag::err_subscript_nonfragile_interface) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { |
| BaseExpr = LHSExp; // vectors: V[123] |
| IndexExpr = RHSExp; |
| // We apply C++ DR1213 to vector subscripting too. |
| if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) { |
| ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); |
| if (Materialized.isInvalid()) |
| return ExprError(); |
| LHSExp = Materialized.get(); |
| } |
| VK = LHSExp->getValueKind(); |
| if (VK != VK_RValue) |
| OK = OK_VectorComponent; |
| |
| ResultType = VTy->getElementType(); |
| QualType BaseType = BaseExpr->getType(); |
| Qualifiers BaseQuals = BaseType.getQualifiers(); |
| Qualifiers MemberQuals = ResultType.getQualifiers(); |
| Qualifiers Combined = BaseQuals + MemberQuals; |
| if (Combined != MemberQuals) |
| ResultType = Context.getQualifiedType(ResultType, Combined); |
| } else if (LHSTy->isArrayType()) { |
| // If we see an array that wasn't promoted by |
| // DefaultFunctionArrayLvalueConversion, it must be an array that |
| // wasn't promoted because of the C90 rule that doesn't |
| // allow promoting non-lvalue arrays. Warn, then |
| // force the promotion here. |
| Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << |
| LHSExp->getSourceRange(); |
| LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), |
| CK_ArrayToPointerDecay).get(); |
| LHSTy = LHSExp->getType(); |
| |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); |
| } else if (RHSTy->isArrayType()) { |
| // Same as previous, except for 123[f().a] case |
| Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << |
| RHSExp->getSourceRange(); |
| RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), |
| CK_ArrayToPointerDecay).get(); |
| RHSTy = RHSExp->getType(); |
| |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); |
| } else { |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) |
| << LHSExp->getSourceRange() << RHSExp->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) |
| << IndexExpr->getSourceRange()); |
| |
| if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| && !IndexExpr->isTypeDependent()) |
| Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
| // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
| // type. Note that Functions are not objects, and that (in C99 parlance) |
| // incomplete types are not object types. |
| if (ResultType->isFunctionType()) { |
| Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { |
| // GNU extension: subscripting on pointer to void |
| Diag(LLoc, diag::ext_gnu_subscript_void_type) |
| << BaseExpr->getSourceRange(); |
| |
| // C forbids expressions of unqualified void type from being l-values. |
| // See IsCForbiddenLValueType. |
| if (!ResultType.hasQualifiers()) VK = VK_RValue; |
| } else if (!ResultType->isDependentType() && |
| RequireCompleteType(LLoc, ResultType, |
| diag::err_subscript_incomplete_type, BaseExpr)) |
| return ExprError(); |
| |
| assert(VK == VK_RValue || LangOpts.CPlusPlus || |
| !ResultType.isCForbiddenLValueType()); |
| |
| return new (Context) |
| ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); |
| } |
| |
| bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, |
| ParmVarDecl *Param) { |
| if (Param->hasUnparsedDefaultArg()) { |
| Diag(CallLoc, |
| diag::err_use_of_default_argument_to_function_declared_later) << |
| FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); |
| Diag(UnparsedDefaultArgLocs[Param], |
| diag::note_default_argument_declared_here); |
| return true; |
| } |
| |
| if (Param->hasUninstantiatedDefaultArg()) { |
| Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); |
| |
| EnterExpressionEvaluationContext EvalContext( |
| *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); |
| |
| // Instantiate the expression. |
| // |
| // FIXME: Pass in a correct Pattern argument, otherwise |
| // getTemplateInstantiationArgs uses the lexical context of FD, e.g. |
| // |
| // template<typename T> |
| // struct A { |
| // static int FooImpl(); |
| // |
| // template<typename Tp> |
| // // bug: default argument A<T>::FooImpl() is evaluated with 2-level |
| // // template argument list [[T], [Tp]], should be [[Tp]]. |
| // friend A<Tp> Foo(int a); |
| // }; |
| // |
| // template<typename T> |
| // A<T> Foo(int a = A<T>::FooImpl()); |
| MultiLevelTemplateArgumentList MutiLevelArgList |
| = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true); |
| |
| InstantiatingTemplate Inst(*this, CallLoc, Param, |
| MutiLevelArgList.getInnermost()); |
| if (Inst.isInvalid()) |
| return true; |
| if (Inst.isAlreadyInstantiating()) { |
| Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD; |
| Param->setInvalidDecl(); |
| return true; |
| } |
| |
| ExprResult Result; |
| { |
| // C++ [dcl.fct.default]p5: |
| // The names in the [default argument] expression are bound, and |
| // the semantic constraints are checked, at the point where the |
| // default argument expression appears. |
| ContextRAII SavedContext(*this, FD); |
| LocalInstantiationScope Local(*this); |
| Result = SubstInitializer(UninstExpr, MutiLevelArgList, |
| /*DirectInit*/false); |
| } |
| if (Result.isInvalid()) |
| return true; |
| |
| // Check the expression as an initializer for the parameter. |
| InitializedEntity Entity |
| = InitializedEntity::InitializeParameter(Context, Param); |
| InitializationKind Kind |
| = InitializationKind::CreateCopy(Param->getLocation(), |
| /*FIXME:EqualLoc*/UninstExpr->getLocStart()); |
| Expr *ResultE = Result.getAs<Expr>(); |
| |
| InitializationSequence InitSeq(*this, Entity, Kind, ResultE); |
| Result = InitSeq.Perform(*this, Entity, Kind, ResultE); |
| if (Result.isInvalid()) |
| return true; |
| |
| Result = ActOnFinishFullExpr(Result.getAs<Expr>(), |
| Param->getOuterLocStart()); |
| if (Result.isInvalid()) |
| return true; |
| |
| // Remember the instantiated default argument. |
| Param->setDefaultArg(Result.getAs<Expr>()); |
| if (ASTMutationListener *L = getASTMutationListener()) { |
| L->DefaultArgumentInstantiated(Param); |
| } |
| } |
| |
| // If the default argument expression is not set yet, we are building it now. |
| if (!Param->hasInit()) { |
| Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD; |
| Param->setInvalidDecl(); |
| return true; |
| } |
| |
| // If the default expression creates temporaries, we need to |
| // push them to the current stack of expression temporaries so they'll |
| // be properly destroyed. |
| // FIXME: We should really be rebuilding the default argument with new |
| // bound temporaries; see the comment in PR5810. |
| // We don't need to do that with block decls, though, because |
| // blocks in default argument expression can never capture anything. |
| if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) { |
| // Set the "needs cleanups" bit regardless of whether there are |
| // any explicit objects. |
| Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects()); |
| |
| // Append all the objects to the cleanup list. Right now, this |
| // should always be a no-op, because blocks in default argument |
| // expressions should never be able to capture anything. |
| assert(!Init->getNumObjects() && |
| "default argument expression has capturing blocks?"); |
| } |
| |
| // We already type-checked the argument, so we know it works. |
| // Just mark all of the declarations in this potentially-evaluated expression |
| // as being "referenced". |
| MarkDeclarationsReferencedInExpr(Param->getDefaultArg(), |
| /*SkipLocalVariables=*/true); |
| return false; |
| } |
| |
| ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, |
| FunctionDecl *FD, ParmVarDecl *Param) { |
| if (CheckCXXDefaultArgExpr(CallLoc, FD, Param)) |
| return ExprError(); |
| return CXXDefaultArgExpr::Create(Context, CallLoc, Param); |
| } |
| |
| Sema::VariadicCallType |
| Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, |
| Expr *Fn) { |
| if (Proto && Proto->isVariadic()) { |
| if (dyn_cast_or_null<CXXConstructorDecl>(FDecl)) |
| return VariadicConstructor; |
| else if (Fn && Fn->getType()->isBlockPointerType()) |
| return VariadicBlock; |
| else if (FDecl) { |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
| if (Method->isInstance()) |
| return VariadicMethod; |
| } else if (Fn && Fn->getType() == Context.BoundMemberTy) |
| return VariadicMethod; |
| return VariadicFunction; |
| } |
| return VariadicDoesNotApply; |
| } |
| |
| namespace { |
| class FunctionCallCCC : public FunctionCallFilterCCC { |
| public: |
| FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, |
| unsigned NumArgs, MemberExpr *ME) |
| : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), |
| FunctionName(FuncName) {} |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| if (!candidate.getCorrectionSpecifier() || |
| candidate.getCorrectionAsIdentifierInfo() != FunctionName) { |
| return false; |
| } |
| |
| return FunctionCallFilterCCC::ValidateCandidate(candidate); |
| } |
| |
| private: |
| const IdentifierInfo *const FunctionName; |
| }; |
| } |
| |
| static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, |
| FunctionDecl *FDecl, |
| ArrayRef<Expr *> Args) { |
| MemberExpr *ME = dyn_cast<MemberExpr>(Fn); |
| DeclarationName FuncName = FDecl->getDeclName(); |
| SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart(); |
| |
| if (TypoCorrection Corrected = S.CorrectTypo( |
| DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, |
| S.getScopeForContext(S.CurContext), nullptr, |
| llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(), |
| Args.size(), ME), |
| Sema::CTK_ErrorRecovery)) { |
| if (NamedDecl *ND = Corrected.getFoundDecl()) { |
| if (Corrected.isOverloaded()) { |
| OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); |
| OverloadCandidateSet::iterator Best; |
| for (NamedDecl *CD : Corrected) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) |
| S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, |
| OCS); |
| } |
| switch (OCS.BestViableFunction(S, NameLoc, Best)) { |
| case OR_Success: |
| ND = Best->FoundDecl; |
| Corrected.setCorrectionDecl(ND); |
| break; |
| default: |
| break; |
| } |
| } |
| ND = ND->getUnderlyingDecl(); |
| if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) |
| return Corrected; |
| } |
| } |
| return TypoCorrection(); |
| } |
| |
| /// ConvertArgumentsForCall - Converts the arguments specified in |
| /// Args/NumArgs to the parameter types of the function FDecl with |
| /// function prototype Proto. Call is the call expression itself, and |
| /// Fn is the function expression. For a C++ member function, this |
| /// routine does not attempt to convert the object argument. Returns |
| /// true if the call is ill-formed. |
| bool |
| Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, |
| FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| ArrayRef<Expr *> Args, |
| SourceLocation RParenLoc, |
| bool IsExecConfig) { |
| // Bail out early if calling a builtin with custom typechecking. |
| if (FDecl) |
| if (unsigned ID = FDecl->getBuiltinID()) |
| if (Context.BuiltinInfo.hasCustomTypechecking(ID)) |
| return false; |
| |
| // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
| // assignment, to the types of the corresponding parameter, ... |
| unsigned NumParams = Proto->getNumParams(); |
| bool Invalid = false; |
| unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; |
| unsigned FnKind = Fn->getType()->isBlockPointerType() |
| ? 1 /* block */ |
| : (IsExecConfig ? 3 /* kernel function (exec config) */ |
| : 0 /* function */); |
| |
| // If too few arguments are available (and we don't have default |
| // arguments for the remaining parameters), don't make the call. |
| if (Args.size() < NumParams) { |
| if (Args.size() < MinArgs) { |
| TypoCorrection TC; |
| if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { |
| unsigned diag_id = |
| MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_few_args_suggest |
| : diag::err_typecheck_call_too_few_args_at_least_suggest; |
| diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs |
| << static_cast<unsigned>(Args.size()) |
| << TC.getCorrectionRange()); |
| } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) |
| Diag(RParenLoc, |
| MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_few_args_one |
| : diag::err_typecheck_call_too_few_args_at_least_one) |
| << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); |
| else |
| Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_few_args |
| : diag::err_typecheck_call_too_few_args_at_least) |
| << FnKind << MinArgs << static_cast<unsigned>(Args.size()) |
| << Fn->getSourceRange(); |
| |
| // Emit the location of the prototype. |
| if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
| Diag(FDecl->getLocStart(), diag::note_callee_decl) |
| << FDecl; |
| |
| return true; |
| } |
| Call->setNumArgs(Context, NumParams); |
| } |
| |
| // If too many are passed and not variadic, error on the extras and drop |
| // them. |
| if (Args.size() > NumParams) { |
| if (!Proto->isVariadic()) { |
| TypoCorrection TC; |
| if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { |
| unsigned diag_id = |
| MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_many_args_suggest |
| : diag::err_typecheck_call_too_many_args_at_most_suggest; |
| diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams |
| << static_cast<unsigned>(Args.size()) |
| << TC.getCorrectionRange()); |
| } else if (NumParams == 1 && FDecl && |
| FDecl->getParamDecl(0)->getDeclName()) |
| Diag(Args[NumParams]->getLocStart(), |
| MinArgs == NumParams |
| ? diag::err_typecheck_call_too_many_args_one |
| : diag::err_typecheck_call_too_many_args_at_most_one) |
| << FnKind << FDecl->getParamDecl(0) |
| << static_cast<unsigned>(Args.size()) << Fn->getSourceRange() |
| << SourceRange(Args[NumParams]->getLocStart(), |
| Args.back()->getLocEnd()); |
| else |
| Diag(Args[NumParams]->getLocStart(), |
| MinArgs == NumParams |
| ? diag::err_typecheck_call_too_many_args |
| : diag::err_typecheck_call_too_many_args_at_most) |
| << FnKind << NumParams << static_cast<unsigned>(Args.size()) |
| << Fn->getSourceRange() |
| << SourceRange(Args[NumParams]->getLocStart(), |
| Args.back()->getLocEnd()); |
| |
| // Emit the location of the prototype. |
| if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
| Diag(FDecl->getLocStart(), diag::note_callee_decl) |
| << FDecl; |
| |
| // This deletes the extra arguments. |
| Call->setNumArgs(Context, NumParams); |
| return true; |
| } |
| } |
| SmallVector<Expr *, 8> AllArgs; |
| VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); |
| |
| Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl, |
| Proto, 0, Args, AllArgs, CallType); |
| if (Invalid) |
| return true; |
| unsigned TotalNumArgs = AllArgs.size(); |
| for (unsigned i = 0; i < TotalNumArgs; ++i) |
| Call->setArg(i, AllArgs[i]); |
| |
| return false; |
| } |
| |
| bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| unsigned FirstParam, ArrayRef<Expr *> Args, |
| SmallVectorImpl<Expr *> &AllArgs, |
| VariadicCallType CallType, bool AllowExplicit, |
| bool IsListInitialization) { |
| unsigned NumParams = Proto->getNumParams(); |
| bool Invalid = false; |
| size_t ArgIx = 0; |
| // Continue to check argument types (even if we have too few/many args). |
| for (unsigned i = FirstParam; i < NumParams; i++) { |
| QualType ProtoArgType = Proto->getParamType(i); |
| |
| Expr *Arg; |
| ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; |
| if (ArgIx < Args.size()) { |
| Arg = Args[ArgIx++]; |
| |
| if (RequireCompleteType(Arg->getLocStart(), |
| ProtoArgType, |
| diag::err_call_incomplete_argument, Arg)) |
| return true; |
| |
| // Strip the unbridged-cast placeholder expression off, if applicable. |
| bool CFAudited = false; |
| if (Arg->getType() == Context.ARCUnbridgedCastTy && |
| FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && |
| (!Param || !Param->hasAttr<CFConsumedAttr>())) |
| Arg = stripARCUnbridgedCast(Arg); |
| else if (getLangOpts().ObjCAutoRefCount && |
| FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && |
| (!Param || !Param->hasAttr<CFConsumedAttr>())) |
| CFAudited = true; |
| |
| if (Proto->getExtParameterInfo(i).isNoEscape()) |
| if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context))) |
| BE->getBlockDecl()->setDoesNotEscape(); |
| |
| InitializedEntity Entity = |
| Param ? InitializedEntity::InitializeParameter(Context, Param, |
| ProtoArgType) |
| : InitializedEntity::InitializeParameter( |
| Context, ProtoArgType, Proto->isParamConsumed(i)); |
| |
| // Remember that parameter belongs to a CF audited API. |
| if (CFAudited) |
| Entity.setParameterCFAudited(); |
| |
| ExprResult ArgE = PerformCopyInitialization( |
| Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.getAs<Expr>(); |
| } else { |
| assert(Param && "can't use default arguments without a known callee"); |
| |
| ExprResult ArgExpr = |
| BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); |
| if (ArgExpr.isInvalid()) |
| return true; |
| |
| Arg = ArgExpr.getAs<Expr>(); |
| } |
| |
| // Check for array bounds violations for each argument to the call. This |
| // check only triggers warnings when the argument isn't a more complex Expr |
| // with its own checking, such as a BinaryOperator. |
| CheckArrayAccess(Arg); |
| |
| // Check for violations of C99 static array rules (C99 6.7.5.3p7). |
| CheckStaticArrayArgument(CallLoc, Param, Arg); |
| |
| AllArgs.push_back(Arg); |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (CallType != VariadicDoesNotApply) { |
| // Assume that extern "C" functions with variadic arguments that |
| // return __unknown_anytype aren't *really* variadic. |
| if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && |
| FDecl->isExternC()) { |
| for (Expr *A : Args.slice(ArgIx)) { |
| QualType paramType; // ignored |
| ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); |
| Invalid |= arg.isInvalid(); |
| AllArgs.push_back(arg.get()); |
| } |
| |
| // Otherwise do argument promotion, (C99 6.5.2.2p7). |
| } else { |
| for (Expr *A : Args.slice(ArgIx)) { |
| ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); |
| Invalid |= Arg.isInvalid(); |
| AllArgs.push_back(Arg.get()); |
| } |
| } |
| |
| // Check for array bounds violations. |
| for (Expr *A : Args.slice(ArgIx)) |
| CheckArrayAccess(A); |
| } |
| return Invalid; |
| } |
| |
| static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { |
| TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); |
| if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>()) |
| TL = DTL.getOriginalLoc(); |
| if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>()) |
| S.Diag(PVD->getLocation(), diag::note_callee_static_array) |
| << ATL.getLocalSourceRange(); |
| } |
| |
| /// CheckStaticArrayArgument - If the given argument corresponds to a static |
| /// array parameter, check that it is non-null, and that if it is formed by |
| /// array-to-pointer decay, the underlying array is sufficiently large. |
| /// |
| /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the |
| /// array type derivation, then for each call to the function, the value of the |
| /// corresponding actual argument shall provide access to the first element of |
| /// an array with at least as many elements as specified by the size expression. |
| void |
| Sema::CheckStaticArrayArgument(SourceLocation CallLoc, |
| ParmVarDecl *Param, |
| const Expr *ArgExpr) { |
| // Static array parameters are not supported in C++. |
| if (!Param || getLangOpts().CPlusPlus) |
| return; |
| |
| QualType OrigTy = Param->getOriginalType(); |
| |
| const ArrayType *AT = Context.getAsArrayType(OrigTy); |
| if (!AT || AT->getSizeModifier() != ArrayType::Static) |
| return; |
| |
| if (ArgExpr->isNullPointerConstant(Context, |
| Expr::NPC_NeverValueDependent)) { |
| Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); |
| DiagnoseCalleeStaticArrayParam(*this, Param); |
| return; |
| } |
| |
| const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); |
| if (!CAT) |
| return; |
| |
| const ConstantArrayType *ArgCAT = |
| Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType()); |
| if (!ArgCAT) |
| return; |
| |
| if (ArgCAT->getSize().ult(CAT->getSize())) { |
| Diag(CallLoc, diag::warn_static_array_too_small) |
| << ArgExpr->getSourceRange() |
| << (unsigned) ArgCAT->getSize().getZExtValue() |
| << (unsigned) CAT->getSize().getZExtValue(); |
| DiagnoseCalleeStaticArrayParam(*this, Param); |
| } |
| } |
| |
| /// Given a function expression of unknown-any type, try to rebuild it |
| /// to have a function type. |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); |
| |
| /// Is the given type a placeholder that we need to lower out |
| /// immediately during argument processing? |
| static bool isPlaceholderToRemoveAsArg(QualType type) { |
| // Placeholders are never sugared. |
| const BuiltinType *placeholder = dyn_cast<BuiltinType>(type); |
| if (!placeholder) return false; |
| |
| switch (placeholder->getKind()) { |
| // Ignore all the non-placeholder types. |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) |
| #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: |
| #include "clang/AST/BuiltinTypes.def" |
| return false; |
| |
| // We cannot lower out overload sets; they might validly be resolved |
| // by the call machinery. |
| case BuiltinType::Overload: |
| return false; |
| |
| // Unbridged casts in ARC can be handled in some call positions and |
| // should be left in place. |
| case BuiltinType::ARCUnbridgedCast: |
| return false; |
| |
| // Pseudo-objects should be converted as soon as possible. |
| case BuiltinType::PseudoObject: |
| return true; |
| |
| // The debugger mode could theoretically but currently does not try |
| // to resolve unknown-typed arguments based on known parameter types. |
| case BuiltinType::UnknownAny: |
| return true; |
| |
| // These are always invalid as call arguments and should be reported. |
| case BuiltinType::BoundMember: |
| case BuiltinType::BuiltinFn: |
| case BuiltinType::OMPArraySection: |
| return true; |
| |
| } |
| llvm_unreachable("bad builtin type kind"); |
| } |
| |
| /// Check an argument list for placeholders that we won't try to |
| /// handle later. |
| static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { |
| // Apply this processing to all the arguments at once instead of |
| // dying at the first failure. |
| bool hasInvalid = false; |
| for (size_t i = 0, e = args.size(); i != e; i++) { |
| if (isPlaceholderToRemoveAsArg(args[i]->getType())) { |
| ExprResult result = S.CheckPlaceholderExpr(args[i]); |
| if (result.isInvalid()) hasInvalid = true; |
| else args[i] = result.get(); |
| } else if (hasInvalid) { |
| (void)S.CorrectDelayedTyposInExpr(args[i]); |
| } |
| } |
| return hasInvalid; |
| } |
| |
| /// If a builtin function has a pointer argument with no explicit address |
| /// space, then it should be able to accept a pointer to any address |
| /// space as input. In order to do this, we need to replace the |
| /// standard builtin declaration with one that uses the same address space |
| /// as the call. |
| /// |
| /// \returns nullptr If this builtin is not a candidate for a rewrite i.e. |
| /// it does not contain any pointer arguments without |
| /// an address space qualifer. Otherwise the rewritten |
| /// FunctionDecl is returned. |
| /// TODO: Handle pointer return types. |
| static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, |
| const FunctionDecl *FDecl, |
| MultiExprArg ArgExprs) { |
| |
| QualType DeclType = FDecl->getType(); |
| const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType); |
| |
| if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || |
| !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams()) |
| return nullptr; |
| |
| bool NeedsNewDecl = false; |
| unsigned i = 0; |
| SmallVector<QualType, 8> OverloadParams; |
| |
| for (QualType ParamType : FT->param_types()) { |
| |
| // Convert array arguments to pointer to simplify type lookup. |
| ExprResult ArgRes = |
| Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); |
| if (ArgRes.isInvalid()) |
| return nullptr; |
| Expr *Arg = ArgRes.get(); |
| QualType ArgType = Arg->getType(); |
| if (!ParamType->isPointerType() || |
| ParamType.getQualifiers().hasAddressSpace() || |
| !ArgType->isPointerType() || |
| !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) { |
| OverloadParams.push_back(ParamType); |
| continue; |
| } |
| |
| NeedsNewDecl = true; |
| LangAS AS = ArgType->getPointeeType().getAddressSpace(); |
| |
| QualType PointeeType = ParamType->getPointeeType(); |
| PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); |
| OverloadParams.push_back(Context.getPointerType(PointeeType)); |
| } |
| |
| if (!NeedsNewDecl) |
| return nullptr; |
| |
| FunctionProtoType::ExtProtoInfo EPI; |
| QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), |
| OverloadParams, EPI); |
| DeclContext *Parent = Context.getTranslationUnitDecl(); |
| FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent, |
| FDecl->getLocation(), |
| FDecl->getLocation(), |
| FDecl->getIdentifier(), |
| OverloadTy, |
| /*TInfo=*/nullptr, |
| SC_Extern, false, |
| /*hasPrototype=*/true); |
| SmallVector<ParmVarDecl*, 16> Params; |
| FT = cast<FunctionProtoType>(OverloadTy); |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
| QualType ParamType = FT->getParamType(i); |
| ParmVarDecl *Parm = |
| ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), |
| SourceLocation(), nullptr, ParamType, |
| /*TInfo=*/nullptr, SC_None, nullptr); |
| Parm->setScopeInfo(0, i); |
| Params.push_back(Parm); |
| } |
| OverloadDecl->setParams(Params); |
| return OverloadDecl; |
| } |
| |
| static void checkDirectCallValidity(Sema &S, const Expr *Fn, |
| FunctionDecl *Callee, |
| MultiExprArg ArgExprs) { |
| // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and |
| // similar attributes) really don't like it when functions are called with an |
| // invalid number of args. |
| if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), |
| /*PartialOverloading=*/false) && |
| !Callee->isVariadic()) |
| return; |
| if (Callee->getMinRequiredArguments() > ArgExprs.size()) |
| return; |
| |
| if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) { |
| S.Diag(Fn->getLocStart(), |
| isa<CXXMethodDecl>(Callee) |
| ? diag::err_ovl_no_viable_member_function_in_call |
| : diag::err_ovl_no_viable_function_in_call) |
| << Callee << Callee->getSourceRange(); |
| S.Diag(Callee->getLocation(), |
| diag::note_ovl_candidate_disabled_by_function_cond_attr) |
| << Attr->getCond()->getSourceRange() << Attr->getMessage(); |
| return; |
| } |
| } |
| |
| static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( |
| const UnresolvedMemberExpr *const UME, Sema &S) { |
| |
| const auto GetFunctionLevelDCIfCXXClass = |
| [](Sema &S) -> const CXXRecordDecl * { |
| const DeclContext *const DC = S.getFunctionLevelDeclContext(); |
| if (!DC || !DC->getParent()) |
| return nullptr; |
| |
| // If the call to some member function was made from within a member |
| // function body 'M' return return 'M's parent. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) |
| return MD->getParent()->getCanonicalDecl(); |
| // else the call was made from within a default member initializer of a |
| // class, so return the class. |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) |
| return RD->getCanonicalDecl(); |
| return nullptr; |
| }; |
| // If our DeclContext is neither a member function nor a class (in the |
| // case of a lambda in a default member initializer), we can't have an |
| // enclosing 'this'. |
| |
| const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); |
| if (!CurParentClass) |
| return false; |
| |
| // The naming class for implicit member functions call is the class in which |
| // name lookup starts. |
| const CXXRecordDecl *const NamingClass = |
| UME->getNamingClass()->getCanonicalDecl(); |
| assert(NamingClass && "Must have naming class even for implicit access"); |
| |
| // If the unresolved member functions were found in a 'naming class' that is |
| // related (either the same or derived from) to the class that contains the |
| // member function that itself contained the implicit member access. |
| |
| return CurParentClass == NamingClass || |
| CurParentClass->isDerivedFrom(NamingClass); |
| } |
| |
| static void |
| tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( |
| Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { |
| |
| if (!UME) |
| return; |
| |
| LambdaScopeInfo *const CurLSI = S.getCurLambda(); |
| // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't |
| // already been captured, or if this is an implicit member function call (if |
| // it isn't, an attempt to capture 'this' should already have been made). |
| if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || |
| !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) |
| return; |
| |
| // Check if the naming class in which the unresolved members were found is |
| // related (same as or is a base of) to the enclosing class. |
| |
| if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) |
| return; |
| |
| |
| DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); |
| // If the enclosing function is not dependent, then this lambda is |
| // capture ready, so if we can capture this, do so. |
| if (!EnclosingFunctionCtx->isDependentContext()) { |
| // If the current lambda and all enclosing lambdas can capture 'this' - |
| // then go ahead and capture 'this' (since our unresolved overload set |
| // contains at least one non-static member function). |
| if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) |
| S.CheckCXXThisCapture(CallLoc); |
| } else if (S.CurContext->isDependentContext()) { |
| // ... since this is an implicit member reference, that might potentially |
| // involve a 'this' capture, mark 'this' for potential capture in |
| // enclosing lambdas. |
| if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) |
| CurLSI->addPotentialThisCapture(CallLoc); |
| } |
| } |
| |
| /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. |
| /// This provides the location of the left/right parens and a list of comma |
| /// locations. |
| ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, |
| MultiExprArg ArgExprs, SourceLocation RParenLoc, |
| Expr *ExecConfig, bool IsExecConfig) { |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); |
| if (Result.isInvalid()) return ExprError(); |
| Fn = Result.get(); |
| |
| if (checkArgsForPlaceholders(*this, ArgExprs)) |
| return ExprError(); |
| |
| if (getLangOpts().CPlusPlus) { |
| // If this is a pseudo-destructor expression, build the call immediately. |
| if (isa<CXXPseudoDestructorExpr>(Fn)) { |
| if (!ArgExprs.empty()) { |
| // Pseudo-destructor calls should not have any arguments. |
| Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args) |
| << FixItHint::CreateRemoval( |
| SourceRange(ArgExprs.front()->getLocStart(), |
| ArgExprs.back()->getLocEnd())); |
| } |
| |
| return new (Context) |
| CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc); |
| } |
| if (Fn->getType() == Context.PseudoObjectTy) { |
| ExprResult result = CheckPlaceholderExpr(Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.get(); |
| } |
| |
| // Determine whether this is a dependent call inside a C++ template, |
| // in which case we won't do any semantic analysis now. |
| bool Dependent = false; |
| if (Fn->isTypeDependent()) |
| Dependent = true; |
| else if (Expr::hasAnyTypeDependentArguments(ArgExprs)) |
| Dependent = true; |
| |
| if (Dependent) { |
| if (ExecConfig) { |
| return new (Context) CUDAKernelCallExpr( |
| Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs, |
| Context.DependentTy, VK_RValue, RParenLoc); |
| } else { |
| |
| tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( |
| *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()), |
| Fn->getLocStart()); |
| |
| return new (Context) CallExpr( |
| Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc); |
| } |
| } |
| |
| // Determine whether this is a call to an object (C++ [over.call.object]). |
| if (Fn->getType()->isRecordType()) |
| return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, |
| RParenLoc); |
| |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult result = rebuildUnknownAnyFunction(*this, Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.get(); |
| } |
| |
| if (Fn->getType() == Context.BoundMemberTy) { |
| return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, |
| RParenLoc); |
| } |
| } |
| |
| // Check for overloaded calls. This can happen even in C due to extensions. |
| if (Fn->getType() == Context.OverloadTy) { |
| OverloadExpr::FindResult find = OverloadExpr::find(Fn); |
| |
| // We aren't supposed to apply this logic if there's an '&' involved. |
| if (!find.HasFormOfMemberPointer) { |
| if (Expr::hasAnyTypeDependentArguments(ArgExprs)) |
| return new (Context) CallExpr( |
| Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc); |
| OverloadExpr *ovl = find.Expression; |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl)) |
| return BuildOverloadedCallExpr( |
| Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, |
| /*AllowTypoCorrection=*/true, find.IsAddressOfOperand); |
| return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, |
| RParenLoc); |
| } |
| } |
| |
| // If we're directly calling a function, get the appropriate declaration. |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult result = rebuildUnknownAnyFunction(*this, Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.get(); |
| } |
| |
| Expr *NakedFn = Fn->IgnoreParens(); |
| |
| bool CallingNDeclIndirectly = false; |
| NamedDecl *NDecl = nullptr; |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) { |
| if (UnOp->getOpcode() == UO_AddrOf) { |
| CallingNDeclIndirectly = true; |
| NakedFn = UnOp->getSubExpr()->IgnoreParens(); |
| } |
| } |
| |
| if (isa<DeclRefExpr>(NakedFn)) { |
| NDecl = cast<DeclRefExpr>(NakedFn)->getDecl(); |
| |
| FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl); |
| if (FDecl && FDecl->getBuiltinID()) { |
| // Rewrite the function decl for this builtin by replacing parameters |
| // with no explicit address space with the address space of the arguments |
| // in ArgExprs. |
| if ((FDecl = |
| rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { |
| NDecl = FDecl; |
| Fn = DeclRefExpr::Create( |
| Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, |
| SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl); |
| } |
| } |
| } else if (isa<MemberExpr>(NakedFn)) |
| NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl(); |
| |
| if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) { |
| if (CallingNDeclIndirectly && |
| !checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, |
| Fn->getLocStart())) |
| return ExprError(); |
| |
| if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn)) |
| return ExprError(); |
| |
| checkDirectCallValidity(*this, Fn, FD, ArgExprs); |
| } |
| |
| return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, |
| ExecConfig, IsExecConfig); |
| } |
| |
| /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments. |
| /// |
| /// __builtin_astype( value, dst type ) |
| /// |
| ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType DstTy = GetTypeFromParser(ParsedDestTy); |
| QualType SrcTy = E->getType(); |
| if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy)) |
| return ExprError(Diag(BuiltinLoc, |
| diag::err_invalid_astype_of_different_size) |
| << DstTy |
| << SrcTy |
| << E->getSourceRange()); |
| return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc); |
| } |
| |
| /// ActOnConvertVectorExpr - create a new convert-vector expression from the |
| /// provided arguments. |
| /// |
| /// __builtin_convertvector( value, dst type ) |
| /// |
| ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| TypeSourceInfo *TInfo; |
| GetTypeFromParser(ParsedDestTy, &TInfo); |
| return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); |
| } |
| |
| /// BuildResolvedCallExpr - Build a call to a resolved expression, |
| /// i.e. an expression not of \p OverloadTy. The expression should |
| /// unary-convert to an expression of function-pointer or |
| /// block-pointer type. |
| /// |
| /// \param NDecl the declaration being called, if available |
| ExprResult |
| Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, |
| SourceLocation LParenLoc, |
| ArrayRef<Expr *> Args, |
| SourceLocation RParenLoc, |
| Expr *Config, bool IsExecConfig) { |
| FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); |
| unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); |
| |
| // Functions with 'interrupt' attribute cannot be called directly. |
| if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) { |
| Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); |
| return ExprError(); |
| } |
| |
| // Interrupt handlers don't save off the VFP regs automatically on ARM, |
| // so there's some risk when calling out to non-interrupt handler functions |
| // that the callee might not preserve them. This is easy to diagnose here, |
| // but can be very challenging to debug. |
| if (auto *Caller = getCurFunctionDecl()) |
| if (Caller->hasAttr<ARMInterruptAttr>()) { |
| bool VFP = Context.getTargetInfo().hasFeature("vfp"); |
| if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) |
| Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); |
| } |
| |
| // Promote the function operand. |
| // We special-case function promotion here because we only allow promoting |
| // builtin functions to function pointers in the callee of a call. |
| ExprResult Result; |
| if (BuiltinID && |
| Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { |
| Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()), |
| CK_BuiltinFnToFnPtr).get(); |
| } else { |
| Result = CallExprUnaryConversions(Fn); |
| } |
| if (Result.isInvalid()) |
| return ExprError(); |
| Fn = Result.get(); |
| |
| // Make the call expr early, before semantic checks. This guarantees cleanup |
| // of arguments and function on error. |
| CallExpr *TheCall; |
| if (Config) |
| TheCall = new (Context) CUDAKernelCallExpr(Context, Fn, |
| cast<CallExpr>(Config), Args, |
| Context.BoolTy, VK_RValue, |
| RParenLoc); |
| else |
| TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy, |
| VK_RValue, RParenLoc); |
| |
| if (!getLangOpts().CPlusPlus) { |
| // C cannot always handle TypoExpr nodes in builtin calls and direct |
| // function calls as their argument checking don't necessarily handle |
| // dependent types properly, so make sure any TypoExprs have been |
| // dealt with. |
| ExprResult Result = CorrectDelayedTyposInExpr(TheCall); |
| if (!Result.isUsable()) return ExprError(); |
| TheCall = dyn_cast<CallExpr>(Result.get()); |
| if (!TheCall) return Result; |
| Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()); |
| } |
| |
| // Bail out early if calling a builtin with custom typechecking. |
| if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) |
| return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); |
| |
| retry: |
| const FunctionType *FuncT; |
| if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { |
| // C99 6.5.2.2p1 - "The expression that denotes the called function shall |
| // have type pointer to function". |
| FuncT = PT->getPointeeType()->getAs<FunctionType>(); |
| if (!FuncT) |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } else if (const BlockPointerType *BPT = |
| Fn->getType()->getAs<BlockPointerType>()) { |
| FuncT = BPT->getPointeeType()->castAs<FunctionType>(); |
| } else { |
| // Handle calls to expressions of unknown-any type. |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); |
| if (rewrite.isInvalid()) return ExprError(); |
| Fn = rewrite.get(); |
| TheCall->setCallee(Fn); |
| goto retry; |
| } |
| |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } |
| |
| if (getLangOpts().CUDA) { |
| if (Config) { |
| // CUDA: Kernel calls must be to global functions |
| if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) |
| return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) |
| << FDecl << Fn->getSourceRange()); |
| |
| // CUDA: Kernel function must have 'void' return type |
| if (!FuncT->getReturnType()->isVoidType()) |
| return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) |
| << Fn->getType() << Fn->getSourceRange()); |
| } else { |
| // CUDA: Calls to global functions must be configured |
| if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>()) |
| return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) |
| << FDecl << Fn->getSourceRange()); |
| } |
| } |
| |
| // Check for a valid return type |
| if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall, |
| FDecl)) |
| return ExprError(); |
| |
| // We know the result type of the call, set it. |
| TheCall->setType(FuncT->getCallResultType(Context)); |
| TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType())); |
| |
| const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT); |
| if (Proto) { |
| if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc, |
| IsExecConfig)) |
| return ExprError(); |
| } else { |
| assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); |
| |
| if (FDecl) { |
| // Check if we have too few/too many template arguments, based |
| // on our knowledge of the function definition. |
| const FunctionDecl *Def = nullptr; |
| if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) { |
| Proto = Def->getType()->getAs<FunctionProtoType>(); |
| if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size())) |
| Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) |
| << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange(); |
| } |
| |
| // If the function we're calling isn't a function prototype, but we have |
| // a function prototype from a prior declaratiom, use that prototype. |
| if (!FDecl->hasPrototype()) |
| Proto = FDecl->getType()->getAs<FunctionProtoType>(); |
| } |
| |
| // Promote the arguments (C99 6.5.2.2p6). |
| for (unsigned i = 0, e = Args.size(); i != e; i++) { |
| Expr *Arg = Args[i]; |
| |
| if (Proto && i < Proto->getNumParams()) { |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| Context, Proto->getParamType(i), Proto->isParamConsumed(i)); |
| ExprResult ArgE = |
| PerformCopyInitialization(Entity, SourceLocation(), Arg); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.getAs<Expr>(); |
| |
| } else { |
| ExprResult ArgE = DefaultArgumentPromotion(Arg); |
| |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.getAs<Expr>(); |
| } |
| |
| if (RequireCompleteType(Arg->getLocStart(), |
| Arg->getType(), |
| diag::err_call_incomplete_argument, Arg)) |
| return ExprError(); |
| |
| TheCall->setArg(i, Arg); |
| } |
| } |
| |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
| if (!Method->isStatic()) |
| return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) |
| << Fn->getSourceRange()); |
| |
| // Check for sentinels |
| if (NDecl) |
| DiagnoseSentinelCalls(NDecl, LParenLoc, Args); |
| |
| // Do special checking on direct calls to functions. |
| if (FDecl) { |
| if (CheckFunctionCall(FDecl, TheCall, Proto)) |
| return ExprError(); |
| |
| if (BuiltinID) |
| return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); |
| } else if (NDecl) { |
| if (CheckPointerCall(NDecl, TheCall, Proto)) |
| return ExprError(); |
| } else { |
| if (CheckOtherCall(TheCall, Proto)) |
| return ExprError(); |
| } |
| |
| return MaybeBindToTemporary(TheCall); |
| } |
| |
| ExprResult |
| Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, |
| SourceLocation RParenLoc, Expr *InitExpr) { |
| assert(Ty && "ActOnCompoundLiteral(): missing type"); |
| assert(InitExpr && "ActOnCompoundLiteral(): missing expression"); |
| |
| TypeSourceInfo *TInfo; |
| QualType literalType = GetTypeFromParser(Ty, &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(literalType); |
| |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); |
| } |
| |
| ExprResult |
| Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, Expr *LiteralExpr) { |
| QualType literalType = TInfo->getType(); |
| |
| if (literalType->isArrayType()) { |
| if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType), |
| diag::err_illegal_decl_array_incomplete_type, |
| SourceRange(LParenLoc, |
| LiteralExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| if (literalType->isVariableArrayType()) |
| return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) |
| << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())); |
| } else if (!literalType->isDependentType() && |
| RequireCompleteType(LParenLoc, literalType, |
| diag::err_typecheck_decl_incomplete_type, |
| SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| |
| InitializedEntity Entity |
| = InitializedEntity::InitializeCompoundLiteralInit(TInfo); |
| InitializationKind Kind |
| = InitializationKind::CreateCStyleCast(LParenLoc, |
| SourceRange(LParenLoc, RParenLoc), |
| /*InitList=*/true); |
| InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr, |
| &literalType); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LiteralExpr = Result.get(); |
| |
| bool isFileScope = !CurContext->isFunctionOrMethod(); |
| if (isFileScope && |
| !LiteralExpr->isTypeDependent() && |
| !LiteralExpr->isValueDependent() && |
| !literalType->isDependentType()) { // 6.5.2.5p3 |
| if (CheckForConstantInitializer(LiteralExpr, literalType)) |
| return ExprError(); |
| } |
| |
| // In C, compound literals are l-values for some reason. |
| // For GCC compatibility, in C++, file-scope array compound literals with |
| // constant initializers are also l-values, and compound literals are |
| // otherwise prvalues. |
| // |
| // (GCC also treats C++ list-initialized file-scope array prvalues with |
| // constant initializers as l-values, but that's non-conforming, so we don't |
| // follow it there.) |
| // |
| // FIXME: It would be better to handle the lvalue cases as materializing and |
| // lifetime-extending a temporary object, but our materialized temporaries |
| // representation only supports lifetime extension from a variable, not "out |
| // of thin air". |
| // FIXME: For C++, we might want to instead lifetime-extend only if a pointer |
| // is bound to the result of applying array-to-pointer decay to the compound |
| // literal. |
| // FIXME: GCC supports compound literals of reference type, which should |
| // obviously have a value kind derived from the kind of reference involved. |
| ExprValueKind VK = |
| (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType())) |
| ? VK_RValue |
| : VK_LValue; |
| |
| return MaybeBindToTemporary( |
| new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, |
| VK, LiteralExpr, isFileScope)); |
| } |
| |
| ExprResult |
| Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, |
| SourceLocation RBraceLoc) { |
| // Immediately handle non-overload placeholders. Overloads can be |
| // resolved contextually, but everything else here can't. |
| for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { |
| if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(InitArgList[I]); |
| |
| // Ignore failures; dropping the entire initializer list because |
| // of one failure would be terrible for indexing/etc. |
| if (result.isInvalid()) continue; |
| |
| InitArgList[I] = result.get(); |
| } |
| } |
| |
| // Semantic analysis for initializers is done by ActOnDeclarator() and |
| // CheckInitializer() - it requires knowledge of the object being initialized. |
| |
| InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList, |
| RBraceLoc); |
| E->setType(Context.VoidTy); // FIXME: just a place holder for now. |
| return E; |
| } |
| |
| /// Do an explicit extend of the given block pointer if we're in ARC. |
| void Sema::maybeExtendBlockObject(ExprResult &E) { |
| assert(E.get()->getType()->isBlockPointerType()); |
| assert(E.get()->isRValue()); |
| |
| // Only do this in an r-value context. |
| if (!getLangOpts().ObjCAutoRefCount) return; |
| |
| E = ImplicitCastExpr::Create(Context, E.get()->getType(), |
| CK_ARCExtendBlockObject, E.get(), |
| /*base path*/ nullptr, VK_RValue); |
| Cleanup.setExprNeedsCleanups(true); |
| } |
| |
| /// Prepare a conversion of the given expression to an ObjC object |
| /// pointer type. |
| CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { |
| QualType type = E.get()->getType(); |
| if (type->isObjCObjectPointerType()) { |
| return CK_BitCast; |
| } else if (type->isBlockPointerType()) { |
| maybeExtendBlockObject(E); |
| return CK_BlockPointerToObjCPointerCast; |
| } else { |
| assert(type->isPointerType()); |
| return CK_CPointerToObjCPointerCast; |
| } |
| } |
| |
| /// Prepares for a scalar cast, performing all the necessary stages |
| /// except the final cast and returning the kind required. |
| CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { |
| // Both Src and Dest are scalar types, i.e. arithmetic or pointer. |
| // Also, callers should have filtered out the invalid cases with |
| // pointers. Everything else should be possible. |
| |
| QualType SrcTy = Src.get()->getType(); |
| if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) |
| return CK_NoOp; |
| |
| switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| |
| case Type::STK_CPointer: |
| case Type::STK_BlockPointer: |
| case Type::STK_ObjCObjectPointer: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_CPointer: { |
| LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace(); |
| LangAS DestAS = DestTy->getPointeeType().getAddressSpace(); |
| if (SrcAS != DestAS) |
| return CK_AddressSpaceConversion; |
| return CK_BitCast; |
| } |
| case Type::STK_BlockPointer: |
| return (SrcKind == Type::STK_BlockPointer |
| ? CK_BitCast : CK_AnyPointerToBlockPointerCast); |
| case Type::STK_ObjCObjectPointer: |
| if (SrcKind == Type::STK_ObjCObjectPointer) |
| return CK_BitCast; |
| if (SrcKind == Type::STK_CPointer) |
| return CK_CPointerToObjCPointerCast; |
| maybeExtendBlockObject(Src); |
| return CK_BlockPointerToObjCPointerCast; |
| case Type::STK_Bool: |
| return CK_PointerToBoolean; |
| case Type::STK_Integral: |
| return CK_PointerToIntegral; |
| case Type::STK_Floating: |
| case Type::STK_FloatingComplex: |
| case Type::STK_IntegralComplex: |
| case Type::STK_MemberPointer: |
| llvm_unreachable("illegal cast from pointer"); |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_Bool: // casting from bool is like casting from an integer |
| case Type::STK_Integral: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| if (Src.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return CK_NullToPointer; |
| return CK_IntegralToPointer; |
| case Type::STK_Bool: |
| return CK_IntegralToBoolean; |
| case Type::STK_Integral: |
| return CK_IntegralCast; |
| case Type::STK_Floating: |
| return CK_IntegralToFloating; |
| case Type::STK_IntegralComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralCast); |
| return CK_IntegralRealToComplex; |
| case Type::STK_FloatingComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralToFloating); |
| return CK_FloatingRealToComplex; |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_Floating: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_Floating: |
| return CK_FloatingCast; |
| case Type::STK_Bool: |
| return CK_FloatingToBoolean; |
| case Type::STK_Integral: |
| return CK_FloatingToIntegral; |
| case Type::STK_FloatingComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingCast); |
| return CK_FloatingRealToComplex; |
| case Type::STK_IntegralComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingToIntegral); |
| return CK_IntegralRealToComplex; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_FloatingComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_FloatingComplexCast; |
| case Type::STK_IntegralComplex: |
| return CK_FloatingComplexToIntegralComplex; |
| case Type::STK_Floating: { |
| QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); |
| if (Context.hasSameType(ET, DestTy)) |
| return CK_FloatingComplexToReal; |
| Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal); |
| return CK_FloatingCast; |
| } |
| case Type::STK_Bool: |
| return CK_FloatingComplexToBoolean; |
| case Type::STK_Integral: |
| Src = ImpCastExprToType(Src.get(), |
| SrcTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingComplexToReal); |
| return CK_FloatingToIntegral; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid complex float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_IntegralComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_IntegralComplexToFloatingComplex; |
| case Type::STK_IntegralComplex: |
| return CK_IntegralComplexCast; |
| case Type::STK_Integral: { |
| QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); |
| if (Context.hasSameType(ET, DestTy)) |
| return CK_IntegralComplexToReal; |
| Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal); |
| return CK_IntegralCast; |
| } |
| case Type::STK_Bool: |
| return CK_IntegralComplexToBoolean; |
| case Type::STK_Floating: |
| Src = ImpCastExprToType(Src.get(), |
| SrcTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralComplexToReal); |
| return CK_IntegralToFloating; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid complex int->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| } |
| llvm_unreachable("Should have returned before this"); |
| } |
| |
| llvm_unreachable("Unhandled scalar cast"); |
| } |
| |
| static bool breakDownVectorType(QualType type, uint64_t &len, |
| QualType &eltType) { |
| // Vectors are simple. |
| if (const VectorType *vecType = type->getAs<VectorType>()) { |
| len = vecType->getNumElements(); |
| eltType = vecType->getElementType(); |
| assert(eltType->isScalarType()); |
| return true; |
| } |
| |
| // We allow lax conversion to and from non-vector types, but only if |
| // they're real types (i.e. non-complex, non-pointer scalar types). |
| if (!type->isRealType()) return false; |
| |
| len = 1; |
| eltType = type; |
| return true; |
| } |
| |
| /// Are the two types lax-compatible vector types? That is, given |
| /// that one of them is a vector, do they have equal storage sizes, |
| /// where the storage size is the number of elements times the element |
| /// size? |
| /// |
| /// This will also return false if either of the types is neither a |
| /// vector nor a real type. |
| bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) { |
| assert(destTy->isVectorType() || srcTy->isVectorType()); |
| |
| // Disallow lax conversions between scalars and ExtVectors (these |
| // conversions are allowed for other vector types because common headers |
| // depend on them). Most scalar OP ExtVector cases are handled by the |
| // splat path anyway, which does what we want (convert, not bitcast). |
| // What this rules out for ExtVectors is crazy things like char4*float. |
| if (srcTy->isScalarType() && destTy->isExtVectorType()) return false; |
| if (destTy->isScalarType() && srcTy->isExtVectorType()) return false; |
| |
| uint64_t srcLen, destLen; |
| QualType srcEltTy, destEltTy; |
| if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false; |
| if (!breakDownVectorType(destTy, destLen, destEltTy)) return false; |
| |
| // ASTContext::getTypeSize will return the size rounded up to a |
| // power of 2, so instead of using that, we need to use the raw |
| // element size multiplied by the element count. |
| uint64_t srcEltSize = Context.getTypeSize(srcEltTy); |
| uint64_t destEltSize = Context.getTypeSize(destEltTy); |
| |
| return (srcLen * srcEltSize == destLen * destEltSize); |
| } |
| |
| /// Is this a legal conversion between two types, one of which is |
| /// known to be a vector type? |
| bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) { |
| assert(destTy->isVectorType() || srcTy->isVectorType()); |
| |
| if (!Context.getLangOpts().LaxVectorConversions) |
| return false; |
| return areLaxCompatibleVectorTypes(srcTy, destTy); |
| } |
| |
| bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, |
| CastKind &Kind) { |
| assert(VectorTy->isVectorType() && "Not a vector type!"); |
| |
| if (Ty->isVectorType() || Ty->isIntegralType(Context)) { |
| if (!areLaxCompatibleVectorTypes(Ty, VectorTy)) |
| return Diag(R.getBegin(), |
| Ty->isVectorType() ? |
| diag::err_invalid_conversion_between_vectors : |
| diag::err_invalid_conversion_between_vector_and_integer) |
| << VectorTy << Ty << R; |
| } else |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << VectorTy << Ty << R; |
| |
| Kind = CK_BitCast; |
| return false; |
| } |
| |
| ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) { |
| QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType(); |
| |
| if (DestElemTy == SplattedExpr->getType()) |
| return SplattedExpr; |
| |
| assert(DestElemTy->isFloatingType() || |
| DestElemTy->isIntegralOrEnumerationType()); |
| |
| CastKind CK; |
| if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) { |
| // OpenCL requires that we convert `true` boolean expressions to -1, but |
| // only when splatting vectors. |
| if (DestElemTy->isFloatingType()) { |
| // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast |
| // in two steps: boolean to signed integral, then to floating. |
| ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy, |
| CK_BooleanToSignedIntegral); |
| SplattedExpr = CastExprRes.get(); |
| CK = CK_IntegralToFloating; |
| } else { |
| CK = CK_BooleanToSignedIntegral; |
| } |
| } else { |
| ExprResult CastExprRes = SplattedExpr; |
| CK = PrepareScalarCast(CastExprRes, DestElemTy); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| SplattedExpr = CastExprRes.get(); |
| } |
| return ImpCastExprToType(SplattedExpr, DestElemTy, CK); |
| } |
| |
| ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, |
| Expr *CastExpr, CastKind &Kind) { |
| assert(DestTy->isExtVectorType() && "Not an extended vector type!"); |
| |
| QualType SrcTy = CastExpr->getType(); |
| |
| // If SrcTy is a VectorType, the total size must match to explicitly cast to |
| // an ExtVectorType. |
| // In OpenCL, casts between vectors of different types are not allowed. |
| // (See OpenCL 6.2). |
| if (SrcTy->isVectorType()) { |
| if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) || |
| (getLangOpts().OpenCL && |
| !Context.hasSameUnqualifiedType(DestTy, SrcTy))) { |
| Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) |
| << DestTy << SrcTy << R; |
| return ExprError(); |
| } |
| Kind = CK_BitCast; |
| return CastExpr; |
| } |
| |
| // All non-pointer scalars can be cast to ExtVector type. The appropriate |
| // conversion will take place first from scalar to elt type, and then |
| // splat from elt type to vector. |
| if (SrcTy->isPointerType()) |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << DestTy << SrcTy << R; |
| |
| Kind = CK_VectorSplat; |
| return prepareVectorSplat(DestTy, CastExpr); |
| } |
| |
| ExprResult |
| Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, |
| Declarator &D, ParsedType &Ty, |
| SourceLocation RParenLoc, Expr *CastExpr) { |
| assert(!D.isInvalidType() && (CastExpr != nullptr) && |
| "ActOnCastExpr(): missing type or expr"); |
| |
| TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); |
| if (D.isInvalidType()) |
| return ExprError(); |
| |
| if (getLangOpts().CPlusPlus) { |
| // Check that there are no default arguments (C++ only). |
| CheckExtraCXXDefaultArguments(D); |
| } else { |
| // Make sure any TypoExprs have been dealt with. |
| ExprResult Res = CorrectDelayedTyposInExpr(CastExpr); |
| if (!Res.isUsable()) |
| return ExprError(); |
| CastExpr = Res.get(); |
| } |
| |
| checkUnusedDeclAttributes(D); |
| |
| QualType castType = castTInfo->getType(); |
| Ty = CreateParsedType(castType, castTInfo); |
| |
| bool isVectorLiteral = false; |
| |
| // Check for an altivec or OpenCL literal, |
| // i.e. all the elements are integer constants. |
| ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr); |
| ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr); |
| if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL) |
| && castType->isVectorType() && (PE || PLE)) { |
| if (PLE && PLE->getNumExprs() == 0) { |
| Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); |
| return ExprError(); |
| } |
| if (PE || PLE->getNumExprs() == 1) { |
| Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); |
| if (!E->getType()->isVectorType()) |
| isVectorLiteral = true; |
| } |
| else |
| isVectorLiteral = true; |
| } |
| |
| // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' |
| // then handle it as such. |
| if (isVectorLiteral) |
| return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); |
| |
| // If the Expr being casted is a ParenListExpr, handle it specially. |
| // This is not an AltiVec-style cast, so turn the ParenListExpr into a |
| // sequence of BinOp comma operators. |
| if (isa<ParenListExpr>(CastExpr)) { |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); |
| if (Result.isInvalid()) return ExprError(); |
| CastExpr = Result.get(); |
| } |
| |
| if (getLangOpts().CPlusPlus && !castType->isVoidType() && |
| !getSourceManager().isInSystemMacro(LParenLoc)) |
| Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange(); |
| |
| CheckTollFreeBridgeCast(castType, CastExpr); |
| |
| CheckObjCBridgeRelatedCast(castType, CastExpr); |
| |
| DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr); |
| |
| return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); |
| } |
| |
| ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, |
| SourceLocation RParenLoc, Expr *E, |
| TypeSourceInfo *TInfo) { |
| assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && |
| "Expected paren or paren list expression"); |
| |
| Expr **exprs; |
| unsigned numExprs; |
| Expr *subExpr; |
| SourceLocation LiteralLParenLoc, LiteralRParenLoc; |
| if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) { |
| LiteralLParenLoc = PE->getLParenLoc(); |
| LiteralRParenLoc = PE->getRParenLoc(); |
| exprs = PE->getExprs(); |
| numExprs = PE->getNumExprs(); |
| } else { // isa<ParenExpr> by assertion at function entrance |
| LiteralLParenLoc = cast<ParenExpr>(E)->getLParen(); |
| LiteralRParenLoc = cast<ParenExpr>(E)->getRParen(); |
| subExpr = cast<ParenExpr>(E)->getSubExpr(); |
| exprs = &subExpr; |
| numExprs = 1; |
| } |
| |
| QualType Ty = TInfo->getType(); |
| assert(Ty->isVectorType() && "Expected vector type"); |
| |
| SmallVector<Expr *, 8> initExprs; |
| const VectorType *VTy = Ty->getAs<VectorType>(); |
| unsigned numElems = Ty->getAs<VectorType>()->getNumElements(); |
| |
| // '(...)' form of vector initialization in AltiVec: the number of |
| // initializers must be one or must match the size of the vector. |
| // If a single value is specified in the initializer then it will be |
| // replicated to all the components of the vector |
| if (VTy->getVectorKind() == VectorType::AltiVecVector) { |
| // The number of initializers must be one or must match the size of the |
| // vector. If a single value is specified in the initializer then it will |
| // be replicated to all the components of the vector |
| if (numExprs == 1) { |
| QualType ElemTy = Ty->getAs<VectorType>()->getElementType(); |
| ExprResult Literal = DefaultLvalueConversion(exprs[0]); |
| if (Literal.isInvalid()) |
| return ExprError(); |
| Literal = ImpCastExprToType(Literal.get(), ElemTy, |
| PrepareScalarCast(Literal, ElemTy)); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); |
| } |
| else if (numExprs < numElems) { |
| Diag(E->getExprLoc(), |
| diag::err_incorrect_number_of_vector_initializers); |
| return ExprError(); |
| } |
| else |
| initExprs.append(exprs, exprs + numExprs); |
| } |
| else { |
| // For OpenCL, when the number of initializers is a single value, |
| // it will be replicated to all components of the vector. |
| if (getLangOpts().OpenCL && |
| VTy->getVectorKind() == VectorType::GenericVector && |
| numExprs == 1) { |
| QualType ElemTy = Ty->getAs<VectorType>()->getElementType(); |
| ExprResult Literal = DefaultLvalueConversion(exprs[0]); |
| if (Literal.isInvalid()) |
| return ExprError(); |
| Literal = ImpCastExprToType(Literal.get(), ElemTy, |
| PrepareScalarCast(Literal, ElemTy)); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); |
| } |
| |
| initExprs.append(exprs, exprs + numExprs); |
| } |
| // FIXME: This means that pretty-printing the final AST will produce curly |
| // braces instead of the original commas. |
| InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc, |
| initExprs, LiteralRParenLoc); |
| initE->setType(Ty); |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); |
| } |
| |
| /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn |
| /// the ParenListExpr into a sequence of comma binary operators. |
| ExprResult |
| Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { |
| ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr); |
| if (!E) |
| return OrigExpr; |
| |
| ExprResult Result(E->getExpr(0)); |
| |
| for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) |
| Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), |
| E->getExpr(i)); |
| |
| if (Result.isInvalid()) return ExprError(); |
| |
| return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); |
| } |
| |
| ExprResult Sema::ActOnParenListExpr(SourceLocation L, |
| SourceLocation R, |
| MultiExprArg Val) { |
| Expr *expr = new (Context) ParenListExpr(Context, L, Val, R); |
| return expr; |
| } |
| |
| /// Emit a specialized diagnostic when one expression is a null pointer |
| /// constant and the other is not a pointer. Returns true if a diagnostic is |
| /// emitted. |
| bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation QuestionLoc) { |
| Expr *NullExpr = LHSExpr; |
| Expr *NonPointerExpr = RHSExpr; |
| Expr::NullPointerConstantKind NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| |
| if (NullKind == Expr::NPCK_NotNull) { |
| NullExpr = RHSExpr; |
| NonPointerExpr = LHSExpr; |
| NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| } |
| |
| if (NullKind == Expr::NPCK_NotNull) |
| return false; |
| |
| if (NullKind == Expr::NPCK_ZeroExpression) |
| return false; |
| |
| if (NullKind == Expr::NPCK_ZeroLiteral) { |
| // In this case, check to make sure that we got here from a "NULL" |
| // string in the source code. |
| NullExpr = NullExpr->IgnoreParenImpCasts(); |
| SourceLocation loc = NullExpr->getExprLoc(); |
| if (!findMacroSpelling(loc, "NULL")) |
| return false; |
| } |
| |
| int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr); |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) |
| << NonPointerExpr->getType() << DiagType |
| << NonPointerExpr->getSourceRange(); |
| return true; |
| } |
| |
| /// Return false if the condition expression is valid, true otherwise. |
| static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { |
| QualType CondTy = Cond->getType(); |
| |
| // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type. |
| if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) { |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) |
| << CondTy << Cond->getSourceRange(); |
| return true; |
| } |
| |
| // C99 6.5.15p2 |
| if (CondTy->isScalarType()) return false; |
| |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar) |
| << CondTy << Cond->getSourceRange(); |
| return true; |
| } |
| |
| /// Handle when one or both operands are void type. |
| static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS, |
| ExprResult &RHS) { |
| Expr *LHSExpr = LHS.get(); |
| Expr *RHSExpr = RHS.get(); |
| |
| if (!LHSExpr->getType()->isVoidType()) |
| S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << RHSExpr->getSourceRange(); |
| if (!RHSExpr->getType()->isVoidType()) |
| S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void) |
| << LHSExpr->getSourceRange(); |
| LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid); |
| RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid); |
| return S.Context.VoidTy; |
| } |
| |
| /// Return false if the NullExpr can be promoted to PointerTy, |
| /// true otherwise. |
| static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, |
| QualType PointerTy) { |
| if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || |
| !NullExpr.get()->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return true; |
| |
| NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer); |
| return false; |
| } |
| |
| /// Checks compatibility between two pointers and return the resulting |
| /// type. |
| static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| if (S.Context.hasSameType(LHSTy, RHSTy)) { |
| // Two identical pointers types are always compatible. |
| return LHSTy; |
| } |
| |
| QualType lhptee, rhptee; |
| |
| // Get the pointee types. |
| bool IsBlockPointer = false; |
| if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) { |
| lhptee = LHSBTy->getPointeeType(); |
| rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType(); |
| IsBlockPointer = true; |
| } else { |
| lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); |
| rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); |
| } |
| |
| // C99 6.5.15p6: If both operands are pointers to compatible types or to |
| // differently qualified versions of compatible types, the result type is |
| // a pointer to an appropriately qualified version of the composite |
| // type. |
| |
| // Only CVR-qualifiers exist in the standard, and the differently-qualified |
| // clause doesn't make sense for our extensions. E.g. address space 2 should |
| // be incompatible with address space 3: they may live on different devices or |
| // anything. |
| Qualifiers lhQual = lhptee.getQualifiers(); |
| Qualifiers rhQual = rhptee.getQualifiers(); |
| |
| LangAS ResultAddrSpace = LangAS::Default; |
| LangAS LAddrSpace = lhQual.getAddressSpace(); |
| LangAS RAddrSpace = rhQual.getAddressSpace(); |
| if (S.getLangOpts().OpenCL) { |
| // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address |
| // spaces is disallowed. |
| if (lhQual.isAddressSpaceSupersetOf(rhQual)) |
| ResultAddrSpace = LAddrSpace; |
| else if (rhQual.isAddressSpaceSupersetOf(lhQual)) |
| ResultAddrSpace = RAddrSpace; |
| else { |
| S.Diag(Loc, |
| diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) |
| << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| } |
| |
| unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers(); |
| auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast; |
| lhQual.removeCVRQualifiers(); |
| rhQual.removeCVRQualifiers(); |
| |
| // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers |
| // (C99 6.7.3) for address spaces. We assume that the check should behave in |
| // the same manner as it's defined for CVR qualifiers, so for OpenCL two |
| // qual types are compatible iff |
| // * corresponded types are compatible |
| // * CVR qualifiers are equal |
| // * address spaces are equal |
| // Thus for conditional operator we merge CVR and address space unqualified |
| // pointees and if there is a composite type we return a pointer to it with |
| // merged qualifiers. |
| if (S.getLangOpts().OpenCL) { |
| LHSCastKind = LAddrSpace == ResultAddrSpace |
| ? CK_BitCast |
| : CK_AddressSpaceConversion; |
| RHSCastKind = RAddrSpace == ResultAddrSpace |
| ? CK_BitCast |
| : CK_AddressSpaceConversion; |
| lhQual.removeAddressSpace(); |
| rhQual.removeAddressSpace(); |
| } |
| |
| lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual); |
| rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual); |
| |
| QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee); |
| |
| if (CompositeTy.isNull()) { |
| // In this situation, we assume void* type. No especially good |
| // reason, but this is what gcc does, and we do have to pick |
| // to get a consistent AST. |
| QualType incompatTy; |
| incompatTy = S.Context.getPointerType( |
| S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace)); |
| LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind); |
| RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind); |
| // FIXME: For OpenCL the warning emission and cast to void* leaves a room |
| // for casts between types with incompatible address space qualifiers. |
| // For the following code the compiler produces casts between global and |
| // local address spaces of the corresponded innermost pointees: |
| // local int *global *a; |
| // global int *global *b; |
| // a = (0 ? a : b); // see C99 6.5.16.1.p1. |
| S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return incompatTy; |
| } |
| |
| // The pointer types are compatible. |
| // In case of OpenCL ResultTy should have the address space qualifier |
| // which is a superset of address spaces of both the 2nd and the 3rd |
| // operands of the conditional operator. |
| QualType ResultTy = [&, ResultAddrSpace]() { |
| if (S.getLangOpts().OpenCL) { |
| Qualifiers CompositeQuals = CompositeTy.getQualifiers(); |
| CompositeQuals.setAddressSpace(ResultAddrSpace); |
| return S.Context |
| .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals) |
| .withCVRQualifiers(MergedCVRQual); |
| } |
| return CompositeTy.withCVRQualifiers(MergedCVRQual); |
| }(); |
| if (IsBlockPointer) |
| ResultTy = S.Context.getBlockPointerType(ResultTy); |
| else |
| ResultTy = S.Context.getPointerType(ResultTy); |
| |
| LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind); |
| RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind); |
| return ResultTy; |
| } |
| |
| /// Return the resulting type when the operands are both block pointers. |
| static QualType checkConditionalBlockPointerCompatibility(Sema &S, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { |
| if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { |
| QualType destType = S.Context.getPointerType(S.Context.VoidTy); |
| LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); |
| RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // We have 2 block pointer types. |
| return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); |
| } |
| |
| /// Return the resulting type when the operands are both pointers. |
| static QualType |
| checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| // get the pointer types |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // get the "pointed to" types |
| QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); |
| |
| // ignore qualifiers on void (C99 6.5.15p3, clause 6) |
| if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { |
| // Figure out necessary qualifiers (C99 6.5.15p6) |
| QualType destPointee |
| = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = S.Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { |
| QualType destPointee |
| = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = S.Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| |
| return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); |
| } |
| |
| /// Return false if the first expression is not an integer and the second |
| /// expression is not a pointer, true otherwise. |
| static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, |
| Expr* PointerExpr, SourceLocation Loc, |
| bool IsIntFirstExpr) { |
| if (!PointerExpr->getType()->isPointerType() || |
| !Int.get()->getType()->isIntegerType()) |
| return false; |
| |
| Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; |
| Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); |
| |
| S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch) |
| << Expr1->getType() << Expr2->getType() |
| << Expr1->getSourceRange() << Expr2->getSourceRange(); |
| Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(), |
| CK_IntegralToPointer); |
| return true; |
| } |
| |
| /// Simple conversion between integer and floating point types. |
| /// |
| /// Used when handling the OpenCL conditional operator where the |
| /// condition is a vector while the other operands are scalar. |
| /// |
| /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar |
| /// types are either integer or floating type. Between the two |
| /// operands, the type with the higher rank is defined as the "result |
| /// type". The other operand needs to be promoted to the same type. No |
| /// other type promotion is allowed. We cannot use |
| /// UsualArithmeticConversions() for this purpose, since it always |
| /// promotes promotable types. |
| static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = |
| S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); |
| QualType RHSType = |
| S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); |
| |
| if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) { |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) |
| << LHSType << LHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) { |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) |
| << RHSType << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) |
| return handleFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*IsCompAssign = */ false); |
| |
| // Finally, we have two differing integer types. |
| return handleIntegerConversion<doIntegralCast, doIntegralCast> |
| (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); |
| } |
| |
| /// Convert scalar operands to a vector that matches the |
| /// condition in length. |
| /// |
| /// Used when handling the OpenCL conditional operator where the |
| /// condition is a vector while the other operands are scalar. |
| /// |
| /// We first compute the "result type" for the scalar operands |
| /// according to OpenCL v1.1 s6.3.i. Both operands are then converted |
| /// into a vector of that type where the length matches the condition |
| /// vector type. s6.11.6 requires that the element types of the result |
| /// and the condition must have the same number of bits. |
| static QualType |
| OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| QualType CondTy, SourceLocation QuestionLoc) { |
| QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc); |
| if (ResTy.isNull()) return QualType(); |
| |
| const VectorType *CV = CondTy->getAs<VectorType>(); |
| assert(CV); |
| |
| // Determine the vector result type |
| unsigned NumElements = CV->getNumElements(); |
| QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements); |
| |
| // Ensure that all types have the same number of bits |
| if (S.Context.getTypeSize(CV->getElementType()) |
| != S.Context.getTypeSize(ResTy)) { |
| // Since VectorTy is created internally, it does not pretty print |
| // with an OpenCL name. Instead, we just print a description. |
| std::string EleTyName = ResTy.getUnqualifiedType().getAsString(); |
| SmallString<64> Str; |
| llvm::raw_svector_ostream OS(Str); |
| OS << "(vector of " << NumElements << " '" << EleTyName << "' values)"; |
| S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) |
| << CondTy << OS.str(); |
| return QualType(); |
| } |
| |
| // Convert operands to the vector result type |
| LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat); |
| RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat); |
| |
| return VectorTy; |
| } |
| |
| /// Return false if this is a valid OpenCL condition vector |
| static bool checkOpenCLConditionVector(Sema &S, Expr *Cond, |
| SourceLocation QuestionLoc) { |
| // OpenCL v1.1 s6.11.6 says the elements of the vector must be of |
| // integral type. |
| const VectorType *CondTy = Cond->getType()->getAs<VectorType>(); |
| assert(CondTy); |
| QualType EleTy = CondTy->getElementType(); |
| if (EleTy->isIntegerType()) return false; |
| |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) |
| << Cond->getType() << Cond->getSourceRange(); |
| return true; |
| } |
| |
| /// Return false if the vector condition type and the vector |
| /// result type are compatible. |
| /// |
| /// OpenCL v1.1 s6.11.6 requires that both vector types have the same |
| /// number of elements, and their element types have the same number |
| /// of bits. |
| static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy, |
| SourceLocation QuestionLoc) { |
| const VectorType *CV = CondTy->getAs<VectorType>(); |
| const VectorType *RV = VecResTy->getAs<VectorType>(); |
| assert(CV && RV); |
| |
| if (CV->getNumElements() != RV->getNumElements()) { |
| S.Diag(QuestionLoc, diag::err_conditional_vector_size) |
| << CondTy << VecResTy; |
| return true; |
| } |
| |
| QualType CVE = CV->getElementType(); |
| QualType RVE = RV->getElementType(); |
| |
| if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) { |
| S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) |
| << CondTy << VecResTy; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Return the resulting type for the conditional operator in |
| /// OpenCL (aka "ternary selection operator", OpenCL v1.1 |
| /// s6.3.i) when the condition is a vector type. |
| static QualType |
| OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond, |
| ExprResult &LHS, ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get()); |
| if (Cond.isInvalid()) |
| return QualType(); |
| QualType CondTy = Cond.get()->getType(); |
| |
| if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc)) |
| return QualType(); |
| |
| // If either operand is a vector then find the vector type of the |
| // result as specified in OpenCL v1.1 s6.3.i. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc, |
| /*isCompAssign*/false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/false); |
| if (VecResTy.isNull()) return QualType(); |
| // The result type must match the condition type as specified in |
| // OpenCL v1.1 s6.11.6. |
| if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc)) |
| return QualType(); |
| return VecResTy; |
| } |
| |
| // Both operands are scalar. |
| return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc); |
| } |
| |
| /// Return true if the Expr is block type |
| static bool checkBlockType(Sema &S, const Expr *E) { |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| QualType Ty = CE->getCallee()->getType(); |
| if (Ty->isBlockPointerType()) { |
| S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. |
| /// In that case, LHS = cond. |
| /// C99 6.5.15 |
| QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, |
| ExprResult &RHS, ExprValueKind &VK, |
| ExprObjectKind &OK, |
| SourceLocation QuestionLoc) { |
| |
| ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); |
| if (!LHSResult.isUsable()) return QualType(); |
| LHS = LHSResult; |
| |
| ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); |
| if (!RHSResult.isUsable()) return QualType(); |
| RHS = RHSResult; |
| |
| // C++ is sufficiently different to merit its own checker. |
| if (getLangOpts().CPlusPlus) |
| return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); |
| |
| VK = VK_RValue; |
| OK = OK_Ordinary; |
| |
| // The OpenCL operator with a vector condition is sufficiently |
| // different to merit its own checker. |
| if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) |
| return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc); |
| |
| // First, check the condition. |
| Cond = UsualUnaryConversions(Cond.get()); |
| if (Cond.isInvalid()) |
| return QualType(); |
| if (checkCondition(*this, Cond.get(), QuestionLoc)) |
| return QualType(); |
| |
| // Now check the two expressions. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/false); |
| |
| QualType ResTy = UsualArithmeticConversions(LHS, RHS); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // Diagnose attempts to convert between __float128 and long double where |
| // such conversions currently can't be handled. |
| if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) { |
| Diag(QuestionLoc, |
| diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary |
| // selection operator (?:). |
| if (getLangOpts().OpenCL && |
| (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) { |
| return QualType(); |
| } |
| |
| // If both operands have arithmetic type, do the usual arithmetic conversions |
| // to find a common type: C99 6.5.15p3,5. |
| if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { |
| LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); |
| RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); |
| |
| return ResTy; |
| } |
| |
| // If both operands are the same structure or union type, the result is that |
| // type. |
| if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 |
| if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) |
| if (LHSRT->getDecl() == RHSRT->getDecl()) |
| // "If both the operands have structure or union type, the result has |
| // that type." This implies that CV qualifiers are dropped. |
| return LHSTy.getUnqualifiedType(); |
| // FIXME: Type of conditional expression must be complete in C mode. |
| } |
| |
| // C99 6.5.15p5: "If both operands have void type, the result has void type." |
| // The following || allows only one side to be void (a GCC-ism). |
| if (LHSTy->isVoidType() || RHSTy->isVoidType()) { |
| return checkConditionalVoidType(*this, LHS, RHS); |
| } |
| |
| // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has |
| // the type of the other operand." |
| if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; |
| if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; |
| |
| // All objective-c pointer type analysis is done here. |
| QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, |
| QuestionLoc); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (!compositeType.isNull()) |
| return compositeType; |
| |
| |
| // Handle block pointer types. |
| if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) |
| return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, |
| QuestionLoc); |
| |
| // Check constraints for C object pointers types (C99 6.5.15p3,6). |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) |
| return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, |
| QuestionLoc); |
| |
| // GCC compatibility: soften pointer/integer mismatch. Note that |
| // null pointers have been filtered out by this point. |
| if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, |
| /*isIntFirstExpr=*/true)) |
| return RHSTy; |
| if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, |
| /*isIntFirstExpr=*/false)) |
| return LHSTy; |
| |
| // Emit a better diagnostic if one of the expressions is a null pointer |
| // constant and the other is not a pointer type. In this case, the user most |
| // likely forgot to take the address of the other expression. |
| if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
| return QualType(); |
| |
| // Otherwise, the operands are not compatible. |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// FindCompositeObjCPointerType - Helper method to find composite type of |
| /// two objective-c pointer types of the two input expressions. |
| QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // Handle things like Class and struct objc_class*. Here we case the result |
| // to the pseudo-builtin, because that will be implicitly cast back to the |
| // redefinition type if an attempt is made to access its fields. |
| if (LHSTy->isObjCClassType() && |
| (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCClassType() && |
| (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_object* / id |
| if (LHSTy->isObjCIdType() && |
| (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCIdType() && |
| (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_selector* / SEL |
| if (Context.isObjCSelType(LHSTy) && |
| (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| if (Context.isObjCSelType(RHSTy) && |
| (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast); |
| return RHSTy; |
| } |
| // Check constraints for Objective-C object pointers types. |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { |
| |
| if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { |
| // Two identical object pointer types are always compatible. |
| return LHSTy; |
| } |
| const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>(); |
| QualType compositeType = LHSTy; |
| |
| // If both operands are interfaces and either operand can be |
| // assigned to the other, use that type as the composite |
| // type. This allows |
| // xxx ? (A*) a : (B*) b |
| // where B is a subclass of A. |
| // |
| // Additionally, as for assignment, if either type is 'id' |
| // allow silent coercion. Finally, if the types are |
| // incompatible then make sure to use 'id' as the composite |
| // type so the result is acceptable for sending messages to. |
| |
| // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. |
| // It could return the composite type. |
| if (!(compositeType = |
| Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) { |
| // Nothing more to do. |
| } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { |
| compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; |
| } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { |
| compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; |
| } else if ((LHSTy->isObjCQualifiedIdType() || |
| RHSTy->isObjCQualifiedIdType()) && |
| Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { |
| // Need to handle "id<xx>" explicitly. |
| // GCC allows qualified id and any Objective-C type to devolve to |
| // id. Currently localizing to here until clear this should be |
| // part of ObjCQualifiedIdTypesAreCompatible. |
| compositeType = Context.getObjCIdType(); |
| } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { |
| compositeType = Context.getObjCIdType(); |
| } else { |
| Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| QualType incompatTy = Context.getObjCIdType(); |
| LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast); |
| return incompatTy; |
| } |
| // The object pointer types are compatible. |
| LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast); |
| return compositeType; |
| } |
| // Check Objective-C object pointer types and 'void *' |
| if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { |
| if (getLangOpts().ObjCAutoRefCount) { |
| // ARC forbids the implicit conversion of object pointers to 'void *', |
| // so these types are not compatible. |
| Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| LHS = RHS = true; |
| return QualType(); |
| } |
| QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { |
| if (getLangOpts().ObjCAutoRefCount) { |
| // ARC forbids the implicit conversion of object pointers to 'void *', |
| // so these types are not compatible. |
| Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| LHS = RHS = true; |
| return QualType(); |
| } |
| QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| return QualType(); |
| } |
| |
| /// SuggestParentheses - Emit a note with a fixit hint that wraps |
| /// ParenRange in parentheses. |
| static void SuggestParentheses(Sema &Self, SourceLocation Loc, |
| const PartialDiagnostic &Note, |
| SourceRange ParenRange) { |
| SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd()); |
| if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && |
| EndLoc.isValid()) { |
| Self.Diag(Loc, Note) |
| << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") |
| << FixItHint::CreateInsertion(EndLoc, ")"); |
| } else { |
| // We can't display the parentheses, so just show the bare note. |
| Self.Diag(Loc, Note) << ParenRange; |
| } |
| } |
| |
| static bool IsArithmeticOp(BinaryOperatorKind Opc) { |
| return BinaryOperator::isAdditiveOp(Opc) || |
| BinaryOperator::isMultiplicativeOp(Opc) || |
| BinaryOperator::isShiftOp(Opc); |
| } |
| |
| /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary |
| /// expression, either using a built-in or overloaded operator, |
| /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side |
| /// expression. |
| static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, |
| Expr **RHSExprs) { |
| // Don't strip parenthesis: we should not warn if E is in parenthesis. |
| E = E->IgnoreImpCasts(); |
| E = E->IgnoreConversionOperator(); |
| E = E->IgnoreImpCasts(); |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = MTE->GetTemporaryExpr(); |
| E = E->IgnoreImpCasts(); |
| } |
| |
| // Built-in binary operator. |
| if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) { |
| if (IsArithmeticOp(OP->getOpcode())) { |
| *Opcode = OP->getOpcode(); |
| *RHSExprs = OP->getRHS(); |
| return true; |
| } |
| } |
| |
| // Overloaded operator. |
| if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) { |
| if (Call->getNumArgs() != 2) |
| return false; |
| |
| // Make sure this is really a binary operator that is safe to pass into |
| // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. |
| OverloadedOperatorKind OO = Call->getOperator(); |
| if (OO < OO_Plus || OO > OO_Arrow || |
| OO == OO_PlusPlus || OO == OO_MinusMinus) |
| return false; |
| |
| BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); |
| if (IsArithmeticOp(OpKind)) { |
| *Opcode = OpKind; |
| *RHSExprs = Call->getArg(1); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type |
| /// or is a logical expression such as (x==y) which has int type, but is |
| /// commonly interpreted as boolean. |
| static bool ExprLooksBoolean(Expr *E) { |
| E = E->IgnoreParenImpCasts(); |
| |
| if (E->getType()->isBooleanType()) |
| return true; |
| if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) |
| return OP->isComparisonOp() || OP->isLogicalOp(); |
| if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E)) |
| return OP->getOpcode() == UO_LNot; |
| if (E->getType()->isPointerType()) |
| return true; |
| // FIXME: What about overloaded operator calls returning "unspecified boolean |
| // type"s (commonly pointer-to-members)? |
| |
| return false; |
| } |
| |
| /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator |
| /// and binary operator are mixed in a way that suggests the programmer assumed |
| /// the conditional operator has higher precedence, for example: |
| /// "int x = a + someBinaryCondition ? 1 : 2". |
| static void DiagnoseConditionalPrecedence(Sema &Self, |
| SourceLocation OpLoc, |
| Expr *Condition, |
| Expr *LHSExpr, |
| Expr *RHSExpr) { |
| BinaryOperatorKind CondOpcode; |
| Expr *CondRHS; |
| |
| if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) |
| return; |
| if (!ExprLooksBoolean(CondRHS)) |
| return; |
| |
| // The condition is an arithmetic binary expression, with a right- |
| // hand side that looks boolean, so warn. |
| |
| Self.Diag(OpLoc, diag::warn_precedence_conditional) |
| << Condition->getSourceRange() |
| << BinaryOperator::getOpcodeStr(CondOpcode); |
| |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_silence) |
| << BinaryOperator::getOpcodeStr(CondOpcode), |
| SourceRange(Condition->getLocStart(), Condition->getLocEnd())); |
| |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_conditional_first), |
| SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd())); |
| } |
| |
| /// Compute the nullability of a conditional expression. |
| static QualType computeConditionalNullability(QualType ResTy, bool IsBin, |
| QualType LHSTy, QualType RHSTy, |
| ASTContext &Ctx) { |
| if (!ResTy->isAnyPointerType()) |
| return ResTy; |
| |
| auto GetNullability = [&Ctx](QualType Ty) { |
| Optional<NullabilityKind> Kind = Ty->getNullability(Ctx); |
| if (Kind) |
| return *Kind; |
| return NullabilityKind::Unspecified; |
| }; |
| |
| auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy); |
| NullabilityKind MergedKind; |
| |
| // Compute nullability of a binary conditional expression. |
| if (IsBin) { |
| if (LHSKind == NullabilityKind::NonNull) |
| MergedKind = NullabilityKind::NonNull; |
| else |
| MergedKind = RHSKind; |
| // Compute nullability of a normal conditional expression. |
| } else { |
| if (LHSKind == NullabilityKind::Nullable || |
| RHSKind == NullabilityKind::Nullable) |
| MergedKind = NullabilityKind::Nullable; |
| else if (LHSKind == NullabilityKind::NonNull) |
| MergedKind = RHSKind; |
| else if (RHSKind == NullabilityKind::NonNull) |
| MergedKind = LHSKind; |
| else |
| MergedKind = NullabilityKind::Unspecified; |
| } |
| |
| // Return if ResTy already has the correct nullability. |
| if (GetNullability(ResTy) == MergedKind) |
| return ResTy; |
| |
| // Strip all nullability from ResTy. |
| while (ResTy->getNullability(Ctx)) |
| ResTy = ResTy.getSingleStepDesugaredType(Ctx); |
| |
| // Create a new AttributedType with the new nullability kind. |
| auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind); |
| return Ctx.getAttributedType(NewAttr, ResTy, ResTy); |
| } |
| |
| /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null |
| /// in the case of a the GNU conditional expr extension. |
| ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, |
| SourceLocation ColonLoc, |
| Expr *CondExpr, Expr *LHSExpr, |
| Expr *RHSExpr) { |
| if (!getLangOpts().CPlusPlus) { |
| // C cannot handle TypoExpr nodes in the condition because it |
| // doesn't handle dependent types properly, so make sure any TypoExprs have |
| // been dealt with before checking the operands. |
| ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr); |
| ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr); |
| ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr); |
| |
| if (!CondResult.isUsable()) |
| return ExprError(); |
| |
| if (LHSExpr) { |
| if (!LHSResult.isUsable()) |
| return ExprError(); |
| } |
| |
| if (!RHSResult.isUsable()) |
| return ExprError(); |
| |
| CondExpr = CondResult.get(); |
| LHSExpr = LHSResult.get(); |
| RHSExpr = RHSResult.get(); |
| } |
| |
| // If this is the gnu "x ?: y" extension, analyze the types as though the LHS |
| // was the condition. |
| OpaqueValueExpr *opaqueValue = nullptr; |
| Expr *commonExpr = nullptr; |
| if (!LHSExpr) { |
| commonExpr = CondExpr; |
| // Lower out placeholder types first. This is important so that we don't |
| // try to capture a placeholder. This happens in few cases in C++; such |
| // as Objective-C++'s dictionary subscripting syntax. |
| if (commonExpr->hasPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(commonExpr); |
| if (!result.isUsable()) return ExprError(); |
| commonExpr = result.get(); |
| } |
| // We usually want to apply unary conversions *before* saving, except |
| // in the special case of a C++ l-value conditional. |
| if (!(getLangOpts().CPlusPlus |
| && !commonExpr->isTypeDependent() |
| && commonExpr->getValueKind() == RHSExpr->getValueKind() |
| && commonExpr->isGLValue() |
| && commonExpr->isOrdinaryOrBitFieldObject() |
| && RHSExpr->isOrdinaryOrBitFieldObject() |
| && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { |
| ExprResult commonRes = UsualUnaryConversions(commonExpr); |
| if (commonRes.isInvalid()) |
| return ExprError(); |
| commonExpr = commonRes.get(); |
| } |
| |
| // If the common expression is a class or array prvalue, materialize it |
| // so that we can safely refer to it multiple times. |
| if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() || |
| commonExpr->getType()->isArrayType())) { |
| ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr); |
| if (MatExpr.isInvalid()) |
| return ExprError(); |
| commonExpr = MatExpr.get(); |
| } |
| |
| opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), |
| commonExpr->getType(), |
| commonExpr->getValueKind(), |
| commonExpr->getObjectKind(), |
| commonExpr); |
| LHSExpr = CondExpr = opaqueValue; |
| } |
| |
| QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType(); |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr; |
| QualType result = CheckConditionalOperands(Cond, LHS, RHS, |
| VK, OK, QuestionLoc); |
| if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || |
| RHS.isInvalid()) |
| return ExprError(); |
| |
| DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), |
| RHS.get()); |
| |
| CheckBoolLikeConversion(Cond.get(), QuestionLoc); |
| |
| result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy, |
| Context); |
| |
| if (!commonExpr) |
| return new (Context) |
| ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc, |
| RHS.get(), result, VK, OK); |
| |
| return new (Context) BinaryConditionalOperator( |
| commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc, |
| ColonLoc, result, VK, OK); |
| } |
| |
| // checkPointerTypesForAssignment - This is a very tricky routine (despite |
| // being closely modeled after the C99 spec:-). The odd characteristic of this |
| // routine is it effectively iqnores the qualifiers on the top level pointee. |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. |
| // FIXME: add a couple examples in this comment. |
| static Sema::AssignConvertType |
| checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS not canonicalized!"); |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| const Type *lhptee, *rhptee; |
| Qualifiers lhq, rhq; |
| std::tie(lhptee, lhq) = |
| cast<PointerType>(LHSType)->getPointeeType().split().asPair(); |
| std::tie(rhptee, rhq) = |
| cast<PointerType>(RHSType)->getPointeeType().split().asPair(); |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // C99 6.5.16.1p1: This following citation is common to constraints |
| // 3 & 4 (below). ...and the type *pointed to* by the left has all the |
| // qualifiers of the type *pointed to* by the right; |
| |
| // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. |
| if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && |
| lhq.compatiblyIncludesObjCLifetime(rhq)) { |
| // Ignore lifetime for further calculation. |
| lhq.removeObjCLifetime(); |
| rhq.removeObjCLifetime(); |
| } |
| |
| if (!lhq.compatiblyIncludes(rhq)) { |
| // Treat address-space mismatches as fatal. TODO: address subspaces |
| if (!lhq.isAddressSpaceSupersetOf(rhq)) |
| ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; |
| |
| // It's okay to add or remove GC or lifetime qualifiers when converting to |
| // and from void*. |
| else if (lhq.withoutObjCGCAttr().withoutObjCLifetime() |
| .compatiblyIncludes( |
| rhq.withoutObjCGCAttr().withoutObjCLifetime()) |
| && (lhptee->isVoidType() || rhptee->isVoidType())) |
| ; // keep old |
| |
| // Treat lifetime mismatches as fatal. |
| else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) |
| ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; |
| |
| // For GCC/MS compatibility, other qualifier mismatches are treated |
| // as still compatible in C. |
| else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or |
| // incomplete type and the other is a pointer to a qualified or unqualified |
| // version of void... |
| if (lhptee->isVoidType()) { |
| if (rhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(rhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| if (rhptee->isVoidType()) { |
| if (lhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(lhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or |
| // unqualified versions of compatible types, ... |
| QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); |
| if (!S.Context.typesAreCompatible(ltrans, rtrans)) { |
| // Check if the pointee types are compatible ignoring the sign. |
| // We explicitly check for char so that we catch "char" vs |
| // "unsigned char" on systems where "char" is unsigned. |
| if (lhptee->isCharType()) |
| ltrans = S.Context.UnsignedCharTy; |
| else if (lhptee->hasSignedIntegerRepresentation()) |
| ltrans = S.Context.getCorrespondingUnsignedType(ltrans); |
| |
| if (rhptee->isCharType()) |
| rtrans = S.Context.UnsignedCharTy; |
| else if (rhptee->hasSignedIntegerRepresentation()) |
| rtrans = S.Context.getCorrespondingUnsignedType(rtrans); |
| |
| if (ltrans == rtrans) { |
| // Types are compatible ignoring the sign. Qualifier incompatibility |
| // takes priority over sign incompatibility because the sign |
| // warning can be disabled. |
| if (ConvTy != Sema::Compatible) |
| return ConvTy; |
| |
| return Sema::IncompatiblePointerSign; |
| } |
| |
| // If we are a multi-level pointer, it's possible that our issue is simply |
| // one of qualification - e.g. char ** -> const char ** is not allowed. If |
| // the eventual target type is the same and the pointers have the same |
| // level of indirection, this must be the issue. |
| if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { |
| do { |
| lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr(); |
| rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr(); |
| } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); |
| |
| if (lhptee == rhptee) |
| return Sema::IncompatibleNestedPointerQualifiers; |
| } |
| |
| // General pointer incompatibility takes priority over qualifiers. |
| return Sema::IncompatiblePointer; |
| } |
| if (!S.getLangOpts().CPlusPlus && |
| S.IsFunctionConversion(ltrans, rtrans, ltrans)) |
| return Sema::IncompatiblePointer; |
| return ConvTy; |
| } |
| |
| /// checkBlockPointerTypesForAssignment - This routine determines whether two |
| /// block pointer types are compatible or whether a block and normal pointer |
| /// are compatible. It is more restrict than comparing two function pointer |
| // types. |
| static Sema::AssignConvertType |
| checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, |
| QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS not canonicalized!"); |
| |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = cast<BlockPointerType>(LHSType)->getPointeeType(); |
| rhptee = cast<BlockPointerType>(RHSType)->getPointeeType(); |
| |
| // In C++, the types have to match exactly. |
| if (S.getLangOpts().CPlusPlus) |
| return Sema::IncompatibleBlockPointer; |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // For blocks we enforce that qualifiers are identical. |
| Qualifiers LQuals = lhptee.getLocalQualifiers(); |
| Qualifiers RQuals = rhptee.getLocalQualifiers(); |
| if (S.getLangOpts().OpenCL) { |
| LQuals.removeAddressSpace(); |
| RQuals.removeAddressSpace(); |
| } |
| if (LQuals != RQuals) |
| ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| |
| // FIXME: OpenCL doesn't define the exact compile time semantics for a block |
| // assignment. |
| // The current behavior is similar to C++ lambdas. A block might be |
| // assigned to a variable iff its return type and parameters are compatible |
| // (C99 6.2.7) with the corresponding return type and parameters of the LHS of |
