| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <tuple> |
| |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_config.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "test/bench.h" |
| #include "test/clear_system_state.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vpx/vpx_codec.h" |
| #include "vpx/vpx_integer.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/msvc.h" // for round() |
| |
| using libvpx_test::ACMRandom; |
| |
| namespace { |
| |
| const int kNumCoeffs = 1024; |
| const double kPi = 3.141592653589793238462643383279502884; |
| void reference_32x32_dct_1d(const double in[32], double out[32]) { |
| const double kInvSqrt2 = 0.707106781186547524400844362104; |
| for (int k = 0; k < 32; k++) { |
| out[k] = 0.0; |
| for (int n = 0; n < 32; n++) { |
| out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); |
| } |
| if (k == 0) out[k] = out[k] * kInvSqrt2; |
| } |
| } |
| |
| void reference_32x32_dct_2d(const int16_t input[kNumCoeffs], |
| double output[kNumCoeffs]) { |
| // First transform columns |
| for (int i = 0; i < 32; ++i) { |
| double temp_in[32], temp_out[32]; |
| for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i]; |
| reference_32x32_dct_1d(temp_in, temp_out); |
| for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j]; |
| } |
| // Then transform rows |
| for (int i = 0; i < 32; ++i) { |
| double temp_in[32], temp_out[32]; |
| for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; |
| reference_32x32_dct_1d(temp_in, temp_out); |
| // Scale by some magic number |
| for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4; |
| } |
| } |
| |
| typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); |
| typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); |
| |
| typedef std::tuple<FwdTxfmFunc, InvTxfmFunc, int, vpx_bit_depth_t> |
| Trans32x32Param; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| void idct32x32_10(const tran_low_t *in, uint8_t *out, int stride) { |
| vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 10); |
| } |
| |
| void idct32x32_12(const tran_low_t *in, uint8_t *out, int stride) { |
| vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 12); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| class Trans32x32Test : public AbstractBench, |
| public ::testing::TestWithParam<Trans32x32Param> { |
| public: |
| virtual ~Trans32x32Test() {} |
| virtual void SetUp() { |
| fwd_txfm_ = GET_PARAM(0); |
| inv_txfm_ = GET_PARAM(1); |
| version_ = GET_PARAM(2); // 0: high precision forward transform |
| // 1: low precision version for rd loop |
| bit_depth_ = GET_PARAM(3); |
| mask_ = (1 << bit_depth_) - 1; |
| } |
| |
| virtual void TearDown() { libvpx_test::ClearSystemState(); } |
| |
| protected: |
| int version_; |
| vpx_bit_depth_t bit_depth_; |
| int mask_; |
| FwdTxfmFunc fwd_txfm_; |
| InvTxfmFunc inv_txfm_; |
| |
| int16_t *bench_in_; |
| tran_low_t *bench_out_; |
| virtual void Run(); |
| }; |
| |
| void Trans32x32Test::Run() { fwd_txfm_(bench_in_, bench_out_, 32); } |
| |
| TEST_P(Trans32x32Test, AccuracyCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| uint32_t max_error = 0; |
| int64_t total_error = 0; |
| const int count_test_block = 10000; |
| DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); |
| #endif |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (bit_depth_ == VPX_BITS_8) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| test_input_block[j] = src[j] - dst[j]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } else { |
| src16[j] = rnd.Rand16() & mask_; |
| dst16[j] = rnd.Rand16() & mask_; |
| test_input_block[j] = src16[j] - dst16[j]; |
| #endif |
| } |
| } |
| |
| ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32)); |
| if (bit_depth_ == VPX_BITS_8) { |
| ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32)); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } else { |
| ASM_REGISTER_STATE_CHECK( |
| inv_txfm_(test_temp_block, CAST_TO_BYTEPTR(dst16), 32)); |
| #endif |
| } |
| |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int32_t diff = |
| bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; |
| #else |
| const int32_t diff = dst[j] - src[j]; |
| #endif |
| const uint32_t error = diff * diff; |
| if (max_error < error) max_error = error; |
| total_error += error; |
| } |
| } |
| |
| if (version_ == 1) { |
| max_error /= 2; |
| total_error /= 45; |
| } |
| |
| EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) |
| << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1"; |
| |
| EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) |
| << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block"; |
| } |
| |
| TEST_P(Trans32x32Test, CoeffCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| |
| DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); |
| } |
| |
| const int stride = 32; |
| vpx_fdct32x32_c(input_block, output_ref_block, stride); |
| ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride)); |
| |
| if (version_ == 0) { |
| for (int j = 0; j < kNumCoeffs; ++j) |
| EXPECT_EQ(output_block[j], output_ref_block[j]) |
| << "Error: 32x32 FDCT versions have mismatched coefficients"; |
| } else { |
| for (int j = 0; j < kNumCoeffs; ++j) |
| EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) |
| << "Error: 32x32 FDCT rd has mismatched coefficients"; |
| } |
| } |
| } |
| |
| TEST_P(Trans32x32Test, MemCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 2000; |
| |
| DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_; |
| } |
| if (i == 0) { |
| for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; |
| } else if (i == 1) { |
| for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; |
