blob: e76fa7983c90e35775d866071082166bdc94d29d [file] [log] [blame]
//===-- xray_buffer_queue.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the interface for a buffer queue implementation.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_BUFFER_QUEUE_H
#define XRAY_BUFFER_QUEUE_H
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include <cstddef>
namespace __xray {
/// BufferQueue implements a circular queue of fixed sized buffers (much like a
/// freelist) but is concerned mostly with making it really quick to initialise,
/// finalise, and get/return buffers to the queue. This is one key component of
/// the "flight data recorder" (FDR) mode to support ongoing XRay function call
/// trace collection.
class BufferQueue {
public:
struct alignas(64) BufferExtents {
atomic_uint64_t Size;
};
struct Buffer {
void *Data = nullptr;
size_t Size = 0;
BufferExtents *Extents;
};
struct BufferRep {
// The managed buffer.
Buffer Buff;
// This is true if the buffer has been returned to the available queue, and
// is considered "used" by another thread.
bool Used = false;
};
private:
// This models a ForwardIterator. |T| Must be either a `Buffer` or `const
// Buffer`. Note that we only advance to the "used" buffers, when
// incrementing, so that at dereference we're always at a valid point.
template <class T> class Iterator {
public:
BufferRep *Buffers = nullptr;
size_t Offset = 0;
size_t Max = 0;
Iterator &operator++() {
DCHECK_NE(Offset, Max);
do {
++Offset;
} while (!Buffers[Offset].Used && Offset != Max);
return *this;
}
Iterator operator++(int) {
Iterator C = *this;
++(*this);
return C;
}
T &operator*() const { return Buffers[Offset].Buff; }
T *operator->() const { return &(Buffers[Offset].Buff); }
Iterator(BufferRep *Root, size_t O, size_t M)
: Buffers(Root), Offset(O), Max(M) {
// We want to advance to the first Offset where the 'Used' property is
// true, or to the end of the list/queue.
while (!Buffers[Offset].Used && Offset != Max) {
++Offset;
}
}
Iterator() = default;
Iterator(const Iterator &) = default;
Iterator(Iterator &&) = default;
Iterator &operator=(const Iterator &) = default;
Iterator &operator=(Iterator &&) = default;
~Iterator() = default;
template <class V>
friend bool operator==(const Iterator &L, const Iterator<V> &R) {
DCHECK_EQ(L.Max, R.Max);
return L.Buffers == R.Buffers && L.Offset == R.Offset;
}
template <class V>
friend bool operator!=(const Iterator &L, const Iterator<V> &R) {
return !(L == R);
}
};
// Size of each individual Buffer.
size_t BufferSize;
BufferRep *Buffers;
// Amount of pre-allocated buffers.
size_t BufferCount;
SpinMutex Mutex;
atomic_uint8_t Finalizing;
// Pointers to buffers managed/owned by the BufferQueue.
void **OwnedBuffers;
// Pointer to the next buffer to be handed out.
BufferRep *Next;
// Pointer to the entry in the array where the next released buffer will be
// placed.
BufferRep *First;
// Count of buffers that have been handed out through 'getBuffer'.
size_t LiveBuffers;
public:
enum class ErrorCode : unsigned {
Ok,
NotEnoughMemory,
QueueFinalizing,
UnrecognizedBuffer,
AlreadyFinalized,
};
static const char *getErrorString(ErrorCode E) {
switch (E) {
case ErrorCode::Ok:
return "(none)";
case ErrorCode::NotEnoughMemory:
return "no available buffers in the queue";
case ErrorCode::QueueFinalizing:
return "queue already finalizing";
case ErrorCode::UnrecognizedBuffer:
return "buffer being returned not owned by buffer queue";
case ErrorCode::AlreadyFinalized:
return "queue already finalized";
}
return "unknown error";
}
/// Initialise a queue of size |N| with buffers of size |B|. We report success
/// through |Success|.
BufferQueue(size_t B, size_t N, bool &Success);
/// Updates |Buf| to contain the pointer to an appropriate buffer. Returns an
/// error in case there are no available buffers to return when we will run
/// over the upper bound for the total buffers.
///
/// Requirements:
/// - BufferQueue is not finalising.
///
/// Returns:
/// - ErrorCode::NotEnoughMemory on exceeding MaxSize.
/// - ErrorCode::Ok when we find a Buffer.
/// - ErrorCode::QueueFinalizing or ErrorCode::AlreadyFinalized on
/// a finalizing/finalized BufferQueue.
ErrorCode getBuffer(Buffer &Buf);
/// Updates |Buf| to point to nullptr, with size 0.
///
/// Returns:
/// - ErrorCode::Ok when we successfully release the buffer.
/// - ErrorCode::UnrecognizedBuffer for when this BufferQueue does not own
/// the buffer being released.
ErrorCode releaseBuffer(Buffer &Buf);
bool finalizing() const {
return atomic_load(&Finalizing, memory_order_acquire);
}
/// Returns the configured size of the buffers in the buffer queue.
size_t ConfiguredBufferSize() const { return BufferSize; }
/// Sets the state of the BufferQueue to finalizing, which ensures that:
///
/// - All subsequent attempts to retrieve a Buffer will fail.
/// - All releaseBuffer operations will not fail.
///
/// After a call to finalize succeeds, all subsequent calls to finalize will
/// fail with ErrorCode::QueueFinalizing.
ErrorCode finalize();
/// Applies the provided function F to each Buffer in the queue, only if the
/// Buffer is marked 'used' (i.e. has been the result of getBuffer(...) and a
/// releaseBuffer(...) operation).
template <class F> void apply(F Fn) {
SpinMutexLock G(&Mutex);
for (auto I = begin(), E = end(); I != E; ++I)
Fn(*I);
}
using const_iterator = Iterator<const Buffer>;
using iterator = Iterator<Buffer>;
/// Provides iterator access to the raw Buffer instances.
iterator begin() const { return iterator(Buffers, 0, BufferCount); }
const_iterator cbegin() const {
return const_iterator(Buffers, 0, BufferCount);
}
iterator end() const { return iterator(Buffers, BufferCount, BufferCount); }
const_iterator cend() const {
return const_iterator(Buffers, BufferCount, BufferCount);
}
// Cleans up allocated buffers.
~BufferQueue();
};
} // namespace __xray
#endif // XRAY_BUFFER_QUEUE_H