| // an assignment. Presumably it should behave in way that a function pointer |
| // assignment does in C, so for each parameter and return type: |
| // * CVR and address space of LHS should be a superset of CVR and address |
| // space of RHS. |
| // * unqualified types should be compatible. |
| if (S.getLangOpts().OpenCL) { |
| if (!S.Context.typesAreBlockPointerCompatible( |
| S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals), |
| S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals))) |
| return Sema::IncompatibleBlockPointer; |
| } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) |
| return Sema::IncompatibleBlockPointer; |
| |
| return ConvTy; |
| } |
| |
| /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types |
| /// for assignment compatibility. |
| static Sema::AssignConvertType |
| checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, |
| QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS was not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS was not canonicalized!"); |
| |
| if (LHSType->isObjCBuiltinType()) { |
| // Class is not compatible with ObjC object pointers. |
| if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && |
| !RHSType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| if (RHSType->isObjCBuiltinType()) { |
| if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && |
| !LHSType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| |
| if (!lhptee.isAtLeastAsQualifiedAs(rhptee) && |
| // make an exception for id<P> |
| !LHSType->isObjCQualifiedIdType()) |
| return Sema::CompatiblePointerDiscardsQualifiers; |
| |
| if (S.Context.typesAreCompatible(LHSType, RHSType)) |
| return Sema::Compatible; |
| if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) |
| return Sema::IncompatibleObjCQualifiedId; |
| return Sema::IncompatiblePointer; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(SourceLocation Loc, |
| QualType LHSType, QualType RHSType) { |
| // Fake up an opaque expression. We don't actually care about what |
| // cast operations are required, so if CheckAssignmentConstraints |
| // adds casts to this they'll be wasted, but fortunately that doesn't |
| // usually happen on valid code. |
| OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue); |
| ExprResult RHSPtr = &RHSExpr; |
| CastKind K; |
| |
| return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false); |
| } |
| |
| /// This helper function returns true if QT is a vector type that has element |
| /// type ElementType. |
| static bool isVector(QualType QT, QualType ElementType) { |
| if (const VectorType *VT = QT->getAs<VectorType>()) |
| return VT->getElementType() == ElementType; |
| return false; |
| } |
| |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently |
| /// has code to accommodate several GCC extensions when type checking |
| /// pointers. Here are some objectionable examples that GCC considers warnings: |
| /// |
| /// int a, *pint; |
| /// short *pshort; |
| /// struct foo *pfoo; |
| /// |
| /// pint = pshort; // warning: assignment from incompatible pointer type |
| /// a = pint; // warning: assignment makes integer from pointer without a cast |
| /// pint = a; // warning: assignment makes pointer from integer without a cast |
| /// pint = pfoo; // warning: assignment from incompatible pointer type |
| /// |
| /// As a result, the code for dealing with pointers is more complex than the |
| /// C99 spec dictates. |
| /// |
| /// Sets 'Kind' for any result kind except Incompatible. |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, |
| CastKind &Kind, bool ConvertRHS) { |
| QualType RHSType = RHS.get()->getType(); |
| QualType OrigLHSType = LHSType; |
| |
| // Get canonical types. We're not formatting these types, just comparing |
| // them. |
| LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); |
| RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); |
| |
| // Common case: no conversion required. |
| if (LHSType == RHSType) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| |
| // If we have an atomic type, try a non-atomic assignment, then just add an |
| // atomic qualification step. |
| if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) { |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind); |
| if (result != Compatible) |
| return result; |
| if (Kind != CK_NoOp && ConvertRHS) |
| RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind); |
| Kind = CK_NonAtomicToAtomic; |
| return Compatible; |
| } |
| |
| // If the left-hand side is a reference type, then we are in a |
| // (rare!) case where we've allowed the use of references in C, |
| // e.g., as a parameter type in a built-in function. In this case, |
| // just make sure that the type referenced is compatible with the |
| // right-hand side type. The caller is responsible for adjusting |
| // LHSType so that the resulting expression does not have reference |
| // type. |
| if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) { |
| if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { |
| Kind = CK_LValueBitCast; |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| // Allow scalar to ExtVector assignments, and assignments of an ExtVector type |
| // to the same ExtVector type. |
| if (LHSType->isExtVectorType()) { |
| if (RHSType->isExtVectorType()) |
| return Incompatible; |
| if (RHSType->isArithmeticType()) { |
| // CK_VectorSplat does T -> vector T, so first cast to the element type. |
| if (ConvertRHS) |
| RHS = prepareVectorSplat(LHSType, RHS.get()); |
| Kind = CK_VectorSplat; |
| return Compatible; |
| } |
| } |
| |
| // Conversions to or from vector type. |
| if (LHSType->isVectorType() || RHSType->isVectorType()) { |
| if (LHSType->isVectorType() && RHSType->isVectorType()) { |
| // Allow assignments of an AltiVec vector type to an equivalent GCC |
| // vector type and vice versa |
| if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a bitcast; |
| // no bits are changed but the result type is different. |
| if (isLaxVectorConversion(RHSType, LHSType)) { |
| Kind = CK_BitCast; |
| return IncompatibleVectors; |
| } |
| } |
| |
| // When the RHS comes from another lax conversion (e.g. binops between |
| // scalars and vectors) the result is canonicalized as a vector. When the |
| // LHS is also a vector, the lax is allowed by the condition above. Handle |
| // the case where LHS is a scalar. |
| if (LHSType->isScalarType()) { |
| const VectorType *VecType = RHSType->getAs<VectorType>(); |
| if (VecType && VecType->getNumElements() == 1 && |
| isLaxVectorConversion(RHSType, LHSType)) { |
| ExprResult *VecExpr = &RHS; |
| *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast); |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| } |
| |
| return Incompatible; |
| } |
| |
| // Diagnose attempts to convert between __float128 and long double where |
| // such conversions currently can't be handled. |
| if (unsupportedTypeConversion(*this, LHSType, RHSType)) |
| return Incompatible; |
| |
| // Disallow assigning a _Complex to a real type in C++ mode since it simply |
| // discards the imaginary part. |
| if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() && |
| !LHSType->getAs<ComplexType>()) |
| return Incompatible; |
| |
| // Arithmetic conversions. |
| if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && |
| !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) { |
| if (ConvertRHS) |
| Kind = PrepareScalarCast(RHS, LHSType); |
| return Compatible; |
| } |
| |
| // Conversions to normal pointers. |
| if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) { |
| // U* -> T* |
| if (isa<PointerType>(RHSType)) { |
| LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); |
| LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace(); |
| Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; |
| return checkPointerTypesForAssignment(*this, LHSType, RHSType); |
| } |
| |
| // int -> T* |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null? |
| return IntToPointer; |
| } |
| |
| // C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<ObjCObjectPointerType>(RHSType)) { |
| // - conversions to void* |
| if (LHSPointer->getPointeeType()->isVoidType()) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| // - conversions from 'Class' to the redefinition type |
| if (RHSType->isObjCClassType() && |
| Context.hasSameType(LHSType, |
| Context.getObjCClassRedefinitionType())) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| Kind = CK_BitCast; |
| return IncompatiblePointer; |
| } |
| |
| // U^ -> void* |
| if (RHSType->getAs<BlockPointerType>()) { |
| if (LHSPointer->getPointeeType()->isVoidType()) { |
| LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); |
| LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() |
| ->getPointeeType() |
| .getAddressSpace(); |
| Kind = |
| AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; |
| return Compatible; |
| } |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to block pointers. |
| if (isa<BlockPointerType>(LHSType)) { |
| // U^ -> T^ |
| if (RHSType->isBlockPointerType()) { |
| LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>() |
| ->getPointeeType() |
| .getAddressSpace(); |
| LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() |
| ->getPointeeType() |
| .getAddressSpace(); |
| Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; |
| return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); |
| } |
| |
| // int or null -> T^ |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToBlockPointer; |
| } |
| |
| // id -> T^ |
| if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| // void* -> T^ |
| if (const PointerType *RHSPT = RHSType->getAs<PointerType>()) |
| if (RHSPT->getPointeeType()->isVoidType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to Objective-C pointers. |
| if (isa<ObjCObjectPointerType>(LHSType)) { |
| // A* -> B* |
| if (RHSType->isObjCObjectPointerType()) { |
| Kind = CK_BitCast; |
| Sema::AssignConvertType result = |
| checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); |
| if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| result == Compatible && |
| !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) |
| result = IncompatibleObjCWeakRef; |
| return result; |
| } |
| |
| // int or null -> A* |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToPointer; |
| } |
| |
| // In general, C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<PointerType>(RHSType)) { |
| Kind = CK_CPointerToObjCPointerCast; |
| |
| // - conversions from 'void*' |
| if (RHSType->isVoidPointerType()) { |
| return Compatible; |
| } |
| |
| // - conversions to 'Class' from its redefinition type |
| if (LHSType->isObjCClassType() && |
| Context.hasSameType(RHSType, |
| Context.getObjCClassRedefinitionType())) { |
| return Compatible; |
| } |
| |
| return IncompatiblePointer; |
| } |
| |
| // Only under strict condition T^ is compatible with an Objective-C pointer. |
| if (RHSType->isBlockPointerType() && |
| LHSType->isBlockCompatibleObjCPointerType(Context)) { |
| if (ConvertRHS) |
| maybeExtendBlockObject(RHS); |
| Kind = CK_BlockPointerToObjCPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from pointers that are not covered by the above. |
| if (isa<PointerType>(RHSType)) { |
| // T* -> _Bool |
| if (LHSType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (LHSType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from Objective-C pointers that are not covered by the above. |
| if (isa<ObjCObjectPointerType>(RHSType)) { |
| // T* -> _Bool |
| if (LHSType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (LHSType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // struct A -> struct B |
| if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) { |
| if (Context.typesAreCompatible(LHSType, RHSType)) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| } |
| |
| if (LHSType->isSamplerT() && RHSType->isIntegerType()) { |
| Kind = CK_IntToOCLSampler; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| /// Constructs a transparent union from an expression that is |
| /// used to initialize the transparent union. |
| static void ConstructTransparentUnion(Sema &S, ASTContext &C, |
| ExprResult &EResult, QualType UnionType, |
| FieldDecl *Field) { |
| // Build an initializer list that designates the appropriate member |
| // of the transparent union. |
| Expr *E = EResult.get(); |
| InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), |
| E, SourceLocation()); |
| Initializer->setType(UnionType); |
| Initializer->setInitializedFieldInUnion(Field); |
| |
| // Build a compound literal constructing a value of the transparent |
| // union type from this initializer list. |
| TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); |
| EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, |
| VK_RValue, Initializer, false); |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, |
| ExprResult &RHS) { |
| QualType RHSType = RHS.get()->getType(); |
| |
| // If the ArgType is a Union type, we want to handle a potential |
| // transparent_union GCC extension. |
| const RecordType *UT = ArgType->getAsUnionType(); |
| if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| return Incompatible; |
| |
| // The field to initialize within the transparent union. |
| RecordDecl *UD = UT->getDecl(); |
| FieldDecl *InitField = nullptr; |
| // It's compatible if the expression matches any of the fields. |
| for (auto *it : UD->fields()) { |
| if (it->getType()->isPointerType()) { |
| // If the transparent union contains a pointer type, we allow: |
| // 1) void pointer |
| // 2) null pointer constant |
| if (RHSType->isPointerType()) |
| if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) { |
| RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast); |
| InitField = it; |
| break; |
| } |
| |
| if (RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| RHS = ImpCastExprToType(RHS.get(), it->getType(), |
| CK_NullToPointer); |
| InitField = it; |
| break; |
| } |
| } |
| |
| CastKind Kind; |
| if (CheckAssignmentConstraints(it->getType(), RHS, Kind) |
| == Compatible) { |
| RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind); |
| InitField = it; |
| break; |
| } |
| } |
| |
| if (!InitField) |
| return Incompatible; |
| |
| ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); |
| return Compatible; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS, |
| bool Diagnose, |
| bool DiagnoseCFAudited, |
| bool ConvertRHS) { |
| // We need to be able to tell the caller whether we diagnosed a problem, if |
| // they ask us to issue diagnostics. |
| assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed"); |
| |
| // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly, |
| // we can't avoid *all* modifications at the moment, so we need some somewhere |
| // to put the updated value. |
| ExprResult LocalRHS = CallerRHS; |
| ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS; |
| |
| if (getLangOpts().CPlusPlus) { |
| if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { |
| // C++ 5.17p3: If the left operand is not of class type, the |
| // expression is implicitly converted (C++ 4) to the |
| // cv-unqualified type of the left operand. |
| QualType RHSType = RHS.get()->getType(); |
| if (Diagnose) { |
| RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| AA_Assigning); |
| } else { |
| ImplicitConversionSequence ICS = |
| TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| if (ICS.isFailure()) |
| return Incompatible; |
| RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| ICS, AA_Assigning); |
| } |
| if (RHS.isInvalid()) |
| return Incompatible; |
| Sema::AssignConvertType result = Compatible; |
| if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType)) |
| result = IncompatibleObjCWeakRef; |
| return result; |
| } |
| |
| // FIXME: Currently, we fall through and treat C++ classes like C |
| // structures. |
| // FIXME: We also fall through for atomics; not sure what should |
| // happen there, though. |
| } else if (RHS.get()->getType() == Context.OverloadTy) { |
| // As a set of extensions to C, we support overloading on functions. These |
| // functions need to be resolved here. |
| DeclAccessPair DAP; |
| if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction( |
| RHS.get(), LHSType, /*Complain=*/false, DAP)) |
| RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD); |
| else |
| return Incompatible; |
| } |
| |
| // C99 6.5.16.1p1: the left operand is a pointer and the right is |
| // a null pointer constant. |
| if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() || |
| LHSType->isBlockPointerType()) && |
| RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| if (Diagnose || ConvertRHS) { |
| CastKind Kind; |
| CXXCastPath Path; |
| CheckPointerConversion(RHS.get(), LHSType, Kind, Path, |
| /*IgnoreBaseAccess=*/false, Diagnose); |
| if (ConvertRHS) |
| RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path); |
| } |
| return Compatible; |
| } |
| |
| // This check seems unnatural, however it is necessary to ensure the proper |
| // conversion of functions/arrays. If the conversion were done for all |
| // DeclExpr's (created by ActOnIdExpression), it would mess up the unary |
| // expressions that suppress this implicit conversion (&, sizeof). |
| // |
| // Suppress this for references: C++ 8.5.3p5. |
| if (!LHSType->isReferenceType()) { |
| // FIXME: We potentially allocate here even if ConvertRHS is false. |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose); |
| if (RHS.isInvalid()) |
| return Incompatible; |
| } |
| |
| Expr *PRE = RHS.get()->IgnoreParenCasts(); |
| if (Diagnose && isa<ObjCProtocolExpr>(PRE)) { |
| ObjCProtocolDecl *PDecl = cast<ObjCProtocolExpr>(PRE)->getProtocol(); |
| if (PDecl && !PDecl->hasDefinition()) { |
| Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl; |
| Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl; |
| } |
| } |
| |
| CastKind Kind; |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS); |
| |
| // C99 6.5.16.1p2: The value of the right operand is converted to the |
| // type of the assignment expression. |
| // CheckAssignmentConstraints allows the left-hand side to be a reference, |
| // so that we can use references in built-in functions even in C. |
| // The getNonReferenceType() call makes sure that the resulting expression |
| // does not have reference type. |
| if (result != Incompatible && RHS.get()->getType() != LHSType) { |
| QualType Ty = LHSType.getNonLValueExprType(Context); |
| Expr *E = RHS.get(); |
| |
| // Check for various Objective-C errors. If we are not reporting |
| // diagnostics and just checking for errors, e.g., during overload |
| // resolution, return Incompatible to indicate the failure. |
| if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion, |
| Diagnose, DiagnoseCFAudited) != ACR_okay) { |
| if (!Diagnose) |
| return Incompatible; |
| } |
| if (getLangOpts().ObjC1 && |
| (CheckObjCBridgeRelatedConversions(E->getLocStart(), LHSType, |
| E->getType(), E, Diagnose) || |
| ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) { |
| if (!Diagnose) |
| return Incompatible; |
| // Replace the expression with a corrected version and continue so we |
| // can find further errors. |
| RHS = E; |
| return Compatible; |
| } |
| |
| if (ConvertRHS) |
| RHS = ImpCastExprToType(E, Ty, Kind); |
| } |
| return result; |
| } |
| |
| namespace { |
| /// The original operand to an operator, prior to the application of the usual |
| /// arithmetic conversions and converting the arguments of a builtin operator |
| /// candidate. |
| struct OriginalOperand { |
| explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) { |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op)) |
| Op = MTE->GetTemporaryExpr(); |
| if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op)) |
| Op = BTE->getSubExpr(); |
| if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) { |
| Orig = ICE->getSubExprAsWritten(); |
| Conversion = ICE->getConversionFunction(); |
| } |
| } |
| |
| QualType getType() const { return Orig->getType(); } |
| |
| Expr *Orig; |
| NamedDecl *Conversion; |
| }; |
| } |
| |
| QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, |
| ExprResult &RHS) { |
| OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get()); |
| |
| Diag(Loc, diag::err_typecheck_invalid_operands) |
| << OrigLHS.getType() << OrigRHS.getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| |
| // If a user-defined conversion was applied to either of the operands prior |
| // to applying the built-in operator rules, tell the user about it. |
| if (OrigLHS.Conversion) { |
| Diag(OrigLHS.Conversion->getLocation(), |
| diag::note_typecheck_invalid_operands_converted) |
| << 0 << LHS.get()->getType(); |
| } |
| if (OrigRHS.Conversion) { |
| Diag(OrigRHS.Conversion->getLocation(), |
| diag::note_typecheck_invalid_operands_converted) |
| << 1 << RHS.get()->getType(); |
| } |
| |
| return QualType(); |
| } |
| |
| // Diagnose cases where a scalar was implicitly converted to a vector and |
| // diagnose the underlying types. Otherwise, diagnose the error |
| // as invalid vector logical operands for non-C++ cases. |
| QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, |
| ExprResult &RHS) { |
| QualType LHSType = LHS.get()->IgnoreImpCasts()->getType(); |
| QualType RHSType = RHS.get()->IgnoreImpCasts()->getType(); |
| |
| bool LHSNatVec = LHSType->isVectorType(); |
| bool RHSNatVec = RHSType->isVectorType(); |
| |
| if (!(LHSNatVec && RHSNatVec)) { |
| Expr *Vector = LHSNatVec ? LHS.get() : RHS.get(); |
| Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get(); |
| Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) |
| << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType() |
| << Vector->getSourceRange(); |
| return QualType(); |
| } |
| |
| Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) |
| << 1 << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| |
| return QualType(); |
| } |
| |
| /// Try to convert a value of non-vector type to a vector type by converting |
| /// the type to the element type of the vector and then performing a splat. |
| /// If the language is OpenCL, we only use conversions that promote scalar |
| /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except |
| /// for float->int. |
| /// |
| /// OpenCL V2.0 6.2.6.p2: |
| /// An error shall occur if any scalar operand type has greater rank |
| /// than the type of the vector element. |
| /// |
| /// \param scalar - if non-null, actually perform the conversions |
| /// \return true if the operation fails (but without diagnosing the failure) |
| static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar, |
| QualType scalarTy, |
| QualType vectorEltTy, |
| QualType vectorTy, |
| unsigned &DiagID) { |
| // The conversion to apply to the scalar before splatting it, |
| // if necessary. |
| CastKind scalarCast = CK_NoOp; |
| |
| if (vectorEltTy->isIntegralType(S.Context)) { |
| if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() || |
| (scalarTy->isIntegerType() && |
| S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) { |
| DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; |
| return true; |
| } |
| if (!scalarTy->isIntegralType(S.Context)) |
| return true; |
| scalarCast = CK_IntegralCast; |
| } else if (vectorEltTy->isRealFloatingType()) { |
| if (scalarTy->isRealFloatingType()) { |
| if (S.getLangOpts().OpenCL && |
| S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) { |
| DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; |
| return true; |
| } |
| scalarCast = CK_FloatingCast; |
| } |
| else if (scalarTy->isIntegralType(S.Context)) |
| scalarCast = CK_IntegralToFloating; |
| else |
| return true; |
| } else { |
| return true; |
| } |
| |
| // Adjust scalar if desired. |
| if (scalar) { |
| if (scalarCast != CK_NoOp) |
| *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast); |
| *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat); |
| } |
| return false; |
| } |
| |
| /// Convert vector E to a vector with the same number of elements but different |
| /// element type. |
| static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) { |
| const auto *VecTy = E->getType()->getAs<VectorType>(); |
| assert(VecTy && "Expression E must be a vector"); |
| QualType NewVecTy = S.Context.getVectorType(ElementType, |
| VecTy->getNumElements(), |
| VecTy->getVectorKind()); |
| |
| // Look through the implicit cast. Return the subexpression if its type is |
| // NewVecTy. |
| if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| if (ICE->getSubExpr()->getType() == NewVecTy) |
| return ICE->getSubExpr(); |
| |
| auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast; |
| return S.ImpCastExprToType(E, NewVecTy, Cast); |
| } |
| |
| /// Test if a (constant) integer Int can be casted to another integer type |
| /// IntTy without losing precision. |
| static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int, |
| QualType OtherIntTy) { |
| QualType IntTy = Int->get()->getType().getUnqualifiedType(); |
| |
| // Reject cases where the value of the Int is unknown as that would |
| // possibly cause truncation, but accept cases where the scalar can be |
| // demoted without loss of precision. |
| llvm::APSInt Result; |
| bool CstInt = Int->get()->EvaluateAsInt(Result, S.Context); |
| int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy); |
| bool IntSigned = IntTy->hasSignedIntegerRepresentation(); |
| bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation(); |
| |
| if (CstInt) { |
| // If the scalar is constant and is of a higher order and has more active |
| // bits that the vector element type, reject it. |
| unsigned NumBits = IntSigned |
| ? (Result.isNegative() ? Result.getMinSignedBits() |
| : Result.getActiveBits()) |
| : Result.getActiveBits(); |
| if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits) |
| return true; |
| |
| // If the signedness of the scalar type and the vector element type |
| // differs and the number of bits is greater than that of the vector |
| // element reject it. |
| return (IntSigned != OtherIntSigned && |
| NumBits > S.Context.getIntWidth(OtherIntTy)); |
| } |
| |
| // Reject cases where the value of the scalar is not constant and it's |
| // order is greater than that of the vector element type. |
| return (Order < 0); |
| } |
| |
| /// Test if a (constant) integer Int can be casted to floating point type |
| /// FloatTy without losing precision. |
| static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int, |
| QualType FloatTy) { |
| QualType IntTy = Int->get()->getType().getUnqualifiedType(); |
| |
| // Determine if the integer constant can be expressed as a floating point |
| // number of the appropriate type. |
| llvm::APSInt Result; |
| bool CstInt = Int->get()->EvaluateAsInt(Result, S.Context); |
| uint64_t Bits = 0; |
| if (CstInt) { |
| // Reject constants that would be truncated if they were converted to |
| // the floating point type. Test by simple to/from conversion. |
| // FIXME: Ideally the conversion to an APFloat and from an APFloat |
| // could be avoided if there was a convertFromAPInt method |
| // which could signal back if implicit truncation occurred. |
| llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy)); |
| Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(), |
| llvm::APFloat::rmTowardZero); |
| llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy), |
| !IntTy->hasSignedIntegerRepresentation()); |
| bool Ignored = false; |
| Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven, |
| &Ignored); |
| if (Result != ConvertBack) |
| return true; |
| } else { |
| // Reject types that cannot be fully encoded into the mantissa of |
| // the float. |
| Bits = S.Context.getTypeSize(IntTy); |
| unsigned FloatPrec = llvm::APFloat::semanticsPrecision( |
| S.Context.getFloatTypeSemantics(FloatTy)); |
| if (Bits > FloatPrec) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Attempt to convert and splat Scalar into a vector whose types matches |
| /// Vector following GCC conversion rules. The rule is that implicit |
| /// conversion can occur when Scalar can be casted to match Vector's element |
| /// type without causing truncation of Scalar. |
| static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar, |
| ExprResult *Vector) { |
| QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType(); |
| QualType VectorTy = Vector->get()->getType().getUnqualifiedType(); |
| const VectorType *VT = VectorTy->getAs<VectorType>(); |
| |
| assert(!isa<ExtVectorType>(VT) && |
| "ExtVectorTypes should not be handled here!"); |
| |
| QualType VectorEltTy = VT->getElementType(); |
| |
| // Reject cases where the vector element type or the scalar element type are |
| // not integral or floating point types. |
| if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType()) |
| return true; |
| |
| // The conversion to apply to the scalar before splatting it, |
| // if necessary. |
| CastKind ScalarCast = CK_NoOp; |
| |
| // Accept cases where the vector elements are integers and the scalar is |
| // an integer. |
| // FIXME: Notionally if the scalar was a floating point value with a precise |
| // integral representation, we could cast it to an appropriate integer |
| // type and then perform the rest of the checks here. GCC will perform |
| // this conversion in some cases as determined by the input language. |
| // We should accept it on a language independent basis. |
| if (VectorEltTy->isIntegralType(S.Context) && |
| ScalarTy->isIntegralType(S.Context) && |
| S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) { |
| |
| if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy)) |
| return true; |
| |
| ScalarCast = CK_IntegralCast; |
| } else if (VectorEltTy->isRealFloatingType()) { |
| if (ScalarTy->isRealFloatingType()) { |
| |
| // Reject cases where the scalar type is not a constant and has a higher |
| // Order than the vector element type. |
| llvm::APFloat Result(0.0); |
| bool CstScalar = Scalar->get()->EvaluateAsFloat(Result, S.Context); |
| int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy); |
| if (!CstScalar && Order < 0) |
| return true; |
| |
| // If the scalar cannot be safely casted to the vector element type, |
| // reject it. |
| if (CstScalar) { |
| bool Truncated = false; |
| Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy), |
| llvm::APFloat::rmNearestTiesToEven, &Truncated); |
| if (Truncated) |
| return true; |
| } |
| |
| ScalarCast = CK_FloatingCast; |
| } else if (ScalarTy->isIntegralType(S.Context)) { |
| if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy)) |
| return true; |
| |
| ScalarCast = CK_IntegralToFloating; |
| } else |
| return true; |
| } |
| |
| // Adjust scalar if desired. |
| if (Scalar) { |
| if (ScalarCast != CK_NoOp) |
| *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast); |
| *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat); |
| } |
| return false; |
| } |
| |
| QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompAssign, |
| bool AllowBothBool, |
| bool AllowBoolConversions) { |
| if (!IsCompAssign) { |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = LHS.get()->getType().getUnqualifiedType(); |
| QualType RHSType = RHS.get()->getType().getUnqualifiedType(); |
| |
| const VectorType *LHSVecType = LHSType->getAs<VectorType>(); |
| const VectorType *RHSVecType = RHSType->getAs<VectorType>(); |
| assert(LHSVecType || RHSVecType); |
| |
| // AltiVec-style "vector bool op vector bool" combinations are allowed |
| // for some operators but not others. |
| if (!AllowBothBool && |
| LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool && |
| RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // If the vector types are identical, return. |
| if (Context.hasSameType(LHSType, RHSType)) |
| return LHSType; |
| |
| // If we have compatible AltiVec and GCC vector types, use the AltiVec type. |
| if (LHSVecType && RHSVecType && |
| Context.areCompatibleVectorTypes(LHSType, RHSType)) { |
| if (isa<ExtVectorType>(LHSVecType)) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return LHSType; |
| } |
| |
| if (!IsCompAssign) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); |
| return RHSType; |
| } |
| |
| // AllowBoolConversions says that bool and non-bool AltiVec vectors |
| // can be mixed, with the result being the non-bool type. The non-bool |
| // operand must have integer element type. |
| if (AllowBoolConversions && LHSVecType && RHSVecType && |
| LHSVecType->getNumElements() == RHSVecType->getNumElements() && |
| (Context.getTypeSize(LHSVecType->getElementType()) == |
| Context.getTypeSize(RHSVecType->getElementType()))) { |
| if (LHSVecType->getVectorKind() == VectorType::AltiVecVector && |
| LHSVecType->getElementType()->isIntegerType() && |
| RHSVecType->getVectorKind() == VectorType::AltiVecBool) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return LHSType; |
| } |
| if (!IsCompAssign && |
| LHSVecType->getVectorKind() == VectorType::AltiVecBool && |
| RHSVecType->getVectorKind() == VectorType::AltiVecVector && |
| RHSVecType->getElementType()->isIntegerType()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); |
| return RHSType; |
| } |
| } |
| |
| // If there's a vector type and a scalar, try to convert the scalar to |
| // the vector element type and splat. |
| unsigned DiagID = diag::err_typecheck_vector_not_convertable; |
| if (!RHSVecType) { |
| if (isa<ExtVectorType>(LHSVecType)) { |
| if (!tryVectorConvertAndSplat(*this, &RHS, RHSType, |
| LHSVecType->getElementType(), LHSType, |
| DiagID)) |
| return LHSType; |
| } else { |
| if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) |
| return LHSType; |
| } |
| } |
| if (!LHSVecType) { |
| if (isa<ExtVectorType>(RHSVecType)) { |
| if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS), |
| LHSType, RHSVecType->getElementType(), |
| RHSType, DiagID)) |
| return RHSType; |
| } else { |
| if (LHS.get()->getValueKind() == VK_LValue || |
| !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) |
| return RHSType; |
| } |
| } |
| |
| // FIXME: The code below also handles conversion between vectors and |
| // non-scalars, we should break this down into fine grained specific checks |
| // and emit proper diagnostics. |
| QualType VecType = LHSVecType ? LHSType : RHSType; |
| const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType; |
| QualType OtherType = LHSVecType ? RHSType : LHSType; |
| ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS; |
| if (isLaxVectorConversion(OtherType, VecType)) { |
| // If we're allowing lax vector conversions, only the total (data) size |
| // needs to be the same. For non compound assignment, if one of the types is |
| // scalar, the result is always the vector type. |
| if (!IsCompAssign) { |
| *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast); |
| return VecType; |
| // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding |
| // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs' |
| // type. Note that this is already done by non-compound assignments in |
| // CheckAssignmentConstraints. If it's a scalar type, only bitcast for |
| // <1 x T> -> T. The result is also a vector type. |
| } else if (OtherType->isExtVectorType() || OtherType->isVectorType() || |
| (OtherType->isScalarType() && VT->getNumElements() == 1)) { |
| ExprResult *RHSExpr = &RHS; |
| *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast); |
| return VecType; |
| } |
| } |
| |
| // Okay, the expression is invalid. |
| |
| // If there's a non-vector, non-real operand, diagnose that. |
| if ((!RHSVecType && !RHSType->isRealType()) || |
| (!LHSVecType && !LHSType->isRealType())) { |
| Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) |
| << LHSType << RHSType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // OpenCL V1.1 6.2.6.p1: |
| // If the operands are of more than one vector type, then an error shall |
| // occur. Implicit conversions between vector types are not permitted, per |
| // section 6.2.1. |
| if (getLangOpts().OpenCL && |
| RHSVecType && isa<ExtVectorType>(RHSVecType) && |
| LHSVecType && isa<ExtVectorType>(LHSVecType)) { |
| Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType |
| << RHSType; |
| return QualType(); |
| } |
| |
| |
| // If there is a vector type that is not a ExtVector and a scalar, we reach |
| // this point if scalar could not be converted to the vector's element type |
| // without truncation. |
| if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) || |
| (LHSVecType && !isa<ExtVectorType>(LHSVecType))) { |
| QualType Scalar = LHSVecType ? RHSType : LHSType; |
| QualType Vector = LHSVecType ? LHSType : RHSType; |
| unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0; |
| Diag(Loc, |
| diag::err_typecheck_vector_not_convertable_implict_truncation) |
| << ScalarOrVector << Scalar << Vector; |
| |
| return QualType(); |
| } |
| |
| // Otherwise, use the generic diagnostic. |
| Diag(Loc, DiagID) |
| << LHSType << RHSType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // checkArithmeticNull - Detect when a NULL constant is used improperly in an |
| // expression. These are mainly cases where the null pointer is used as an |
| // integer instead of a pointer. |
| static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompare) { |
| // The canonical way to check for a GNU null is with isNullPointerConstant, |
| // but we use a bit of a hack here for speed; this is a relatively |
| // hot path, and isNullPointerConstant is slow. |
| bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts()); |
| bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts()); |
| |
| QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); |
| |
| // Avoid analyzing cases where the result will either be invalid (and |
| // diagnosed as such) or entirely valid and not something to warn about. |
| if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || |
| NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) |
| return; |
| |
| // Comparison operations would not make sense with a null pointer no matter |
| // what the other expression is. |
| if (!IsCompare) { |
| S.Diag(Loc, diag::warn_null_in_arithmetic_operation) |
| << (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) |
| << (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); |
| return; |
| } |
| |
| // The rest of the operations only make sense with a null pointer |
| // if the other expression is a pointer. |
| if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || |
| NonNullType->canDecayToPointerType()) |
| return; |
| |
| S.Diag(Loc, diag::warn_null_in_comparison_operation) |
| << LHSNull /* LHS is NULL */ << NonNullType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc, bool IsDiv) { |
| // Check for division/remainder by zero. |
| llvm::APSInt RHSValue; |
| if (!RHS.get()->isValueDependent() && |
| RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue == 0) |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_remainder_division_by_zero) |
| << IsDiv << RHS.get()->getSourceRange()); |
| } |
| |
| QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| bool IsCompAssign, bool IsDiv) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/false); |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| |
| if (compType.isNull() || !compType->isArithmeticType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| if (IsDiv) |
| DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv); |
| return compType; |
| } |
| |
| QualType Sema::CheckRemainderOperands( |
| ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LHS.get()->getType()->hasIntegerRepresentation() && |
| RHS.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/false); |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| if (compType.isNull() || !compType->isIntegerType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */); |
| return compType; |
| } |
| |
| /// Diagnose invalid arithmetic on two void pointers. |
| static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_void_type |
| : diag::ext_gnu_void_ptr) |
| << 1 /* two pointers */ << LHSExpr->getSourceRange() |
| << RHSExpr->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on a void pointer. |
| static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer) { |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_void_type |
| : diag::ext_gnu_void_ptr) |
| << 0 /* one pointer */ << Pointer->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on a null pointer. |
| /// |
| /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n' |
| /// idiom, which we recognize as a GNU extension. |
| /// |
| static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer, bool IsGNUIdiom) { |
| if (IsGNUIdiom) |
| S.Diag(Loc, diag::warn_gnu_null_ptr_arith) |
| << Pointer->getSourceRange(); |
| else |
| S.Diag(Loc, diag::warn_pointer_arith_null_ptr) |
| << S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on two function pointers. |
| static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, |
| Expr *LHS, Expr *RHS) { |
| assert(LHS->getType()->isAnyPointerType()); |
| assert(RHS->getType()->isAnyPointerType()); |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_function_type |
| : diag::ext_gnu_ptr_func_arith) |
| << 1 /* two pointers */ << LHS->getType()->getPointeeType() |
| // We only show the second type if it differs from the first. |
| << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), |
| RHS->getType()) |
| << RHS->getType()->getPointeeType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on a function pointer. |
| static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer) { |
| assert(Pointer->getType()->isAnyPointerType()); |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_function_type |
| : diag::ext_gnu_ptr_func_arith) |
| << 0 /* one pointer */ << Pointer->getType()->getPointeeType() |
| << 0 /* one pointer, so only one type */ |
| << Pointer->getSourceRange(); |
| } |
| |
| /// Emit error if Operand is incomplete pointer type |
| /// |
| /// \returns True if pointer has incomplete type |
| static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, |
| Expr *Operand) { |
| QualType ResType = Operand->getType(); |
| if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) |
| ResType = ResAtomicType->getValueType(); |
| |
| assert(ResType->isAnyPointerType() && !ResType->isDependentType()); |
| QualType PointeeTy = ResType->getPointeeType(); |
| return S.RequireCompleteType(Loc, PointeeTy, |
| diag::err_typecheck_arithmetic_incomplete_type, |
| PointeeTy, Operand->getSourceRange()); |
| } |
| |
| /// Check the validity of an arithmetic pointer operand. |
| /// |
| /// If the operand has pointer type, this code will check for pointer types |
| /// which are invalid in arithmetic operations. These will be diagnosed |
| /// appropriately, including whether or not the use is supported as an |
| /// extension. |
| /// |
| /// \returns True when the operand is valid to use (even if as an extension). |
| static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, |
| Expr *Operand) { |
| QualType ResType = Operand->getType(); |
| if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) |
| ResType = ResAtomicType->getValueType(); |
| |
| if (!ResType->isAnyPointerType()) return true; |
| |
| QualType PointeeTy = ResType->getPointeeType(); |
| if (PointeeTy->isVoidType()) { |
| diagnoseArithmeticOnVoidPointer(S, Loc, Operand); |
| return !S.getLangOpts().CPlusPlus; |
| } |
| if (PointeeTy->isFunctionType()) { |
| diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); |
| return !S.getLangOpts().CPlusPlus; |
| } |
| |
| if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; |
| |
| return true; |
| } |
| |
| /// Check the validity of a binary arithmetic operation w.r.t. pointer |
| /// operands. |
| /// |
| /// This routine will diagnose any invalid arithmetic on pointer operands much |
| /// like \see checkArithmeticOpPointerOperand. However, it has special logic |
| /// for emitting a single diagnostic even for operations where both LHS and RHS |
| /// are (potentially problematic) pointers. |
| /// |
| /// \returns True when the operand is valid to use (even if as an extension). |
| static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); |
| bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); |
| if (!isLHSPointer && !isRHSPointer) return true; |
| |
| QualType LHSPointeeTy, RHSPointeeTy; |
| if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); |
| if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); |
| |
| // if both are pointers check if operation is valid wrt address spaces |
| if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) { |
| const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>(); |
| const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>(); |
| if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) { |
| S.Diag(Loc, |
| diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) |
| << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/ |
| << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); |
| return false; |
| } |
| } |
| |
| // Check for arithmetic on pointers to incomplete types. |
| bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); |
| bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); |
| if (isLHSVoidPtr || isRHSVoidPtr) { |
| if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); |
| else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); |
| else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); |
| |
| return !S.getLangOpts().CPlusPlus; |
| } |
| |
| bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); |
| bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); |
| if (isLHSFuncPtr || isRHSFuncPtr) { |
| if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); |
| else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, |
| RHSExpr); |
| else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); |
| |
| return !S.getLangOpts().CPlusPlus; |
| } |
| |
| if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) |
| return false; |
| if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) |
| return false; |
| |
| return true; |
| } |
| |
| /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string |
| /// literal. |
| static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts()); |
| Expr* IndexExpr = RHSExpr; |
| if (!StrExpr) { |
| StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts()); |
| IndexExpr = LHSExpr; |
| } |
| |
| bool IsStringPlusInt = StrExpr && |
| IndexExpr->getType()->isIntegralOrUnscopedEnumerationType(); |
| if (!IsStringPlusInt || IndexExpr->isValueDependent()) |
| return; |
| |
| llvm::APSInt index; |
| if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) { |
| unsigned StrLenWithNull = StrExpr->getLength() + 1; |
| if (index.isNonNegative() && |
| index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull), |
| index.isUnsigned())) |
| return; |
| } |
| |
| SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd()); |
| Self.Diag(OpLoc, diag::warn_string_plus_int) |
| << DiagRange << IndexExpr->IgnoreImpCasts()->getType(); |
| |
| // Only print a fixit for "str" + int, not for int + "str". |
| if (IndexExpr == RHSExpr) { |
| SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd()); |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) |
| << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&") |
| << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") |
| << FixItHint::CreateInsertion(EndLoc, "]"); |
| } else |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); |
| } |
| |
| /// Emit a warning when adding a char literal to a string. |
| static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| const Expr *StringRefExpr = LHSExpr; |
| const CharacterLiteral *CharExpr = |
| dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts()); |
| |
| if (!CharExpr) { |
| CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts()); |
| StringRefExpr = RHSExpr; |
| } |
| |
| if (!CharExpr || !StringRefExpr) |
| return; |
| |
| const QualType StringType = StringRefExpr->getType(); |
| |
| // Return if not a PointerType. |
| if (!StringType->isAnyPointerType()) |
| return; |
| |
| // Return if not a CharacterType. |
| if (!StringType->getPointeeType()->isAnyCharacterType()) |
| return; |
| |
| ASTContext &Ctx = Self.getASTContext(); |
| SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd()); |
| |
| const QualType CharType = CharExpr->getType(); |
| if (!CharType->isAnyCharacterType() && |
| CharType->isIntegerType() && |
| llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) { |
| Self.Diag(OpLoc, diag::warn_string_plus_char) |
| << DiagRange << Ctx.CharTy; |
| } else { |
| Self.Diag(OpLoc, diag::warn_string_plus_char) |
| << DiagRange << CharExpr->getType(); |
| } |
| |
| // Only print a fixit for str + char, not for char + str. |
| if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) { |
| SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd()); |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) |
| << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&") |
| << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") |
| << FixItHint::CreateInsertion(EndLoc, "]"); |
| } else { |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); |
| } |
| } |
| |
| /// Emit error when two pointers are incompatible. |
| static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| assert(LHSExpr->getType()->isAnyPointerType()); |
| assert(RHSExpr->getType()->isAnyPointerType()); |
| S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) |
| << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() |
| << RHSExpr->getSourceRange(); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, BinaryOperatorKind Opc, |
| QualType* CompLHSTy) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands( |
| LHS, RHS, Loc, CompLHSTy, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // Diagnose "string literal" '+' int and string '+' "char literal". |
| if (Opc == BO_Add) { |
| diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get()); |
| diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get()); |
| } |
| |
| // handle the common case first (both operands are arithmetic). |
| if (!compType.isNull() && compType->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Type-checking. Ultimately the pointer's going to be in PExp; |
| // note that we bias towards the LHS being the pointer. |
| Expr *PExp = LHS.get(), *IExp = RHS.get(); |
| |
| bool isObjCPointer; |
| if (PExp->getType()->isPointerType()) { |
| isObjCPointer = false; |
| } else if (PExp->getType()->isObjCObjectPointerType()) { |
| isObjCPointer = true; |
| } else { |
| std::swap(PExp, IExp); |
| if (PExp->getType()->isPointerType()) { |
| isObjCPointer = false; |
| } else if (PExp->getType()->isObjCObjectPointerType()) { |
| isObjCPointer = true; |
| } else { |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| } |
| assert(PExp->getType()->isAnyPointerType()); |
| |
| if (!IExp->getType()->isIntegerType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // Adding to a null pointer results in undefined behavior. |
| if (PExp->IgnoreParenCasts()->isNullPointerConstant( |
| Context, Expr::NPC_ValueDependentIsNotNull)) { |
| // In C++ adding zero to a null pointer is defined. |
| llvm::APSInt KnownVal; |
| if (!getLangOpts().CPlusPlus || |
| (!IExp->isValueDependent() && |
| (!IExp->EvaluateAsInt(KnownVal, Context) || KnownVal != 0))) { |
| // Check the conditions to see if this is the 'p = nullptr + n' idiom. |
| bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension( |
| Context, BO_Add, PExp, IExp); |
| diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom); |
| } |
| } |
| |
| if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) |
| return QualType(); |
| |
| if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp)) |
| return QualType(); |
| |
| // Check array bounds for pointer arithemtic |
| CheckArrayAccess(PExp, IExp); |
| |
| if (CompLHSTy) { |
| QualType LHSTy = Context.isPromotableBitField(LHS.get()); |
| if (LHSTy.isNull()) { |
| LHSTy = LHS.get()->getType(); |
| if (LHSTy->isPromotableIntegerType()) |
| LHSTy = Context.getPromotedIntegerType(LHSTy); |
| } |
| *CompLHSTy = LHSTy; |
| } |
| |
| return PExp->getType(); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| QualType* CompLHSTy) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands( |
| LHS, RHS, Loc, CompLHSTy, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // Enforce type constraints: C99 6.5.6p3. |
| |
| // Handle the common case first (both operands are arithmetic). |
| if (!compType.isNull() && compType->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Either ptr - int or ptr - ptr. |
| if (LHS.get()->getType()->isAnyPointerType()) { |
| QualType lpointee = LHS.get()->getType()->getPointeeType(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| if (LHS.get()->getType()->isObjCObjectPointerType() && |
| checkArithmeticOnObjCPointer(*this, Loc, LHS.get())) |
