blob: c78b0b3b6cc25f6bfe93659f6dfd7929c9d5e7b6 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "vp8/decoder/dboolhuff.h"
#include "vp8/encoder/boolhuff.h"
#include "vpx/vpx_integer.h"
namespace {
const int num_tests = 10;
// In a real use the 'decrypt_state' parameter will be a pointer to a struct
// with whatever internal state the decryptor uses. For testing we'll just
// xor with a constant key, and decrypt_state will point to the start of
// the original buffer.
const uint8_t secret_key[16] = {
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0
};
void encrypt_buffer(uint8_t *buffer, size_t size) {
for (size_t i = 0; i < size; ++i) {
buffer[i] ^= secret_key[i & 15];
}
}
void test_decrypt_cb(void *decrypt_state, const uint8_t *input, uint8_t *output,
int count) {
const size_t offset = input - reinterpret_cast<uint8_t *>(decrypt_state);
for (int i = 0; i < count; i++) {
output[i] = input[i] ^ secret_key[(offset + i) & 15];
}
}
} // namespace
using libvpx_test::ACMRandom;
TEST(VP8, TestBitIO) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int n = 0; n < num_tests; ++n) {
for (int method = 0; method <= 7; ++method) { // we generate various proba
const int kBitsToTest = 1000;
uint8_t probas[kBitsToTest];
for (int i = 0; i < kBitsToTest; ++i) {
const int parity = i & 1;
/* clang-format off */
probas[i] =
(method == 0) ? 0 : (method == 1) ? 255 :
(method == 2) ? 128 :
(method == 3) ? rnd.Rand8() :
(method == 4) ? (parity ? 0 : 255) :
// alternate between low and high proba:
(method == 5) ? (parity ? rnd(128) : 255 - rnd(128)) :
(method == 6) ?
(parity ? rnd(64) : 255 - rnd(64)) :
(parity ? rnd(32) : 255 - rnd(32));
/* clang-format on */
}
for (int bit_method = 0; bit_method <= 3; ++bit_method) {
const int random_seed = 6432;
const int kBufferSize = 10000;
ACMRandom bit_rnd(random_seed);
BOOL_CODER bw;
uint8_t bw_buffer[kBufferSize];
vp8_start_encode(&bw, bw_buffer, bw_buffer + kBufferSize);
int bit = (bit_method == 0) ? 0 : (bit_method == 1) ? 1 : 0;
for (int i = 0; i < kBitsToTest; ++i) {
if (bit_method == 2) {
bit = (i & 1);
} else if (bit_method == 3) {
bit = bit_rnd(2);
}
vp8_encode_bool(&bw, bit, static_cast<int>(probas[i]));
}
vp8_stop_encode(&bw);
// vp8dx_bool_decoder_fill() may read into uninitialized data that
// isn't used meaningfully, but may trigger an MSan warning.
memset(bw_buffer + bw.pos, 0, sizeof(VP8_BD_VALUE) - 1);
BOOL_DECODER br;
encrypt_buffer(bw_buffer, kBufferSize);
vp8dx_start_decode(&br, bw_buffer, kBufferSize, test_decrypt_cb,
reinterpret_cast<void *>(bw_buffer));
bit_rnd.Reset(random_seed);
for (int i = 0; i < kBitsToTest; ++i) {
if (bit_method == 2) {
bit = (i & 1);
} else if (bit_method == 3) {
bit = bit_rnd(2);
}
GTEST_ASSERT_EQ(vp8dx_decode_bool(&br, probas[i]), bit)
<< "pos: " << i << " / " << kBitsToTest
<< " bit_method: " << bit_method << " method: " << method;
}
}
}
}
}