| } |
| |
| const int stride = 32; |
| vpx_fdct32x32_c(input_extreme_block, output_ref_block, stride); |
| ASM_REGISTER_STATE_CHECK( |
| fwd_txfm_(input_extreme_block, output_block, stride)); |
| |
| // The minimum quant value is 4. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (version_ == 0) { |
| EXPECT_EQ(output_block[j], output_ref_block[j]) |
| << "Error: 32x32 FDCT versions have mismatched coefficients"; |
| } else { |
| EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) |
| << "Error: 32x32 FDCT rd has mismatched coefficients"; |
| } |
| EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j])) |
| << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE"; |
| EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) |
| << "Error: 32x32 FDCT has coefficient larger than " |
| << "4*DCT_MAX_VALUE"; |
| } |
| } |
| } |
| |
| TEST_P(Trans32x32Test, DISABLED_Speed) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| |
| DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); |
| |
| bench_in_ = input_extreme_block; |
| bench_out_ = output_block; |
| |
| RunNTimes(INT16_MAX); |
| PrintMedian("32x32"); |
| } |
| |
| TEST_P(Trans32x32Test, InverseAccuracy) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); |
| #endif |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| double out_r[kNumCoeffs]; |
| |
| // Initialize a test block with input range [-255, 255] |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (bit_depth_ == VPX_BITS_8) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| in[j] = src[j] - dst[j]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } else { |
| src16[j] = rnd.Rand16() & mask_; |
| dst16[j] = rnd.Rand16() & mask_; |
| in[j] = src16[j] - dst16[j]; |
| #endif |
| } |
| } |
| |
| reference_32x32_dct_2d(in, out_r); |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| coeff[j] = static_cast<tran_low_t>(round(out_r[j])); |
| } |
| if (bit_depth_ == VPX_BITS_8) { |
| ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32)); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } else { |
| ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CAST_TO_BYTEPTR(dst16), 32)); |
| #endif |
| } |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int diff = |
| bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; |
| #else |
| const int diff = dst[j] - src[j]; |
| #endif |
| const int error = diff * diff; |
| EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error |
| << " at index " << j; |
| } |
| } |
| } |
| |
| using std::make_tuple; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| INSTANTIATE_TEST_SUITE_P( |
| C, Trans32x32Test, |
| ::testing::Values( |
| make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_10, 0, VPX_BITS_10), |
| make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_10, 1, VPX_BITS_10), |
| make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_12, 0, VPX_BITS_12), |
| make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_12, 1, VPX_BITS_12), |
| make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0, VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c, 1, |
| VPX_BITS_8))); |
| #else |
| INSTANTIATE_TEST_SUITE_P( |
| C, Trans32x32Test, |
| ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0, |
| VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c, |
| 1, VPX_BITS_8))); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| #if HAVE_NEON && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_SUITE_P( |
| NEON, Trans32x32Test, |
| ::testing::Values(make_tuple(&vpx_fdct32x32_neon, |
| &vpx_idct32x32_1024_add_neon, 0, VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_neon, |
| &vpx_idct32x32_1024_add_neon, 1, VPX_BITS_8))); |
| #endif // HAVE_NEON && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_SUITE_P( |
| SSE2, Trans32x32Test, |
| ::testing::Values(make_tuple(&vpx_fdct32x32_sse2, |
| &vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_sse2, |
| &vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8))); |
| #endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_SUITE_P( |
| SSE2, Trans32x32Test, |
| ::testing::Values( |
| make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_10, 0, VPX_BITS_10), |
| make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_10, 1, |
| VPX_BITS_10), |
| make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_12, 0, VPX_BITS_12), |
| make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_12, 1, |
| VPX_BITS_12), |
| make_tuple(&vpx_fdct32x32_sse2, &vpx_idct32x32_1024_add_c, 0, |
| VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_sse2, &vpx_idct32x32_1024_add_c, 1, |
| VPX_BITS_8))); |
| #endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_SUITE_P( |
| AVX2, Trans32x32Test, |
| ::testing::Values(make_tuple(&vpx_fdct32x32_avx2, |
| &vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_avx2, |
| &vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8))); |
| #endif // HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_SUITE_P( |
| MSA, Trans32x32Test, |
| ::testing::Values(make_tuple(&vpx_fdct32x32_msa, |
| &vpx_idct32x32_1024_add_msa, 0, VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_msa, |
| &vpx_idct32x32_1024_add_msa, 1, VPX_BITS_8))); |
| #endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| |
| #if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| INSTANTIATE_TEST_SUITE_P( |
| VSX, Trans32x32Test, |
| ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_vsx, |
| 0, VPX_BITS_8), |
| make_tuple(&vpx_fdct32x32_rd_vsx, |
| &vpx_idct32x32_1024_add_vsx, 1, VPX_BITS_8))); |
| #endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE |
| } // namespace |