| return QualType(); |
| |
| // The result type of a pointer-int computation is the pointer type. |
| if (RHS.get()->getType()->isIntegerType()) { |
| // Subtracting from a null pointer should produce a warning. |
| // The last argument to the diagnose call says this doesn't match the |
| // GNU int-to-pointer idiom. |
| if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull)) { |
| // In C++ adding zero to a null pointer is defined. |
| llvm::APSInt KnownVal; |
| if (!getLangOpts().CPlusPlus || |
| (!RHS.get()->isValueDependent() && |
| (!RHS.get()->EvaluateAsInt(KnownVal, Context) || KnownVal != 0))) { |
| diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false); |
| } |
| } |
| |
| if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) |
| return QualType(); |
| |
| // Check array bounds for pointer arithemtic |
| CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr, |
| /*AllowOnePastEnd*/true, /*IndexNegated*/true); |
| |
| if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); |
| return LHS.get()->getType(); |
| } |
| |
| // Handle pointer-pointer subtractions. |
| if (const PointerType *RHSPTy |
| = RHS.get()->getType()->getAs<PointerType>()) { |
| QualType rpointee = RHSPTy->getPointeeType(); |
| |
| if (getLangOpts().CPlusPlus) { |
| // Pointee types must be the same: C++ [expr.add] |
| if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { |
| diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); |
| } |
| } else { |
| // Pointee types must be compatible C99 6.5.6p3 |
| if (!Context.typesAreCompatible( |
| Context.getCanonicalType(lpointee).getUnqualifiedType(), |
| Context.getCanonicalType(rpointee).getUnqualifiedType())) { |
| diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); |
| return QualType(); |
| } |
| } |
| |
| if (!checkArithmeticBinOpPointerOperands(*this, Loc, |
| LHS.get(), RHS.get())) |
| return QualType(); |
| |
| // FIXME: Add warnings for nullptr - ptr. |
| |
| // The pointee type may have zero size. As an extension, a structure or |
| // union may have zero size or an array may have zero length. In this |
| // case subtraction does not make sense. |
| if (!rpointee->isVoidType() && !rpointee->isFunctionType()) { |
| CharUnits ElementSize = Context.getTypeSizeInChars(rpointee); |
| if (ElementSize.isZero()) { |
| Diag(Loc,diag::warn_sub_ptr_zero_size_types) |
| << rpointee.getUnqualifiedType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| } |
| |
| if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); |
| return Context.getPointerDiffType(); |
| } |
| } |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| static bool isScopedEnumerationType(QualType T) { |
| if (const EnumType *ET = T->getAs<EnumType>()) |
| return ET->getDecl()->isScoped(); |
| return false; |
| } |
| |
| static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, BinaryOperatorKind Opc, |
| QualType LHSType) { |
| // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined), |
| // so skip remaining warnings as we don't want to modify values within Sema. |
| if (S.getLangOpts().OpenCL) |
| return; |
| |
| llvm::APSInt Right; |
| // Check right/shifter operand |
| if (RHS.get()->isValueDependent() || |
| !RHS.get()->EvaluateAsInt(Right, S.Context)) |
| return; |
| |
| if (Right.isNegative()) { |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_shift_negative) |
| << RHS.get()->getSourceRange()); |
| return; |
| } |
| llvm::APInt LeftBits(Right.getBitWidth(), |
| S.Context.getTypeSize(LHS.get()->getType())); |
| if (Right.uge(LeftBits)) { |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_shift_gt_typewidth) |
| << RHS.get()->getSourceRange()); |
| return; |
| } |
| if (Opc != BO_Shl) |
| return; |
| |
| // When left shifting an ICE which is signed, we can check for overflow which |
| // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned |
| // integers have defined behavior modulo one more than the maximum value |
| // representable in the result type, so never warn for those. |
| llvm::APSInt Left; |
| if (LHS.get()->isValueDependent() || |
| LHSType->hasUnsignedIntegerRepresentation() || |
| !LHS.get()->EvaluateAsInt(Left, S.Context)) |
| return; |
| |
| // If LHS does not have a signed type and non-negative value |
| // then, the behavior is undefined. Warn about it. |
| if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined()) { |
| S.DiagRuntimeBehavior(Loc, LHS.get(), |
| S.PDiag(diag::warn_shift_lhs_negative) |
| << LHS.get()->getSourceRange()); |
| return; |
| } |
| |
| llvm::APInt ResultBits = |
| static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits(); |
| if (LeftBits.uge(ResultBits)) |
| return; |
| llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); |
| Result = Result.shl(Right); |
| |
| // Print the bit representation of the signed integer as an unsigned |
| // hexadecimal number. |
| SmallString<40> HexResult; |
| Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); |
| |
| // If we are only missing a sign bit, this is less likely to result in actual |
| // bugs -- if the result is cast back to an unsigned type, it will have the |
| // expected value. Thus we place this behind a different warning that can be |
| // turned off separately if needed. |
| if (LeftBits == ResultBits - 1) { |
| S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) |
| << HexResult << LHSType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return; |
| } |
| |
| S.Diag(Loc, diag::warn_shift_result_gt_typewidth) |
| << HexResult.str() << Result.getMinSignedBits() << LHSType |
| << Left.getBitWidth() << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| |
| /// Return the resulting type when a vector is shifted |
| /// by a scalar or vector shift amount. |
| static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompAssign) { |
| // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector. |
| if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) && |
| !LHS.get()->getType()->isVectorType()) { |
| S.Diag(Loc, diag::err_shift_rhs_only_vector) |
| << RHS.get()->getType() << LHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!IsCompAssign) { |
| LHS = S.UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) return QualType(); |
| } |
| |
| RHS = S.UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) return QualType(); |
| |
| QualType LHSType = LHS.get()->getType(); |
| // Note that LHS might be a scalar because the routine calls not only in |
| // OpenCL case. |
| const VectorType *LHSVecTy = LHSType->getAs<VectorType>(); |
| QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType; |
| |
| // Note that RHS might not be a vector. |
| QualType RHSType = RHS.get()->getType(); |
| const VectorType *RHSVecTy = RHSType->getAs<VectorType>(); |
| QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType; |
| |
| // The operands need to be integers. |
| if (!LHSEleType->isIntegerType()) { |
| S.Diag(Loc, diag::err_typecheck_expect_int) |
| << LHS.get()->getType() << LHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!RHSEleType->isIntegerType()) { |
| S.Diag(Loc, diag::err_typecheck_expect_int) |
| << RHS.get()->getType() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!LHSVecTy) { |
| assert(RHSVecTy); |
| if (IsCompAssign) |
| return RHSType; |
| if (LHSEleType != RHSEleType) { |
| LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast); |
| LHSEleType = RHSEleType; |
| } |
| QualType VecTy = |
| S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements()); |
| LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat); |
| LHSType = VecTy; |
| } else if (RHSVecTy) { |
| // OpenCL v1.1 s6.3.j says that for vector types, the operators |
| // are applied component-wise. So if RHS is a vector, then ensure |
| // that the number of elements is the same as LHS... |
| if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) { |
| S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) { |
| const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>(); |
| const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>(); |
| if (LHSBT != RHSBT && |
| S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) { |
| S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| } |
| } else { |
| // ...else expand RHS to match the number of elements in LHS. |
| QualType VecTy = |
| S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements()); |
| RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); |
| } |
| |
| return LHSType; |
| } |
| |
| // C99 6.5.7 |
| QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, BinaryOperatorKind Opc, |
| bool IsCompAssign) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| // Vector shifts promote their scalar inputs to vector type. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LangOpts.ZVector) { |
| // The shift operators for the z vector extensions work basically |
| // like general shifts, except that neither the LHS nor the RHS is |
| // allowed to be a "vector bool". |
| if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>()) |
| if (LHSVecType->getVectorKind() == VectorType::AltiVecBool) |
| return InvalidOperands(Loc, LHS, RHS); |
| if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>()) |
| if (RHSVecType->getVectorKind() == VectorType::AltiVecBool) |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign); |
| } |
| |
| // Shifts don't perform usual arithmetic conversions, they just do integer |
| // promotions on each operand. C99 6.5.7p3 |
| |
| // For the LHS, do usual unary conversions, but then reset them away |
| // if this is a compound assignment. |
| ExprResult OldLHS = LHS; |
| LHS = UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| QualType LHSType = LHS.get()->getType(); |
| if (IsCompAssign) LHS = OldLHS; |
| |
| // The RHS is simpler. |
| RHS = UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| QualType RHSType = RHS.get()->getType(); |
| |
| // C99 6.5.7p2: Each of the operands shall have integer type. |
| if (!LHSType->hasIntegerRepresentation() || |
| !RHSType->hasIntegerRepresentation()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // C++0x: Don't allow scoped enums. FIXME: Use something better than |
| // hasIntegerRepresentation() above instead of this. |
| if (isScopedEnumerationType(LHSType) || |
| isScopedEnumerationType(RHSType)) { |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| // Sanity-check shift operands |
| DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); |
| |
| // "The type of the result is that of the promoted left operand." |
| return LHSType; |
| } |
| |
| /// If two different enums are compared, raise a warning. |
| static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS, |
| Expr *RHS) { |
| QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType(); |
| QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType(); |
| |
| const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>(); |
| if (!LHSEnumType) |
| return; |
| const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>(); |
| if (!RHSEnumType) |
| return; |
| |
| // Ignore anonymous enums. |
| if (!LHSEnumType->getDecl()->getIdentifier() && |
| !LHSEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| return; |
| if (!RHSEnumType->getDecl()->getIdentifier() && |
| !RHSEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| return; |
| |
| if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) |
| return; |
| |
| S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types) |
| << LHSStrippedType << RHSStrippedType |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| } |
| |
| /// Diagnose bad pointer comparisons. |
| static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS, |
| bool IsError) { |
| S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers |
| : diag::ext_typecheck_comparison_of_distinct_pointers) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| /// Returns false if the pointers are converted to a composite type, |
| /// true otherwise. |
| static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS) { |
| // C++ [expr.rel]p2: |
| // [...] Pointer conversions (4.10) and qualification |
| // conversions (4.4) are performed on pointer operands (or on |
| // a pointer operand and a null pointer constant) to bring |
| // them to their composite pointer type. [...] |
| // |
| // C++ [expr.eq]p1 uses the same notion for (in)equality |
| // comparisons of pointers. |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| assert(LHSType->isPointerType() || RHSType->isPointerType() || |
| LHSType->isMemberPointerType() || RHSType->isMemberPointerType()); |
| |
| QualType T = S.FindCompositePointerType(Loc, LHS, RHS); |
| if (T.isNull()) { |
| if ((LHSType->isPointerType() || LHSType->isMemberPointerType()) && |
| (RHSType->isPointerType() || RHSType->isMemberPointerType())) |
| diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); |
| else |
| S.InvalidOperands(Loc, LHS, RHS); |
| return true; |
| } |
| |
| LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast); |
| RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast); |
| return false; |
| } |
| |
| static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| bool IsError) { |
| S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void |
| : diag::ext_typecheck_comparison_of_fptr_to_void) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| static bool isObjCObjectLiteral(ExprResult &E) { |
| switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) { |
| case Stmt::ObjCArrayLiteralClass: |
| case Stmt::ObjCDictionaryLiteralClass: |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::ObjCBoxedExprClass: |
| return true; |
| default: |
| // Note that ObjCBoolLiteral is NOT an object literal! |
| return false; |
| } |
| } |
| |
| static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) { |
| const ObjCObjectPointerType *Type = |
| LHS->getType()->getAs<ObjCObjectPointerType>(); |
| |
| // If this is not actually an Objective-C object, bail out. |
| if (!Type) |
| return false; |
| |
| // Get the LHS object's interface type. |
| QualType InterfaceType = Type->getPointeeType(); |
| |
| // If the RHS isn't an Objective-C object, bail out. |
| if (!RHS->getType()->isObjCObjectPointerType()) |
| return false; |
| |
| // Try to find the -isEqual: method. |
| Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector(); |
| ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel, |
| InterfaceType, |
| /*instance=*/true); |
| if (!Method) { |
| if (Type->isObjCIdType()) { |
| // For 'id', just check the global pool. |
| Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(), |
| /*receiverId=*/true); |
| } else { |
| // Check protocols. |
| Method = S.LookupMethodInQualifiedType(IsEqualSel, Type, |
| /*instance=*/true); |
| } |
| } |
| |
| if (!Method) |
| return false; |
| |
| QualType T = Method->parameters()[0]->getType(); |
| if (!T->isObjCObjectPointerType()) |
| return false; |
| |
| QualType R = Method->getReturnType(); |
| if (!R->isScalarType()) |
| return false; |
| |
| return true; |
| } |
| |
| Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) { |
| FromE = FromE->IgnoreParenImpCasts(); |
| switch (FromE->getStmtClass()) { |
| default: |
| break; |
| case Stmt::ObjCStringLiteralClass: |
| // "string literal" |
| return LK_String; |
| case Stmt::ObjCArrayLiteralClass: |
| // "array literal" |
| return LK_Array; |
| case Stmt::ObjCDictionaryLiteralClass: |
| // "dictionary literal" |
| return LK_Dictionary; |
| case Stmt::BlockExprClass: |
| return LK_Block; |
| case Stmt::ObjCBoxedExprClass: { |
| Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens(); |
| switch (Inner->getStmtClass()) { |
| case Stmt::IntegerLiteralClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::ObjCBoolLiteralExprClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| // "numeric literal" |
| return LK_Numeric; |
| case Stmt::ImplicitCastExprClass: { |
| CastKind CK = cast<CastExpr>(Inner)->getCastKind(); |
| // Boolean literals can be represented by implicit casts. |
| if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) |
| return LK_Numeric; |
| break; |
| } |
| default: |
| break; |
| } |
| return LK_Boxed; |
| } |
| } |
| return LK_None; |
| } |
| |
| static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS, |
| BinaryOperator::Opcode Opc){ |
| Expr *Literal; |
| Expr *Other; |
| if (isObjCObjectLiteral(LHS)) { |
| Literal = LHS.get(); |
| Other = RHS.get(); |
| } else { |
| Literal = RHS.get(); |
| Other = LHS.get(); |
| } |
| |
| // Don't warn on comparisons against nil. |
| Other = Other->IgnoreParenCasts(); |
| if (Other->isNullPointerConstant(S.getASTContext(), |
| Expr::NPC_ValueDependentIsNotNull)) |
| return; |
| |
| // This should be kept in sync with warn_objc_literal_comparison. |
| // LK_String should always be after the other literals, since it has its own |
| // warning flag. |
| Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal); |
| assert(LiteralKind != Sema::LK_Block); |
| if (LiteralKind == Sema::LK_None) { |
| llvm_unreachable("Unknown Objective-C object literal kind"); |
| } |
| |
| if (LiteralKind == Sema::LK_String) |
| S.Diag(Loc, diag::warn_objc_string_literal_comparison) |
| << Literal->getSourceRange(); |
| else |
| S.Diag(Loc, diag::warn_objc_literal_comparison) |
| << LiteralKind << Literal->getSourceRange(); |
| |
| if (BinaryOperator::isEqualityOp(Opc) && |
| hasIsEqualMethod(S, LHS.get(), RHS.get())) { |
| SourceLocation Start = LHS.get()->getLocStart(); |
| SourceLocation End = S.getLocForEndOfToken(RHS.get()->getLocEnd()); |
| CharSourceRange OpRange = |
| CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); |
| |
| S.Diag(Loc, diag::note_objc_literal_comparison_isequal) |
| << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![") |
| << FixItHint::CreateReplacement(OpRange, " isEqual:") |
| << FixItHint::CreateInsertion(End, "]"); |
| } |
| } |
| |
| /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended. |
| static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| // Check that left hand side is !something. |
| UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts()); |
| if (!UO || UO->getOpcode() != UO_LNot) return; |
| |
| // Only check if the right hand side is non-bool arithmetic type. |
| if (RHS.get()->isKnownToHaveBooleanValue()) return; |
| |
| // Make sure that the something in !something is not bool. |
| Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts(); |
| if (SubExpr->isKnownToHaveBooleanValue()) return; |
| |
| // Emit warning. |
| bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor; |
| S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check) |
| << Loc << IsBitwiseOp; |
| |
| // First note suggest !(x < y) |
| SourceLocation FirstOpen = SubExpr->getLocStart(); |
| SourceLocation FirstClose = RHS.get()->getLocEnd(); |
| FirstClose = S.getLocForEndOfToken(FirstClose); |
| if (FirstClose.isInvalid()) |
| FirstOpen = SourceLocation(); |
| S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix) |
| << IsBitwiseOp |
| << FixItHint::CreateInsertion(FirstOpen, "(") |
| << FixItHint::CreateInsertion(FirstClose, ")"); |
| |
| // Second note suggests (!x) < y |
| SourceLocation SecondOpen = LHS.get()->getLocStart(); |
| SourceLocation SecondClose = LHS.get()->getLocEnd(); |
| SecondClose = S.getLocForEndOfToken(SecondClose); |
| if (SecondClose.isInvalid()) |
| SecondOpen = SourceLocation(); |
| S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens) |
| << FixItHint::CreateInsertion(SecondOpen, "(") |
| << FixItHint::CreateInsertion(SecondClose, ")"); |
| } |
| |
| // Get the decl for a simple expression: a reference to a variable, |
| // an implicit C++ field reference, or an implicit ObjC ivar reference. |
| static ValueDecl *getCompareDecl(Expr *E) { |
| if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) |
| return DR->getDecl(); |
| if (ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E)) { |
| if (Ivar->isFreeIvar()) |
| return Ivar->getDecl(); |
| } |
| if (MemberExpr *Mem = dyn_cast<MemberExpr>(E)) { |
| if (Mem->isImplicitAccess()) |
| return Mem->getMemberDecl(); |
| } |
| return nullptr; |
| } |
| |
| /// Diagnose some forms of syntactically-obvious tautological comparison. |
| static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc, |
| Expr *LHS, Expr *RHS, |
| BinaryOperatorKind Opc) { |
| Expr *LHSStripped = LHS->IgnoreParenImpCasts(); |
| Expr *RHSStripped = RHS->IgnoreParenImpCasts(); |
| |
| QualType LHSType = LHS->getType(); |
| QualType RHSType = RHS->getType(); |
| if (LHSType->hasFloatingRepresentation() || |
| (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) || |
| LHS->getLocStart().isMacroID() || RHS->getLocStart().isMacroID() || |
| S.inTemplateInstantiation()) |
| return; |
| |
| // Comparisons between two array types are ill-formed for operator<=>, so |
| // we shouldn't emit any additional warnings about it. |
| if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType()) |
| return; |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| // |
| // NOTE: Don't warn about comparison expressions resulting from macro |
| // expansion. Also don't warn about comparisons which are only self |
| // comparisons within a template instantiation. The warnings should catch |
| // obvious cases in the definition of the template anyways. The idea is to |
| // warn when the typed comparison operator will always evaluate to the same |
| // result. |
| ValueDecl *DL = getCompareDecl(LHSStripped); |
| ValueDecl *DR = getCompareDecl(RHSStripped); |
| if (DL && DR && declaresSameEntity(DL, DR)) { |
| StringRef Result; |
| switch (Opc) { |
| case BO_EQ: case BO_LE: case BO_GE: |
| Result = "true"; |
| break; |
| case BO_NE: case BO_LT: case BO_GT: |
| Result = "false"; |
| break; |
| case BO_Cmp: |
| Result = "'std::strong_ordering::equal'"; |
| break; |
| default: |
| break; |
| } |
| S.DiagRuntimeBehavior(Loc, nullptr, |
| S.PDiag(diag::warn_comparison_always) |
| << 0 /*self-comparison*/ << !Result.empty() |
| << Result); |
| } else if (DL && DR && |
| DL->getType()->isArrayType() && DR->getType()->isArrayType() && |
| !DL->isWeak() && !DR->isWeak()) { |
| // What is it always going to evaluate to? |
| StringRef Result; |
| switch(Opc) { |
| case BO_EQ: // e.g. array1 == array2 |
| Result = "false"; |
| break; |
| case BO_NE: // e.g. array1 != array2 |
| Result = "true"; |
| break; |
| default: // e.g. array1 <= array2 |
| // The best we can say is 'a constant' |
| break; |
| } |
| S.DiagRuntimeBehavior(Loc, nullptr, |
| S.PDiag(diag::warn_comparison_always) |
| << 1 /*array comparison*/ |
| << !Result.empty() << Result); |
| } |
| |
| if (isa<CastExpr>(LHSStripped)) |
| LHSStripped = LHSStripped->IgnoreParenCasts(); |
| if (isa<CastExpr>(RHSStripped)) |
| RHSStripped = RHSStripped->IgnoreParenCasts(); |
| |
| // Warn about comparisons against a string constant (unless the other |
| // operand is null); the user probably wants strcmp. |
| Expr *LiteralString = nullptr; |
| Expr *LiteralStringStripped = nullptr; |
| if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && |
| !RHSStripped->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| LiteralString = LHS; |
| LiteralStringStripped = LHSStripped; |
| } else if ((isa<StringLiteral>(RHSStripped) || |
| isa<ObjCEncodeExpr>(RHSStripped)) && |
| !LHSStripped->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| LiteralString = RHS; |
| LiteralStringStripped = RHSStripped; |
| } |
| |
| if (LiteralString) { |
| S.DiagRuntimeBehavior(Loc, nullptr, |
| S.PDiag(diag::warn_stringcompare) |
| << isa<ObjCEncodeExpr>(LiteralStringStripped) |
| << LiteralString->getSourceRange()); |
| } |
| } |
| |
| static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) { |
| switch (CK) { |
| default: { |
| #ifndef NDEBUG |
| llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK) |
| << "\n"; |
| #endif |
| llvm_unreachable("unhandled cast kind"); |
| } |
| case CK_UserDefinedConversion: |
| return ICK_Identity; |
| case CK_LValueToRValue: |
| return ICK_Lvalue_To_Rvalue; |
| case CK_ArrayToPointerDecay: |
| return ICK_Array_To_Pointer; |
| case CK_FunctionToPointerDecay: |
| return ICK_Function_To_Pointer; |
| case CK_IntegralCast: |
| return ICK_Integral_Conversion; |
| case CK_FloatingCast: |
| return ICK_Floating_Conversion; |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| return ICK_Floating_Integral; |
| case CK_IntegralComplexCast: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralComplexToFloatingComplex: |
| return ICK_Complex_Conversion; |
| case CK_FloatingComplexToReal: |
| case CK_FloatingRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralRealToComplex: |
| return ICK_Complex_Real; |
| } |
| } |
| |
| static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E, |
| QualType FromType, |
| SourceLocation Loc) { |
| // Check for a narrowing implicit conversion. |
| StandardConversionSequence SCS; |
| SCS.setAsIdentityConversion(); |
| SCS.setToType(0, FromType); |
| SCS.setToType(1, ToType); |
| if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind()); |
| |
| APValue PreNarrowingValue; |
| QualType PreNarrowingType; |
| switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue, |
| PreNarrowingType, |
| /*IgnoreFloatToIntegralConversion*/ true)) { |
| case NK_Dependent_Narrowing: |
| // Implicit conversion to a narrower type, but the expression is |
| // value-dependent so we can't tell whether it's actually narrowing. |
| case NK_Not_Narrowing: |
| return false; |
| |
| case NK_Constant_Narrowing: |
| // Implicit conversion to a narrower type, and the value is not a constant |
| // expression. |
| S.Diag(E->getLocStart(), diag::err_spaceship_argument_narrowing) |
| << /*Constant*/ 1 |
| << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType; |
| return true; |
| |
| case NK_Variable_Narrowing: |
| // Implicit conversion to a narrower type, and the value is not a constant |
| // expression. |
| case NK_Type_Narrowing: |
| S.Diag(E->getLocStart(), diag::err_spaceship_argument_narrowing) |
| << /*Constant*/ 0 << FromType << ToType; |
| // TODO: It's not a constant expression, but what if the user intended it |
| // to be? Can we produce notes to help them figure out why it isn't? |
| return true; |
| } |
| llvm_unreachable("unhandled case in switch"); |
| } |
| |
| static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| using CCT = ComparisonCategoryType; |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| // Dig out the original argument type and expression before implicit casts |
| // were applied. These are the types/expressions we need to check the |
| // [expr.spaceship] requirements against. |
| ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts(); |
| ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts(); |
| QualType LHSStrippedType = LHSStripped.get()->getType(); |
| QualType RHSStrippedType = RHSStripped.get()->getType(); |
| |
| // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the |
| // other is not, the program is ill-formed. |
| if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) { |
| S.InvalidOperands(Loc, LHSStripped, RHSStripped); |
| return QualType(); |
| } |
| |
| int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() + |
| RHSStrippedType->isEnumeralType(); |
| if (NumEnumArgs == 1) { |
| bool LHSIsEnum = LHSStrippedType->isEnumeralType(); |
| QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType; |
| if (OtherTy->hasFloatingRepresentation()) { |
| S.InvalidOperands(Loc, LHSStripped, RHSStripped); |
| return QualType(); |
| } |
| } |
| if (NumEnumArgs == 2) { |
| // C++2a [expr.spaceship]p5: If both operands have the same enumeration |
| // type E, the operator yields the result of converting the operands |
| // to the underlying type of E and applying <=> to the converted operands. |
| if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { |
| S.InvalidOperands(Loc, LHS, RHS); |
| return QualType(); |
| } |
| QualType IntType = |
| LHSStrippedType->getAs<EnumType>()->getDecl()->getIntegerType(); |
| assert(IntType->isArithmeticType()); |
| |
| // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we |
| // promote the boolean type, and all other promotable integer types, to |
| // avoid this. |
| if (IntType->isPromotableIntegerType()) |
| IntType = S.Context.getPromotedIntegerType(IntType); |
| |
| LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast); |
| RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast); |
| LHSType = RHSType = IntType; |
| } |
| |
| // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the |
| // usual arithmetic conversions are applied to the operands. |
| QualType Type = S.UsualArithmeticConversions(LHS, RHS); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (Type.isNull()) |
| return S.InvalidOperands(Loc, LHS, RHS); |
| assert(Type->isArithmeticType() || Type->isEnumeralType()); |
| |
| bool HasNarrowing = checkThreeWayNarrowingConversion( |
| S, Type, LHS.get(), LHSType, LHS.get()->getLocStart()); |
| HasNarrowing |= checkThreeWayNarrowingConversion( |
| S, Type, RHS.get(), RHSType, RHS.get()->getLocStart()); |
| if (HasNarrowing) |
| return QualType(); |
| |
| assert(!Type.isNull() && "composite type for <=> has not been set"); |
| |
| auto TypeKind = [&]() { |
| if (const ComplexType *CT = Type->getAs<ComplexType>()) { |
| if (CT->getElementType()->hasFloatingRepresentation()) |
| return CCT::WeakEquality; |
| return CCT::StrongEquality; |
| } |
| if (Type->isIntegralOrEnumerationType()) |
| return CCT::StrongOrdering; |
| if (Type->hasFloatingRepresentation()) |
| return CCT::PartialOrdering; |
| llvm_unreachable("other types are unimplemented"); |
| }(); |
| |
| return S.CheckComparisonCategoryType(TypeKind, Loc); |
| } |
| |
| static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| if (Opc == BO_Cmp) |
| return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc); |
| |
| // C99 6.5.8p3 / C99 6.5.9p4 |
| QualType Type = S.UsualArithmeticConversions(LHS, RHS); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (Type.isNull()) |
| return S.InvalidOperands(Loc, LHS, RHS); |
| assert(Type->isArithmeticType() || Type->isEnumeralType()); |
| |
| checkEnumComparison(S, Loc, LHS.get(), RHS.get()); |
| |
| if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc)) |
| return S.InvalidOperands(Loc, LHS, RHS); |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc)) |
| S.CheckFloatComparison(Loc, LHS.get(), RHS.get()); |
| |
| // The result of comparisons is 'bool' in C++, 'int' in C. |
| return S.Context.getLogicalOperationType(); |
| } |
| |
| // C99 6.5.8, C++ [expr.rel] |
| QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| bool IsRelational = BinaryOperator::isRelationalOp(Opc); |
| bool IsThreeWay = Opc == BO_Cmp; |
| auto IsAnyPointerType = [](ExprResult E) { |
| QualType Ty = E.get()->getType(); |
| return Ty->isPointerType() || Ty->isMemberPointerType(); |
| }; |
| |
| // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer |
| // type, array-to-pointer, ..., conversions are performed on both operands to |
| // bring them to their composite type. |
| // Otherwise, all comparisons expect an rvalue, so convert to rvalue before |
| // any type-related checks. |
| if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) { |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| } else { |
| LHS = DefaultLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = DefaultLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| } |
| |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true); |
| |
| // Handle vector comparisons separately. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorCompareOperands(LHS, RHS, Loc, Opc); |
| |
| diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); |
| diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) && |
| (RHSType->isArithmeticType() || RHSType->isEnumeralType())) |
| return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc); |
| |
| const Expr::NullPointerConstantKind LHSNullKind = |
| LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); |
| const Expr::NullPointerConstantKind RHSNullKind = |
| RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); |
| bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull; |
| bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull; |
| |
| auto computeResultTy = [&]() { |
| if (Opc != BO_Cmp) |
| return Context.getLogicalOperationType(); |
| assert(getLangOpts().CPlusPlus); |
| assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())); |
| |
| QualType CompositeTy = LHS.get()->getType(); |
| assert(!CompositeTy->isReferenceType()); |
| |
| auto buildResultTy = [&](ComparisonCategoryType Kind) { |
| return CheckComparisonCategoryType(Kind, Loc); |
| }; |
| |
| // C++2a [expr.spaceship]p7: If the composite pointer type is a function |
| // pointer type, a pointer-to-member type, or std::nullptr_t, the |
| // result is of type std::strong_equality |
| if (CompositeTy->isFunctionPointerType() || |
| CompositeTy->isMemberPointerType() || CompositeTy->isNullPtrType()) |
| // FIXME: consider making the function pointer case produce |
| // strong_ordering not strong_equality, per P0946R0-Jax18 discussion |
| // and direction polls |
| return buildResultTy(ComparisonCategoryType::StrongEquality); |
| |
| // C++2a [expr.spaceship]p8: If the composite pointer type is an object |
| // pointer type, p <=> q is of type std::strong_ordering. |
| if (CompositeTy->isPointerType()) { |
| // P0946R0: Comparisons between a null pointer constant and an object |
| // pointer result in std::strong_equality |
| if (LHSIsNull != RHSIsNull) |
| return buildResultTy(ComparisonCategoryType::StrongEquality); |
| return buildResultTy(ComparisonCategoryType::StrongOrdering); |
| } |
| // C++2a [expr.spaceship]p9: Otherwise, the program is ill-formed. |
| // TODO: Extend support for operator<=> to ObjC types. |
| return InvalidOperands(Loc, LHS, RHS); |
| }; |
| |
| |
| if (!IsRelational && LHSIsNull != RHSIsNull) { |
| bool IsEquality = Opc == BO_EQ; |
| if (RHSIsNull) |
| DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality, |
| RHS.get()->getSourceRange()); |
| else |
| DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality, |
| LHS.get()->getSourceRange()); |
| } |
| |
| if ((LHSType->isIntegerType() && !LHSIsNull) || |
| (RHSType->isIntegerType() && !RHSIsNull)) { |
| // Skip normal pointer conversion checks in this case; we have better |
| // diagnostics for this below. |
| } else if (getLangOpts().CPlusPlus) { |
| // Equality comparison of a function pointer to a void pointer is invalid, |
| // but we allow it as an extension. |
| // FIXME: If we really want to allow this, should it be part of composite |
| // pointer type computation so it works in conditionals too? |
| if (!IsRelational && |
| ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) || |
| (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) { |
| // This is a gcc extension compatibility comparison. |
| // In a SFINAE context, we treat this as a hard error to maintain |
| // conformance with the C++ standard. |
| diagnoseFunctionPointerToVoidComparison( |
| *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext()); |
| |
| if (isSFINAEContext()) |
| return QualType(); |
| |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return computeResultTy(); |
| } |
| |
| // C++ [expr.eq]p2: |
| // If at least one operand is a pointer [...] bring them to their |
| // composite pointer type. |
| // C++ [expr.spaceship]p6 |
| // If at least one of the operands is of pointer type, [...] bring them |
| // to their composite pointer type. |
| // C++ [expr.rel]p2: |
| // If both operands are pointers, [...] bring them to their composite |
| // pointer type. |
| if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >= |
| (IsRelational ? 2 : 1) && |
| (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() || |
| RHSType->isObjCObjectPointerType()))) { |
| if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) |
| return QualType(); |
| return computeResultTy(); |
| } |
| } else if (LHSType->isPointerType() && |
| RHSType->isPointerType()) { // C99 6.5.8p2 |
| // All of the following pointer-related warnings are GCC extensions, except |
| // when handling null pointer constants. |
| QualType LCanPointeeTy = |
| LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); |
| QualType RCanPointeeTy = |
| RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); |
| |
| // C99 6.5.9p2 and C99 6.5.8p2 |
| if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), |
| RCanPointeeTy.getUnqualifiedType())) { |
| // Valid unless a relational comparison of function pointers |
| if (IsRelational && LCanPointeeTy->isFunctionType()) { |
| Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| } else if (!IsRelational && |
| (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { |
| // Valid unless comparison between non-null pointer and function pointer |
| if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) |
| && !LHSIsNull && !RHSIsNull) |
| diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| } else { |
| // Invalid |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); |
| } |
| if (LCanPointeeTy != RCanPointeeTy) { |
| // Treat NULL constant as a special case in OpenCL. |
| if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) { |
| const PointerType *LHSPtr = LHSType->getAs<PointerType>(); |
| if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) { |
| Diag(Loc, |
| diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) |
| << LHSType << RHSType << 0 /* comparison */ |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| } |
| LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace(); |
| LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace(); |
| CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion |
| : CK_BitCast; |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, Kind); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, Kind); |
| } |
| return computeResultTy(); |
| } |
| |
| if (getLangOpts().CPlusPlus) { |
| // C++ [expr.eq]p4: |
| // Two operands of type std::nullptr_t or one operand of type |
| // std::nullptr_t and the other a null pointer constant compare equal. |
| if (!IsRelational && LHSIsNull && RHSIsNull) { |
| if (LHSType->isNullPtrType()) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| if (RHSType->isNullPtrType()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| } |
| |
| // Comparison of Objective-C pointers and block pointers against nullptr_t. |
| // These aren't covered by the composite pointer type rules. |
| if (!IsRelational && RHSType->isNullPtrType() && |
| (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| if (!IsRelational && LHSType->isNullPtrType() && |
| (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| |
| if (IsRelational && |
| ((LHSType->isNullPtrType() && RHSType->isPointerType()) || |
| (RHSType->isNullPtrType() && LHSType->isPointerType()))) { |
| // HACK: Relational comparison of nullptr_t against a pointer type is |
| // invalid per DR583, but we allow it within std::less<> and friends, |
| // since otherwise common uses of it break. |
| // FIXME: Consider removing this hack once LWG fixes std::less<> and |
| // friends to have std::nullptr_t overload candidates. |
| DeclContext *DC = CurContext; |
| if (isa<FunctionDecl>(DC)) |
| DC = DC->getParent(); |
| if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { |
| if (CTSD->isInStdNamespace() && |
| llvm::StringSwitch<bool>(CTSD->getName()) |
| .Cases("less", "less_equal", "greater", "greater_equal", true) |
| .Default(false)) { |
| if (RHSType->isNullPtrType()) |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| else |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| } |
| } |
| |
| // C++ [expr.eq]p2: |
| // If at least one operand is a pointer to member, [...] bring them to |
| // their composite pointer type. |
| if (!IsRelational && |
| (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) { |
| if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) |
| return QualType(); |
| else |
| return computeResultTy(); |
| } |
| } |
| |
| // Handle block pointer types. |
| if (!IsRelational && LHSType->isBlockPointerType() && |
| RHSType->isBlockPointerType()) { |
| QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType(); |
| QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType(); |
| |
| if (!LHSIsNull && !RHSIsNull && |
| !Context.typesAreCompatible(lpointee, rpointee)) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return computeResultTy(); |
| } |
| |
| // Allow block pointers to be compared with null pointer constants. |
| if (!IsRelational |
| && ((LHSType->isBlockPointerType() && RHSType->isPointerType()) |
| || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { |
| if (!LHSIsNull && !RHSIsNull) { |
| if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()) |
| || (LHSType->isPointerType() && LHSType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()))) |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, |
| RHSType->isPointerType() ? CK_BitCast |
| : CK_AnyPointerToBlockPointerCast); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, |
| LHSType->isPointerType() ? CK_BitCast |
| : CK_AnyPointerToBlockPointerCast); |
| return computeResultTy(); |
| } |
| |
| if (LHSType->isObjCObjectPointerType() || |
| RHSType->isObjCObjectPointerType()) { |
| const PointerType *LPT = LHSType->getAs<PointerType>(); |
| const PointerType *RPT = RHSType->getAs<PointerType>(); |
| if (LPT || RPT) { |
| bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; |
| bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; |
| |
| if (!LPtrToVoid && !RPtrToVoid && |
| !Context.typesAreCompatible(LHSType, RHSType)) { |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| } |
| if (LHSIsNull && !RHSIsNull) { |
| Expr *E = LHS.get(); |
| if (getLangOpts().ObjCAutoRefCount) |
| CheckObjCConversion(SourceRange(), RHSType, E, |
| CCK_ImplicitConversion); |
| LHS = ImpCastExprToType(E, RHSType, |
| RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); |
| } |
| else { |
| Expr *E = RHS.get(); |
| if (getLangOpts().ObjCAutoRefCount) |
| CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, |
| /*Diagnose=*/true, |
| /*DiagnoseCFAudited=*/false, Opc); |
| RHS = ImpCastExprToType(E, LHSType, |
| LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); |
| } |
| return computeResultTy(); |
| } |
| if (LHSType->isObjCObjectPointerType() && |
| RHSType->isObjCObjectPointerType()) { |
| if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS)) |
| diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc); |
| |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return computeResultTy(); |
| } |
| |
| if (!IsRelational && LHSType->isBlockPointerType() && |
| RHSType->isBlockCompatibleObjCPointerType(Context)) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, |
| CK_BlockPointerToObjCPointerCast); |
| return computeResultTy(); |
| } else if (!IsRelational && |
| LHSType->isBlockCompatibleObjCPointerType(Context) && |
| RHSType->isBlockPointerType()) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, |
| CK_BlockPointerToObjCPointerCast); |
| return computeResultTy(); |
| } |
| } |
| if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || |
| (LHSType->isIntegerType() && RHSType->isAnyPointerType())) { |
| unsigned DiagID = 0; |
| bool isError = false; |
| if (LangOpts.DebuggerSupport) { |
| // Under a debugger, allow the comparison of pointers to integers, |
| // since users tend to want to compare addresses. |
| } else if ((LHSIsNull && LHSType->isIntegerType()) || |
| (RHSIsNull && RHSType->isIntegerType())) { |
| if (IsRelational) { |
| isError = getLangOpts().CPlusPlus; |
| DiagID = |
| isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero |
| : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; |
| } |
| } else if (getLangOpts().CPlusPlus) { |
| DiagID = diag::err_typecheck_comparison_of_pointer_integer; |
| isError = true; |
| } else if (IsRelational) |
| DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; |
| else |
| DiagID = diag::ext_typecheck_comparison_of_pointer_integer; |
| |
| if (DiagID) { |
| Diag(Loc, DiagID) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| if (isError) |
| return QualType(); |
| } |
| |
| if (LHSType->isIntegerType()) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, |
| LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, |
| RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| return computeResultTy(); |
| } |
| |
| // Handle block pointers. |
| if (!IsRelational && RHSIsNull |
| && LHSType->isBlockPointerType() && RHSType->isIntegerType()) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| if (!IsRelational && LHSIsNull |
| && LHSType->isIntegerType() && RHSType->isBlockPointerType()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| |
| if (getLangOpts().OpenCLVersion >= 200) { |
| if (LHSIsNull && RHSType->isQueueT()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| |
| if (LHSType->isQueueT() && RHSIsNull) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| } |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| // Return a signed ext_vector_type that is of identical size and number of |
| // elements. For floating point vectors, return an integer type of identical |
| // size and number of elements. In the non ext_vector_type case, search from |
| // the largest type to the smallest type to avoid cases where long long == long, |
| // where long gets picked over long long. |
| QualType Sema::GetSignedVectorType(QualType V) { |
| const VectorType *VTy = V->getAs<VectorType>(); |
| unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); |
| |
| if (isa<ExtVectorType>(VTy)) { |
| if (TypeSize == Context.getTypeSize(Context.CharTy)) |
| return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.ShortTy)) |
| return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.IntTy)) |
| return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.LongTy)) |
| return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); |
| assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && |
| "Unhandled vector element size in vector compare"); |
| return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); |
| } |
| |
| if (TypeSize == Context.getTypeSize(Context.LongLongTy)) |
| return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| else if (TypeSize == Context.getTypeSize(Context.LongTy)) |
| return Context.getVectorType(Context.LongTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| else if (TypeSize == Context.getTypeSize(Context.IntTy)) |
| return Context.getVectorType(Context.IntTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| else if (TypeSize == Context.getTypeSize(Context.ShortTy)) |
| return Context.getVectorType(Context.ShortTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| assert(TypeSize == Context.getTypeSize(Context.CharTy) && |
| "Unhandled vector element size in vector compare"); |
| return Context.getVectorType(Context.CharTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| } |
| |
| /// CheckVectorCompareOperands - vector comparisons are a clang extension that |
| /// operates on extended vector types. Instead of producing an IntTy result, |
| /// like a scalar comparison, a vector comparison produces a vector of integer |
| /// types. |
| QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| // Check to make sure we're operating on vectors of the same type and width, |
| // Allowing one side to be a scalar of element type. |
| QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| if (vType.isNull()) |
| return vType; |
| |
| QualType LHSType = LHS.get()->getType(); |
| |
| // If AltiVec, the comparison results in a numeric type, i.e. |
| // bool for C++, int for C |
| if (getLangOpts().AltiVec && |
| vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector) |
| return Context.getLogicalOperationType(); |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (BinaryOperator::isEqualityOp(Opc) && |
| LHSType->hasFloatingRepresentation()) { |
| assert(RHS.get()->getType()->hasFloatingRepresentation()); |
| CheckFloatComparison(Loc, LHS.get(), RHS.get()); |
| } |
| |
| // Return a signed type for the vector. |
| return GetSignedVectorType(vType); |
| } |
| |
| QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc) { |
| // Ensure that either both operands are of the same vector type, or |
| // one operand is of a vector type and the other is of its element type. |
| QualType vType = CheckVectorOperands(LHS, RHS, Loc, false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/false); |
| if (vType.isNull()) |
| return InvalidOperands(Loc, LHS, RHS); |
| if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 && |
| vType->hasFloatingRepresentation()) |
| return InvalidOperands(Loc, LHS, RHS); |
| // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the |
| // usage of the logical operators && and || with vectors in C. This |
| // check could be notionally dropped. |
| if (!getLangOpts().CPlusPlus && |
| !(isa<ExtVectorType>(vType->getAs<VectorType>()))) |
| return InvalidLogicalVectorOperands(Loc, LHS, RHS); |
| |
| return GetSignedVectorType(LHS.get()->getType()); |
| } |
| |
| inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false); |
| |
| bool IsCompAssign = |
| Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign; |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LHS.get()->getType()->hasIntegerRepresentation() && |
| RHS.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| if (Opc == BO_And) |
| diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); |
| |
| ExprResult LHSResult = LHS, RHSResult = RHS; |
| QualType compType = UsualArithmeticConversions(LHSResult, RHSResult, |
| IsCompAssign); |
| if (LHSResult.isInvalid() || RHSResult.isInvalid()) |
| return QualType(); |
| LHS = LHSResult.get(); |
| RHS = RHSResult.get(); |
| |
| if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType()) |
| return compType; |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| // C99 6.5.[13,14] |
| inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| // Check vector operands differently. |
| if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) |
| return CheckVectorLogicalOperands(LHS, RHS, Loc); |
| |
| // Diagnose cases where the user write a logical and/or but probably meant a |
| // bitwise one. We do this when the LHS is a non-bool integer and the RHS |
| // is a constant. |
| if (LHS.get()->getType()->isIntegerType() && |
| !LHS.get()->getType()->isBooleanType() && |
| RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() && |
| // Don't warn in macros or template instantiations. |
| !Loc.isMacroID() && !inTemplateInstantiation()) { |
| // If the RHS can be constant folded, and if it constant folds to something |
| // that isn't 0 or 1 (which indicate a potential logical operation that |
| // happened to fold to true/false) then warn. |
| // Parens on the RHS are ignored. |
| llvm::APSInt Result; |
| if (RHS.get()->EvaluateAsInt(Result, Context)) |
| if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() && |
| !RHS.get()->getExprLoc().isMacroID()) || |
| (Result != 0 && Result != 1)) { |
| Diag(Loc, diag::warn_logical_instead_of_bitwise) |
| << RHS.get()->getSourceRange() |
| << (Opc == BO_LAnd ? "&&" : "||"); |
| // Suggest replacing the logical operator with the bitwise version |
| Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) |
| << (Opc == BO_LAnd ? "&" : "|") |
| << FixItHint::CreateReplacement(SourceRange( |
| Loc, getLocForEndOfToken(Loc)), |
| Opc == BO_LAnd ? "&" : "|"); |
| if (Opc == BO_LAnd) |
| // Suggest replacing "Foo() && kNonZero" with "Foo()" |
| Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) |
| << FixItHint::CreateRemoval( |
| SourceRange(getLocForEndOfToken(LHS.get()->getLocEnd()), |
| RHS.get()->getLocEnd())); |
| } |
| } |
| |
| if (!Context.getLangOpts().CPlusPlus) { |
| // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do |
| // not operate on the built-in scalar and vector float types. |
| if (Context.getLangOpts().OpenCL && |
| Context.getLangOpts().OpenCLVersion < 120) { |
| if (LHS.get()->getType()->isFloatingType() || |
| RHS.get()->getType()->isFloatingType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| LHS = UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| |
| RHS = UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| if (!LHS.get()->getType()->isScalarType() || |
| !RHS.get()->getType()->isScalarType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| return Context.IntTy; |
| } |
| |
| // The following is safe because we only use this method for |
| // non-overloadable operands. |
| |
| // C++ [expr.log.and]p1 |
| // C++ [expr.log.or]p1 |
| // The operands are both contextually converted to type bool. |
| ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); |
| if (LHSRes.isInvalid()) |
| return InvalidOperands(Loc, LHS, RHS); |
| LHS = LHSRes; |
| |
| ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); |
| if (RHSRes.isInvalid()) |
| return InvalidOperands(Loc, LHS, RHS); |
| RHS = RHSRes; |
| |
| // C++ [expr.log.and]p2 |
| // C++ [expr.log.or]p2 |
| // The result is a bool. |
| return Context.BoolTy; |
| } |
| |
| static bool IsReadonlyMessage(Expr *E, Sema &S) { |
| const MemberExpr *ME = dyn_cast<MemberExpr>(E); |
| if (!ME) return false; |
| if (!isa<FieldDecl>(ME->getMemberDecl())) return false; |
| ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>( |
| ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts()); |
| if (!Base) return false; |
| return Base->getMethodDecl() != nullptr; |
| } |
| |
| /// Is the given expression (which must be 'const') a reference to a |
| /// variable which was originally non-const, but which has become |
| /// 'const' due to being captured within a block? |
| enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda }; |
| static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) { |
| assert(E->isLValue() && E->getType().isConstQualified()); |
| E = E->IgnoreParens(); |
| |
| // Must be a reference to a declaration from an enclosing scope. |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); |
| if (!DRE) return NCCK_None; |
| if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None; |
| |
| // The declaration must be a variable which is not declared 'const'. |
| VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (!var) return NCCK_None; |
| if (var->getType().isConstQualified()) return NCCK_None; |
| assert(var->hasLocalStorage() && "capture added 'const' to non-local?"); |
| |
| // Decide whether the first capture was for a block or a lambda. |
| DeclContext *DC = S.CurContext, *Prev = nullptr; |
| // Decide whether the first capture was for a block or a lambda. |
| while (DC) { |
| // For init-capture, it is possible that the variable belongs to the |
| // template pattern of the current context. |
| if (auto *FD = dyn_cast<FunctionDecl>(DC)) |
| if (var->isInitCapture() && |
| FD->getTemplateInstantiationPattern() == var->getDeclContext()) |
| break; |
| if (DC == var->getDeclContext()) |
| break; |
| Prev = DC; |
| DC = DC->getParent(); |
| } |
| // Unless we have an init-capture, we've gone one step too far. |
| if (!var->isInitCapture()) |
| DC = Prev; |
| return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda); |
| } |
| |
| static bool IsTypeModifiable(QualType Ty, bool IsDereference) { |
| Ty = Ty.getNonReferenceType(); |
| if (IsDereference && Ty->isPointerType()) |
| Ty = Ty->getPointeeType(); |
| return !Ty.isConstQualified(); |
| } |
| |
| // Update err_typecheck_assign_const and note_typecheck_assign_const |
| // when this enum is changed. |
| enum { |
| ConstFunction, |
| ConstVariable, |
| ConstMember, |
| ConstMethod, |
| NestedConstMember, |
| ConstUnknown, // Keep as last element |
| }; |
| |
| /// Emit the "read-only variable not assignable" error and print notes to give |
| /// more information about why the variable is not assignable, such as pointing |
| /// to the declaration of a const variable, showing that a method is const, or |
| /// that the function is returning a const reference. |
| static void DiagnoseConstAssignment(Sema &S, const Expr *E, |
| SourceLocation Loc) { |
| SourceRange ExprRange = E->getSourceRange(); |
| |
| // Only emit one error on the first const found. All other consts will emit |
| // a note to the error. |
| bool DiagnosticEmitted = false; |
| |
| // Track if the current expression is the result of a dereference, and if the |
| // next checked expression is the result of a dereference. |
| bool IsDereference = false; |
| bool NextIsDereference = false; |
| |
| // Loop to process MemberExpr chains. |
| while (true) { |
| IsDereference = NextIsDereference; |
| |
| E = E->IgnoreImplicit()->IgnoreParenImpCasts(); |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
| NextIsDereference = ME->isArrow(); |
| const ValueDecl *VD = ME->getMemberDecl(); |
| if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { |
| // Mutable fields can be modified even if the class is const. |
| if (Field->isMutable()) { |
| assert(DiagnosticEmitted && "Expected diagnostic not emitted."); |
| break; |
| } |
| |
| if (!IsTypeModifiable(Field->getType(), IsDereference)) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << ExprRange << ConstMember << false /*static*/ << Field |
| << Field->getType(); |
| DiagnosticEmitted = true; |
| } |
| S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstMember << false /*static*/ << Field << Field->getType() |
| << Field->getSourceRange(); |
| } |
| E = ME->getBase(); |
| continue; |
| } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) { |
| if (VDecl->getType().isConstQualified()) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << ExprRange << ConstMember << true /*static*/ << VDecl |
| << VDecl->getType(); |
| DiagnosticEmitted = true; |
| } |
| S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstMember << true /*static*/ << VDecl << VDecl->getType() |
| << VDecl->getSourceRange(); |
| } |
| // Static fields do not inherit constness from parents. |
| break; |
| } |
| break; // End MemberExpr |
| } else if (const ArraySubscriptExpr *ASE = |
| dyn_cast<ArraySubscriptExpr>(E)) { |
| E = ASE->getBase()->IgnoreParenImpCasts(); |
| continue; |
| } else if (const ExtVectorElementExpr *EVE = |
| dyn_cast<ExtVectorElementExpr>(E)) { |
| E = EVE->getBase()->IgnoreParenImpCasts(); |
| continue; |
| } |
| break; |
| } |
| |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| // Function calls |
| const FunctionDecl *FD = CE->getDirectCallee(); |
| if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange |
| << ConstFunction << FD; |
| DiagnosticEmitted = true; |
| } |
| S.Diag(FD->getReturnTypeSourceRange().getBegin(), |
| diag::note_typecheck_assign_const) |
| << ConstFunction << FD << FD->getReturnType() |
| << FD->getReturnTypeSourceRange(); |
| } |
| } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| // Point to variable declaration. |
| if (const ValueDecl *VD = DRE->getDecl()) { |
| if (!IsTypeModifiable(VD->getType(), IsDereference)) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << ExprRange << ConstVariable << VD << VD->getType(); |
| DiagnosticEmitted = true; |
| } |
| S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstVariable << VD << VD->getType() << VD->getSourceRange(); |
| } |
| } |
| } else if (isa<CXXThisExpr>(E)) { |
| if (const DeclContext *DC = S.getFunctionLevelDeclContext()) { |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { |
| if (MD->isConst()) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange |
| << ConstMethod << MD; |
| DiagnosticEmitted = true; |
| } |
| S.Diag(MD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstMethod << MD << MD->getSourceRange(); |
| } |
| } |
| } |
| } |
| |
| if (DiagnosticEmitted) |
| return; |
| |
| // Can't determine a more specific message, so display the generic error. |
| S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown; |
| } |
| |
| enum OriginalExprKind { |
| OEK_Variable, |
| OEK_Member, |
| OEK_LValue |
| }; |
| |
| static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD, |
| const RecordType *Ty, |
| SourceLocation Loc, SourceRange Range, |
| OriginalExprKind OEK, |
| bool &DiagnosticEmitted, |
| bool IsNested = false) { |
| // We walk the record hierarchy breadth-first to ensure that we print |
| // diagnostics in field nesting order. |
| // First, check every field for constness. |
| for (const FieldDecl *Field : Ty->getDecl()->fields()) { |
| if (Field->getType().isConstQualified()) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << Range << NestedConstMember << OEK << VD |
| << IsNested << Field; |
| DiagnosticEmitted = true; |
| } |
| S.Diag(Field->getLocation(), diag::note_typecheck_assign_const) |
| << NestedConstMember << IsNested << Field |
| << Field->getType() << Field->getSourceRange(); |
| } |
| } |
| // Then, recurse. |
| for (const FieldDecl *Field : Ty->getDecl()->fields()) { |
| QualType FTy = Field->getType(); |
| if (const RecordType *FieldRecTy = FTy->getAs<RecordType>()) |
| DiagnoseRecursiveConstFields(S, VD, FieldRecTy, Loc, Range, |
| OEK, DiagnosticEmitted, true); |
| } |
| } |
| |
| /// Emit an error for the case where a record we are trying to assign to has a |
| /// const-qualified field somewhere in its hierarchy. |
| static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E, |
| SourceLocation Loc) { |
| QualType Ty = E->getType(); |
| assert(Ty->isRecordType() && "lvalue was not record?"); |
| SourceRange Range = E->getSourceRange(); |
| const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>(); |
| bool DiagEmitted = false; |
| |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc, |
| Range, OEK_Member, DiagEmitted); |
| else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc, |
| Range, OEK_Variable, DiagEmitted); |
| else |
| DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc, |
| Range, OEK_LValue, DiagEmitted); |
| if (!DiagEmitted) |
| DiagnoseConstAssignment(S, E, Loc); |
| } |
| |
| /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, |
| /// emit an error and return true. If so, return false. |
| static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { |
| assert(!E->hasPlaceholderType(BuiltinType::PseudoObject)); |
| |
| S.CheckShadowingDeclModification(E, Loc); |
| |
| SourceLocation OrigLoc = Loc; |
| Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, |
| &Loc); |
| if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) |
| IsLV = Expr::MLV_InvalidMessageExpression; |
| if (IsLV == Expr::MLV_Valid) |
| return false; |
| |
| unsigned DiagID = 0; |
| bool NeedType = false; |
| switch (IsLV) { // C99 6.5.16p2 |
| case Expr::MLV_ConstQualified: |
| // Use a specialized diagnostic when we're assigning to an object |
| // from an enclosing function or block. |
| if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) { |
| if (NCCK == NCCK_Block) |
| DiagID = diag::err_block_decl_ref_not_modifiable_lvalue; |
| else |
| DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue; |
| break; |
| } |
| |
| // In ARC, use some specialized diagnostics for occasions where we |
| // infer 'const'. These are always pseudo-strong variables. |
| if (S.getLangOpts().ObjCAutoRefCount) { |
| DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); |
| if (declRef && isa<VarDecl>(declRef->getDecl())) { |
| VarDecl *var = cast<VarDecl>(declRef->getDecl()); |
| |
| // Use the normal diagnostic if it's pseudo-__strong but the |
| // user actually wrote 'const'. |
| if (var->isARCPseudoStrong() && |
| (!var->getTypeSourceInfo() || |
| !var->getTypeSourceInfo()->getType().isConstQualified())) { |
| // There are two pseudo-strong cases: |
| // - self |
| ObjCMethodDecl *method = S.getCurMethodDecl(); |
| if (method && var == method->getSelfDecl()) |
| DiagID = method->isClassMethod() |
| ? diag::err_typecheck_arc_assign_self_class_method |
| : diag::err_typecheck_arc_assign_self; |
| |
| // - fast enumeration variables |
| else |
| DiagID = diag::err_typecheck_arr_assign_enumeration; |
| |
| SourceRange Assign; |
| if (Loc != OrigLoc) |
| Assign = SourceRange(OrigLoc, OrigLoc); |
| S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; |
| // We need to preserve the AST regardless, so migration tool |
| // can do its job. |
| return false; |
| } |
| } |
| } |
| |
| // If none of the special cases above are triggered, then this is a |
| // simple const assignment. |
| if (DiagID == 0) { |
| DiagnoseConstAssignment(S, E, Loc); |
| return true; |
| } |
| |
| break; |
| case Expr::MLV_ConstAddrSpace: |
| DiagnoseConstAssignment(S, E, Loc); |
| return true; |
| case Expr::MLV_ConstQualifiedField: |
| DiagnoseRecursiveConstFields(S, E, Loc); |
| return true; |
| case Expr::MLV_ArrayType: |
| case Expr::MLV_ArrayTemporary: |
| DiagID = diag::err_typecheck_array_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_NotObjectType: |
| DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_LValueCast: |
| DiagID = diag::err_typecheck_lvalue_casts_not_supported; |
| break; |
| case Expr::MLV_Valid: |
| llvm_unreachable("did not take early return for MLV_Valid"); |
| case Expr::MLV_InvalidExpression: |
| case Expr::MLV_MemberFunction: |
| case Expr::MLV_ClassTemporary: |
| DiagID = diag::err_typecheck_expression_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_IncompleteType: |
| case Expr::MLV_IncompleteVoidType: |
| return S.RequireCompleteType(Loc, E->getType(), |
| diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E); |
| case Expr::MLV_DuplicateVectorComponents: |
| DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue; |
| break; |
| case Expr::MLV_NoSetterProperty: |
| llvm_unreachable("readonly properties should be processed differently"); |
| case Expr::MLV_InvalidMessageExpression: |
| DiagID = diag::err_readonly_message_assignment; |
| break; |
| case Expr::MLV_SubObjCPropertySetting: |
| DiagID = diag::err_no_subobject_property_setting; |
| break; |
| } |
| |
| SourceRange Assign; |
| if (Loc != OrigLoc) |
| Assign = SourceRange(OrigLoc, OrigLoc); |
| if (NeedType) |
| S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign; |
| else |
| S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; |
| return true; |
| } |
| |
| static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation Loc, |
| Sema &Sema) { |
| if (Sema.inTemplateInstantiation()) |
| return; |
| if (Sema.isUnevaluatedContext()) |
| return; |
| if (Loc.isInvalid() || Loc.isMacroID()) |
| return; |
| if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID()) |
| return; |
| |
| // C / C++ fields |
| MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr); |
| MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr); |
| if (ML && MR) { |
| if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))) |
| return; |
| const ValueDecl *LHSDecl = |
| cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl()); |
| const ValueDecl *RHSDecl = |
| cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl()); |
| if (LHSDecl != RHSDecl) |
| return; |
| if (LHSDecl->getType().isVolatileQualified()) |
| return; |
| if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) |
| if (RefTy->getPointeeType().isVolatileQualified()) |
| return; |
| |
| Sema.Diag(Loc, diag::warn_identity_field_assign) << 0; |
| } |
| |
| // Objective-C instance variables |
| ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr); |
| ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr); |
| if (OL && OR && OL->getDecl() == OR->getDecl()) { |
| DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts()); |
| DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts()); |
| if (RL && RR && RL->getDecl() == RR->getDecl()) |
| Sema.Diag(Loc, diag::warn_identity_field_assign) << 1; |
| } |
| } |
| |
| // C99 6.5.16.1 |
| QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, |
| SourceLocation Loc, |
| QualType CompoundType) { |
| assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)); |
| |
| // Verify that LHS is a modifiable lvalue, and emit error if not. |
| if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) |
| return QualType(); |
| |
| QualType LHSType = LHSExpr->getType(); |
| QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : |
| CompoundType; |
| // OpenCL v1.2 s6.1.1.1 p2: |
| // The half data type can only be used to declare a pointer to a buffer that |
| // contains half values |
| if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") && |
| LHSType->isHalfType()) { |
| Diag(Loc, diag::err_opencl_half_load_store) << 1 |
| << LHSType.getUnqualifiedType(); |
| return QualType(); |
| } |
| |
| AssignConvertType ConvTy; |
| if (CompoundType.isNull()) { |
| Expr *RHSCheck = RHS.get(); |
| |
| CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this); |
| |
| QualType LHSTy(LHSType); |
| ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); |
| if (RHS.isInvalid()) |
| return QualType(); |
| // Special case of NSObject attributes on c-style pointer types. |
| if (ConvTy == IncompatiblePointer && |
| ((Context.isObjCNSObjectType(LHSType) && |
| RHSType->isObjCObjectPointerType()) || |
| (Context.isObjCNSObjectType(RHSType) && |
| LHSType->isObjCObjectPointerType()))) |
| ConvTy = Compatible; |
| |
| if (ConvTy == Compatible && |
| LHSType->isObjCObjectType()) |
| Diag(Loc, diag::err_objc_object_assignment) |
| << LHSType; |
| |
| // If the RHS is a unary plus or minus, check to see if they = and + are |
| // right next to each other. If so, the user may have typo'd "x =+ 4" |
| // instead of "x += 4". |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) |
| RHSCheck = ICE->getSubExpr(); |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { |
| if ((UO->getOpcode() == UO_Plus || |
| UO->getOpcode() == UO_Minus) && |
| Loc.isFileID() && UO->getOperatorLoc().isFileID() && |
| // Only if the two operators are exactly adjacent. |
| Loc.getLocWithOffset(1) == UO->getOperatorLoc() && |
| // And there is a space or other character before the subexpr of the |
| // unary +/-. We don't want to warn on "x=-1". |
| Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() && |
| UO->getSubExpr()->getLocStart().isFileID()) { |
| Diag(Loc, diag::warn_not_compound_assign) |
| << (UO->getOpcode() == UO_Plus ? "+" : "-") |
| << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); |
| } |
| } |
| |
| if (ConvTy == Compatible) { |
| if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) { |
| // Warn about retain cycles where a block captures the LHS, but |
| // not if the LHS is a simple variable into which the block is |
| // being stored...unless that variable can be captured by reference! |
| const Expr *InnerLHS = LHSExpr->IgnoreParenCasts(); |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS); |
| if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>()) |
| checkRetainCycles(LHSExpr, RHS.get()); |
| } |
| |
| if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong || |
| LHSType.isNonWeakInMRRWithObjCWeak(Context)) { |
| // It is safe to assign a weak reference into a strong variable. |
| // Although this code can still have problems: |
| // id x = self.weakProp; |
| // id y = self.weakProp; |
| // we do not warn to warn spuriously when 'x' and 'y' are on separate |
| // paths through the function. This should be revisited if |
| // -Wrepeated-use-of-weak is made flow-sensitive. |
| // For ObjCWeak only, we do not warn if the assign is to a non-weak |
| // variable, which will be valid for the current autorelease scope. |
| if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, |
| RHS.get()->getLocStart())) |
| getCurFunction()->markSafeWeakUse(RHS.get()); |
| |
| } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) { |
| checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get()); |
| } |
| } |
| } else { |
| // Compound assignment "x += y" |
| ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); |
| } |
| |
| if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, |
| RHS.get(), AA_Assigning)) |
| return QualType(); |
| |
| CheckForNullPointerDereference(*this, LHSExpr); |
| |
| // C99 6.5.16p3: The type of an assignment expression is the type of the |
| // left operand unless the left operand has qualified type, in which case |
| // it is the unqualified version of the type of the left operand. |
| // C99 6.5.16.1p2: In simple assignment, the value of the right operand |
| // is converted to the type of the assignment expression (above). |
| // C++ 5.17p1: the type of the assignment expression is that of its left |
| // operand. |
| return (getLangOpts().CPlusPlus |
| ? LHSType : LHSType.getUnqualifiedType()); |
| } |
| |
| // Only ignore explicit casts to void. |
| static bool IgnoreCommaOperand(const Expr *E) { |
| E = E->IgnoreParens(); |
| |
| if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { |
| if (CE->getCastKind() == CK_ToVoid) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Look for instances where it is likely the comma operator is confused with |
| // another operator. There is a whitelist of acceptable expressions for the |
| // left hand side of the comma operator, otherwise emit a warning. |
| void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) { |
| // No warnings in macros |
| if (Loc.isMacroID()) |
| return; |
| |
| // Don't warn in template instantiations. |
| if (inTemplateInstantiation()) |
| return; |
| |
| // Scope isn't fine-grained enough to whitelist the specific cases, so |
| // instead, skip more than needed, then call back into here with the |
| // CommaVisitor in SemaStmt.cpp. |
| // The whitelisted locations are the initialization and increment portions |
| // of a for loop. The additional checks are on the condition of |
| // if statements, do/while loops, and for loops. |
| const unsigned ForIncrementFlags = |
| Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope; |
| const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope; |
| const unsigned ScopeFlags = getCurScope()->getFlags(); |
| if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags || |
| (ScopeFlags & ForInitFlags) == ForInitFlags) |
| return; |
| |
| // If there are multiple comma operators used together, get the RHS of the |
| // of the comma operator as the LHS. |
| while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) { |
| if (BO->getOpcode() != BO_Comma) |
| break; |
| LHS = BO->getRHS(); |
| } |
| |
| // Only allow some expressions on LHS to not warn. |
| if (IgnoreCommaOperand(LHS)) |
| return; |
| |
| Diag(Loc, diag::warn_comma_operator); |
| Diag(LHS->getLocStart(), diag::note_cast_to_void) |
| << LHS->getSourceRange() |
| << FixItHint::CreateInsertion(LHS->getLocStart(), |
| LangOpts.CPlusPlus ? "static_cast<void>(" |
| : "(void)(") |
| << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getLocEnd()), |
| ")"); |
| } |
| |
| // C99 6.5.17 |
| static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc) { |
| LHS = S.CheckPlaceholderExpr(LHS.get()); |
| RHS = S.CheckPlaceholderExpr(RHS.get()); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // C's comma performs lvalue conversion (C99 6.3.2.1) on both its |
| // operands, but not unary promotions. |
| // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). |
| |
| // So we treat the LHS as a ignored value, and in C++ we allow the |
| // containing site to determine what should be done with the RHS. |
| LHS = S.IgnoredValueConversions(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| |
| S.DiagnoseUnusedExprResult(LHS.get()); |
| |
| if (!S.getLangOpts().CPlusPlus) { |
| RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| if (!RHS.get()->getType()->isVoidType()) |
| S.RequireCompleteType(Loc, RHS.get()->getType(), |
| diag::err_incomplete_type); |
| } |
| |
| if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc)) |
| S.DiagnoseCommaOperator(LHS.get(), Loc); |
| |
| return RHS.get()->getType(); |
| } |
| |
| /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine |
| /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. |
| static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, |
| ExprValueKind &VK, |
| ExprObjectKind &OK, |
| SourceLocation OpLoc, |
| bool IsInc, bool IsPrefix) { |
| if (Op->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| QualType ResType = Op->getType(); |
| // Atomic types can be used for increment / decrement where the non-atomic |
| // versions can, so ignore the _Atomic() specifier for the purpose of |
| // checking. |
| if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) |
| ResType = ResAtomicType->getValueType(); |
| |
| assert(!ResType.isNull() && "no type for increment/decrement expression"); |
| |
| if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) { |
| // Decrement of bool is not allowed. |
| if (!IsInc) { |
| S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); |
| return QualType(); |
| } |
| // Increment of bool sets it to true, but is deprecated. |
| S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool |
| : diag::warn_increment_bool) |
| << Op->getSourceRange(); |
| } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) { |
| // Error on enum increments and decrements in C++ mode |
| S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType; |
| return QualType(); |
| } else if (ResType->isRealType()) { |
| // OK! |
| } else if (ResType->isPointerType()) { |
| // C99 6.5.2.4p2, 6.5.6p2 |
| if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) |
| return QualType(); |
| } else if (ResType->isObjCObjectPointerType()) { |
| // On modern runtimes, ObjC pointer arithmetic is forbidden. |
| // Otherwise, we just need a complete type. |
| if (checkArithmeticIncompletePointerType(S, OpLoc, Op) || |
| checkArithmeticOnObjCPointer(S, OpLoc, Op)) |
| return QualType(); |
| } else if (ResType->isAnyComplexType()) { |
| // C99 does not support ++/-- on complex types, we allow as an extension. |
| S.Diag(OpLoc, diag::ext_integer_increment_complex) |
| << ResType << Op->getSourceRange(); |
| } else if (ResType->isPlaceholderType()) { |
| ExprResult PR = S.CheckPlaceholderExpr(Op); |
| if (PR.isInvalid()) return QualType(); |
| return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc, |
| IsInc, IsPrefix); |
| } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) { |
| // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) |
| } else if (S.getLangOpts().ZVector && ResType->isVectorType() && |
| (ResType->getAs<VectorType>()->getVectorKind() != |
| VectorType::AltiVecBool)) { |
| // The z vector extensions allow ++ and -- for non-bool vectors. |
| } else if(S.getLangOpts().OpenCL && ResType->isVectorType() && |
| ResType->getAs<VectorType>()->getElementType()->isIntegerType()) { |
| // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types. |
| } else { |
| S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) |
| << ResType << int(IsInc) << Op->getSourceRange(); |
| return QualType(); |
| } |
| // At this point, we know we have a real, complex or pointer type. |
| // Now make sure the operand is a modifiable lvalue. |
| if (CheckForModifiableLvalue(Op, OpLoc, S)) |
| return QualType(); |
| // In C++, a prefix increment is the same type as the operand. Otherwise |
| // (in C or with postfix), the increment is the unqualified type of the |
| // operand. |
| if (IsPrefix && S.getLangOpts().CPlusPlus) { |
| VK = VK_LValue; |
| OK = Op->getObjectKind(); |
| return ResType; |
| } else { |
| VK = VK_RValue; |
| return ResType.getUnqualifiedType(); |
| } |
| } |
| |
| |
| /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). |
| /// This routine allows us to typecheck complex/recursive expressions |
| /// where the declaration is needed for type checking. We only need to |
| /// handle cases when the expression references a function designator |
| /// or is an lvalue. Here are some examples: |
| /// - &(x) => x |
| /// - &*****f => f for f a function designator. |
| /// - &s.xx => s |
| /// - &s.zz[1].yy -> s, if zz is an array |
| /// - *(x + 1) -> x, if x is an array |
| /// - &"123"[2] -> 0 |
| /// - & __real__ x -> x |
| static ValueDecl *getPrimaryDecl(Expr *E) { |
| switch (E->getStmtClass()) { |
| case Stmt::DeclRefExprClass: |
| return cast<DeclRefExpr>(E)->getDecl(); |
| case Stmt::MemberExprClass: |
| // If this is an arrow operator, the address is an offset from |
| // the base's value, so the object the base refers to is |
| // irrelevant. |
| if (cast<MemberExpr>(E)->isArrow()) |
| return nullptr; |
| // Otherwise, the expression refers to a part of the base |
| return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); |
| case Stmt::ArraySubscriptExprClass: { |
| // FIXME: This code shouldn't be necessary! We should catch the implicit |
| // promotion of register arrays earlier. |
| Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); |
| if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { |
| if (ICE->getSubExpr()->getType()->isArrayType()) |
| return getPrimaryDecl(ICE->getSubExpr()); |
| } |
| return nullptr; |
| } |
| case Stmt::UnaryOperatorClass: { |
| UnaryOperator *UO = cast<UnaryOperator>(E); |
| |
| switch(UO->getOpcode()) { |
| case UO_Real: |
| case UO_Imag: |
| case UO_Extension: |
| return getPrimaryDecl(UO->getSubExpr()); |
| default: |
| return nullptr; |
| } |
| } |
| case Stmt::ParenExprClass: |
| return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); |
| case Stmt::ImplicitCastExprClass: |
| // If the result of an implicit cast is an l-value, we care about |
| // the sub-expression; otherwise, the result here doesn't matter. |
| return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); |
| default: |
| return nullptr; |
| } |
| } |
| |
| namespace { |
| enum { |
| AO_Bit_Field = 0, |
| AO_Vector_Element = 1, |
| AO_Property_Expansion = 2, |
| AO_Register_Variable = 3, |
| AO_No_Error = 4 |
| }; |
| } |
| /// Diagnose invalid operand for address of operations. |
| /// |
| /// \param Type The type of operand which cannot have its address taken. |
| static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc, |
| Expr *E, unsigned Type) { |
| S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange(); |
| } |
| |
| /// CheckAddressOfOperand - The operand of & must be either a function |
| /// designator or an lvalue designating an object. If it is an lvalue, the |
| /// object cannot be declared with storage class register or be a bit field. |
| /// Note: The usual conversions are *not* applied to the operand of the & |
| /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. |
| /// In C++, the operand might be an overloaded function name, in which case |
| /// we allow the '&' but retain the overloaded-function type. |
| QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) { |
| if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){ |
| if (PTy->getKind() == BuiltinType::Overload) { |
| Expr *E = OrigOp.get()->IgnoreParens(); |
| if (!isa<OverloadExpr>(E)) { |
| assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf); |
| Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function) |
| << OrigOp.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| OverloadExpr *Ovl = cast<OverloadExpr>(E); |
| if (isa<UnresolvedMemberExpr>(Ovl)) |
| if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) { |
| Diag(OpLoc, diag::err_invalid_form_pointer_member_function) |
| << OrigOp.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| return Context.OverloadTy; |
| } |
| |
| if (PTy->getKind() == BuiltinType::UnknownAny) |
| return Context.UnknownAnyTy; |
| |
| if (PTy->getKind() == BuiltinType::BoundMember) { |
| Diag(OpLoc, diag::err_invalid_form_pointer_member_function) |
| << OrigOp.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| OrigOp = CheckPlaceholderExpr(OrigOp.get()); |
| if (OrigOp.isInvalid()) return QualType(); |
| } |
| |
| if (OrigOp.get()->isTypeDependent()) |
| return Context.DependentTy; |
| |
| assert(!OrigOp.get()->getType()->isPlaceholderType()); |
| |
| // Make sure to ignore parentheses in subsequent checks |
| Expr *op = OrigOp.get()->IgnoreParens(); |
| |
| // In OpenCL captures for blocks called as lambda functions |
| // are located in the private address space. Blocks used in |
| // enqueue_kernel can be located in a different address space |
| // depending on a vendor implementation. Thus preventing |
| // taking an address of the capture to avoid invalid AS casts. |
| if (LangOpts.OpenCL) { |
| auto* VarRef = dyn_cast<DeclRefExpr>(op); |
| if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) { |
| Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture); |
| return QualType(); |
| } |
| } |
| |
| if (getLangOpts().C99) { |
| // Implement C99-only parts of addressof rules. |
| if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { |
| if (uOp->getOpcode() == UO_Deref) |
| // Per C99 6.5.3.2, the address of a deref always returns a valid result |
| // (assuming the deref expression is valid). |
| return uOp->getSubExpr()->getType(); |
| } |
| // Technically, there should be a check for array subscript |
| // expressions here, but the result of one is always an lvalue anyway. |
| } |
| ValueDecl *dcl = getPrimaryDecl(op); |
| |
| if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl)) |
| if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, |
| op->getLocStart())) |
| return QualType(); |
| |
| Expr::LValueClassification lval = op->ClassifyLValue(Context); |
| unsigned AddressOfError = AO_No_Error; |
| |
| if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) { |
| bool sfinae = (bool)isSFINAEContext(); |
| Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary |
| : diag::ext_typecheck_addrof_temporary) |
| << op->getType() << op->getSourceRange(); |
| if (sfinae) |
| return QualType(); |
| // Materialize the temporary as an lvalue so that we can take its address. |
| OrigOp = op = |
| CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true); |
| } else if (isa<ObjCSelectorExpr>(op)) { |
| return Context.getPointerType(op->getType()); |
| } else if (lval == Expr::LV_MemberFunction) { |
| // If it's an instance method, make a member pointer. |
| // The expression must have exactly the form &A::foo. |
| |
| // If the underlying expression isn't a decl ref, give up. |
| if (!isa<DeclRefExpr>(op)) { |
| Diag(OpLoc, diag::err_invalid_form_pointer_member_function) |
| << OrigOp.get()->getSourceRange(); |
| return QualType(); |
| } |
| DeclRefExpr *DRE = cast<DeclRefExpr>(op); |
| CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); |
| |
| // The id-expression was parenthesized. |
| if (OrigOp.get() != DRE) { |
| Diag(OpLoc, diag::err_parens_pointer_member_function) |
| << OrigOp.get()->getSourceRange(); |
| |
| // The method was named without a qualifier. |
| } else if (!DRE->getQualifier()) { |
| if (MD->getParent()->getName().empty()) |
| Diag(OpLoc, diag::err_unqualified_pointer_member_function) |
| << op->getSourceRange(); |
| else { |
| SmallString<32> Str; |
| StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str); |
| Diag(OpLoc, diag::err_unqualified_pointer_member_function) |
| << op->getSourceRange() |
| << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual); |
| } |
| } |
| |
| // Taking the address of a dtor is illegal per C++ [class.dtor]p2. |
| if (isa<CXXDestructorDecl>(MD)) |
| Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange(); |
| |
| QualType MPTy = Context.getMemberPointerType( |
| op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr()); |
| // Under the MS ABI, lock down the inheritance model now. |
| if (Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| (void)isCompleteType(OpLoc, MPTy); |
| return MPTy; |
| } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { |
| // C99 6.5.3.2p1 |
| // The operand must be either an l-value or a function designator |
| if (!op->getType()->isFunctionType()) { |
| // Use a special diagnostic for loads from property references. |
| if (isa<PseudoObjectExpr>(op)) { |
| AddressOfError = AO_Property_Expansion; |
| } else { |
| Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) |
| << op->getType() << op->getSourceRange(); |
| return QualType(); |
| } |
| } |
| } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 |
| // The operand cannot be a bit-field |
| AddressOfError = AO_Bit_Field; |
| } else if (op->getObjectKind() == OK_VectorComponent) { |
| // The operand cannot be an element of a vector |
| AddressOfError = AO_Vector_Element; |
| } else if (dcl) { // C99 6.5.3.2p1 |
| // We have an lvalue with a decl. Make sure the decl is not declared |
| // with the register storage-class specifier. |
| if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { |
| // in C++ it is not error to take address of a register |
| // variable (c++03 7.1.1P3) |
| if (vd->getStorageClass() == SC_Register && |
| !getLangOpts().CPlusPlus) { |
| AddressOfError = AO_Register_Variable; |
| } |
| } else if (isa<MSPropertyDecl>(dcl)) { |
| AddressOfError = AO_Property_Expansion; |
| } else if (isa<FunctionTemplateDecl>(dcl)) { |
| return Context.OverloadTy; |
| } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) { |
| // Okay: we can take the address of a field. |
| // Could be a pointer to member, though, if there is an explicit |
| // scope qualifier for the class. |
| if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { |
| DeclContext *Ctx = dcl->getDeclContext(); |
| if (Ctx && Ctx->isRecord()) { |
| if (dcl->getType()->isReferenceType()) { |
| Diag(OpLoc, |
| diag::err_cannot_form_pointer_to_member_of_reference_type) |
| << dcl->getDeclName() << dcl->getType(); |
| return QualType(); |
| } |
| |
| while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()) |
| Ctx = Ctx->getParent(); |
| |
| QualType MPTy = Context.getMemberPointerType( |
| op->getType(), |
| Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); |
| // Under the MS ABI, lock down the inheritance model now. |
| if (Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| (void)isCompleteType(OpLoc, MPTy); |
| return MPTy; |
| } |
| } |
| } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) && |
| !isa<BindingDecl>(dcl)) |
| llvm_unreachable("Unknown/unexpected decl type"); |
| } |
| |
| if (AddressOfError != AO_No_Error) { |
| diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError); |
| return QualType(); |
| } |
| |
| if (lval == Expr::LV_IncompleteVoidType) { |
| // Taking the address of a void variable is technically illegal, but we |
| // allow it in cases which are otherwise valid. |
| // Example: "extern void x; void* y = &x;". |
| Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); |
| } |
| |
| // If the operand has type "type", the result has type "pointer to type". |
| if (op->getType()->isObjCObjectType()) |
| return Context.getObjCObjectPointerType(op->getType()); |
| |
| CheckAddressOfPackedMember(op); |
| |
| return Context.getPointerType(op->getType()); |
| } |
| |
| static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) { |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp); |
| if (!DRE) |
| return; |
| const Decl *D = DRE->getDecl(); |
| if (!D) |
| return; |
| const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D); |
| if (!Param) |
| return; |
| if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext())) |
| if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>()) |
| return; |
| if (FunctionScopeInfo *FD = S.getCurFunction()) |
| if (!FD->ModifiedNonNullParams.count(Param)) |
| FD->ModifiedNonNullParams.insert(Param); |
| } |
| |
| /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). |
| static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, |
| SourceLocation OpLoc) { |
| if (Op->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| ExprResult ConvResult = S.UsualUnaryConversions(Op); |
| if (ConvResult.isInvalid()) |
| return QualType(); |
| Op = ConvResult.get(); |
| QualType OpTy = Op->getType(); |
| QualType Result; |
| |
| if (isa<CXXReinterpretCastExpr>(Op)) { |
| QualType OpOrigType = Op->IgnoreParenCasts()->getType(); |
| S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, |
| Op->getSourceRange()); |
| } |
| |
| if (const PointerType *PT = OpTy->getAs<PointerType>()) |
| { |
| Result = PT->getPointeeType(); |
| } |
| else if (const ObjCObjectPointerType *OPT = |
| OpTy->getAs<ObjCObjectPointerType>()) |
| Result = OPT->getPointeeType(); |
| else { |
| ExprResult PR = S.CheckPlaceholderExpr(Op); |
| if (PR.isInvalid()) return QualType(); |
| if (PR.get() != Op) |
| return CheckIndirectionOperand(S, PR.get(), VK, OpLoc); |
| } |
| |
| if (Result.isNull()) { |
| S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) |
| << OpTy << Op->getSourceRange(); |
| return QualType(); |
| } |
| |
| // Note that per both C89 and C99, indirection is always legal, even if Result |
| // is an incomplete type or void. It would be possible to warn about |
| // dereferencing a void pointer, but it's completely well-defined, and such a |
| // warning is unlikely to catch any mistakes. In C++, indirection is not valid |
| // for pointers to 'void' but is fine for any other pointer type: |
| // |
| // C++ [expr.unary.op]p1: |
| // [...] the expression to which [the unary * operator] is applied shall |
| // be a pointer to an object type, or a pointer to a function type |
| if (S.getLangOpts().CPlusPlus && Result->isVoidType()) |
| S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer) |
| << OpTy << Op->getSourceRange(); |
| |
| // Dereferences are usually l-values... |
| VK = VK_LValue; |
| |
| // ...except that certain expressions are never l-values in C. |
| if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType()) |
| VK = VK_RValue; |
| |
| return Result; |
| } |
| |
| BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) { |
| BinaryOperatorKind Opc; |
| switch (Kind) { |
| default: llvm_unreachable("Unknown binop!"); |
| case tok::periodstar: Opc = BO_PtrMemD; break; |
| case tok::arrowstar: Opc = BO_PtrMemI; break; |
| case tok::star: Opc = BO_Mul; break; |
| case tok::slash: Opc = BO_Div; break; |
| case tok::percent: Opc = BO_Rem; break; |
| case tok::plus: Opc = BO_Add; break; |
| case tok::minus: Opc = BO_Sub; break; |
| case tok::lessless: Opc = BO_Shl; break; |
| case tok::greatergreater: Opc = BO_Shr; break; |
| case tok::lessequal: Opc = BO_LE; break; |
| case tok::less: Opc = BO_LT; break; |
| case tok::greaterequal: Opc = BO_GE; break; |
| case tok::greater: Opc = BO_GT; break; |
| case tok::exclaimequal: Opc = BO_NE; break; |
| case tok::equalequal: Opc = BO_EQ; break; |
| case tok::spaceship: Opc = BO_Cmp; break; |
| case tok::amp: Opc = BO_And; break; |
| case tok::caret: Opc = BO_Xor; break; |
| case tok::pipe: Opc = BO_Or; break; |
| case tok::ampamp: Opc = BO_LAnd; break; |
| case tok::pipepipe: Opc = BO_LOr; break; |
| case tok::equal: Opc = BO_Assign; break; |
| case tok::starequal: Opc = BO_MulAssign; break; |
| case tok::slashequal: Opc = BO_DivAssign; break; |
| case tok::percentequal: Opc = BO_RemAssign; break; |
| case tok::plusequal: Opc = BO_AddAssign; break; |
| case tok::minusequal: Opc = BO_SubAssign; break; |
| case tok::lesslessequal: Opc = BO_ShlAssign; break; |
| case tok::greatergreaterequal: Opc = BO_ShrAssign; break; |
| case tok::ampequal: Opc = BO_AndAssign; break; |
| case tok::caretequal: Opc = BO_XorAssign; break; |
| case tok::pipeequal: Opc = BO_OrAssign; break; |
| case tok::comma: Opc = BO_Comma; break; |
| } |
| return Opc; |
| } |
| |
| static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( |
| tok::TokenKind Kind) { |
| UnaryOperatorKind Opc; |
| switch (Kind) { |
| default: llvm_unreachable("Unknown unary op!"); |
| case tok::plusplus: Opc = UO_PreInc; break; |
| case tok::minusminus: Opc = UO_PreDec; break; |
| case tok::amp: Opc = UO_AddrOf; break; |
| case tok::star: Opc = UO_Deref; break; |
| case tok::plus: Opc = UO_Plus; break; |
| case tok::minus: Opc = UO_Minus; break; |
| case tok::tilde: Opc = UO_Not; break; |
| case tok::exclaim: Opc = UO_LNot; break; |
| case tok::kw___real: Opc = UO_Real; break; |
| case tok::kw___imag: Opc = UO_Imag; break; |
| case tok::kw___extension__: Opc = UO_Extension; break; |
| } |
| return Opc; |
| } |
| |
| /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. |
| /// This warning suppressed in the event of macro expansions. |
| static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation OpLoc, bool IsBuiltin) { |
| if (S.inTemplateInstantiation()) |
| return; |
| if (S.isUnevaluatedContext()) |
| return; |
| if (OpLoc.isInvalid() || OpLoc.isMacroID()) |
| return; |
| LHSExpr = LHSExpr->IgnoreParenImpCasts(); |
| RHSExpr = RHSExpr->IgnoreParenImpCasts(); |
| const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); |
| const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); |
| if (!LHSDeclRef || !RHSDeclRef || |
| LHSDeclRef->getLocation().isMacroID() || |
| RHSDeclRef->getLocation().isMacroID()) |
| return; |
| const ValueDecl *LHSDecl = |
| cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl()); |
| const ValueDecl *RHSDecl = |
| cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl()); |
| if (LHSDecl != RHSDecl) |
| return; |
| if (LHSDecl->getType().isVolatileQualified()) |
| return; |
| if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) |
| if (RefTy->getPointeeType().isVolatileQualified()) |
| return; |
| |
| S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin |
| : diag::warn_self_assignment_overloaded) |
| << LHSDeclRef->getType() << LHSExpr->getSourceRange() |
| << RHSExpr->getSourceRange(); |
| } |
| |
| /// Check if a bitwise-& is performed on an Objective-C pointer. This |
| /// is usually indicative of introspection within the Objective-C pointer. |
| static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R, |
| SourceLocation OpLoc) { |
| if (!S.getLangOpts().ObjC1) |
| return; |
| |
| const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr; |
| const Expr *LHS = L.get(); |
| const Expr *RHS = R.get(); |
| |
| if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { |
| ObjCPointerExpr = LHS; |
| OtherExpr = RHS; |
| } |
| else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) { |
| ObjCPointerExpr = RHS; |
| OtherExpr = LHS; |
| } |
| |
| // This warning is deliberately made very specific to reduce false |
| // positives with logic that uses '&' for hashing. This logic mainly |
| // looks for code trying to introspect into tagged pointers, which |
| // code should generally never do. |
| if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) { |
| unsigned Diag = diag::warn_objc_pointer_masking; |
| // Determine if we are introspecting the result of performSelectorXXX. |
| const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts(); |
| // Special case messages to -performSelector and friends, which |
| // can return non-pointer values boxed in a pointer value. |
| // Some clients may wish to silence warnings in this subcase. |
| if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) { |
| Selector S = ME->getSelector(); |
| StringRef SelArg0 = S.getNameForSlot(0); |
| if (SelArg0.startswith("performSelector")) |
| Diag = diag::warn_objc_pointer_masking_performSelector; |
| } |
| |
| S.Diag(OpLoc, Diag) |
| << ObjCPointerExpr->getSourceRange(); |
| } |
| } |
| |
| static NamedDecl *getDeclFromExpr(Expr *E) { |
| if (!E) |
| return nullptr; |
| if (auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| return DRE->getDecl(); |
| if (auto *ME = dyn_cast<MemberExpr>(E)) |
| return ME->getMemberDecl(); |
| if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) |
| return IRE->getDecl(); |
| return nullptr; |
| } |
| |
| // This helper function promotes a binary operator's operands (which are of a |
| // half vector type) to a vector of floats and then truncates the result to |
| // a vector of either half or short. |
| static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS, |
| BinaryOperatorKind Opc, QualType ResultTy, |
| ExprValueKind VK, ExprObjectKind OK, |
| bool IsCompAssign, SourceLocation OpLoc, |
| FPOptions FPFeatures) { |
| auto &Context = S.getASTContext(); |
| assert((isVector(ResultTy, Context.HalfTy) || |
| isVector(ResultTy, Context.ShortTy)) && |
| "Result must be a vector of half or short"); |
| assert(isVector(LHS.get()->getType(), Context.HalfTy) && |
| isVector(RHS.get()->getType(), Context.HalfTy) && |
| "both operands expected to be a half vector"); |
| |
| RHS = convertVector(RHS.get(), Context.FloatTy, S); |
| QualType BinOpResTy = RHS.get()->getType(); |
| |
| // If Opc is a comparison, ResultType is a vector of shorts. In that case, |
| // change BinOpResTy to a vector of ints. |
| if (isVector(ResultTy, Context.ShortTy)) |
| BinOpResTy = S.GetSignedVectorType(BinOpResTy); |
| |
| if (IsCompAssign) |
| return new (Context) CompoundAssignOperator( |
| LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, BinOpResTy, BinOpResTy, |
| OpLoc, FPFeatures); |
| |
| LHS = convertVector(LHS.get(), Context.FloatTy, S); |
| auto *BO = new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, BinOpResTy, |
| VK, OK, OpLoc, FPFeatures); |
| return convertVector(BO, ResultTy->getAs<VectorType>()->getElementType(), S); |
| } |
| |
| static std::pair<ExprResult, ExprResult> |
| CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr, |
| Expr *RHSExpr) { |
| ExprResult LHS = LHSExpr, RHS = RHSExpr; |
| if (!S.getLangOpts().CPlusPlus) { |
| // C cannot handle TypoExpr nodes on either side of a binop because it |
| // doesn't handle dependent types properly, so make sure any TypoExprs have |
| // been dealt with before checking the operands. |
| LHS = S.CorrectDelayedTyposInExpr(LHS); |
| RHS = S.CorrectDelayedTyposInExpr(RHS, [Opc, LHS](Expr *E) { |
| if (Opc != BO_Assign) |
| return ExprResult(E); |
| // Avoid correcting the RHS to the same Expr as the LHS. |
| Decl *D = getDeclFromExpr(E); |
| return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E; |
| }); |
| } |
| return std::make_pair(LHS, RHS); |
| } |
| |
| /// Returns true if conversion between vectors of halfs and vectors of floats |
| /// is needed. |
| static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx, |
| QualType SrcType) { |
| return OpRequiresConversion && !Ctx.getLangOpts().NativeHalfType && |
| !Ctx.getTargetInfo().useFP16ConversionIntrinsics() && |
| isVector(SrcType, Ctx.HalfTy); |
| } |
| |
| /// CreateBuiltinBinOp - Creates a new built-in binary operation with |
| /// operator @p Opc at location @c TokLoc. This routine only supports |
| /// built-in operations; ActOnBinOp handles overloaded operators. |
| ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) { |
| // The syntax only allows initializer lists on the RHS of assignment, |
| // so we don't need to worry about accepting invalid code for |
| // non-assignment operators. |
| // C++11 5.17p9: |
| // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning |
| // of x = {} is x = T(). |
| InitializationKind Kind = InitializationKind::CreateDirectList( |
| RHSExpr->getLocStart(), RHSExpr->getLocStart(), RHSExpr->getLocEnd()); |
| InitializedEntity Entity = |
| InitializedEntity::InitializeTemporary(LHSExpr->getType()); |
| InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr); |
| ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr); |
| if (Init.isInvalid()) |
| return Init; |
| RHSExpr = Init.get(); |
| } |
| |
| ExprResult LHS = LHSExpr, RHS = RHSExpr; |
| QualType ResultTy; // Result type of the binary operator. |
| // The following two variables are used for compound assignment operators |
| QualType CompLHSTy; // Type of LHS after promotions for computation |
| QualType CompResultTy; // Type of computation result |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| bool ConvertHalfVec = false; |
| |
| std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); |
| if (!LHS.isUsable() || !RHS.isUsable()) |
| return ExprError(); |
| |
| if (getLangOpts().OpenCL) { |
| QualType LHSTy = LHSExpr->getType(); |
| QualType RHSTy = RHSExpr->getType(); |
| // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by |
| // the ATOMIC_VAR_INIT macro. |
| if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) { |
| SourceRange SR(LHSExpr->getLocStart(), RHSExpr->getLocEnd()); |
| if (BO_Assign == Opc) |
| Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR; |
| else |
| ResultTy = InvalidOperands(OpLoc, LHS, RHS); |
| return ExprError(); |
| } |
| |
| // OpenCL special types - image, sampler, pipe, and blocks are to be used |
| // only with a builtin functions and therefore should be disallowed here. |
| if (LHSTy->isImageType() || RHSTy->isImageType() || |
| LHSTy->isSamplerT() || RHSTy->isSamplerT() || |
| LHSTy->isPipeType() || RHSTy->isPipeType() || |
| LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { |
| ResultTy = InvalidOperands(OpLoc, LHS, RHS); |
| return ExprError(); |
| } |
| } |
| |
| switch (Opc) { |
| case BO_Assign: |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType()); |
| if (getLangOpts().CPlusPlus && |
| LHS.get()->getObjectKind() != OK_ObjCProperty) { |
| VK = LHS.get()->getValueKind(); |
| OK = LHS.get()->getObjectKind(); |
| } |
| if (!ResultTy.isNull()) { |
| DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); |
| DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc); |
| } |
| RecordModifiableNonNullParam(*this, LHS.get()); |
| break; |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc, |
| Opc == BO_PtrMemI); |
| break; |
| case BO_Mul: |
| case BO_Div: |
| ConvertHalfVec = true; |
| ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false, |
| Opc == BO_Div); |
| break; |
| case BO_Rem: |
| ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc); |
| break; |
| case BO_Add: |
| ConvertHalfVec = true; |
| ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_Sub: |
| ConvertHalfVec = true; |
| ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc); |
| break; |
| case BO_Shl: |
| case BO_Shr: |
| ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_LE: |
| case BO_LT: |
| case BO_GE: |
| case BO_GT: |
| ConvertHalfVec = true; |
| ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_EQ: |
| case BO_NE: |
| ConvertHalfVec = true; |
| ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_Cmp: |
| ConvertHalfVec = true; |
| ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc); |
| assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()); |
| break; |
| case BO_And: |
| checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc); |
| LLVM_FALLTHROUGH; |
| case BO_Xor: |
| case BO_Or: |
| ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_LAnd: |
| case BO_LOr: |
| ConvertHalfVec = true; |
| ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc); |
| break; |
| case BO_MulAssign: |
| case BO_DivAssign: |
| ConvertHalfVec = true; |
| CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true, |
| Opc == BO_DivAssign); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_RemAssign: |
| CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_AddAssign: |
| ConvertHalfVec = true; |
| CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy); |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_SubAssign: |
| ConvertHalfVec = true; |
| CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy); |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_AndAssign: |
| case BO_OrAssign: // fallthrough |
| DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true); |
| LLVM_FALLTHROUGH; |
| case BO_XorAssign: |
| CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc); |
| CompLHSTy = CompResultTy; |
| if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid()) |
| ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy); |
| break; |
| case BO_Comma: |
| ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc); |
| if (getLangOpts().CPlusPlus && !RHS.isInvalid()) { |
| VK = RHS.get()->getValueKind(); |
| OK = RHS.get()->getObjectKind(); |
| } |
| break; |
| } |
| if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid()) |
| return ExprError(); |
| |
| // Some of the binary operations require promoting operands of half vector to |
| // float vectors and truncating the result back to half vector. For now, we do |
| // this only when HalfArgsAndReturn is set (that is, when the target is arm or |
| // arm64). |
| assert(isVector(RHS.get()->getType(), Context.HalfTy) == |
| isVector(LHS.get()->getType(), Context.HalfTy) && |
| "both sides are half vectors or neither sides are"); |
| ConvertHalfVec = needsConversionOfHalfVec(ConvertHalfVec, Context, |
| LHS.get()->getType()); |
| |
| // Check for array bounds violations for both sides of the BinaryOperator |
| CheckArrayAccess(LHS.get()); |
| CheckArrayAccess(RHS.get()); |
| |
| if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) { |
| NamedDecl *ObjectSetClass = LookupSingleName(TUScope, |
| &Context.Idents.get("object_setClass"), |
| SourceLocation(), LookupOrdinaryName); |
| if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) { |
| SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getLocEnd()); |
| Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) << |
| FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") << |
| FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") << |
| FixItHint::CreateInsertion(RHSLocEnd, ")"); |
| } |
| else |
| Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign); |
| } |
| else if (const ObjCIvarRefExpr *OIRE = |
| dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts())) |
| DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get()); |
| |
| // Opc is not a compound assignment if CompResultTy is null. |
| if (CompResultTy.isNull()) { |
| if (ConvertHalfVec) |
| return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false, |
| OpLoc, FPFeatures); |
| return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK, |
| OK, OpLoc, FPFeatures); |
| } |
| |
| // Handle compound assignments. |
| if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() != |
| OK_ObjCProperty) { |
| VK = VK_LValue; |
| OK = LHS.get()->getObjectKind(); |
| } |
| |
| if (ConvertHalfVec) |
| return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true, |
| OpLoc, FPFeatures); |
| |
| return new (Context) CompoundAssignOperator( |
| LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy, |
| OpLoc, FPFeatures); |
| } |
| |
| /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison |
| /// operators are mixed in a way that suggests that the programmer forgot that |
| /// comparison operators have higher precedence. The most typical example of |
| /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". |
| static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, |
| SourceLocation OpLoc, Expr *LHSExpr, |
| Expr *RHSExpr) { |
| BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr); |
| BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr); |
| |
| // Check that one of the sides is a comparison operator and the other isn't. |
| bool isLeftComp = LHSBO && LHSBO->isComparisonOp(); |
| bool isRightComp = RHSBO && RHSBO->isComparisonOp(); |
| if (isLeftComp == isRightComp) |
| return; |
| |
| // Bitwise operations are sometimes used as eager logical ops. |
| // Don't diagnose this. |
| bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp(); |
| bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp(); |
| if (isLeftBitwise || isRightBitwise) |
| return; |
| |
| SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(), |
| OpLoc) |
| : SourceRange(OpLoc, RHSExpr->getLocEnd()); |
| StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr(); |
| SourceRange ParensRange = isLeftComp ? |
| SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd()) |
| : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd()); |
| |
| Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) |
| << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr; |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_silence) << OpStr, |
| (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange()); |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_bitwise_first) |
| << BinaryOperator::getOpcodeStr(Opc), |
| ParensRange); |
| } |
| |
| /// It accepts a '&&' expr that is inside a '||' one. |
| /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression |
| /// in parentheses. |
| static void |
| EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, |
| BinaryOperator *Bop) { |
| assert(Bop->getOpcode() == BO_LAnd); |
| Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) |
| << Bop->getSourceRange() << OpLoc; |
| SuggestParentheses(Self, Bop->getOperatorLoc(), |
| Self.PDiag(diag::note_precedence_silence) |
| << Bop->getOpcodeStr(), |
| Bop->getSourceRange()); |
| } |
| |
| /// Returns true if the given expression can be evaluated as a constant |
| /// 'true'. |
| static bool EvaluatesAsTrue(Sema &S, Expr *E) { |
| bool Res; |
| return !E->isValueDependent() && |
| E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res; |
| } |
| |
| /// Returns true if the given expression can be evaluated as a constant |
| /// 'false'. |
| static bool EvaluatesAsFalse(Sema &S, Expr *E) { |
| bool Res; |
| return !E->isValueDependent() && |
| E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res; |
| } |
| |
| /// Look for '&&' in the left hand of a '||' expr. |
| static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) { |
| if (Bop->getOpcode() == BO_LAnd) { |
| // If it's "a && b || 0" don't warn since the precedence doesn't matter. |
| if (EvaluatesAsFalse(S, RHSExpr)) |
| return; |
| // If it's "1 && a || b" don't warn since the precedence doesn't matter. |
| if (!EvaluatesAsTrue(S, Bop->getLHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); |
| } else if (Bop->getOpcode() == BO_LOr) { |
| if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) { |
| // If it's "a || b && 1 || c" we didn't warn earlier for |
| // "a || b && 1", but warn now. |
| if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); |
| } |
| } |
| } |
| } |
| |
| /// Look for '&&' in the right hand of a '||' expr. |
| static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) { |
| if (Bop->getOpcode() == BO_LAnd) { |
| // If it's "0 || a && b" don't warn since the precedence doesn't matter. |
| if (EvaluatesAsFalse(S, LHSExpr)) |
| return; |
| // If it's "a || b && 1" don't warn since the precedence doesn't matter. |
| if (!EvaluatesAsTrue(S, Bop->getRHS())) |
| return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); |
| } |
| } |
| } |
| |
| /// Look for bitwise op in the left or right hand of a bitwise op with |
| /// lower precedence and emit a diagnostic together with a fixit hint that wraps |
| /// the '&' expression in parentheses. |
| static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc, |
| SourceLocation OpLoc, Expr *SubExpr) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { |
| if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) { |
| S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op) |
| << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc) |
| << Bop->getSourceRange() << OpLoc; |
| SuggestParentheses(S, Bop->getOperatorLoc(), |
| S.PDiag(diag::note_precedence_silence) |
| << Bop->getOpcodeStr(), |
| Bop->getSourceRange()); |
| } |
| } |
| } |
| |
| static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc, |
| Expr *SubExpr, StringRef Shift) { |
| if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) { |
| if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) { |
| StringRef Op = Bop->getOpcodeStr(); |
| S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift) |
| << Bop->getSourceRange() << OpLoc << Shift << Op; |
| SuggestParentheses(S, Bop->getOperatorLoc(), |
| S.PDiag(diag::note_precedence_silence) << Op, |
| Bop->getSourceRange()); |
| } |
| } |
| } |
| |
| static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr); |
| if (!OCE) |
| return; |
| |
| FunctionDecl *FD = OCE->getDirectCallee(); |
| if (!FD || !FD->isOverloadedOperator()) |
| return; |
| |
| OverloadedOperatorKind Kind = FD->getOverloadedOperator(); |
| if (Kind != OO_LessLess && Kind != OO_GreaterGreater) |
| return; |
| |
| S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison) |
| << LHSExpr->getSourceRange() << RHSExpr->getSourceRange() |
| << (Kind == OO_LessLess); |
| SuggestParentheses(S, OCE->getOperatorLoc(), |
| S.PDiag(diag::note_precedence_silence) |
| << (Kind == OO_LessLess ? "<<" : ">>"), |
| OCE->getSourceRange()); |
| SuggestParentheses(S, OpLoc, |
| S.PDiag(diag::note_evaluate_comparison_first), |
| SourceRange(OCE->getArg(1)->getLocStart(), |
| RHSExpr->getLocEnd())); |
| } |
| |
| /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky |
| /// precedence. |
| static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, |
| SourceLocation OpLoc, Expr *LHSExpr, |
| Expr *RHSExpr){ |
| // Diagnose "arg1 'bitwise' arg2 'eq' arg3". |
| if (BinaryOperator::isBitwiseOp(Opc)) |
| DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr); |
| |
| // Diagnose "arg1 & arg2 | arg3" |
| if ((Opc == BO_Or || Opc == BO_Xor) && |
| !OpLoc.isMacroID()/* Don't warn in macros. */) { |
| DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr); |
| DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr); |
| } |
| |
| // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. |
| // We don't warn for 'assert(a || b && "bad")' since this is safe. |
| if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { |
| DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr); |
| DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr); |
| } |
| |
| if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext())) |
| || Opc == BO_Shr) { |
| StringRef Shift = BinaryOperator::getOpcodeStr(Opc); |
| DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift); |
| DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift); |
| } |
| |
| // Warn on overloaded shift operators and comparisons, such as: |
| // cout << 5 == 4; |
| if (BinaryOperator::isComparisonOp(Opc)) |
| DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr); |
| } |
| |
| // Binary Operators. 'Tok' is the token for the operator. |
| ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, |
| tok::TokenKind Kind, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); |
| assert(LHSExpr && "ActOnBinOp(): missing left expression"); |
| assert(RHSExpr && "ActOnBinOp(): missing right expression"); |
| |
| // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" |
| DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr); |
| |
| return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| /// Build an overloaded binary operator expression in the given scope. |
| static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHS, Expr *RHS) { |
| switch (Opc) { |
| case BO_Assign: |
| case BO_DivAssign: |
| case BO_RemAssign: |
| case BO_SubAssign: |
| case BO_AndAssign: |
| case BO_OrAssign: |
| case BO_XorAssign: |
| DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false); |
| CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S); |
| break; |
| default: |
| break; |
| } |
| |
| // Find all of the overloaded operators visible from this |
| // point. We perform both an operator-name lookup from the local |
| // scope and an argument-dependent lookup based on the types of |
| // the arguments. |
| UnresolvedSet<16> Functions; |
| OverloadedOperatorKind OverOp |
| = BinaryOperator::getOverloadedOperator(Opc); |
| if (Sc && OverOp != OO_None && OverOp != OO_Equal) |
| S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(), |
| RHS->getType(), Functions); |
| |
| // Build the (potentially-overloaded, potentially-dependent) |
| // binary operation. |
| return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS); |
| } |
| |
| ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| ExprResult LHS, RHS; |
| std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr); |
| if (!LHS.isUsable() || !RHS.isUsable()) |
| return ExprError(); |
| LHSExpr = LHS.get(); |
| RHSExpr = RHS.get(); |
| |
| // We want to end up calling one of checkPseudoObjectAssignment |
| // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if |
| // both expressions are overloadable or either is type-dependent), |
| // or CreateBuiltinBinOp (in any other case). We also want to get |
| // any placeholder types out of the way. |
| |
| // Handle pseudo-objects in the LHS. |
| if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) { |
| // Assignments with a pseudo-object l-value need special analysis. |
| if (pty->getKind() == BuiltinType::PseudoObject && |
| BinaryOperator::isAssignmentOp(Opc)) |
| return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| // Don't resolve overloads if the other type is overloadable. |
| if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) { |
| // We can't actually test that if we still have a placeholder, |
| // though. Fortunately, none of the exceptions we see in that |
| // code below are valid when the LHS is an overload set. Note |
| // that an overload set can be dependently-typed, but it never |
| // instantiates to having an overloadable type. |
| ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); |
| if (resolvedRHS.isInvalid()) return ExprError(); |
| RHSExpr = resolvedRHS.get(); |
| |
| if (RHSExpr->isTypeDependent() || |
| RHSExpr->getType()->isOverloadableType()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function |
| // template, diagnose the missing 'template' keyword instead of diagnosing |
| // an invalid use of a bound member function. |
| // |
| // Note that "A::x < b" might be valid if 'b' has an overloadable type due |
| // to C++1z [over.over]/1.4, but we already checked for that case above. |
| if (Opc == BO_LT && inTemplateInstantiation() && |
| (pty->getKind() == BuiltinType::BoundMember || |
| pty->getKind() == BuiltinType::Overload)) { |
| auto *OE = dyn_cast<OverloadExpr>(LHSExpr); |
| if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() && |
| std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) { |
| return isa<FunctionTemplateDecl>(ND); |
| })) { |
| Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc() |
| : OE->getNameLoc(), |
| diag::err_template_kw_missing) |
| << OE->getName().getAsString() << ""; |
| return ExprError(); |
| } |
| } |
| |
| ExprResult LHS = CheckPlaceholderExpr(LHSExpr); |
| if (LHS.isInvalid()) return ExprError(); |
| LHSExpr = LHS.get(); |
| } |
| |
| // Handle pseudo-objects in the RHS. |
| if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) { |
| // An overload in the RHS can potentially be resolved by the type |
| // being assigned to. |
| if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) { |
| if (getLangOpts().CPlusPlus && |
| (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() || |
| LHSExpr->getType()->isOverloadableType())) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| // Don't resolve overloads if the other type is overloadable. |
| if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload && |
| LHSExpr->getType()->isOverloadableType()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr); |
| if (!resolvedRHS.isUsable()) return ExprError(); |
| RHSExpr = resolvedRHS.get(); |
| } |
| |
| if (getLangOpts().CPlusPlus) { |
| // If either expression is type-dependent, always build an |
| // overloaded op. |
| if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| |
| // Otherwise, build an overloaded op if either expression has an |
| // overloadable type. |
| if (LHSExpr->getType()->isOverloadableType() || |
| RHSExpr->getType()->isOverloadableType()) |
| return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| // Build a built-in binary operation. |
| return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr); |
| } |
| |
| static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) { |
| if (T.isNull() || T->isDependentType()) |
| return false; |
| |
| if (!T->isPromotableIntegerType()) |
| return true; |
| |
| return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy); |
| } |
| |
| ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, |
| UnaryOperatorKind Opc, |
| Expr *InputExpr) { |
| ExprResult Input = InputExpr; |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType resultType; |
| bool CanOverflow = false; |
| |
| bool ConvertHalfVec = false; |
| if (getLangOpts().OpenCL) { |
| QualType Ty = InputExpr->getType(); |
| // The only legal unary operation for atomics is '&'. |
| if ((Opc != UO_AddrOf && Ty->isAtomicType()) || |
| // OpenCL special types - image, sampler, pipe, and blocks are to be used |
| // only with a builtin functions and therefore should be disallowed here. |
| (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType() |
| || Ty->isBlockPointerType())) { |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << InputExpr->getType() |
| << Input.get()->getSourceRange()); |
| } |
| } |
| switch (Opc) { |
| case UO_PreInc: |
| case UO_PreDec: |
| case UO_PostInc: |
| case UO_PostDec: |
| resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, |
| OpLoc, |
| Opc == UO_PreInc || |
| Opc == UO_PostInc, |
| Opc == UO_PreInc || |
| Opc == UO_PreDec); |
| CanOverflow = isOverflowingIntegerType(Context, resultType); |
| break; |
| case UO_AddrOf: |
| resultType = CheckAddressOfOperand(Input, OpLoc); |
| RecordModifiableNonNullParam(*this, InputExpr); |
| break; |
| case UO_Deref: { |
| Input = DefaultFunctionArrayLvalueConversion(Input.get()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc); |
| break; |
| } |
| case UO_Plus: |
| case UO_Minus: |
| CanOverflow = Opc == UO_Minus && |
| isOverflowingIntegerType(Context, Input.get()->getType()); |
| Input = UsualUnaryConversions(Input.get()); |
| if (Input.isInvalid()) return ExprError(); |
| // Unary plus and minus require promoting an operand of half vector to a |
| // float vector and truncating the result back to a half vector. For now, we |
| // do this only when HalfArgsAndReturns is set (that is, when the target is |
| // arm or arm64). |
| ConvertHalfVec = |
| needsConversionOfHalfVec(true, Context, Input.get()->getType()); |
| |
| // If the operand is a half vector, promote it to a float vector. |
| if (ConvertHalfVec) |
| Input = convertVector(Input.get(), Context.FloatTy, *this); |
| resultType = Input.get()->getType(); |
| if (resultType->isDependentType()) |
| break; |
| if (resultType->isArithmeticType()) // C99 6.5.3.3p1 |
| break; |
| else if (resultType->isVectorType() && |
| // The z vector extensions don't allow + or - with bool vectors. |
| (!Context.getLangOpts().ZVector || |
| resultType->getAs<VectorType>()->getVectorKind() != |
| VectorType::AltiVecBool)) |
| break; |
| else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6 |
| Opc == UO_Plus && |
| resultType->isPointerType()) |
| break; |
| |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| |
| case UO_Not: // bitwise complement |
| Input = UsualUnaryConversions(Input.get()); |
| if (Input.isInvalid()) |
| return ExprError(); |
| resultType = Input.get()->getType(); |
| |
| if (resultType->isDependentType()) |
| break; |
| // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. |
| if (resultType->isComplexType() || resultType->isComplexIntegerType()) |
| // C99 does not support '~' for complex conjugation. |
| Diag(OpLoc, diag::ext_integer_complement_complex) |
| << resultType << Input.get()->getSourceRange(); |
| else if (resultType->hasIntegerRepresentation()) |
| break; |
| else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) { |
| // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate |
| // on vector float types. |
| QualType T = resultType->getAs<ExtVectorType>()->getElementType(); |
| if (!T->isIntegerType()) |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } else { |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| break; |
| |
| case UO_LNot: // logical negation |
| // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). |
| Input = DefaultFunctionArrayLvalueConversion(Input.get()); |
| if (Input.isInvalid()) return ExprError(); |
| resultType = Input.get()->getType(); |
| |
| // Though we still have to promote half FP to float... |
| if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) { |
| Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get(); |
| resultType = Context.FloatTy; |
| } |
| |
| if (resultType->isDependentType()) |
| break; |
| if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) { |
| // C99 6.5.3.3p1: ok, fallthrough; |
| if (Context.getLangOpts().CPlusPlus) { |
| // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: |
| // operand contextually converted to bool. |
| Input = ImpCastExprToType(Input.get(), Context.BoolTy, |
| ScalarTypeToBooleanCastKind(resultType)); |
| } else if (Context.getLangOpts().OpenCL && |
| Context.getLangOpts().OpenCLVersion < 120) { |
| // OpenCL v1.1 6.3.h: The logical operator not (!) does not |
| // operate on scalar float types. |
| if (!resultType->isIntegerType() && !resultType->isPointerType()) |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| } else if (resultType->isExtVectorType()) { |
| if (Context.getLangOpts().OpenCL && |
| Context.getLangOpts().OpenCLVersion < 120) { |
| // OpenCL v1.1 6.3.h: The logical operator not (!) does not |
| // operate on vector float types. |
| QualType T = resultType->getAs<ExtVectorType>()->getElementType(); |
| if (!T->isIntegerType()) |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| // Vector logical not returns the signed variant of the operand type. |
| resultType = GetSignedVectorType(resultType); |
| break; |
| } else { |
| // FIXME: GCC's vector extension permits the usage of '!' with a vector |
| // type in C++. We should allow that here too. |
| return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) |
| << resultType << Input.get()->getSourceRange()); |
| } |
| |
| // LNot always has type int. C99 6.5.3.3p5. |
| // In C++, it's bool. C++ 5.3.1p8 |
| resultType = Context.getLogicalOperationType(); |
| break; |
| case UO_Real: |
| case UO_Imag: |
| resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); |
| // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary |
| // complex l-values to ordinary l-values and all other values to r-values. |
| if (Input.isInvalid()) return ExprError(); |
| if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) { |
| if (Input.get()->getValueKind() != VK_RValue && |
| Input.get()->getObjectKind() == OK_Ordinary) |
| VK = Input.get()->getValueKind(); |
| } else if (!getLangOpts().CPlusPlus) { |
| // In C, a volatile scalar is read by __imag. In C++, it is not. |
| Input = DefaultLvalueConversion(Input.get()); |
| } |
| break; |
| case UO_Extension: |
| resultType = Input.get()->getType(); |
| VK = Input.get()->getValueKind(); |
| OK = Input.get()->getObjectKind(); |
| break; |
| case UO_Coawait: |
| // It's unnecessary to represent the pass-through operator co_await in the |
| // AST; just return the input expression instead. |
| assert(!Input.get()->getType()->isDependentType() && |
| "the co_await expression must be non-dependant before " |
| "building operator co_await"); |
| return Input; |
| } |
| if (resultType.isNull() || Input.isInvalid()) |
| return ExprError(); |
| |
| // Check for array bounds violations in the operand of the UnaryOperator, |
| // except for the '*' and '&' operators that have to be handled specially |
| // by CheckArrayAccess (as there are special cases like &array[arraysize] |
| // that are explicitly defined as valid by the standard). |
| if (Opc != UO_AddrOf && Opc != UO_Deref) |
| CheckArrayAccess(Input.get()); |
| |
| auto *UO = new (Context) |
| UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow); |
| // Convert the result back to a half vector. |
| if (ConvertHalfVec) |
| return convertVector(UO, Context.HalfTy, *this); |
| return UO; |
| } |
| |
| /// Determine whether the given expression is a qualified member |
| /// access expression, of a form that could be turned into a pointer to member |
| /// with the address-of operator. |
| bool Sema::isQualifiedMemberAccess(Expr *E) { |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (!DRE->getQualifier()) |
| return false; |
| |
| ValueDecl *VD = DRE->getDecl(); |
| if (!VD->isCXXClassMember()) |
| return false; |
| |
| if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD)) |
| return true; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD)) |
| return Method->isInstance(); |
| |
| return false; |
| } |
| |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| if (!ULE->getQualifier()) |
| return false; |
| |
| for (NamedDecl *D : ULE->decls()) { |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (Method->isInstance()) |
| return true; |
| } else { |
| // Overload set does not contain methods. |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| return false; |
| } |
| |
| ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, |
| UnaryOperatorKind Opc, Expr *Input) { |
| // First things first: handle placeholders so that the |
| // overloaded-operator check considers the right type. |
| if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) { |
| // Increment and decrement of pseudo-object references. |
| if (pty->getKind() == BuiltinType::PseudoObject && |
| UnaryOperator::isIncrementDecrementOp(Opc)) |
| return checkPseudoObjectIncDec(S, OpLoc, Opc, Input); |
| |
| // extension is always a builtin operator. |
| if (Opc == UO_Extension) |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| |
| // & gets special logic for several kinds of placeholder. |
| // The builtin code knows what to do. |
| if (Opc == UO_AddrOf && |
| (pty->getKind() == BuiltinType::Overload || |
| pty->getKind() == BuiltinType::UnknownAny || |
| pty->getKind() == BuiltinType::BoundMember)) |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| |
| // Anything else needs to be handled now. |
| ExprResult Result = CheckPlaceholderExpr(Input); |
| if (Result.isInvalid()) return ExprError(); |
| Input = Result.get(); |
| } |
| |
| if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() && |
| UnaryOperator::getOverloadedOperator(Opc) != OO_None && |
| !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) { |
| // Find all of the overloaded operators visible from this |
| // point. We perform both an operator-name lookup from the local |
| // scope and an argument-dependent lookup based on the types of |
| // the arguments. |
| UnresolvedSet<16> Functions; |
| OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); |
| if (S && OverOp != OO_None) |
| LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), |
| Functions); |
| |
| return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); |
| } |
| |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| } |
| |
| // Unary Operators. 'Tok' is the token for the operator. |
| ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Op, Expr *Input) { |
| return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input); |
| } |
| |
| /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". |
| ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, |
| LabelDecl *TheDecl) { |
| TheDecl->markUsed(Context); |
| // Create the AST node. The address of a label always has type 'void*'. |
| return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl, |
| Context.getPointerType(Context.VoidTy)); |
| } |
| |
| /// Given the last statement in a statement-expression, check whether |
| /// the result is a producing expression (like a call to an |
| /// ns_returns_retained function) and, if so, rebuild it to hoist the |
| /// release out of the full-expression. Otherwise, return null. |
| /// Cannot fail. |
| static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) { |
| // Should always be wrapped with one of these. |
| ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement); |
| if (!cleanups) return nullptr; |
| |
| ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr()); |
| if (!cast || cast->getCastKind() != CK_ARCConsumeObject) |
| return nullptr; |
| |
| // Splice out the cast. This shouldn't modify any interesting |
| // features of the statement. |
| Expr *producer = cast->getSubExpr(); |
| assert(producer->getType() == cast->getType()); |
| assert(producer->getValueKind() == cast->getValueKind()); |
| cleanups->setSubExpr(producer); |
| return cleanups; |
| } |
| |
| void Sema::ActOnStartStmtExpr() { |
| PushExpressionEvaluationContext(ExprEvalContexts.back().Context); |
| } |
| |
| void Sema::ActOnStmtExprError() { |
| // Note that function is also called by TreeTransform when leaving a |
| // StmtExpr scope without rebuilding anything. |
| |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| } |
| |
| ExprResult |
| Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, |
| SourceLocation RPLoc) { // "({..})" |
| assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); |
| CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); |
| |
| if (hasAnyUnrecoverableErrorsInThisFunction()) |
| DiscardCleanupsInEvaluationContext(); |
| assert(!Cleanup.exprNeedsCleanups() && |
| "cleanups within StmtExpr not correctly bound!"); |
| PopExpressionEvaluationContext(); |
| |
| // FIXME: there are a variety of strange constraints to enforce here, for |
| // example, it is not possible to goto into a stmt expression apparently. |
| // More semantic analysis is needed. |
| |
| // If there are sub-stmts in the compound stmt, take the type of the last one |
| // as the type of the stmtexpr. |
| QualType Ty = Context.VoidTy; |
| bool StmtExprMayBindToTemp = false; |
| if (!Compound->body_empty()) { |
| Stmt *LastStmt = Compound->body_back(); |
| LabelStmt *LastLabelStmt = nullptr; |
| // If LastStmt is a label, skip down through into the body. |
| while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) { |
| LastLabelStmt = Label; |
| LastStmt = Label->getSubStmt(); |
| } |
| |
| if (Expr *LastE = dyn_cast<Expr>(LastStmt)) { |
| // Do function/array conversion on the last expression, but not |
| // lvalue-to-rvalue. However, initialize an unqualified type. |
| ExprResult LastExpr = DefaultFunctionArrayConversion(LastE); |
| if (LastExpr.isInvalid()) |
| return ExprError(); |
| Ty = LastExpr.get()->getType().getUnqualifiedType(); |
| |
| if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) { |
| // In ARC, if the final expression ends in a consume, splice |
| // the consume out and bind it later. In the alternate case |
| // (when dealing with a retainable type), the result |
| // initialization will create a produce. In both cases the |
| // result will be +1, and we'll need to balance that out with |
| // a bind. |
| if (Expr *rebuiltLastStmt |
| = maybeRebuildARCConsumingStmt(LastExpr.get())) { |
| LastExpr = rebuiltLastStmt; |
| } else { |
| LastExpr = PerformCopyInitialization( |
| InitializedEntity::InitializeStmtExprResult(LPLoc, Ty), |
| SourceLocation(), LastExpr); |
| } |
| |
| if (LastExpr.isInvalid()) |
| return ExprError(); |
| if (LastExpr.get() != nullptr) { |
| if (!LastLabelStmt) |
| Compound->setLastStmt(LastExpr.get()); |
| else |
| LastLabelStmt->setSubStmt(LastExpr.get()); |
| StmtExprMayBindToTemp = true; |
| } |
| } |
| } |
| } |
| |
| // FIXME: Check that expression type is complete/non-abstract; statement |
| // expressions are not lvalues. |
| Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc); |
| if (StmtExprMayBindToTemp) |
| return MaybeBindToTemporary(ResStmtExpr); |
| return ResStmtExpr; |
| } |
| |
| ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, |
| TypeSourceInfo *TInfo, |
| ArrayRef<OffsetOfComponent> Components, |
| SourceLocation RParenLoc) { |
| QualType ArgTy = TInfo->getType(); |
| bool Dependent = ArgTy->isDependentType(); |
| SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); |
| |
| // We must have at least one component that refers to the type, and the first |
| // one is known to be a field designator. Verify that the ArgTy represents |
| // a struct/union/class. |
| if (!Dependent && !ArgTy->isRecordType()) |
| return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) |
| << ArgTy << TypeRange); |
| |
| // Type must be complete per C99 7.17p3 because a declaring a variable |
| // with an incomplete type would be ill-formed. |
| if (!Dependent |
| && RequireCompleteType(BuiltinLoc, ArgTy, |
| diag::err_offsetof_incomplete_type, TypeRange)) |
| return ExprError(); |
| |
| bool DidWarnAboutNonPOD = false; |
| QualType CurrentType = ArgTy; |
| SmallVector<OffsetOfNode, 4> Comps; |
| SmallVector<Expr*, 4> Exprs; |
| for (const OffsetOfComponent &OC : Components) { |
| if (OC.isBrackets) { |
| // Offset of an array sub-field. TODO: Should we allow vector elements? |
| if (!CurrentType->isDependentType()) { |
| const ArrayType *AT = Context.getAsArrayType(CurrentType); |
| if(!AT) |
| return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) |
| << CurrentType); |
| CurrentType = AT->getElementType(); |
| } else |
| CurrentType = Context.DependentTy; |
| |
| ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E)); |
| if (IdxRval.isInvalid()) |
| return ExprError(); |
| Expr *Idx = IdxRval.get(); |
| |
| // The expression must be an integral expression. |
| // FIXME: An integral constant expression? |
| if (!Idx->isTypeDependent() && !Idx->isValueDependent() && |
| !Idx->getType()->isIntegerType()) |
| return ExprError(Diag(Idx->getLocStart(), |
| diag::err_typecheck_subscript_not_integer) |
| << Idx->getSourceRange()); |
| |
| // Record this array index. |
| Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); |
| Exprs.push_back(Idx); |
| continue; |
| } |
| |
| // Offset of a field. |
| if (CurrentType->isDependentType()) { |
| // We have the offset of a field, but we can't look into the dependent |
| // type. Just record the identifier of the field. |
| Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); |
| CurrentType = Context.DependentTy; |
| continue; |
| } |
| |
| // We need to have a complete type to look into. |
| if (RequireCompleteType(OC.LocStart, CurrentType, |
| diag::err_offsetof_incomplete_type)) |
| return ExprError(); |
| |
| // Look for the designated field. |
| const RecordType *RC = CurrentType->getAs<RecordType>(); |
| if (!RC) |
| return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) |
| << CurrentType); |
| RecordDecl *RD = RC->getDecl(); |
| |
| // C++ [lib.support.types]p5: |
| // The macro offsetof accepts a restricted set of type arguments in this |
| // International Standard. type shall be a POD structure or a POD union |
| // (clause 9). |
| // C++11 [support.types]p4: |
| // If type is not a standard-layout class (Clause 9), the results are |
| // undefined. |
| if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
| bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD(); |
| unsigned DiagID = |
| LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type |
| : diag::ext_offsetof_non_pod_type; |
| |
| if (!IsSafe && !DidWarnAboutNonPOD && |
| DiagRuntimeBehavior(BuiltinLoc, nullptr, |
| PDiag(DiagID) |
| << SourceRange(Components[0].LocStart, OC.LocEnd) |
| << CurrentType)) |
| DidWarnAboutNonPOD = true; |
| } |
| |
| // Look for the field. |
| LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); |
| LookupQualifiedName(R, RD); |
| FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); |
| IndirectFieldDecl *IndirectMemberDecl = nullptr; |
| if (!MemberDecl) { |
| if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>())) |
| MemberDecl = IndirectMemberDecl->getAnonField(); |
| } |
| |
| if (!MemberDecl) |
| return ExprError(Diag(BuiltinLoc, diag::err_no_member) |
| << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, |
| OC.LocEnd)); |
| |
| // C99 7.17p3: |
| // (If the specified member is a bit-field, the behavior is undefined.) |
| // |
| // We diagnose this as an error. |
| if (MemberDecl->isBitField()) { |
| Diag(OC.LocEnd, diag::err_offsetof_bitfield) |
| << MemberDecl->getDeclName() |
| << SourceRange(BuiltinLoc, RParenLoc); |
| Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); |
| return ExprError(); |
| } |
| |
| RecordDecl *Parent = MemberDecl->getParent(); |
| if (IndirectMemberDecl) |
| Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext()); |
| |
| // If the member was found in a base class, introduce OffsetOfNodes for |
| // the base class indirections. |
| CXXBasePaths Paths; |
| if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent), |
| Paths)) { |
| if (Paths.getDetectedVirtual()) { |
| Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base) |
| << MemberDecl->getDeclName() |
| << SourceRange(BuiltinLoc, RParenLoc); |
| return ExprError(); |
| } |
| |
| CXXBasePath &Path = Paths.front(); |
| for (const CXXBasePathElement &B : Path) |
| Comps.push_back(OffsetOfNode(B.Base)); |
| } |
| |
| if (IndirectMemberDecl) { |
| for (auto *FI : IndirectMemberDecl->chain()) { |
| assert(isa<FieldDecl>(FI)); |
| Comps.push_back(OffsetOfNode(OC.LocStart, |
| cast<FieldDecl>(FI), OC.LocEnd)); |
| } |
| } else |
| Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); |
| |
| CurrentType = MemberDecl->getType().getNonReferenceType(); |
| } |
| |
| return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo, |
| Comps, Exprs, RParenLoc); |
| } |
| |
| ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, |
| SourceLocation BuiltinLoc, |
| SourceLocation TypeLoc, |
| ParsedType ParsedArgTy, |
| ArrayRef<OffsetOfComponent> Components, |
| SourceLocation RParenLoc) { |
| |
| TypeSourceInfo *ArgTInfo; |
| QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo); |
| if (ArgTy.isNull()) |
| return ExprError(); |
| |
| if (!ArgTInfo) |
| ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); |
| |
| return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc); |
| } |
| |
| |
| ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, |
| Expr *CondExpr, |
| Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation RPLoc) { |
| assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); |
| |
| ExprValueKind VK = VK_RValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType resType; |
| bool ValueDependent = false; |
| bool CondIsTrue = false; |
| if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { |
| resType = Context.DependentTy; |
| ValueDependent = true; |
| } else { |
| // The conditional expression is required to be a constant expression. |
| llvm::APSInt condEval(32); |
| ExprResult CondICE |
| = VerifyIntegerConstantExpression(CondExpr, &condEval, |
| diag::err_typecheck_choose_expr_requires_constant, false); |
| if (CondICE.isInvalid()) |
| return ExprError(); |
| CondExpr = CondICE.get(); |
| CondIsTrue = condEval.getZExtValue(); |
| |
| // If the condition is > zero, then the AST type is the same as the LHSExpr. |
| Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr; |
| |
| resType = ActiveExpr->getType(); |
| ValueDependent = ActiveExpr->isValueDependent(); |
| VK = ActiveExpr->getValueKind(); |
| OK = ActiveExpr->getObjectKind(); |
| } |
| |
| return new (Context) |
| ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc, |
| CondIsTrue, resType->isDependentType(), ValueDependent); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Clang Extensions. |
| //===----------------------------------------------------------------------===// |
| |
| /// ActOnBlockStart - This callback is invoked when a block literal is started. |
| void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) { |
| BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); |
| |
| if (LangOpts.CPlusPlus) { |
| Decl *ManglingContextDecl; |
| if (MangleNumberingContext *MCtx = |
| getCurrentMangleNumberContext(Block->getDeclContext(), |
| ManglingContextDecl)) { |
| unsigned ManglingNumber = MCtx->getManglingNumber(Block); |
| Block->setBlockMangling(ManglingNumber, ManglingContextDecl); |
| } |
| } |
| |
| PushBlockScope(CurScope, Block); |
| CurContext->addDecl(Block); |
| if (CurScope) |
| PushDeclContext(CurScope, Block); |
| else |
| CurContext = Block; |
| |
| getCurBlock()->HasImplicitReturnType = true; |
| |
| // Enter a new evaluation context to insulate the block from any |
| // cleanups from the enclosing full-expression. |
| PushExpressionEvaluationContext( |
| ExpressionEvaluationContext::PotentiallyEvaluated); |
| } |
| |
| void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, |
| Scope *CurScope) { |
| assert(ParamInfo.getIdentifier() == nullptr && |
| "block-id should have no identifier!"); |
| assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext); |
| BlockScopeInfo *CurBlock = getCurBlock(); |
| |
| TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); |
| QualType T = Sig->getType(); |
| |
| // FIXME: We should allow unexpanded parameter packs here, but that would, |
| // in turn, make the block expression contain unexpanded parameter packs. |
| if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) { |
| // Drop the parameters. |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.HasTrailingReturn = false; |
| EPI.TypeQuals |= DeclSpec::TQ_const; |
| T = Context.getFunctionType(Context.DependentTy, None, EPI); |
| Sig = Context.getTrivialTypeSourceInfo(T); |
| } |
| |
| // GetTypeForDeclarator always produces a function type for a block |
| // literal signature. Furthermore, it is always a FunctionProtoType |
| // unless the function was written with a typedef. |
| assert(T->isFunctionType() && |
| "GetTypeForDeclarator made a non-function block signature"); |
| |
| // Look for an explicit signature in that function type. |
| FunctionProtoTypeLoc ExplicitSignature; |
| |
| if ((ExplicitSignature = |
| Sig->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>())) { |
| |
| // Check whether that explicit signature was synthesized by |
| // GetTypeForDeclarator. If so, don't save that as part of the |
| // written signature. |
| if (ExplicitSignature.getLocalRangeBegin() == |
| ExplicitSignature.getLocalRangeEnd()) { |
| // This would be much cheaper if we stored TypeLocs instead of |
| // TypeSourceInfos. |
| TypeLoc Result = ExplicitSignature.getReturnLoc(); |
| unsigned Size = Result.getFullDataSize(); |
| Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); |
| Sig->getTypeLoc().initializeFullCopy(Result, Size); |
| |
| ExplicitSignature = FunctionProtoTypeLoc(); |
| } |
| } |
| |
| CurBlock->TheDecl->setSignatureAsWritten(Sig); |
| CurBlock->FunctionType = T; |
| |
| const FunctionType *Fn = T->getAs<FunctionType>(); |
| QualType RetTy = Fn->getReturnType(); |
| bool isVariadic = |
| (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic()); |
| |
| CurBlock->TheDecl->setIsVariadic(isVariadic); |
| |
| // Context.DependentTy is used as a placeholder for a missing block |
| // return type. TODO: what should we do with declarators like: |
| // ^ * { ... } |
| // If the answer is "apply template argument deduction".... |
| if (RetTy != Context.DependentTy) { |
| CurBlock->ReturnType = RetTy; |
| CurBlock->TheDecl->setBlockMissingReturnType(false); |
| CurBlock->HasImplicitReturnType = false; |
| } |
| |
| // Push block parameters from the declarator if we had them. |
| SmallVector<ParmVarDecl*, 8> Params; |
| if (ExplicitSignature) { |
| for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) { |
| ParmVarDecl *Param = ExplicitSignature.getParam(I); |
| if (Param->getIdentifier() == nullptr && |
| !Param->isImplicit() && |
| !Param->isInvalidDecl() && |
| !getLangOpts().CPlusPlus) |
| Diag(Param->getLocation(), diag::err_parameter_name_omitted); |
| Params.push_back(Param); |
| } |
| |
| // Fake up parameter variables if we have a typedef, like |
| // ^ fntype { ... } |
| } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) { |
| for (const auto &I : Fn->param_types()) { |
| ParmVarDecl *Param = BuildParmVarDeclForTypedef( |
| CurBlock->TheDecl, ParamInfo.getLocStart(), I); |
| Params.push_back(Param); |
| } |
| } |
| |
| // Set the parameters on the block decl. |
| if (!Params.empty()) { |
| CurBlock->TheDecl->setParams(Params); |
| CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(), |
| /*CheckParameterNames=*/false); |
| } |
| |
| // Finally we can process decl attributes. |
| ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); |
| |
| // Put the parameter variables in scope. |
| for (auto AI : CurBlock->TheDecl->parameters()) { |
| AI->setOwningFunction(CurBlock->TheDecl); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (AI->getIdentifier()) { |
| CheckShadow(CurBlock->TheScope, AI); |
| |
| PushOnScopeChains(AI, CurBlock->TheScope); |
| } |
| } |
| } |
| |
| /// ActOnBlockError - If there is an error parsing a block, this callback |
| /// is invoked to pop the information about the block from the action impl. |
| void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { |
| // Leave the expression-evaluation context. |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| |
| // Pop off CurBlock, handle nested blocks. |
| PopDeclContext(); |
| PopFunctionScopeInfo(); |
| } |
| |
| /// ActOnBlockStmtExpr - This is called when the body of a block statement |
| /// literal was successfully completed. ^(int x){...} |
| ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, |
| Stmt *Body, Scope *CurScope) { |
| // If blocks are disabled, emit an error. |
| if (!LangOpts.Blocks) |
| Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL; |
| |
| // Leave the expression-evaluation context. |
| if (hasAnyUnrecoverableErrorsInThisFunction()) |
| DiscardCleanupsInEvaluationContext(); |
| assert(!Cleanup.exprNeedsCleanups() && |
| "cleanups within block not correctly bound!"); |
| PopExpressionEvaluationContext(); |
| |
| BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); |
| |
| if (BSI->HasImplicitReturnType) |
| deduceClosureReturnType(*BSI); |
| |
| PopDeclContext(); |
| |
| QualType RetTy = Context.VoidTy; |
| if (!BSI->ReturnType.isNull()) |
| RetTy = BSI->ReturnType; |
| |
| bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>(); |
| QualType BlockTy; |
| |
| // Set the captured variables on the block. |
| // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo! |
| SmallVector<BlockDecl::Capture, 4> Captures; |
| for (Capture &Cap : BSI->Captures) { |
| if (Cap.isThisCapture()) |
| continue; |
| BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(), |
| Cap.isNested(), Cap.getInitExpr()); |
| Captures.push_back(NewCap); |
| } |
| BSI->TheDecl->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0); |
| |
| // If the user wrote a function type in some form, try to use that. |
| if (!BSI->FunctionType.isNull()) { |
| const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>(); |
| |
| FunctionType::ExtInfo Ext = FTy->getExtInfo(); |
| if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); |
| |
| // Turn protoless block types into nullary block types. |
| if (isa<FunctionNoProtoType>(FTy)) { |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = Ext; |
| BlockTy = Context.getFunctionType(RetTy, None, EPI); |
| |
| // Otherwise, if we don't need to change anything about the function type, |
| // preserve its sugar structure. |
| } else if (FTy->getReturnType() == RetTy && |
| (!NoReturn || FTy->getNoReturnAttr())) { |
| BlockTy = BSI->FunctionType; |
| |
| // Otherwise, make the minimal modifications to the function type. |
| } else { |
| const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.TypeQuals = 0; // FIXME: silently? |
| EPI.ExtInfo = Ext; |
| BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI); |
| } |
| |
| // If we don't have a function type, just build one from nothing. |
| } else { |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); |
| BlockTy = Context.getFunctionType(RetTy, None, EPI); |
| } |
| |
| DiagnoseUnusedParameters(BSI->TheDecl->parameters()); |
| BlockTy = Context.getBlockPointerType(BlockTy); |
| |
| // If needed, diagnose invalid gotos and switches in the block. |
| if (getCurFunction()->NeedsScopeChecking() && |
| !PP.isCodeCompletionEnabled()) |
| DiagnoseInvalidJumps(cast<CompoundStmt>(Body)); |
| |
| BSI->TheDecl->setBody(cast<CompoundStmt>(Body)); |
| |
| if (Body && getCurFunction()->HasPotentialAvailabilityViolations) |
| DiagnoseUnguardedAvailabilityViolations(BSI->TheDecl); |
| |
| // Try to apply the named return value optimization. We have to check again |
| // if we can do this, though, because blocks keep return statements around |
| // to deduce an implicit return type. |
| if (getLangOpts().CPlusPlus && RetTy->isRecordType() && |
| !BSI->TheDecl->isDependentContext()) |
| computeNRVO(Body, BSI); |
| |
| BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy); |
| AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); |
| PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result); |
| |
| // If the block isn't obviously global, i.e. it captures anything at |
| // all, then we need to do a few things in the surrounding context: |
| if (Result->getBlockDecl()->hasCaptures()) { |
| // First, this expression has a new cleanup object. |
| ExprCleanupObjects.push_back(Result->getBlockDecl()); |
| Cleanup.setExprNeedsCleanups(true); |
| |
| // It also gets a branch-protected scope if any of the captured |
| // variables needs destruction. |
| for (const auto &CI : Result->getBlockDecl()->captures()) { |
| const VarDecl *var = CI.getVariable(); |
| if (var->getType().isDestructedType() != QualType::DK_none) { |
| setFunctionHasBranchProtectedScope(); |
| break; |
| } |
| } |
| } |
| |
| return Result; |
| } |
| |
| ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, |
| SourceLocation RPLoc) { |
| TypeSourceInfo *TInfo; |
| GetTypeFromParser(Ty, &TInfo); |
| return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc); |
| } |
| |
| ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, |
| Expr *E, TypeSourceInfo *TInfo, |
| SourceLocation RPLoc) { |
| Expr *OrigExpr = E; |
| bool IsMS = false; |
| |
| // CUDA device code does not support varargs. |
| if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { |
| if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) { |
| CUDAFunctionTarget T = IdentifyCUDATarget(F); |
| if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice) |
| return ExprError(Diag(E->getLocStart(), diag::err_va_arg_in_device)); |
| } |
| } |
| |
| // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg() |
| // as Microsoft ABI on an actual Microsoft platform, where |
| // __builtin_ms_va_list and __builtin_va_list are the same.) |
| if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() && |
| Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) { |
| QualType MSVaListType = Context.getBuiltinMSVaListType(); |
| if (Context.hasSameType(MSVaListType, E->getType())) { |
| if (CheckForModifiableLvalue(E, BuiltinLoc, *this)) |
| return ExprError(); |
| IsMS = true; |
| } |
| } |
| |
| // Get the va_list type |
| QualType VaListType = Context.getBuiltinVaListType(); |
| if (!IsMS) { |
| if (VaListType->isArrayType()) { |
| // Deal with implicit array decay; for example, on x86-64, |
| // va_list is an array, but it's supposed to decay to |
| // a pointer for va_arg. |
| VaListType = Context.getArrayDecayedType(VaListType); |
| // Make sure the input expression also decays appropriately. |
| ExprResult Result = UsualUnaryConversions(E); |
| if (Result.isInvalid()) |
| return ExprError(); |
| E = Result.get(); |
| } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) { |
| // If va_list is a record type and we are compiling in C++ mode, |
| // check the argument using reference binding. |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| Context, Context.getLValueReferenceType(VaListType), false); |
| ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E); |
| if (Init.isInvalid()) |
| return ExprError(); |
| E = Init.getAs<Expr>(); |
| } else { |
| // Otherwise, the va_list argument must be an l-value because |
| // it is modified by va_arg. |
| if (!E->isTypeDependent() && |
| CheckForModifiableLvalue(E, BuiltinLoc, *this)) |
| return ExprError(); |
| } |
| } |
| |
| if (!IsMS && !E->isTypeDependent() && |
| !Context.hasSameType(VaListType, E->getType())) |
| return ExprError(Diag(E->getLocStart(), |
| diag::err_first_argument_to_va_arg_not_of_type_va_list) |
| << OrigExpr->getType() << E->getSourceRange()); |
| |
| if (!TInfo->getType()->isDependentType()) { |
| if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), |
| diag::err_second_parameter_to_va_arg_incomplete, |
| TInfo->getTypeLoc())) |
| return ExprError(); |
| |
| if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), |
| TInfo->getType(), |
| diag::err_second_parameter_to_va_arg_abstract, |
| TInfo->getTypeLoc())) |
| return ExprError(); |
| |
| if (!TInfo->getType().isPODType(Context)) { |
| Diag(TInfo->getTypeLoc().getBeginLoc(), |
| TInfo->getType()->isObjCLifetimeType() |
| ? diag::warn_second_parameter_to_va_arg_ownership_qualified |
| : diag::warn_second_parameter_to_va_arg_not_pod) |
| << TInfo->getType() |
| << TInfo->getTypeLoc().getSourceRange(); |
| } |
| |
| // Check for va_arg where arguments of the given type will be promoted |
| // (i.e. this va_arg is guaranteed to have undefined behavior). |
| QualType PromoteType; |
| if (TInfo->getType()->isPromotableIntegerType()) { |
| PromoteType = Context.getPromotedIntegerType(TInfo->getType()); |
| if (Context.typesAreCompatible(PromoteType, TInfo->getType())) |
| PromoteType = QualType(); |
| } |
| if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) |
| PromoteType = Context.DoubleTy; |
| if (!PromoteType.isNull()) |
| DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E, |
| PDiag(diag::warn_second_parameter_to_va_arg_never_compatible) |
| << TInfo->getType() |
| << PromoteType |
| << TInfo->getTypeLoc().getSourceRange()); |
| } |
| |
| QualType T = TInfo->getType().getNonLValueExprType(Context); |
| return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS); |
| } |
| |
| ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { |
| // The type of __null will be int or long, depending on the size of |
| // pointers on the target. |
| QualType Ty; |
| unsigned pw = Context.getTargetInfo().getPointerWidth(0); |
| if (pw == Context.getTargetInfo().getIntWidth()) |
| Ty = Context.IntTy; |
| else if (pw == Context.getTargetInfo().getLongWidth()) |
| Ty = Context.LongTy; |
| else if (pw == Context.getTargetInfo().getLongLongWidth()) |
| Ty = Context.LongLongTy; |
| else { |
| llvm_unreachable("I don't know size of pointer!"); |
| } |
| |
| return new (Context) GNUNullExpr(Ty, TokenLoc); |
| } |
| |
| bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp, |
| bool Diagnose) { |
| if (!getLangOpts().ObjC1) |
| return false; |
| |
| const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); |
| if (!PT) |
| return false; |
| |
| if (!PT->isObjCIdType()) { |
| // Check if the destination is the 'NSString' interface. |
| const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); |
| if (!ID || !ID->getIdentifier()->isStr("NSString")) |
| return false; |
| } |
| |
| // Ignore any parens, implicit casts (should only be |
| // array-to-pointer decays), and not-so-opaque values. The last is |
| // important for making this trigger for property assignments. |
| Expr *SrcExpr = Exp->IgnoreParenImpCasts(); |
| if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr)) |
| if (OV->getSourceExpr()) |
| SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts(); |
| |
| StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr); |
| if (!SL || !SL->isAscii()) |
| return false; |
| if (Diagnose) { |
| Diag(SL->getLocStart(), diag::err_missing_atsign_prefix) |
| << FixItHint::CreateInsertion(SL->getLocStart(), "@"); |
| Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get(); |
| } |
| return true; |
| } |
| |
| static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType, |
| const Expr *SrcExpr) { |
| if (!DstType->isFunctionPointerType() || |
| !SrcExpr->getType()->isFunctionType()) |
| return false; |
| |
| auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts()); |
| if (!DRE) |
| return false; |
| |
| auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| if (!FD) |
| return false; |
| |
| return !S.checkAddressOfFunctionIsAvailable(FD, |
| /*Complain=*/true, |
| SrcExpr->getLocStart()); |
| } |
| |
| bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, |
| SourceLocation Loc, |
| QualType DstType, QualType SrcType, |
| Expr *SrcExpr, AssignmentAction Action, |
| bool *Complained) { |
| if (Complained) |
| *Complained = false; |
| |
| // Decode the result (notice that AST's are still created for extensions). |
| bool CheckInferredResultType = false; |
| bool isInvalid = false; |
| unsigned DiagKind = 0; |
| FixItHint Hint; |
| ConversionFixItGenerator ConvHints; |
| bool MayHaveConvFixit = false; |
| bool MayHaveFunctionDiff = false; |
| const ObjCInterfaceDecl *IFace = nullptr; |
| const ObjCProtocolDecl *PDecl = nullptr; |
| |
| switch (ConvTy) { |
| case Compatible: |
| DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr); |
| return false; |
| |
| case PointerToInt: |
| DiagKind = diag::ext_typecheck_convert_pointer_int; |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| MayHaveConvFixit = true; |
| break; |
| case IntToPointer: |
| DiagKind = diag::ext_typecheck_convert_int_pointer; |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| MayHaveConvFixit = true; |
| break; |
| case IncompatiblePointer: |
| if (Action == AA_Passing_CFAudited) |
| DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer; |
| else if (SrcType->isFunctionPointerType() && |
| DstType->isFunctionPointerType()) |
| DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer; |
| else |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer; |
| |
| CheckInferredResultType = DstType->isObjCObjectPointerType() && |
| SrcType->isObjCObjectPointerType(); |
| if (Hint.isNull() && !CheckInferredResultType) { |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| } |
| else if (CheckInferredResultType) { |
| SrcType = SrcType.getUnqualifiedType(); |
| DstType = DstType.getUnqualifiedType(); |
| } |
| MayHaveConvFixit = true; |
| break; |
| case IncompatiblePointerSign: |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; |
| break; |
| case FunctionVoidPointer: |
| DiagKind = diag::ext_typecheck_convert_pointer_void_func; |
| break; |
| case IncompatiblePointerDiscardsQualifiers: { |
| // Perform array-to-pointer decay if necessary. |
| if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); |
| |
| Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); |
| Qualifiers rhq = DstType->getPointeeType().getQualifiers(); |
| if (lhq.getAddressSpace() != rhq.getAddressSpace()) { |
| DiagKind = diag::err_typecheck_incompatible_address_space; |
| break; |
| |
| } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { |
| DiagKind = diag::err_typecheck_incompatible_ownership; |
| break; |
| } |
| |
| llvm_unreachable("unknown error case for discarding qualifiers!"); |
| // fallthrough |
| } |
| case CompatiblePointerDiscardsQualifiers: |
| // If the qualifiers lost were because we were applying the |
| // (deprecated) C++ conversion from a string literal to a char* |
| // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: |
| // Ideally, this check would be performed in |
| // checkPointerTypesForAssignment. However, that would require a |
| // bit of refactoring (so that the second argument is an |
| // expression, rather than a type), which should be done as part |
| // of a larger effort to fix checkPointerTypesForAssignment for |
| // C++ semantics. |
| if (getLangOpts().CPlusPlus && |
| IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) |
| return false; |
| DiagKind = diag::ext_typecheck_convert_discards_qualifiers; |
| break; |
| case IncompatibleNestedPointerQualifiers: |
| DiagKind = diag::ext_nested_pointer_qualifier_mismatch; |
| break; |
| case IntToBlockPointer: |
| DiagKind = diag::err_int_to_block_pointer; |
| break; |
| case IncompatibleBlockPointer: |
| DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; |
| break; |
| case IncompatibleObjCQualifiedId: { |
| if (SrcType->isObjCQualifiedIdType()) { |
| const ObjCObjectPointerType *srcOPT = |
| SrcType->getAs<ObjCObjectPointerType>(); |
| for (auto *srcProto : srcOPT->quals()) { |
| PDecl = srcProto; |
| break; |
| } |
| if (const ObjCInterfaceType *IFaceT = |
| DstType->getAs<ObjCObjectPointerType>()->getInterfaceType()) |
| IFace = IFaceT->getDecl(); |
| } |
| else if (DstType->isObjCQualifiedIdType()) { |
| const ObjCObjectPointerType *dstOPT = |
| DstType->getAs<ObjCObjectPointerType>(); |
| for (auto *dstProto : dstOPT->quals()) { |
| PDecl = dstProto; |
| break; |
| } |
| if (const ObjCInterfaceType *IFaceT = |
| SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType()) |
| IFace = IFaceT->getDecl(); |
| } |
| DiagKind = diag::warn_incompatible_qualified_id; |
| break; |
| } |
| case IncompatibleVectors: |
| DiagKind = diag::warn_incompatible_vectors; |
| break; |
| case IncompatibleObjCWeakRef: |
| DiagKind = diag::err_arc_weak_unavailable_assign; |
| break; |
| case Incompatible: |
| if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) { |
| if (Complained) |
| *Complained = true; |
| return true; |
| } |
| |
| DiagKind = diag::err_typecheck_convert_incompatible; |
| ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this); |
| MayHaveConvFixit = true; |
| isInvalid = true; |
| MayHaveFunctionDiff = true; |
| break; |
| } |
| |
| QualType FirstType, SecondType; |
| switch (Action) { |
| case AA_Assigning: |
| case AA_Initializing: |
| // The destination type comes first. |
| FirstType = DstType; |
| SecondType = SrcType; |
| break; |
| |
| case AA_Returning: |
| case AA_Passing: |
| case AA_Passing_CFAudited: |
| case AA_Converting: |
| case AA_Sending: |
| case AA_Casting: |
| // The source type comes first. |
| FirstType = SrcType; |
| SecondType = DstType; |
| break; |
| } |
| |
| PartialDiagnostic FDiag = PDiag(DiagKind); |
| if (Action == AA_Passing_CFAudited) |
| FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange(); |
| else |
| FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange(); |
| |
| // If we can fix the conversion, suggest the FixIts. |
| assert(ConvHints.isNull() || Hint.isNull()); |
| if (!ConvHints.isNull()) { |
| for (FixItHint &H : ConvHints.Hints) |
| FDiag << H; |
| } else { |
| FDiag << Hint; |
| } |
| if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); } |
| |
| if (MayHaveFunctionDiff) |
| HandleFunctionTypeMismatch(FDiag, SecondType, FirstType); |
| |
| Diag(Loc, FDiag); |
| if (DiagKind == diag::warn_incompatible_qualified_id && |
| PDecl && IFace && !IFace->hasDefinition()) |
| Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id) |
| << IFace << PDecl; |
| |
| if (SecondType == Context.OverloadTy) |
| NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression, |
| FirstType, /*TakingAddress=*/true); |
| |
| if (CheckInferredResultType) |
| EmitRelatedResultTypeNote(SrcExpr); |
| |
| if (Action == AA_Returning && ConvTy == IncompatiblePointer) |
| EmitRelatedResultTypeNoteForReturn(DstType); |
| |
| if (Complained) |
| *Complained = true; |
| return isInvalid; |
| } |
| |
| ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, |
| llvm::APSInt *Result) { |
| class SimpleICEDiagnoser : public VerifyICEDiagnoser { |
| public: |
| void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override { |
| S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR; |
| } |
| } Diagnoser; |
| |
| return VerifyIntegerConstantExpression(E, Result, Diagnoser); |
| } |
| |
| ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, |
| llvm::APSInt *Result, |
| unsigned DiagID, |
| bool AllowFold) { |
| class IDDiagnoser : public VerifyICEDiagnoser { |
| unsigned DiagID; |
| |
| public: |
| IDDiagnoser(unsigned DiagID) |
| : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { } |
| |
| void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override { |
| S.Diag(Loc, DiagID) << SR; |
| } |
| } Diagnoser(DiagID); |
| |
| return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold); |
| } |
| |
| void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc, |
| SourceRange SR) { |
| S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus; |
| } |
| |
| ExprResult |
| Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, |
| VerifyICEDiagnoser &Diagnoser, |
| bool AllowFold) { |
| SourceLocation DiagLoc = E->getLocStart(); |
| |
| if (getLangOpts().CPlusPlus11) { |
| // C++11 [expr.const]p5: |
| // If an expression of literal class type is used in a context where an |
| // integral constant expression is required, then that class type shall |
| // have a single non-explicit conversion function to an integral or |
| // unscoped enumeration type |
| ExprResult Converted; |
| class CXX11ConvertDiagnoser : public ICEConvertDiagnoser { |
| public: |
| CXX11ConvertDiagnoser(bool Silent) |
| : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, |
| Silent, true) {} |
| |
| SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
| QualType T) override { |
| return S.Diag(Loc, diag::err_ice_not_integral) << T; |
| } |
| |
| SemaDiagnosticBuilder diagnoseIncomplete( |
| Sema &S, SourceLocation Loc, QualType T) override { |
| return S.Diag(Loc, diag::err_ice_incomplete_type) << T; |
| } |
| |
| SemaDiagnosticBuilder diagnoseExplicitConv( |
| Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder noteExplicitConv( |
| Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder diagnoseAmbiguous( |
| Sema &S, SourceLocation Loc, QualType T) override { |
| return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T; |
| } |
| |
| SemaDiagnosticBuilder noteAmbiguous( |
| Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder diagnoseConversion( |
| Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| llvm_unreachable("conversion functions are permitted"); |
| } |
| } ConvertDiagnoser(Diagnoser.Suppress); |
| |
| Converted = PerformContextualImplicitConversion(DiagLoc, E, |
| ConvertDiagnoser); |
| if (Converted.isInvalid()) |
| return Converted; |
| E = Converted.get(); |
| if (!E->getType()->isIntegralOrUnscopedEnumerationType()) |
| return ExprError(); |
| } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { |
| // An ICE must be of integral or unscoped enumeration type. |
| if (!Diagnoser.Suppress) |
| Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange()); |
| return ExprError(); |
| } |
| |
| // Circumvent ICE checking in C++11 to avoid evaluating the expression twice |
| // in the non-ICE case. |
| if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) { |
| if (Result) |
| *Result = E->EvaluateKnownConstInt(Context); |
| return E; |
| } |
| |
| Expr::EvalResult EvalResult; |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| EvalResult.Diag = &Notes; |
| |
| // Try to evaluate the expression, and produce diagnostics explaining why it's |
| // not a constant expression as a side-effect. |
| bool Folded = E->EvaluateAsRValue(EvalResult, Context) && |
| EvalResult.Val.isInt() && !EvalResult.HasSideEffects; |
| |
| // In C++11, we can rely on diagnostics being produced for any expression |
| // which is not a constant expression. If no diagnostics were produced, then |
| // this is a constant expression. |
| if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) { |
| if (Result) |
| *Result = EvalResult.Val.getInt(); |
| return E; |
| } |
| |
| // If our only note is the usual "invalid subexpression" note, just point |
| // the caret at its location rather than producing an essentially |
| // redundant note. |
| if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
| diag::note_invalid_subexpr_in_const_expr) { |
| DiagLoc = Notes[0].first; |
| Notes.clear(); |
| } |
| |
| if (!Folded || !AllowFold) { |
| if (!Diagnoser.Suppress) { |
| Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange()); |
| for (const PartialDiagnosticAt &Note : Notes) |
| Diag(Note.first, Note.second); |
| } |
| |
| return ExprError(); |
| } |
| |
| Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange()); |
| for (const PartialDiagnosticAt &Note : Notes) |
| Diag(Note.first, Note.second); |
| |
| if (Result) |
| *Result = EvalResult.Val.getInt(); |
| return E; |
| } |
| |
| namespace { |
| // Handle the case where we conclude a expression which we speculatively |
| // considered to be unevaluated is actually evaluated. |
| class TransformToPE : public TreeTransform<TransformToPE> { |
| typedef TreeTransform<TransformToPE> BaseTransform; |
| |
| public: |
| TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { } |
| |
| // Make sure we redo semantic analysis |
| bool AlwaysRebuild() { return true; } |
| |
| // Make sure we handle LabelStmts correctly. |
| // FIXME: This does the right thing, but maybe we need a more general |
| // fix to TreeTransform? |
| StmtResult TransformLabelStmt(LabelStmt *S) { |
| S->getDecl()->setStmt(nullptr); |
| return BaseTransform::TransformLabelStmt(S); |
| } |
| |
| // We need to special-case DeclRefExprs referring to FieldDecls which |
| // are not part of a member pointer formation; normal TreeTransforming |
| // doesn't catch this case because of the way we represent them in the AST. |
| // FIXME: This is a bit ugly; is it really the best way to handle this |
| // case? |
| // |
| // Error on DeclRefExprs referring to FieldDecls. |
| ExprResult TransformDeclRefExpr(DeclRefExpr *E) { |
| if (isa<FieldDecl>(E->getDecl()) && |
| !SemaRef.isUnevaluatedContext()) |
| return SemaRef.Diag(E->getLocation(), |
| diag::err_invalid_non_static_member_use) |
| << E->getDecl() << E->getSourceRange(); |
| |
| return BaseTransform::TransformDeclRefExpr(E); |
| } |
| |
| // Exception: filter out member pointer formation |
| ExprResult TransformUnaryOperator(UnaryOperator *E) { |
| if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType()) |
| return E; |
| |
| return BaseTransform::TransformUnaryOperator(E); |
| } |
| |
| ExprResult TransformLambdaExpr(LambdaExpr *E) { |
| // Lambdas never need to be transformed. |
| return E; |
| } |
| }; |
| } |
| |
| ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) { |
| assert(isUnevaluatedContext() && |
| "Should only transform unevaluated expressions"); |
| ExprEvalContexts.back().Context = |
| ExprEvalContexts[ExprEvalContexts.size()-2].Context; |
| if (isUnevaluatedContext()) |
| return E; |
| return TransformToPE(*this).TransformExpr(E); |
| } |
| |
| void |
| Sema::PushExpressionEvaluationContext( |
| ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl, |
| ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { |
| ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup, |
| LambdaContextDecl, ExprContext); |
| Cleanup.reset(); |
| if (!MaybeODRUseExprs.empty()) |
| std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs); |
| } |
| |
| void |
| Sema::PushExpressionEvaluationContext( |
| ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, |
| ExpressionEvaluationContextRecord::ExpressionKind ExprContext) { |
| Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl; |
| PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext); |
| } |
| |
| void Sema::PopExpressionEvaluationContext() { |
| ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back(); |
| unsigned NumTypos = Rec.NumTypos; |
| |
| if (!Rec.Lambdas.empty()) { |
| using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind; |
| if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() || |
| (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) { |
| unsigned D; |
| if (Rec.isUnevaluated()) { |
| // C++11 [expr.prim.lambda]p2: |
| // A lambda-expression shall not appear in an unevaluated operand |
| // (Clause 5). |
| D = diag::err_lambda_unevaluated_operand; |
| } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) { |
| // C++1y [expr.const]p2: |
| // A conditional-expression e is a core constant expression unless the |
| // evaluation of e, following the rules of the abstract machine, would |
| // evaluate [...] a lambda-expression. |
| D = diag::err_lambda_in_constant_expression; |
| } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) { |
| // C++17 [expr.prim.lamda]p2: |
| // A lambda-expression shall not appear [...] in a template-argument. |
| D = diag::err_lambda_in_invalid_context; |
| } else |
| llvm_unreachable("Couldn't infer lambda error message."); |
| |
| for (const auto *L : Rec.Lambdas) |
| Diag(L->getLocStart(), D); |
| } else { |
| // Mark the capture expressions odr-used. This was deferred |
| // during lambda expression creation. |
| for (auto *Lambda : Rec.Lambdas) { |
| for (auto *C : Lambda->capture_inits()) |
| MarkDeclarationsReferencedInExpr(C); |
| } |
| } |
| } |
| |
| // When are coming out of an unevaluated context, clear out any |
| // temporaries that we may have created as part of the evaluation of |
| // the expression in that context: they aren't relevant because they |
| // will never be constructed. |
| if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) { |
| ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects, |
| ExprCleanupObjects.end()); |
| Cleanup = Rec.ParentCleanup; |
| CleanupVarDeclMarking(); |
| std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs); |
| // Otherwise, merge the contexts together. |
| } else { |
| Cleanup.mergeFrom(Rec.ParentCleanup); |
| MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(), |
| Rec.SavedMaybeODRUseExprs.end()); |
| } |
| |
| // Pop the current expression evaluation context off the stack. |
| ExprEvalContexts.pop_back(); |
| |
| if (!ExprEvalContexts.empty()) |
| ExprEvalContexts.back().NumTypos += NumTypos; |
| else |
| assert(NumTypos == 0 && "There are outstanding typos after popping the " |
| "last ExpressionEvaluationContextRecord"); |
| } |
| |
| void Sema::DiscardCleanupsInEvaluationContext() { |
| ExprCleanupObjects.erase( |
| ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects, |
| ExprCleanupObjects.end()); |
| Cleanup.reset(); |
| MaybeODRUseExprs.clear(); |
| } |
| |
| ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) { |
| if (!E->getType()->isVariablyModifiedType()) |
| return E; |
| return TransformToPotentiallyEvaluated(E); |
| } |
| |
| /// Are we within a context in which some evaluation could be performed (be it |
| /// constant evaluation or runtime evaluation)? Sadly, this notion is not quite |
| /// captured by C++'s idea of an "unevaluated context". |
| static bool isEvaluatableContext(Sema &SemaRef) { |
| switch (SemaRef.ExprEvalContexts.back().Context) { |
| case Sema::ExpressionEvaluationContext::Unevaluated: |
| case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: |
| // Expressions in this context are never evaluated. |
| return false; |
| |
| case Sema::ExpressionEvaluationContext::UnevaluatedList: |
| case Sema::ExpressionEvaluationContext::ConstantEvaluated: |
| case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: |
| case Sema::ExpressionEvaluationContext::DiscardedStatement: |
| // Expressions in this context could be evaluated. |
| return true; |
| |
| case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: |
| // Referenced declarations will only be used if the construct in the |
| // containing expression is used, at which point we'll be given another |
| // turn to mark them. |
| return false; |
| } |
| llvm_unreachable("Invalid context"); |
| } |
| |
| /// Are we within a context in which references to resolved functions or to |
| /// variables result in odr-use? |
| static bool isOdrUseContext(Sema &SemaRef, bool SkipDependentUses = true) { |
| // An expression in a template is not really an expression until it's been |
| // instantiated, so it doesn't trigger odr-use. |
| if (SkipDependentUses && SemaRef.CurContext->isDependentContext()) |
| return false; |
| |
| switch (SemaRef.ExprEvalContexts.back().Context) { |
| case Sema::ExpressionEvaluationContext::Unevaluated: |
| case Sema::ExpressionEvaluationContext::UnevaluatedList: |
| case Sema::ExpressionEvaluationContext::UnevaluatedAbstract: |
| case Sema::ExpressionEvaluationContext::DiscardedStatement: |
| return false; |
| |
| case Sema::ExpressionEvaluationContext::ConstantEvaluated: |
| case Sema::ExpressionEvaluationContext::PotentiallyEvaluated: |
| return true; |
| |
| case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: |
| return false; |
| } |
| llvm_unreachable("Invalid context"); |
| } |
| |
| static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) { |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func); |
| return Func->isConstexpr() && |
| (Func->isImplicitlyInstantiable() || (MD && !MD->isUserProvided())); |
| } |
| |
| /// Mark a function referenced, and check whether it is odr-used |
| /// (C++ [basic.def.odr]p2, C99 6.9p3) |
| void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, |
| bool MightBeOdrUse) { |
| assert(Func && "No function?"); |
| |
| Func->setReferenced(); |
| |
| // C++11 [basic.def.odr]p3: |
| // A function whose name appears as a potentially-evaluated expression is |
| // odr-used if it is the unique lookup result or the selected member of a |
| // set of overloaded functions [...]. |
| // |
| // We (incorrectly) mark overload resolution as an unevaluated context, so we |
| // can just check that here. |
| bool OdrUse = MightBeOdrUse && isOdrUseContext(*this); |
| |
| // Determine whether we require a function definition to exist, per |
| // C++11 [temp.inst]p3: |
| // Unless a function template specialization has been explicitly |
| // instantiated or explicitly specialized, the function template |
| // specialization is implicitly instantiated when the specialization is |
| // referenced in a context that requires a function definition to exist. |
| // |
| // That is either when this is an odr-use, or when a usage of a constexpr |
| // function occurs within an evaluatable context. |
| bool NeedDefinition = |
| OdrUse || (isEvaluatableContext(*this) && |
| isImplicitlyDefinableConstexprFunction(Func)); |
| |
| // C++14 [temp.expl.spec]p6: |
| // If a template [...] is explicitly specialized then that specialization |
| // shall be declared before the first use of that specialization that would |
| // cause an implicit instantiation to take place, in every translation unit |
| // in which such a use occurs |
| if (NeedDefinition && |
| (Func->getTemplateSpecializationKind() != TSK_Undeclared || |
| Func->getMemberSpecializationInfo())) |
| checkSpecializationVisibility(Loc, Func); |
| |
| // C++14 [except.spec]p17: |
| // An exception-specification is considered to be needed when: |
| // - the function is odr-used or, if it appears in an unevaluated operand, |
| // would be odr-used if the expression were potentially-evaluated; |
| // |
| // Note, we do this even if MightBeOdrUse is false. That indicates that the |
| // function is a pure virtual function we're calling, and in that case the |
| // function was selected by overload resolution and we need to resolve its |
| // exception specification for a different reason. |
| const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>(); |
| if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) |
| ResolveExceptionSpec(Loc, FPT); |
| |
| // If we don't need to mark the function as used, and we don't need to |
| // try to provide a definition, there's nothing more to do. |
| if ((Func->isUsed(/*CheckUsedAttr=*/false) || !OdrUse) && |
| (!NeedDefinition || Func->getBody())) |
| return; |
| |
| // Note that this declaration has been used. |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) { |
| Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl()); |
| if (Constructor->isDefaulted() && !Constructor->isDeleted()) { |
| if (Constructor->isDefaultConstructor()) { |
| if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>()) |
| return; |
| DefineImplicitDefaultConstructor(Loc, Constructor); |
| } else if (Constructor->isCopyConstructor()) { |
| DefineImplicitCopyConstructor(Loc, Constructor); |
| } else if (Constructor->isMoveConstructor()) { |
| DefineImplicitMoveConstructor(Loc, Constructor); |
| } |
| } else if (Constructor->getInheritedConstructor()) { |
| DefineInheritingConstructor(Loc, Constructor); |
| } |
| } else if (CXXDestructorDecl *Destructor = |
| dyn_cast<CXXDestructorDecl>(Func)) { |
| Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl()); |
| if (Destructor->isDefaulted() && !Destructor->isDeleted()) { |
| if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>()) |
| return; |
| DefineImplicitDestructor(Loc, Destructor); |
| } |
| if (Destructor->isVirtual() && getLangOpts().AppleKext) |
| MarkVTableUsed(Loc, Destructor->getParent()); |
| } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) { |
| if (MethodDecl->isOverloadedOperator() && |
| MethodDecl->getOverloadedOperator() == OO_Equal) { |
| MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl()); |
| if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) { |
| if (MethodDecl->isCopyAssignmentOperator()) |
| DefineImplicitCopyAssignment(Loc, MethodDecl); |
| else if (MethodDecl->isMoveAssignmentOperator()) |
| DefineImplicitMoveAssignment(Loc, MethodDecl); |
| } |
| } else if (isa<CXXConversionDecl>(MethodDecl) && |
| MethodDecl->getParent()->isLambda()) { |
| CXXConversionDecl *Conversion = |
| cast<CXXConversionDecl>(MethodDecl->getFirstDecl()); |
| if (Conversion->isLambdaToBlockPointerConversion()) |
| DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion); |
| else |
| DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion); |
| } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext) |
| MarkVTableUsed(Loc, MethodDecl->getParent()); |
| } |
| |
| // Recursive functions should be marked when used from another function. |
| // FIXME: Is this really right? |
| if (CurContext == Func) return; |
| |
| // Implicit instantiation of function templates and member functions of |
| // class templates. |
| if (Func->isImplicitlyInstantiable()) { |
| TemplateSpecializationKind TSK = Func->getTemplateSpecializationKind(); |
| SourceLocation PointOfInstantiation = Func->getPointOfInstantiation(); |
| bool FirstInstantiation = PointOfInstantiation.isInvalid(); |
| if (FirstInstantiation) { |
| PointOfInstantiation = Loc; |
| Func->setTemplateSpecializationKind(TSK, PointOfInstantiation); |
| } else if (TSK != TSK_ImplicitInstantiation) { |
| // Use the point of use as the point of instantiation, instead of the |
| // point of explicit instantiation (which we track as the actual point of |
| // instantiation). This gives better backtraces in diagnostics. |
| PointOfInstantiation = Loc; |
| } |
| |
| if (FirstInstantiation || TSK != TSK_ImplicitInstantiation || |
| Func->isConstexpr()) { |
| if (isa<CXXRecordDecl>(Func->getDeclContext()) && |
| cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() && |
| CodeSynthesisContexts.size()) |
| PendingLocalImplicitInstantiations.push_back( |
| std::make_pair(Func, PointOfInstantiation)); |
| else if (Func->isConstexpr()) |
| // Do not defer instantiations of constexpr functions, to avoid the |
| // expression evaluator needing to call back into Sema if it sees a |
| // call to such a function. |
| InstantiateFunctionDefinition(PointOfInstantiation, Func); |
| else { |
| Func->setInstantiationIsPending(true); |
| PendingInstantiations.push_back(std::make_pair(Func, |
| PointOfInstantiation)); |
| // Notify the consumer that a function was implicitly instantiated. |
| Consumer.HandleCXXImplicitFunctionInstantiation(Func); |
| } |
| } |
| } else { |
| // Walk redefinitions, as some of them may be instantiable. |
| for (auto i : Func->redecls()) { |
| if (!i->isUsed(false) && i->isImplicitlyInstantiable()) |
| MarkFunctionReferenced(Loc, i, OdrUse); |
| } |
| } |
| |
| if (!OdrUse) return; |
| |
| // Keep track of used but undefined functions. |
| if (!Func->isDefined()) { |
| if (mightHaveNonExternalLinkage(Func)) |
| UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); |
| else if (Func->getMostRecentDecl()->isInlined() && |
| !LangOpts.GNUInline && |
| !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>()) |
| UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); |
| else if (isExternalWithNoLinkageType(Func)) |
| UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc)); |
| } |
| |
| Func->markUsed(Context); |
| } |
| |
| static void |
| diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, |
| ValueDecl *var, DeclContext *DC) { |
| DeclContext *VarDC = var->getDeclContext(); |
| |
| // If the parameter still belongs to the translation unit, then |
| // we're actually just using one parameter in the declaration of |
| // the next. |
| if (isa<ParmVarDecl>(var) && |
| isa<TranslationUnitDecl>(VarDC)) |
| return; |
| |
| // For C code, don't diagnose about capture if we're not actually in code |
| // right now; it's impossible to write a non-constant expression outside of |
| // function context, so we'll get other (more useful) diagnostics later. |
| // |
| // For C++, things get a bit more nasty... it would be nice to suppress this |
| // diagnostic for certain cases like using a local variable in an array bound |
| // for a member of a local class, but the correct predicate is not obvious. |
| if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod()) |
| return; |
| |
| unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0; |
| unsigned ContextKind = 3; // unknown |
| if (isa<CXXMethodDecl>(VarDC) && |
| cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) { |
| ContextKind = 2; |
| } else if (isa<FunctionDecl>(VarDC)) { |
| ContextKind = 0; |
| } else if (isa<BlockDecl>(VarDC)) { |
| ContextKind = 1; |
| } |
| |
| S.Diag(loc, diag::err_reference_to_local_in_enclosing_context) |
| << var << ValueKind << ContextKind << VarDC; |
| S.Diag(var->getLocation(), diag::note_entity_declared_at) |
| << var; |
| |
| // FIXME: Add additional diagnostic info about class etc. which prevents |
| // capture. |
| } |
| |
| |
| static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var, |
| bool &SubCapturesAreNested, |
| QualType &CaptureType, |
| QualType &DeclRefType) { |
| // Check whether we've already captured it. |
| if (CSI->CaptureMap.count(Var)) { |
| // If we found a capture, any subcaptures are nested. |
| SubCapturesAreNested = true; |
| |
| // Retrieve the capture type for this variable. |
| CaptureType = CSI->getCapture(Var).getCaptureType(); |
| |
| // Compute the type of an expression that refers to this variable. |
| DeclRefType = CaptureType.getNonReferenceType(); |
| |
| // Similarly to mutable captures in lambda, all the OpenMP captures by copy |
| // are mutable in the sense that user can change their value - they are |
| // private instances of the captured declarations. |
| const Capture &Cap = CSI->getCapture(Var); |
| if (Cap.isCopyCapture() && |
| !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) && |
| !(isa<CapturedRegionScopeInfo>(CSI) && |
| cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP)) |
| DeclRefType.addConst(); |
| return true; |
| } |
| return false; |
| } |
| |
| // Only block literals, captured statements, and lambda expressions can |
| // capture; other scopes don't work. |
| static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var, |
| SourceLocation Loc, |
| const bool Diagnose, Sema &S) { |
| if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC)) |
| return getLambdaAwareParentOfDeclContext(DC); |
| else if (Var->hasLocalStorage()) { |
| if (Diagnose) |
| diagnoseUncapturableValueReference(S, Loc, Var, DC); |
| } |
| return nullptr; |
| } |
| |
| // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture |
| // certain types of variables (unnamed, variably modified types etc.) |
| // so check for eligibility. |
| static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var, |
| SourceLocation Loc, |
| const bool Diagnose, Sema &S) { |
| |
| bool IsBlock = isa<BlockScopeInfo>(CSI); |
| bool IsLambda = isa<LambdaScopeInfo>(CSI); |
| |
| // Lambdas are not allowed to capture unnamed variables |
| // (e.g. anonymous unions). |
| // FIXME: The C++11 rule don't actually state this explicitly, but I'm |
| // assuming that's the intent. |
| if (IsLambda && !Var->getDeclName()) { |
| if (Diagnose) { |
| S.Diag(Loc, diag::err_lambda_capture_anonymous_var); |
| S.Diag(Var->getLocation(), diag::note_declared_at); |
| } |
| return false; |
| } |
| |
| // Prohibit variably-modified types in blocks; they're difficult to deal with. |
| if (Var->getType()->isVariablyModifiedType() && IsBlock) { |
| if (Diagnose) { |
| S.Diag(Loc, diag::err_ref_vm_type); |
| S.Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| } |
| return false; |
| } |
| // Prohibit structs with flexible array members too. |
| // We cannot capture what is in the tail end of the struct. |
| if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) { |
| if (VTTy->getDecl()->hasFlexibleArrayMember()) { |
| if (Diagnose) { |
| if (IsBlock) |
| S.Diag(Loc, diag::err_ref_flexarray_type); |
| else |
| S.Diag(Loc, diag::err_lambda_capture_flexarray_type) |
| << Var->getDeclName(); |
| S.Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| } |
| return false; |
| } |
| } |
| const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); |
| // Lambdas and captured statements are not allowed to capture __block |
| // variables; they don't support the expected semantics. |
| if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) { |
| if (Diagnose) { |
| S.Diag(Loc, diag::err_capture_block_variable) |
| << Var->getDeclName() << !IsLambda; |
| S.Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| } |
| return false; |
| } |
| // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks |
| if (S.getLangOpts().OpenCL && IsBlock && |
| Var->getType()->isBlockPointerType()) { |
| if (Diagnose) |
| S.Diag(Loc, diag::err_opencl_block_ref_block); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Returns true if the capture by block was successful. |
| static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var, |
| SourceLocation Loc, |
| const bool BuildAndDiagnose, |
| QualType &CaptureType, |
| QualType &DeclRefType, |
| const bool Nested, |
| Sema &S) { |
| Expr *CopyExpr = nullptr; |
| bool ByRef = false; |
| |
| // Blocks are not allowed to capture arrays. |
| if (CaptureType->isArrayType()) { |
| if (BuildAndDiagnose) { |
| S.Diag(Loc, diag::err_ref_array_type); |
| S.Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| } |
| return false; |
| } |
| |
| // Forbid the block-capture of autoreleasing variables. |
| if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { |
| if (BuildAndDiagnose) { |
| S.Diag(Loc, diag::err_arc_autoreleasing_capture) |
| << /*block*/ 0; |
| S.Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| } |
| return false; |
| } |
| |
| // Warn about implicitly autoreleasing indirect parameters captured by blocks. |
| if (const auto *PT = CaptureType->getAs<PointerType>()) { |
| // This function finds out whether there is an AttributedType of kind |
| // attr_objc_ownership in Ty. The existence of AttributedType of kind |
| // attr_objc_ownership implies __autoreleasing was explicitly specified |
| // rather than being added implicitly by the compiler. |
| auto IsObjCOwnershipAttributedType = [](QualType Ty) { |
| while (const auto *AttrTy = Ty->getAs<AttributedType>()) { |
| if (AttrTy->getAttrKind() == AttributedType::attr_objc_ownership) |
| return true; |
| |
| // Peel off AttributedTypes that are not of kind objc_ownership. |
| Ty = AttrTy->getModifiedType(); |
| } |
| |
| return false; |
| }; |
| |
| QualType PointeeTy = PT->getPointeeType(); |
| |
| if (PointeeTy->getAs<ObjCObjectPointerType>() && |
| PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing && |
| !IsObjCOwnershipAttributedType(PointeeTy)) { |
| if (BuildAndDiagnose) { |
| SourceLocation VarLoc = Var->getLocation(); |
| S.Diag(Loc, diag::warn_block_capture_autoreleasing); |
| S.Diag(VarLoc, diag::note_declare_parameter_strong); |
| } |
| } |
| } |
| |
| const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>(); |
| if (HasBlocksAttr || CaptureType->isReferenceType() || |
| (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) { |
| // Block capture by reference does not change the capture or |
| // declaration reference types. |
| ByRef = true; |
| } else { |
| // Block capture by copy introduces 'const'. |
| CaptureType = CaptureType.getNonReferenceType().withConst(); |
| DeclRefType = CaptureType; |
| |
| if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) { |
| if (const RecordType *Record = DeclRefType->getAs<RecordType>()) { |
| // The capture logic needs the destructor, so make sure we mark it. |
| // Usually this is unnecessary because most local variables have |
| // their destructors marked at declaration time, but parameters are |
| // an exception because it's technically only the call site that |
| // actually requires the destructor. |
| if (isa<ParmVarDecl>(Var)) |
| S.FinalizeVarWithDestructor(Var, Record); |
| |
| // Enter a new evaluation context to insulate the copy |
| // full-expression. |
| EnterExpressionEvaluationContext scope( |
| S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| |
| // According to the blocks spec, the capture of a variable from |
| // the stack requires a const copy constructor. This is not true |
| // of the copy/move done to move a __block variable to the heap. |
| Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested, |
| DeclRefType.withConst(), |
| VK_LValue, Loc); |
| |
| ExprResult Result |
| = S.PerformCopyInitialization( |
| InitializedEntity::InitializeBlock(Var->getLocation(), |
| CaptureType, false), |
| Loc, DeclRef); |
| |
| // Build a full-expression copy expression if initialization |
| // succeeded and used a non-trivial constructor. Recover from |
| // errors by pretending that the copy isn't necessary. |
| if (!Result.isInvalid() && |
| !cast<CXXConstructExpr>(Result.get())->getConstructor() |
| ->isTrivial()) { |
| Result = S.MaybeCreateExprWithCleanups(Result); |
| CopyExpr = Result.get(); |
| } |
| } |
| } |
| } |
| |
| // Actually capture the variable. |
| if (BuildAndDiagnose) |
| BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, |
| SourceLocation(), CaptureType, CopyExpr); |
| |
| return true; |
| |
| } |
| |
| |
| /// Capture the given variable in the captured region. |
| static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI, |
| VarDecl *Var, |
| SourceLocation Loc, |
| const bool BuildAndDiagnose, |
| QualType &CaptureType, |
| QualType &DeclRefType, |
| const bool RefersToCapturedVariable, |
| Sema &S) { |
| // By default, capture variables by reference. |
| bool ByRef = true; |
| // Using an LValue reference type is consistent with Lambdas (see below). |
| if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) { |
| if (S.isOpenMPCapturedDecl(Var)) { |
| bool HasConst = DeclRefType.isConstQualified(); |
| DeclRefType = DeclRefType.getUnqualifiedType(); |
| // Don't lose diagnostics about assignments to const. |
| if (HasConst) |
| DeclRefType.addConst(); |
| } |
| ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel); |
| } |
| |
| if (ByRef) |
| CaptureType = S.Context.getLValueReferenceType(DeclRefType); |
| else |
| CaptureType = DeclRefType; |
| |
| Expr *CopyExpr = nullptr; |
| if (BuildAndDiagnose) { |
| // The current implementation assumes that all variables are captured |
| // by references. Since there is no capture by copy, no expression |
| // evaluation will be needed. |
| RecordDecl *RD = RSI->TheRecordDecl; |
| |
| FieldDecl *Field |
| = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType, |
| S.Context.getTrivialTypeSourceInfo(CaptureType, Loc), |
| nullptr, false, ICIS_NoInit); |
| Field->setImplicit(true); |
| Field->setAccess(AS_private); |
| RD->addDecl(Field); |
| if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) |
| S.setOpenMPCaptureKind(Field, Var, RSI->OpenMPLevel); |
| |
| CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable, |
| DeclRefType, VK_LValue, Loc); |
| Var->setReferenced(true); |
| Var->markUsed(S.Context); |
| } |
| |
| // Actually capture the variable. |
| if (BuildAndDiagnose) |
| RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc, |
| SourceLocation(), CaptureType, CopyExpr); |
| |
| |
| return true; |
| } |
| |
| /// Create a field within the lambda class for the variable |
| /// being captured. |
| static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI, |
| QualType FieldType, QualType DeclRefType, |
| SourceLocation Loc, |
| bool RefersToCapturedVariable) { |
| CXXRecordDecl *Lambda = LSI->Lambda; |
| |
| // Build the non-static data member. |
| FieldDecl *Field |
| = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType, |
| S.Context.getTrivialTypeSourceInfo(FieldType, Loc), |
| nullptr, false, ICIS_NoInit); |
| Field->setImplicit(true); |
| Field->setAccess(AS_private); |
| Lambda->addDecl(Field); |
| } |
| |
| /// Capture the given variable in the lambda. |
| static bool captureInLambda(LambdaScopeInfo *LSI, |
| VarDecl *Var, |
| SourceLocation Loc, |
| const bool BuildAndDiagnose, |
| QualType &CaptureType, |
| QualType &DeclRefType, |
| const bool RefersToCapturedVariable, |
| const Sema::TryCaptureKind Kind, |
| SourceLocation EllipsisLoc, |
| const bool IsTopScope, |
| Sema &S) { |
| |
| // Determine whether we are capturing by reference or by value. |
| bool ByRef = false; |
| if (IsTopScope && Kind != Sema::TryCapture_Implicit) { |
| ByRef = (Kind == Sema::TryCapture_ExplicitByRef); |
| } else { |
| ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref); |
| } |
| |
| // Compute the type of the field that will capture this variable. |
| if (ByRef) { |
| // C++11 [expr.prim.lambda]p15: |
| // An entity is captured by reference if it is implicitly or |
| // explicitly captured but not captured by copy. It is |
| // unspecified whether additional unnamed non-static data |
| // members are declared in the closure type for entities |
| // captured by reference. |
| // |
| // FIXME: It is not clear whether we want to build an lvalue reference |
| // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears |
| // to do the former, while EDG does the latter. Core issue 1249 will |
| // clarify, but for now we follow GCC because it's a more permissive and |
| // easily defensible position. |
| CaptureType = S.Context.getLValueReferenceType(DeclRefType); |
| } else { |
| // C++11 [expr.prim.lambda]p14: |
| // For each entity captured by copy, an unnamed non-static |
| // data member is declared in the closure type. The |
| // declaration order of these members is unspecified. The type |
| // of such a data member is the type of the corresponding |
| // captured entity if the entity is not a reference to an |
| // object, or the referenced type otherwise. [Note: If the |
| // captured entity is a reference to a function, the |
| // corresponding data member is also a reference to a |
| // function. - end note ] |
| if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){ |
| if (!RefType->getPointeeType()->isFunctionType()) |
| CaptureType = RefType->getPointeeType(); |
| } |
| |
| // Forbid the lambda copy-capture of autoreleasing variables. |
| if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) { |
| if (BuildAndDiagnose) { |
| S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1; |
| S.Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| } |
| return false; |
| } |
| |
| // Make sure that by-copy captures are of a complete and non-abstract type. |
| if (BuildAndDiagnose) { |
| if (!CaptureType->isDependentType() && |
| S.RequireCompleteType(Loc, CaptureType, |
| diag::err_capture_of_incomplete_type, |
| Var->getDeclName())) |
| return false; |
| |
| if (S.RequireNonAbstractType(Loc, CaptureType, |
| diag::err_capture_of_abstract_type)) |
| return false; |
| } |
| } |
| |
| // Capture this variable in the lambda. |
| if (BuildAndDiagnose) |
| addAsFieldToClosureType(S, LSI, CaptureType, DeclRefType, Loc, |
| RefersToCapturedVariable); |
| |
| // Compute the type of a reference to this captured variable. |
| if (ByRef) |
| DeclRefType = CaptureType.getNonReferenceType(); |
| else { |
| // C++ [expr.prim.lambda]p5: |
| // The closure type for a lambda-expression has a public inline |
| // function call operator [...]. This function call operator is |
| // declared const (9.3.1) if and only if the lambda-expression's |
| // parameter-declaration-clause is not followed by mutable. |
| DeclRefType = CaptureType.getNonReferenceType(); |
| if (!LSI->Mutable && !CaptureType->isReferenceType()) |
| DeclRefType.addConst(); |
| } |
| |
| // Add the capture. |
| if (BuildAndDiagnose) |
| LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable, |
| Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr); |
| |
| return true; |
| } |
| |
| bool Sema::tryCaptureVariable( |
| VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind, |
| SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, |
| QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) { |
| // An init-capture is notionally from the context surrounding its |
| // declaration, but its parent DC is the lambda class. |
| DeclContext *VarDC = Var->getDeclContext(); |
| if (Var->isInitCapture()) |
| VarDC = VarDC->getParent(); |
| |
| DeclContext *DC = CurContext; |
| const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt |
| ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; |
| // We need to sync up the Declaration Context with the |
| // FunctionScopeIndexToStopAt |
| if (FunctionScopeIndexToStopAt) { |
| unsigned FSIndex = FunctionScopes.size() - 1; |
| while (FSIndex != MaxFunctionScopesIndex) { |
| DC = getLambdaAwareParentOfDeclContext(DC); |
| --FSIndex; |
| } |
| } |
| |
| |
| // If the variable is declared in the current context, there is no need to |
| // capture it. |
| if (VarDC == DC) return true; |
| |
| // Capture global variables if it is required to use private copy of this |
| // variable. |
| bool IsGlobal = !Var->hasLocalStorage(); |
| if (IsGlobal && !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var))) |
| return true; |
| Var = Var->getCanonicalDecl(); |
| |
| // Walk up the stack to determine whether we can capture the variable, |
| // performing the "simple" checks that don't depend on type. We stop when |
| // we've either hit the declared scope of the variable or find an existing |
| // capture of that variable. We start from the innermost capturing-entity |
| // (the DC) and ensure that all intervening capturing-entities |
| // (blocks/lambdas etc.) between the innermost capturer and the variable`s |
| // declcontext can either capture the variable or have already captured |
| // the variable. |
| CaptureType = Var->getType(); |
| DeclRefType = CaptureType.getNonReferenceType(); |
| bool Nested = false; |
| bool Explicit = (Kind != TryCapture_Implicit); |
| unsigned FunctionScopesIndex = MaxFunctionScopesIndex; |
| do { |
| // Only block literals, captured statements, and lambda expressions can |
| // capture; other scopes don't work. |
| DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var, |
| ExprLoc, |
| BuildAndDiagnose, |
| *this); |
| // We need to check for the parent *first* because, if we *have* |
| // private-captured a global variable, we need to recursively capture it in |
| // intermediate blocks, lambdas, etc. |
| if (!ParentDC) { |
| if (IsGlobal) { |
| FunctionScopesIndex = MaxFunctionScopesIndex - 1; |
| break; |
| } |
| return true; |
| } |
| |
| FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex]; |
| CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI); |
| |
| |
| // Check whether we've already captured it. |
| if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType, |
| DeclRefType)) { |
| CSI->getCapture(Var).markUsed(BuildAndDiagnose); |
| break; |
| } |
| // If we are instantiating a generic lambda call operator body, |
| // we do not want to capture new variables. What was captured |
| // during either a lambdas transformation or initial parsing |
| // should be used. |
| if (isGenericLambdaCallOperatorSpecialization(DC)) { |
| if (BuildAndDiagnose) { |
| LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); |
| if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) { |
| Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName(); |
| Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl); |
| } else |
| diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC); |
| } |
| return true; |
| } |
| // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture |
| // certain types of variables (unnamed, variably modified types etc.) |
| // so check for eligibility. |
| if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this)) |
| return true; |
| |
| // Try to capture variable-length arrays types. |
| if (Var->getType()->isVariablyModifiedType()) { |
| // We're going to walk down into the type and look for VLA |
| // expressions. |
| QualType QTy = Var->getType(); |
| if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var)) |
| QTy = PVD->getOriginalType(); |
| captureVariablyModifiedType(Context, QTy, CSI); |
| } |
| |
| if (getLangOpts().OpenMP) { |
| if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { |
| // OpenMP private variables should not be captured in outer scope, so |
| // just break here. Similarly, global variables that are captured in a |
| // target region should not be captured outside the scope of the region. |
| if (RSI->CapRegionKind == CR_OpenMP) { |
| bool IsOpenMPPrivateDecl = isOpenMPPrivateDecl(Var, RSI->OpenMPLevel); |
| auto IsTargetCap = !IsOpenMPPrivateDecl && |
| isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel); |
| // When we detect target captures we are looking from inside the |
| // target region, therefore we need to propagate the capture from the |
| // enclosing region. Therefore, the capture is not initially nested. |
| if (IsTargetCap) |
| adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel); |
| |
| if (IsTargetCap || IsOpenMPPrivateDecl) { |
| Nested = !IsTargetCap; |
| DeclRefType = DeclRefType.getUnqualifiedType(); |
| CaptureType = Context.getLValueReferenceType(DeclRefType); |
| break; |
| } |
| } |
| } |
| } |
| if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) { |
| // No capture-default, and this is not an explicit capture |
| // so cannot capture this variable. |
| if (BuildAndDiagnose) { |
| Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName(); |
| Diag(Var->getLocation(), diag::note_previous_decl) |
| << Var->getDeclName(); |
| if (cast<LambdaScopeInfo>(CSI)->Lambda) |
| Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(), |
| diag::note_lambda_decl); |
| // FIXME: If we error out because an outer lambda can not implicitly |
| // capture a variable that an inner lambda explicitly captures, we |
| // should have the inner lambda do the explicit capture - because |
| // it makes for cleaner diagnostics later. This would purely be done |
| // so that the diagnostic does not misleadingly claim that a variable |
| // can not be captured by a lambda implicitly even though it is captured |
| // explicitly. Suggestion: |
| // - create const bool VariableCaptureWasInitiallyExplicit = Explicit |
| // at the function head |
| // - cache the StartingDeclContext - this must be a lambda |
| // - captureInLambda in the innermost lambda the variable. |
| } |
| return true; |
| } |
| |
| FunctionScopesIndex--; |
| DC = ParentDC; |
| Explicit = false; |
| } while (!VarDC->Equals(DC)); |
| |
| // Walk back down the scope stack, (e.g. from outer lambda to inner lambda) |
| // computing the type of the capture at each step, checking type-specific |
| // requirements, and adding captures if requested. |
| // If the variable had already been captured previously, we start capturing |
| // at the lambda nested within that one. |
| for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N; |
| ++I) { |
| CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]); |
| |
| if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) { |
| if (!captureInBlock(BSI, Var, ExprLoc, |
| BuildAndDiagnose, CaptureType, |
| DeclRefType, Nested, *this)) |
| return true; |
| Nested = true; |
| } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) { |
| if (!captureInCapturedRegion(RSI, Var, ExprLoc, |
| BuildAndDiagnose, CaptureType, |
| DeclRefType, Nested, *this)) |
| return true; |
| Nested = true; |
| } else { |
| LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI); |
| if (!captureInLambda(LSI, Var, ExprLoc, |
| BuildAndDiagnose, CaptureType, |
| DeclRefType, Nested, Kind, EllipsisLoc, |
| /*IsTopScope*/I == N - 1, *this)) |
| return true; |
| Nested = true; |
| } |
| } |
| return false; |
| } |
| |
| bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc, |
| TryCaptureKind Kind, SourceLocation EllipsisLoc) { |
| QualType CaptureType; |
| QualType DeclRefType; |
| return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc, |
| /*BuildAndDiagnose=*/true, CaptureType, |
| DeclRefType, nullptr); |
| } |
| |
| bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) { |
| QualType CaptureType; |
| QualType DeclRefType; |
| return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), |
| /*BuildAndDiagnose=*/false, CaptureType, |
| DeclRefType, nullptr); |
| } |
| |
| QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) { |
| QualType CaptureType; |
| QualType DeclRefType; |
| |
| // Determine whether we can capture this variable. |
| if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(), |
| /*BuildAndDiagnose=*/false, CaptureType, |
| DeclRefType, nullptr)) |
| return QualType(); |
| |
| return DeclRefType; |
| } |
| |
| |
| |
| // If either the type of the variable or the initializer is dependent, |
| // return false. Otherwise, determine whether the variable is a constant |
| // expression. Use this if you need to know if a variable that might or |
| // might not be dependent is truly a constant expression. |
| static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var, |
| ASTContext &Context) { |
| |
| if (Var->getType()->isDependentType()) |
| return false; |
| const VarDecl *DefVD = nullptr; |
| Var->getAnyInitializer(DefVD); |
| if (!DefVD) |
| return false; |
| EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); |
| Expr *Init = cast<Expr>(Eval->Value); |
| if (Init->isValueDependent()) |
| return false; |
| return IsVariableAConstantExpression(Var, Context); |
| } |
| |
| |
| void Sema::UpdateMarkingForLValueToRValue(Expr *E) { |
| // Per C++11 [basic.def.odr], a variable is odr-used "unless it is |
| // an object that satisfies the requirements for appearing in a |
| // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1) |
| // is immediately applied." This function handles the lvalue-to-rvalue |
| // conversion part. |
| MaybeODRUseExprs.erase(E->IgnoreParens()); |
| |
| // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers |
| // to a variable that is a constant expression, and if so, identify it as |
| // a reference to a variable that does not involve an odr-use of that |
| // variable. |
| if (LambdaScopeInfo *LSI = getCurLambda()) { |
| Expr *SansParensExpr = E->IgnoreParens(); |
| VarDecl *Var = nullptr; |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr)) |
| Var = dyn_cast<VarDecl>(DRE->getFoundDecl()); |
| else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr)) |
| Var = dyn_cast<VarDecl>(ME->getMemberDecl()); |
| |
| if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context)) |
| LSI->markVariableExprAsNonODRUsed(SansParensExpr); |
| } |
| } |
| |
| ExprResult Sema::ActOnConstantExpression(ExprResult Res) { |
| Res = CorrectDelayedTyposInExpr(Res); |
| |
| if (!Res.isUsable()) |
| return Res; |
| |
| // If a constant-expression is a reference to a variable where we delay |
| // deciding whether it is an odr-use, just assume we will apply the |
| // lvalue-to-rvalue conversion. In the one case where this doesn't happen |
| // (a non-type template argument), we have special handling anyway. |
| UpdateMarkingForLValueToRValue(Res.get()); |
| return Res; |
| } |
| |
| void Sema::CleanupVarDeclMarking() { |
| for (Expr *E : MaybeODRUseExprs) { |
| VarDecl *Var; |
| SourceLocation Loc; |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| Var = cast<VarDecl>(DRE->getDecl()); |
| Loc = DRE->getLocation(); |
| } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
| Var = cast<VarDecl>(ME->getMemberDecl()); |
| Loc = ME->getMemberLoc(); |
| } else { |
| llvm_unreachable("Unexpected expression"); |
| } |
| |
| MarkVarDeclODRUsed(Var, Loc, *this, |
| /*MaxFunctionScopeIndex Pointer*/ nullptr); |
| } |
| |
| MaybeODRUseExprs.clear(); |
| } |
| |
| |
| static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc, |
| VarDecl *Var, Expr *E) { |
| assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) && |
| "Invalid Expr argument to DoMarkVarDeclReferenced"); |
| Var->setReferenced(); |
| |
| TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind(); |
| |
| bool OdrUseContext = isOdrUseContext(SemaRef); |
| bool UsableInConstantExpr = |
| Var->isUsableInConstantExpressions(SemaRef.Context); |
| bool NeedDefinition = |
| OdrUseContext || (isEvaluatableContext(SemaRef) && UsableInConstantExpr); |
| |
| VarTemplateSpecializationDecl *VarSpec = |
| dyn_cast<VarTemplateSpecializationDecl>(Var); |
| assert(!isa<VarTemplatePartialSpecializationDecl>(Var) && |
| "Can't instantiate a partial template specialization."); |
| |
| // If this might be a member specialization of a static data member, check |
| // the specialization is visible. We already did the checks for variable |
| // template specializations when we created them. |
| if (NeedDefinition && TSK != TSK_Undeclared && |
| !isa<VarTemplateSpecializationDecl>(Var)) |
| SemaRef.checkSpecializationVisibility(Loc, Var); |
| |
| // Perform implicit instantiation of static data members, static data member |
| // templates of class templates, and variable template specializations. Delay |
| // instantiations of variable templates, except for those that could be used |
| // in a constant expression. |
| if (NeedDefinition && isTemplateInstantiation(TSK)) { |
| // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit |
| // instantiation declaration if a variable is usable in a constant |
| // expression (among other cases). |
| bool TryInstantiating = |
| TSK == TSK_ImplicitInstantiation || |
| (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr); |
| |
| if (TryInstantiating) { |
| SourceLocation PointOfInstantiation = Var->getPointOfInstantiation(); |
| bool FirstInstantiation = PointOfInstantiation.isInvalid(); |
| if (FirstInstantiation) { |
| PointOfInstantiation = Loc; |
| Var->setTemplateSpecializationKind(TSK, PointOfInstantiation); |
| } |
| |
| bool InstantiationDependent = false; |
| bool IsNonDependent = |
| VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments( |
| VarSpec->getTemplateArgsInfo(), InstantiationDependent) |
| : true; |
| |
| // Do not instantiate specializations that are still type-dependent. |
| if (IsNonDependent) { |
| if (UsableInConstantExpr) { |
| // Do not defer instantiations of variables that could be used in a |
| // constant expression. |
| SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var); |
| } else if (FirstInstantiation || |
| isa<VarTemplateSpecializationDecl>(Var)) { |
| // FIXME: For a specialization of a variable template, we don't |
| // distinguish between "declaration and type implicitly instantiated" |
| // and "implicit instantiation of definition requested", so we have |
| // no direct way to avoid enqueueing the pending instantiation |
| // multiple times. |
| SemaRef.PendingInstantiations |
| .push_back(std::make_pair(Var, PointOfInstantiation)); |
| } |
| } |
| } |
| } |
| |
| // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies |
| // the requirements for appearing in a constant expression (5.19) and, if |
| // it is an object, the lvalue-to-rvalue conversion (4.1) |
| // is immediately applied." We check the first part here, and |
| // Sema::UpdateMarkingForLValueToRValue deals with the second part. |
| // Note that we use the C++11 definition everywhere because nothing in |
| // C++03 depends on whether we get the C++03 version correct. The second |
| // part does not apply to references, since they are not objects. |
| if (OdrUseContext && E && |
| IsVariableAConstantExpression(Var, SemaRef.Context)) { |
| // A reference initialized by a constant expression can never be |
| // odr-used, so simply ignore it. |
| if (!Var->getType()->isReferenceType() || |
| (SemaRef.LangOpts.OpenMP && SemaRef.isOpenMPCapturedDecl(Var))) |
| SemaRef.MaybeODRUseExprs.insert(E); |
| } else if (OdrUseContext) { |
| MarkVarDeclODRUsed(Var, Loc, SemaRef, |
| /*MaxFunctionScopeIndex ptr*/ nullptr); |
| } else if (isOdrUseContext(SemaRef, /*SkipDependentUses*/false)) { |
| // If this is a dependent context, we don't need to mark variables as |
| // odr-used, but we may still need to track them for lambda capture. |
| // FIXME: Do we also need to do this inside dependent typeid expressions |
| // (which are modeled as unevaluated at this point)? |
| const bool RefersToEnclosingScope = |
| (SemaRef.CurContext != Var->getDeclContext() && |
| Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage()); |
| if (RefersToEnclosingScope) { |
| LambdaScopeInfo *const LSI = |
| SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true); |
| if (LSI && (!LSI->CallOperator || |
| !LSI->CallOperator->Encloses(Var->getDeclContext()))) { |
| // If a variable could potentially be odr-used, defer marking it so |
| // until we finish analyzing the full expression for any |
| // lvalue-to-rvalue |
| // or discarded value conversions that would obviate odr-use. |
| // Add it to the list of potential captures that will be analyzed |
| // later (ActOnFinishFullExpr) for eventual capture and odr-use marking |
| // unless the variable is a reference that was initialized by a constant |
| // expression (this will never need to be captured or odr-used). |
| assert(E && "Capture variable should be used in an expression."); |
| if (!Var->getType()->isReferenceType() || |
| !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context)) |
| LSI->addPotentialCapture(E->IgnoreParens()); |
| } |
| } |
| } |
| } |
| |
| /// Mark a variable referenced, and check whether it is odr-used |
| /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be |
| /// used directly for normal expressions referring to VarDecl. |
| void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) { |
| DoMarkVarDeclReferenced(*this, Loc, Var, nullptr); |
| } |
| |
| static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, |
| Decl *D, Expr *E, bool MightBeOdrUse) { |
| if (SemaRef.isInOpenMPDeclareTargetContext()) |
| SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D); |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(D)) { |
| DoMarkVarDeclReferenced(SemaRef, Loc, Var, E); |
| return; |
| } |
| |
| SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse); |
| |
| // If this is a call to a method via a cast, also mark the method in the |
| // derived class used in case codegen can devirtualize the call. |
| const MemberExpr *ME = dyn_cast<MemberExpr>(E); |
| if (!ME) |
| return; |
| CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); |
| if (!MD) |
| return; |
| // Only attempt to devirtualize if this is truly a virtual call. |
| bool IsVirtualCall = MD->isVirtual() && |
| ME->performsVirtualDispatch(SemaRef.getLangOpts()); |
| if (!IsVirtualCall) |
| return; |
| |
| // If it's possible to devirtualize the call, mark the called function |
| // referenced. |
| CXXMethodDecl *DM = MD->getDevirtualizedMethod( |
| ME->getBase(), SemaRef.getLangOpts().AppleKext); |
| if (DM) |
| SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse); |
| } |
| |
| /// Perform reference-marking and odr-use handling for a DeclRefExpr. |
| void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) { |
| // TODO: update this with DR# once a defect report is filed. |
| // C++11 defect. The address of a pure member should not be an ODR use, even |
| // if it's a qualified reference. |
| bool OdrUse = true; |
| if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl())) |
| if (Method->isVirtual() && |
| !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) |
| OdrUse = false; |
| MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse); |
| } |
| |
| /// Perform reference-marking and odr-use handling for a MemberExpr. |
| void Sema::MarkMemberReferenced(MemberExpr *E) { |
| // C++11 [basic.def.odr]p2: |
| // A non-overloaded function whose name appears as a potentially-evaluated |
| // expression or a member of a set of candidate functions, if selected by |
| // overload resolution when referred to from a potentially-evaluated |
| // expression, is odr-used, unless it is a pure virtual function and its |
| // name is not explicitly qualified. |
| bool MightBeOdrUse = true; |
| if (E->performsVirtualDispatch(getLangOpts())) { |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) |
| if (Method->isPure()) |
| MightBeOdrUse = false; |
| } |
| SourceLocation Loc = E->getMemberLoc().isValid() ? |
| E->getMemberLoc() : E->getLocStart(); |
| MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse); |
| } |
| |
| /// Perform marking for a reference to an arbitrary declaration. It |
| /// marks the declaration referenced, and performs odr-use checking for |
| /// functions and variables. This method should not be used when building a |
| /// normal expression which refers to a variable. |
| void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, |
| bool MightBeOdrUse) { |
| if (MightBeOdrUse) { |
| if (auto *VD = dyn_cast<VarDecl>(D)) { |
| MarkVariableReferenced(Loc, VD); |
| return; |
| } |
| } |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
| MarkFunctionReferenced(Loc, FD, MightBeOdrUse); |
| return; |
| } |
| D->setReferenced(); |
| } |
| |
| namespace { |
| // Mark all of the declarations used by a type as referenced. |
| // FIXME: Not fully implemented yet! We need to have a better understanding |
| // of when we're entering a context we should not recurse into. |
| // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to |
| // TreeTransforms rebuilding the type in a new context. Rather than |
| // duplicating the TreeTransform logic, we should consider reusing it here. |
| // Currently that causes problems when rebuilding LambdaExprs. |
| class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { |
| Sema &S; |
| SourceLocation Loc; |
| |
| public: |
| typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; |
| |
| MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } |
| |
| bool TraverseTemplateArgument(const TemplateArgument &Arg); |
| }; |
| } |
| |
| bool MarkReferencedDecls::TraverseTemplateArgument( |
| const TemplateArgument &Arg) { |
| { |
| // A non-type template argument is a constant-evaluated context. |
| EnterExpressionEvaluationContext Evaluated( |
| S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| if (Arg.getKind() == TemplateArgument::Declaration) { |
| if (Decl *D = Arg.getAsDecl()) |
| S.MarkAnyDeclReferenced(Loc, D, true); |
| } else if (Arg.getKind() == TemplateArgument::Expression) { |
| S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false); |
| } |
| } |
| |
| return Inherited::TraverseTemplateArgument(Arg); |
| } |
| |
| void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { |
| MarkReferencedDecls Marker(*this, Loc); |
| Marker.TraverseType(T); |
| } |
| |
| namespace { |
| /// Helper class that marks all of the declarations referenced by |
| /// potentially-evaluated subexpressions as "referenced". |
| class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> { |
| Sema &S; |
| bool SkipLocalVariables; |
| |
| public: |
| typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited; |
| |
| EvaluatedExprMarker(Sema &S, bool SkipLocalVariables) |
| : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { } |
| |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| // If we were asked not to visit local variables, don't. |
| if (SkipLocalVariables) { |
| if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) |
| if (VD->hasLocalStorage()) |
| return; |
| } |
| |
| S.MarkDeclRefReferenced(E); |
| } |
| |
| void VisitMemberExpr(MemberExpr *E) { |
| S.MarkMemberReferenced(E); |
| Inherited::VisitMemberExpr(E); |
| } |
| |
| void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
| S.MarkFunctionReferenced(E->getLocStart(), |
| const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor())); |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitCXXNewExpr(CXXNewExpr *E) { |
| if (E->getOperatorNew()) |
| S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew()); |
| if (E->getOperatorDelete()) |
| S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete()); |
| Inherited::VisitCXXNewExpr(E); |
| } |
| |
| void VisitCXXDeleteExpr(CXXDeleteExpr *E) { |
| if (E->getOperatorDelete()) |
| S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete()); |
| QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType()); |
| if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl()); |
| S.MarkFunctionReferenced(E->getLocStart(), |
| S.LookupDestructor(Record)); |
| } |
| |
| Inherited::VisitCXXDeleteExpr(E); |
| } |
| |
| void VisitCXXConstructExpr(CXXConstructExpr *E) { |
| S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor()); |
| Inherited::VisitCXXConstructExpr(E); |
| } |
| |
| void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { |
| Visit(E->getExpr()); |
| } |
| |
| void VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| Inherited::VisitImplicitCastExpr(E); |
| |
| if (E->getCastKind() == CK_LValueToRValue) |
| S.UpdateMarkingForLValueToRValue(E->getSubExpr()); |
| } |
| }; |
| } |
| |
| /// Mark any declarations that appear within this expression or any |
| /// potentially-evaluated subexpressions as "referenced". |
| /// |
| /// \param SkipLocalVariables If true, don't mark local variables as |
| /// 'referenced'. |
| void Sema::MarkDeclarationsReferencedInExpr(Expr *E, |
| bool SkipLocalVariables) { |
| EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E); |
| } |
| |
| /// Emit a diagnostic that describes an effect on the run-time behavior |
| /// of the program being compiled. |
| /// |
| /// This routine emits the given diagnostic when the code currently being |
| /// type-checked is "potentially evaluated", meaning that there is a |
| /// possibility that the code will actually be executable. Code in sizeof() |
| /// expressions, code used only during overload resolution, etc., are not |
| /// potentially evaluated. This routine will suppress such diagnostics or, |
| /// in the absolutely nutty case of potentially potentially evaluated |
| /// expressions (C++ typeid), queue the diagnostic to potentially emit it |
| /// later. |
| /// |
| /// This routine should be used for all diagnostics that describe the run-time |
| /// behavior of a program, such as passing a non-POD value through an ellipsis. |
| /// Failure to do so will likely result in spurious diagnostics or failures |
| /// during overload resolution or within sizeof/alignof/typeof/typeid. |
| bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, |
| const PartialDiagnostic &PD) { |
| switch (ExprEvalContexts.back().Context) { |
| case ExpressionEvaluationContext::Unevaluated: |
| case ExpressionEvaluationContext::UnevaluatedList: |
| case ExpressionEvaluationContext::UnevaluatedAbstract: |
| case ExpressionEvaluationContext::DiscardedStatement: |
| // The argument will never be evaluated, so don't complain. |
| break; |
| |
| case ExpressionEvaluationContext::ConstantEvaluated: |
| // Relevant diagnostics should be produced by constant evaluation. |
| break; |
| |
| case ExpressionEvaluationContext::PotentiallyEvaluated: |
| case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: |
| if (Statement && getCurFunctionOrMethodDecl()) { |
| FunctionScopes.back()->PossiblyUnreachableDiags. |
| push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement)); |
| return true; |
| } |
| |
| // The initializer of a constexpr variable or of the first declaration of a |
| // static data member is not syntactically a constant evaluated constant, |
| // but nonetheless is always required to be a constant expression, so we |
| // can skip diagnosing. |
| // FIXME: Using the mangling context here is a hack. |
| if (auto *VD = dyn_cast_or_null<VarDecl>( |
| ExprEvalContexts.back().ManglingContextDecl)) { |
| if (VD->isConstexpr() || |
| (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline())) |
| break; |
| // FIXME: For any other kind of variable, we should build a CFG for its |
| // initializer and check whether the context in question is reachable. |
| } |
| |
| Diag(Loc, PD); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, |
| CallExpr *CE, FunctionDecl *FD) { |
| if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) |
| return false; |
| |
| // If we're inside a decltype's expression, don't check for a valid return |
| // type or construct temporaries until we know whether this is the last call. |
| if (ExprEvalContexts.back().ExprContext == |
| ExpressionEvaluationContextRecord::EK_Decltype) { |
| ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE); |
| return false; |
| } |
| |
| class CallReturnIncompleteDiagnoser : public TypeDiagnoser { |
| FunctionDecl *FD; |
| CallExpr *CE; |
| |
| public: |
| CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE) |
| : FD(FD), CE(CE) { } |
| |
| void diagnose(Sema &S, SourceLocation Loc, QualType T) override { |
| if (!FD) { |
| S.Diag(Loc, diag::err_call_incomplete_return) |
| << T << CE->getSourceRange(); |
| return; |
| } |
| |
| S.Diag(Loc, diag::err_call_function_incomplete_return) |
| << CE->getSourceRange() << FD->getDeclName() << T; |
| S.Diag(FD->getLocation(), diag::note_entity_declared_at) |
| << FD->getDeclName(); |
| } |
| } Diagnoser(FD, CE); |
| |
| if (RequireCompleteType(Loc, ReturnType, Diagnoser)) |
| return true; |
| |
| return false; |
| } |
| |
| // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses |
| // will prevent this condition from triggering, which is what we want. |
| void Sema::DiagnoseAssignmentAsCondition(Expr *E) { |
| SourceLocation Loc; |
| |
| unsigned diagnostic = diag::warn_condition_is_assignment; |
| bool IsOrAssign = false; |
| |
| if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { |
| if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) |
| return; |
| |
| IsOrAssign = Op->getOpcode() == BO_OrAssign; |
| |
| // Greylist some idioms by putting them into a warning subcategory. |
| if (ObjCMessageExpr *ME |
| = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { |
| Selector Sel = ME->getSelector(); |
| |
| // self = [<foo> init...] |
| if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init) |
| diagnostic = diag::warn_condition_is_idiomatic_assignment; |
| |
| // <foo> = [<bar> nextObject] |
| else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") |
| diagnostic = diag::warn_condition_is_idiomatic_assignment; |
| } |
| |
| Loc = Op->getOperatorLoc(); |
| } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { |
| if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) |
| return; |
| |
| IsOrAssign = Op->getOperator() == OO_PipeEqual; |
| Loc = Op->getOperatorLoc(); |
| } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) |
| return DiagnoseAssignmentAsCondition(POE->getSyntacticForm()); |
| else { |
| // Not an assignment. |
| return; |
| } |
| |
| Diag(Loc, diagnostic) << E->getSourceRange(); |
| |
| SourceLocation Open = E->getLocStart(); |
| SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd()); |
| Diag(Loc, diag::note_condition_assign_silence) |
| << FixItHint::CreateInsertion(Open, "(") |
| << FixItHint::CreateInsertion(Close, ")"); |
| |
| if (IsOrAssign) |
| Diag(Loc, diag::note_condition_or_assign_to_comparison) |
| << FixItHint::CreateReplacement(Loc, "!="); |
| else |
| Diag(Loc, diag::note_condition_assign_to_comparison) |
| << FixItHint::CreateReplacement(Loc, "=="); |
| } |
| |
| /// Redundant parentheses over an equality comparison can indicate |
| /// that the user intended an assignment used as condition. |
| void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) { |
| // Don't warn if the parens came from a macro. |
| SourceLocation parenLoc = ParenE->getLocStart(); |
| if (parenLoc.isInvalid() || parenLoc.isMacroID()) |
| return; |
| // Don't warn for dependent expressions. |
| if (ParenE->isTypeDependent()) |
| return; |
| |
| Expr *E = ParenE->IgnoreParens(); |
| |
| if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E)) |
| if (opE->getOpcode() == BO_EQ && |
| opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) |
| == Expr::MLV_Valid) { |
| SourceLocation Loc = opE->getOperatorLoc(); |
| |
| Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); |
| SourceRange ParenERange = ParenE->getSourceRange(); |
| Diag(Loc, diag::note_equality_comparison_silence) |
| << FixItHint::CreateRemoval(ParenERange.getBegin()) |
| << FixItHint::CreateRemoval(ParenERange.getEnd()); |
| Diag(Loc, diag::note_equality_comparison_to_assign) |
| << FixItHint::CreateReplacement(Loc, "="); |
| } |
| } |
| |
| ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E, |
| bool IsConstexpr) { |
| DiagnoseAssignmentAsCondition(E); |
| if (ParenExpr *parenE = dyn_cast<ParenExpr>(E)) |
| DiagnoseEqualityWithExtraParens(parenE); |
| |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.get(); |
| |
| if (!E->isTypeDependent()) { |
| if (getLangOpts().CPlusPlus) |
| return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4 |
| |
| ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); |
| if (ERes.isInvalid()) |
| return ExprError(); |
| E = ERes.get(); |
| |
| QualType T = E->getType(); |
| if (!T->isScalarType()) { // C99 6.8.4.1p1 |
| Diag(Loc, diag::err_typecheck_statement_requires_scalar) |
| << T << E->getSourceRange(); |
| return ExprError(); |
| } |
| CheckBoolLikeConversion(E, Loc); |
| } |
| |
| return E; |
| } |
| |
| Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc, |
| Expr *SubExpr, ConditionKind CK) { |
| // Empty conditions are valid in for-statements. |
| if (!SubExpr) |
| return ConditionResult(); |
| |
| ExprResult Cond; |
| switch (CK) { |
| case ConditionKind::Boolean: |
| Cond = CheckBooleanCondition(Loc, SubExpr); |
| break; |
| |
| case ConditionKind::ConstexprIf: |
| Cond = CheckBooleanCondition(Loc, SubExpr, true); |
| break; |
| |
| case ConditionKind::Switch: |
| Cond = CheckSwitchCondition(Loc, SubExpr); |
| break; |
| } |
| if (Cond.isInvalid()) |
| return ConditionError(); |
| |
| // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead. |
| FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc); |
| if (!FullExpr.get()) |
| return ConditionError(); |
| |
| return ConditionResult(*this, nullptr, FullExpr, |
| CK == ConditionKind::ConstexprIf); |
| } |
| |
| namespace { |
| /// A visitor for rebuilding a call to an __unknown_any expression |
| /// to have an appropriate type. |
| struct RebuildUnknownAnyFunction |
| : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> { |
| |
| Sema &S; |
| |
| RebuildUnknownAnyFunction(Sema &S) : S(S) {} |
| |
| ExprResult VisitStmt(Stmt *S) { |
| llvm_unreachable("unexpected statement!"); |
| } |
| |
| ExprResult VisitExpr(Expr *E) { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| /// Rebuild an expression which simply semantically wraps another |
| /// expression which it shares the type and value kind of. |
| template <class T> ExprResult rebuildSugarExpr(T *E) { |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| |
| Expr *SubExpr = SubResult.get(); |
| E->setSubExpr(SubExpr); |
| E->setType(SubExpr->getType()); |
| E->setValueKind(SubExpr->getValueKind()); |
| assert(E->getObjectKind() == OK_Ordinary); |
| return E; |
| } |
| |
| ExprResult VisitParenExpr(ParenExpr *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryExtension(UnaryOperator *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryAddrOf(UnaryOperator *E) { |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| |
| Expr *SubExpr = SubResult.get(); |
| E->setSubExpr(SubExpr); |
| E->setType(S.Context.getPointerType(SubExpr->getType())); |
| assert(E->getValueKind() == VK_RValue); |
| assert(E->getObjectKind() == OK_Ordinary); |
| return E; |
| } |
| |
| ExprResult resolveDecl(Expr *E, ValueDecl *VD) { |
| if (!isa<FunctionDecl>(VD)) return VisitExpr(E); |
| |
| E->setType(VD->getType()); |
| |
| assert(E->getValueKind() == VK_RValue); |
| if (S.getLangOpts().CPlusPlus && |
| !(isa<CXXMethodDecl>(VD) && |
| cast<CXXMethodDecl>(VD)->isInstance())) |
| E->setValueKind(VK_LValue); |
| |
| return E; |
| } |
| |
| ExprResult VisitMemberExpr(MemberExpr *E) { |
| return resolveDecl(E, E->getMemberDecl()); |
| } |
| |
| ExprResult VisitDeclRefExpr(DeclRefExpr *E) { |
| return resolveDecl(E, E->getDecl()); |
| } |
| }; |
| } |
| |
| /// Given a function expression of unknown-any type, try to rebuild it |
| /// to have a function type. |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) { |
| ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr); |
| if (Result.isInvalid()) return ExprError(); |
| return S.DefaultFunctionArrayConversion(Result.get()); |
| } |
| |
| namespace { |
| /// A visitor for rebuilding an expression of type __unknown_anytype |
| /// into one which resolves the type directly on the referring |
| /// expression. Strict preservation of the original source |
| /// structure is not a goal. |
| struct RebuildUnknownAnyExpr |
| : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> { |
| |
| Sema &S; |
| |
| /// The current destination type. |
| QualType DestType; |
| |
| RebuildUnknownAnyExpr(Sema &S, QualType CastType) |
| : S(S), DestType(CastType) {} |
| |
| ExprResult VisitStmt(Stmt *S) { |
| llvm_unreachable("unexpected statement!"); |
| } |
| |
| ExprResult VisitExpr(Expr *E) { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| ExprResult VisitCallExpr(CallExpr *E); |
| ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E); |
| |
| /// Rebuild an expression which simply semantically wraps another |
| /// expression which it shares the type and value kind of. |
| template <class T> ExprResult rebuildSugarExpr(T *E) { |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| Expr *SubExpr = SubResult.get(); |
| E->setSubExpr(SubExpr); |
| E->setType(SubExpr->getType()); |
| E->setValueKind(SubExpr->getValueKind()); |
| assert(E->getObjectKind() == OK_Ordinary); |
| return E; |
| } |
| |
| ExprResult VisitParenExpr(ParenExpr *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryExtension(UnaryOperator *E) { |
| return rebuildSugarExpr(E); |
| } |
| |
| ExprResult VisitUnaryAddrOf(UnaryOperator *E) { |
| const PointerType *Ptr = DestType->getAs<PointerType>(); |
| if (!Ptr) { |
| S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (isa<CallExpr>(E->getSubExpr())) { |
| S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| assert(E->getValueKind() == VK_RValue); |
| assert(E->getObjectKind() == OK_Ordinary); |
| E->setType(DestType); |
| |
| // Build the sub-expression as if it were an object of the pointee type. |
| DestType = Ptr->getPointeeType(); |
| ExprResult SubResult = Visit(E->getSubExpr()); |
| if (SubResult.isInvalid()) return ExprError(); |
| E->setSubExpr(SubResult.get()); |
| return E; |
| } |
| |
| ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); |
| |
| ExprResult resolveDecl(Expr *E, ValueDecl *VD); |
| |
| ExprResult VisitMemberExpr(MemberExpr *E) { |
| return resolveDecl(E, E->getMemberDecl()); |
| } |
| |
| ExprResult VisitDeclRefExpr(DeclRefExpr *E) { |
| return resolveDecl(E, E->getDecl()); |
| } |
| }; |
| } |
| |
| /// Rebuilds a call expression which yielded __unknown_anytype. |
| ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) { |
| Expr *CalleeExpr = E->getCallee(); |
| |
| enum FnKind { |
| FK_MemberFunction, |
| FK_FunctionPointer, |
| FK_BlockPointer |
| }; |
| |
| FnKind Kind; |
| QualType CalleeType = CalleeExpr->getType(); |
| if (CalleeType == S.Context.BoundMemberTy) { |
| assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)); |
| Kind = FK_MemberFunction; |
| CalleeType = Expr::findBoundMemberType(CalleeExpr); |
| } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) { |
| CalleeType = Ptr->getPointeeType(); |
| Kind = FK_FunctionPointer; |
| } else { |
| CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType(); |
| Kind = FK_BlockPointer; |
| } |
| const FunctionType *FnType = CalleeType->castAs<FunctionType>(); |
| |
| // Verify that this is a legal result type of a function. |
| if (DestType->isArrayType() || DestType->isFunctionType()) { |
| unsigned diagID = diag::err_func_returning_array_function; |
| if (Kind == FK_BlockPointer) |
| diagID = diag::err_block_returning_array_function; |
| |
| S.Diag(E->getExprLoc(), diagID) |
| << DestType->isFunctionType() << DestType; |
| return ExprError(); |
| } |
| |
| // Otherwise, go ahead and set DestType as the call's result. |
| E->setType(DestType.getNonLValueExprType(S.Context)); |
| E->setValueKind(Expr::getValueKindForType(DestType)); |
| assert(E->getObjectKind() == OK_Ordinary); |
| |
| // Rebuild the function type, replacing the result type with DestType. |
| const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType); |
| if (Proto) { |
| // __unknown_anytype(...) is a special case used by the debugger when |
| // it has no idea what a function's signature is. |
| // |
| // We want to build this call essentially under the K&R |
| // unprototyped rules, but making a FunctionNoProtoType in C++ |
| // would foul up all sorts of assumptions. However, we cannot |
| // simply pass all arguments as variadic arguments, nor can we |
| // portably just call the function under a non-variadic type; see |
| // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic. |
| // However, it turns out that in practice it is generally safe to |
| // call a function declared as "A foo(B,C,D);" under the prototype |
| // "A foo(B,C,D,...);". The only known exception is with the |
| // Windows ABI, where any variadic function is implicitly cdecl |
| // regardless of its normal CC. Therefore we change the parameter |
| // types to match the types of the arguments. |
| // |
| // This is a hack, but it is far superior to moving the |
| // corresponding target-specific code from IR-gen to Sema/AST. |
| |
| ArrayRef<QualType> ParamTypes = Proto->getParamTypes(); |
| SmallVector<QualType, 8> ArgTypes; |
| if (ParamTypes.empty() && Proto->isVariadic()) { // the special case |
| ArgTypes.reserve(E->getNumArgs()); |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| Expr *Arg = E->getArg(i); |
| QualType ArgType = Arg->getType(); |
| if (E->isLValue()) { |
| ArgType = S.Context.getLValueReferenceType(ArgType); |
| } else if (E->isXValue()) { |
| ArgType = S.Context.getRValueReferenceType(ArgType); |
| } |
| ArgTypes.push_back(ArgType); |
| } |
| ParamTypes = ArgTypes; |
| } |
| DestType = S.Context.getFunctionType(DestType, ParamTypes, |
| Proto->getExtProtoInfo()); |
| } else { |
| DestType = S.Context.getFunctionNoProtoType(DestType, |
| FnType->getExtInfo()); |
| } |
| |
| // Rebuild the appropriate pointer-to-function type. |
| switch (Kind) { |
| case FK_MemberFunction: |
| // Nothing to do. |
| break; |
| |
| case FK_FunctionPointer: |
| DestType = S.Context.getPointerType(DestType); |
| break; |
| |
| case FK_BlockPointer: |
| DestType = S.Context.getBlockPointerType(DestType); |
| break; |
| } |
| |
| // Finally, we can recurse. |
| ExprResult CalleeResult = Visit(CalleeExpr); |
| if (!CalleeResult.isUsable()) return ExprError(); |
| E->setCallee(CalleeResult.get()); |
| |
| // Bind a temporary if necessary. |
| return S.MaybeBindToTemporary(E); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) { |
| // Verify that this is a legal result type of a call. |
| if (DestType->isArrayType() || DestType->isFunctionType()) { |
| S.Diag(E->getExprLoc(), diag::err_func_returning_array_function) |
| << DestType->isFunctionType() << DestType; |
| return ExprError(); |
| } |
| |
| // Rewrite the method result type if available. |
| if (ObjCMethodDecl *Method = E->getMethodDecl()) { |
| assert(Method->getReturnType() == S.Context.UnknownAnyTy); |
| Method->setReturnType(DestType); |
| } |
| |
| // Change the type of the message. |
| E->setType(DestType.getNonReferenceType()); |
| E->setValueKind(Expr::getValueKindForType(DestType)); |
| |
| return S.MaybeBindToTemporary(E); |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| // The only case we should ever see here is a function-to-pointer decay. |
| if (E->getCastKind() == CK_FunctionToPointerDecay) { |
| assert(E->getValueKind() == VK_RValue); |
| assert(E->getObjectKind() == OK_Ordinary); |
| |
| E->setType(DestType); |
| |
| // Rebuild the sub-expression as the pointee (function) type. |
| DestType = DestType->castAs<PointerType>()->getPointeeType(); |
| |
| ExprResult Result = Visit(E->getSubExpr()); |
| if (!Result.isUsable()) return ExprError(); |
| |
| E->setSubExpr(Result.get()); |
| return E; |
| } else if (E->getCastKind() == CK_LValueToRValue) { |
| assert(E->getValueKind() == VK_RValue); |
| assert(E->getObjectKind() == OK_Ordinary); |
| |
| assert(isa<BlockPointerType>(E->getType())); |
| |
| E->setType(DestType); |
| |
| // The sub-expression has to be a lvalue reference, so rebuild it as such. |
| DestType = S.Context.getLValueReferenceType(DestType); |
| |
| ExprResult Result = Visit(E->getSubExpr()); |
| if (!Result.isUsable()) return ExprError(); |
| |
| E->setSubExpr(Result.get()); |
| return E; |
| } else { |
| llvm_unreachable("Unhandled cast type!"); |
| } |
| } |
| |
| ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) { |
| ExprValueKind ValueKind = VK_LValue; |
| QualType Type = DestType; |
| |
| // We know how to make this work for certain kinds of decls: |
| |
| // - functions |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) { |
| if (const PointerType *Ptr = Type->getAs<PointerType>()) { |
| DestType = Ptr->getPointeeType(); |
| ExprResult Result = resolveDecl(E, VD); |
| if (Result.isInvalid()) return ExprError(); |
| return S.ImpCastExprToType(Result.get(), Type, |
| CK_FunctionToPointerDecay, VK_RValue); |
| } |
| |
| if (!Type->isFunctionType()) { |
| S.Diag(E->getExprLoc(), diag::err_unknown_any_function) |
| << VD << E->getSourceRange(); |
| return ExprError(); |
| } |
| if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) { |
| // We must match the FunctionDecl's type to the hack introduced in |
| // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown |
| // type. See the lengthy commentary in that routine. |
| QualType FDT = FD->getType(); |
| const FunctionType *FnType = FDT->castAs<FunctionType>(); |
| const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType); |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); |
| if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) { |
| SourceLocation Loc = FD->getLocation(); |
| FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(), |
| FD->getDeclContext(), |
| Loc, Loc, FD->getNameInfo().getName(), |
| DestType, FD->getTypeSourceInfo(), |
| SC_None, false/*isInlineSpecified*/, |
| FD->hasPrototype(), |
| false/*isConstexprSpecified*/); |
| |
| if (FD->getQualifier()) |
| NewFD->setQualifierInfo(FD->getQualifierLoc()); |
| |
| SmallVector<ParmVarDecl*, 16> Params; |
| for (const auto &AI : FT->param_types()) { |
| ParmVarDecl *Param = |
| S.BuildParmVarDeclForTypedef(FD, Loc, AI); |
| Param->setScopeInfo(0, Params.size()); |
| Params.push_back(Param); |
| } |
| NewFD->setParams(Params); |
| DRE->setDecl(NewFD); |
| VD = DRE->getDecl(); |
| } |
| } |
| |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) |
| if (MD->isInstance()) { |
| ValueKind = VK_RValue; |
| Type = S.Context.BoundMemberTy; |
| } |
| |
| // Function references aren't l-values in C. |
| if (!S.getLangOpts().CPlusPlus) |
| ValueKind = VK_RValue; |
| |
| // - variables |
| } else if (isa<VarDecl>(VD)) { |
| if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) { |
| Type = RefTy->getPointeeType(); |
| } else if (Type->isFunctionType()) { |
| S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type) |
| << VD << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // - nothing else |
| } else { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl) |
| << VD << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // Modifying the declaration like this is friendly to IR-gen but |
| // also really dangerous. |
| VD->setType(DestType); |
| E->setType(Type); |
| E->setValueKind(ValueKind); |
| return E; |
| } |
| |
| /// Check a cast of an unknown-any type. We intentionally only |
| /// trigger this for C-style casts. |
| ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, |
| Expr *CastExpr, CastKind &CastKind, |
| ExprValueKind &VK, CXXCastPath &Path) { |
| // The type we're casting to must be either void or complete. |
| if (!CastType->isVoidType() && |
| RequireCompleteType(TypeRange.getBegin(), CastType, |
| diag::err_typecheck_cast_to_incomplete)) |
| return ExprError(); |
| |
| // Rewrite the casted expression from scratch. |
| ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr); |
| if (!result.isUsable()) return ExprError(); |
| |
| CastExpr = result.get(); |
| VK = CastExpr->getValueKind(); |
| CastKind = CK_NoOp; |
| |
| return CastExpr; |
| } |
| |
| ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) { |
| return RebuildUnknownAnyExpr(*this, ToType).Visit(E); |
| } |
| |
| ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc, |
| Expr *arg, QualType ¶mType) { |
| // If the syntactic form of the argument is not an explicit cast of |
| // any sort, just do default argument promotion. |
| ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens()); |
| if (!castArg) { |
| ExprResult result = DefaultArgumentPromotion(arg); |
| if (result.isInvalid()) return ExprError(); |
| paramType = result.get()->getType(); |
| return result; |
| } |
| |
| // Otherwise, use the type that was written in the explicit cast. |
| assert(!arg->hasPlaceholderType()); |
| paramType = castArg->getTypeAsWritten(); |
| |
| // Copy-initialize a parameter of that type. |
| InitializedEntity entity = |
| InitializedEntity::InitializeParameter(Context, paramType, |
| /*consumed*/ false); |
| return PerformCopyInitialization(entity, callLoc, arg); |
| } |
| |
| static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) { |
| Expr *orig = E; |
| unsigned diagID = diag::err_uncasted_use_of_unknown_any; |
| while (true) { |
| E = E->IgnoreParenImpCasts(); |
| if (CallExpr *call = dyn_cast<CallExpr>(E)) { |
| E = call->getCallee(); |
| diagID = diag::err_uncasted_call_of_unknown_any; |
| } else { |
| break; |
| } |
| } |
| |
| SourceLocation loc; |
| NamedDecl *d; |
| if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) { |
| loc = ref->getLocation(); |
| d = ref->getDecl(); |
| } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) { |
| loc = mem->getMemberLoc(); |
| d = mem->getMemberDecl(); |
| } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) { |
| diagID = diag::err_uncasted_call_of_unknown_any; |
| loc = msg->getSelectorStartLoc(); |
| d = msg->getMethodDecl(); |
| if (!d) { |
| S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method) |
| << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector() |
| << orig->getSourceRange(); |
| return ExprError(); |
| } |
| } else { |
| S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr) |
| << E->getSourceRange(); |
| return ExprError(); |
| } |
| |
| S.Diag(loc, diagID) << d << orig->getSourceRange(); |
| |
| // Never recoverable. |
| return ExprError(); |
| } |
| |
| /// Check for operands with placeholder types and complain if found. |
| /// Returns ExprError() if there was an error and no recovery was possible. |
| ExprResult Sema::CheckPlaceholderExpr(Expr *E) { |
| if (!getLangOpts().CPlusPlus) { |
| // C cannot handle TypoExpr nodes on either side of a binop because it |
| // doesn't handle dependent types properly, so make sure any TypoExprs have |
| // been dealt with before checking the operands. |
| ExprResult Result = CorrectDelayedTyposInExpr(E); |
| if (!Result.isUsable()) return ExprError(); |
| E = Result.get(); |
| } |
| |
| const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType(); |
| if (!placeholderType) return E; |
| |
| switch (placeholderType->getKind()) { |
| |
| // Overloaded expressions. |
| case BuiltinType::Overload: { |
| // Try to resolve a single function template specialization. |
| // This is obligatory. |
| ExprResult Result = E; |
| if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false)) |
| return Result; |
| |
| // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization |
| // leaves Result unchanged on failure. |
| Result = E; |
| if (resolveAndFixAddressOfOnlyViableOverloadCandidate(Result)) |
| return Result; |
| |
| // If that failed, try to recover with a call. |
| tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable), |
| /*complain*/ true); |
| return Result; |
| } |
| |
| // Bound member functions. |
| case BuiltinType::BoundMember: { |
| ExprResult result = E; |
| const Expr *BME = E->IgnoreParens(); |
| PartialDiagnostic PD = PDiag(diag::err_bound_member_function); |
| // Try to give a nicer diagnostic if it is a bound member that we recognize. |
| if (isa<CXXPseudoDestructorExpr>(BME)) { |
| PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1; |
| } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) { |
| if (ME->getMemberNameInfo().getName().getNameKind() == |
| DeclarationName::CXXDestructorName) |
| PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0; |
| } |
| tryToRecoverWithCall(result, PD, |
| /*complain*/ true); |
| return result; |
| } |
| |
| // ARC unbridged casts. |
| case BuiltinType::ARCUnbridgedCast: { |
| Expr *realCast = stripARCUnbridgedCast(E); |
| diagnoseARCUnbridgedCast(realCast); |
| return realCast; |
| } |
| |
| // Expressions of unknown type. |
| case BuiltinType::UnknownAny: |
| return diagnoseUnknownAnyExpr(*this, E); |
| |
| // Pseudo-objects. |
| case BuiltinType::PseudoObject: |
| return checkPseudoObjectRValue(E); |
| |
| case BuiltinType::BuiltinFn: { |
| // Accept __noop without parens by implicitly converting it to a call expr. |
| auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); |
| if (DRE) { |
| auto *FD = cast<FunctionDecl>(DRE->getDecl()); |
| if (FD->getBuiltinID() == Builtin::BI__noop) { |
| E = ImpCastExprToType(E, Context.getPointerType(FD->getType()), |
| CK_BuiltinFnToFnPtr).get(); |
| return new (Context) CallExpr(Context, E, None, Context.IntTy, |
| VK_RValue, SourceLocation()); |
| } |
| } |
| |
| Diag(E->getLocStart(), diag::err_builtin_fn_use); |
| return ExprError(); |
| } |
| |
| // Expressions of unknown type. |
| case BuiltinType::OMPArraySection: |
| Diag(E->getLocStart(), diag::err_omp_array_section_use); |
| return ExprError(); |
| |
| // Everything else should be impossible. |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id: |
| #define PLACEHOLDER_TYPE(Id, SingletonId) |
| #include "clang/AST/BuiltinTypes.def" |
| break; |
| } |
| |
| llvm_unreachable("invalid placeholder type!"); |
| } |
| |
| bool Sema::CheckCaseExpression(Expr *E) { |
| if (E->isTypeDependent()) |
| return true; |
| if (E->isValueDependent() || E->isIntegerConstantExpr(Context)) |
| return E->getType()->isIntegralOrEnumerationType(); |
| return false; |
| } |
| |
| /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. |
| ExprResult |
| Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
| assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && |
| "Unknown Objective-C Boolean value!"); |
| QualType BoolT = Context.ObjCBuiltinBoolTy; |
| if (!Context.getBOOLDecl()) { |
| LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc, |
| Sema::LookupOrdinaryName); |
| if (LookupName(Result, getCurScope()) && Result.isSingleResult()) { |
| NamedDecl *ND = Result.getFoundDecl(); |
| if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) |
| Context.setBOOLDecl(TD); |
| } |
| } |
| if (Context.getBOOLDecl()) |
| BoolT = Context.getBOOLType(); |
| return new (Context) |
| ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc); |
| } |
| |
| ExprResult Sema::ActOnObjCAvailabilityCheckExpr( |
| llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc, |
| SourceLocation RParen) { |
| |
| StringRef Platform = getASTContext().getTargetInfo().getPlatformName(); |
| |
| auto Spec = std::find_if(AvailSpecs.begin(), AvailSpecs.end(), |
| [&](const AvailabilitySpec &Spec) { |
| return Spec.getPlatform() == Platform; |
| }); |
| |
| VersionTuple Version; |
| if (Spec != AvailSpecs.end()) |
| Version = Spec->getVersion(); |
| |
| // The use of `@available` in the enclosing function should be analyzed to |
| // warn when it's used inappropriately (i.e. not if(@available)). |
| if (getCurFunctionOrMethodDecl()) |
| getEnclosingFunction()->HasPotentialAvailabilityViolations = true; |
| else if (getCurBlock() || getCurLambda()) |
| getCurFunction()->HasPotentialAvailabilityViolations = true; |
| |
| return new (Context) |
| ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy); |
| } |