| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ccpr/GrCCStrokeGeometry.h" |
| |
| #include "include/core/SkStrokeRec.h" |
| #include "include/private/SkNx.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkMathPriv.h" |
| |
| // This is the maximum distance in pixels that we can stray from the edge of a stroke when |
| // converting it to flat line segments. |
| static constexpr float kMaxErrorFromLinearization = 1/8.f; |
| |
| static inline float length(const Sk2f& n) { |
| Sk2f nn = n*n; |
| return SkScalarSqrt(nn[0] + nn[1]); |
| } |
| |
| static inline Sk2f normalize(const Sk2f& v) { |
| Sk2f vv = v*v; |
| vv += SkNx_shuffle<1,0>(vv); |
| return v * vv.rsqrt(); |
| } |
| |
| static inline void transpose(const Sk2f& a, const Sk2f& b, Sk2f* X, Sk2f* Y) { |
| float transpose[4]; |
| a.store(transpose); |
| b.store(transpose+2); |
| Sk2f::Load2(transpose, X, Y); |
| } |
| |
| static inline void normalize2(const Sk2f& v0, const Sk2f& v1, SkPoint out[2]) { |
| Sk2f X, Y; |
| transpose(v0, v1, &X, &Y); |
| Sk2f invlength = (X*X + Y*Y).rsqrt(); |
| Sk2f::Store2(out, Y * invlength, -X * invlength); |
| } |
| |
| static inline float calc_curvature_costheta(const Sk2f& leftTan, const Sk2f& rightTan) { |
| Sk2f X, Y; |
| transpose(leftTan, rightTan, &X, &Y); |
| Sk2f invlength = (X*X + Y*Y).rsqrt(); |
| Sk2f dotprod = leftTan * rightTan; |
| return (dotprod[0] + dotprod[1]) * invlength[0] * invlength[1]; |
| } |
| |
| static GrCCStrokeGeometry::Verb join_verb_from_join(SkPaint::Join join) { |
| using Verb = GrCCStrokeGeometry::Verb; |
| switch (join) { |
| case SkPaint::kBevel_Join: |
| return Verb::kBevelJoin; |
| case SkPaint::kMiter_Join: |
| return Verb::kMiterJoin; |
| case SkPaint::kRound_Join: |
| return Verb::kRoundJoin; |
| } |
| SK_ABORT("Invalid SkPaint::Join."); |
| } |
| |
| void GrCCStrokeGeometry::beginPath(const SkStrokeRec& stroke, float strokeDevWidth, |
| InstanceTallies* tallies) { |
| SkASSERT(!fInsideContour); |
| // Client should have already converted the stroke to device space (i.e. width=1 for hairline). |
| SkASSERT(strokeDevWidth > 0); |
| |
| fCurrStrokeRadius = strokeDevWidth/2; |
| fCurrStrokeJoinVerb = join_verb_from_join(stroke.getJoin()); |
| fCurrStrokeCapType = stroke.getCap(); |
| fCurrStrokeTallies = tallies; |
| |
| if (Verb::kMiterJoin == fCurrStrokeJoinVerb) { |
| // We implement miters by placing a triangle-shaped cap on top of a bevel join. Convert the |
| // "miter limit" to how tall that triangle cap can be. |
| float m = stroke.getMiter(); |
| fMiterMaxCapHeightOverWidth = .5f * SkScalarSqrt(m*m - 1); |
| } |
| |
| // Find the angle of curvature where the arc height above a simple line from point A to point B |
| // is equal to kMaxErrorFromLinearization. |
| float r = SkTMax(1 - kMaxErrorFromLinearization / fCurrStrokeRadius, 0.f); |
| fMaxCurvatureCosTheta = 2*r*r - 1; |
| |
| fCurrContourFirstPtIdx = -1; |
| fCurrContourFirstNormalIdx = -1; |
| |
| fVerbs.push_back(Verb::kBeginPath); |
| } |
| |
| void GrCCStrokeGeometry::moveTo(SkPoint pt) { |
| SkASSERT(!fInsideContour); |
| fCurrContourFirstPtIdx = fPoints.count(); |
| fCurrContourFirstNormalIdx = fNormals.count(); |
| fPoints.push_back(pt); |
| SkDEBUGCODE(fInsideContour = true); |
| } |
| |
| void GrCCStrokeGeometry::lineTo(SkPoint pt) { |
| SkASSERT(fInsideContour); |
| this->lineTo(fCurrStrokeJoinVerb, pt); |
| } |
| |
| void GrCCStrokeGeometry::lineTo(Verb leftJoinVerb, SkPoint pt) { |
| Sk2f tan = Sk2f::Load(&pt) - Sk2f::Load(&fPoints.back()); |
| if ((tan == 0).allTrue()) { |
| return; |
| } |
| |
| tan = normalize(tan); |
| SkVector n = SkVector::Make(tan[1], -tan[0]); |
| |
| this->recordLeftJoinIfNotEmpty(leftJoinVerb, n); |
| fNormals.push_back(n); |
| |
| this->recordStroke(Verb::kLinearStroke, 0); |
| fPoints.push_back(pt); |
| } |
| |
| void GrCCStrokeGeometry::quadraticTo(const SkPoint P[3]) { |
| SkASSERT(fInsideContour); |
| this->quadraticTo(fCurrStrokeJoinVerb, P, SkFindQuadMaxCurvature(P)); |
| } |
| |
| // Wang's formula for quadratics (1985) gives us the number of evenly spaced (in the parametric |
| // sense) line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization" |
| // from the actual curve. |
| static inline float wangs_formula_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { |
| static constexpr float k = 2 / (8 * kMaxErrorFromLinearization); |
| float f = SkScalarSqrt(k * length(p2 - p1*2 + p0)); |
| return SkScalarCeilToInt(f); |
| } |
| |
| void GrCCStrokeGeometry::quadraticTo(Verb leftJoinVerb, const SkPoint P[3], float maxCurvatureT) { |
| Sk2f p0 = Sk2f::Load(P); |
| Sk2f p1 = Sk2f::Load(P+1); |
| Sk2f p2 = Sk2f::Load(P+2); |
| |
| Sk2f tan0 = p1 - p0; |
| Sk2f tan1 = p2 - p1; |
| |
| // Snap to a "lineTo" if the control point is so close to an endpoint that FP error will become |
| // an issue. |
| if ((tan0.abs() < SK_ScalarNearlyZero).allTrue() || // p0 ~= p1 |
| (tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p1 ~= p2 |
| this->lineTo(leftJoinVerb, P[2]); |
| return; |
| } |
| |
| SkPoint normals[2]; |
| normalize2(tan0, tan1, normals); |
| |
| // Decide how many flat line segments to chop the curve into. |
| int numSegments = wangs_formula_quadratic(p0, p1, p2); |
| numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2); |
| if (numSegments <= 1) { |
| this->rotateTo(leftJoinVerb, normals[0]); |
| this->lineTo(Verb::kInternalRoundJoin, P[2]); |
| this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| return; |
| } |
| |
| // At + B gives a vector tangent to the quadratic. |
| Sk2f A = p0 - p1*2 + p2; |
| Sk2f B = p1 - p0; |
| |
| // Find a line segment that crosses max curvature. |
| float segmentLength = SkScalarInvert(numSegments); |
| float leftT = maxCurvatureT - segmentLength/2; |
| float rightT = maxCurvatureT + segmentLength/2; |
| Sk2f leftTan, rightTan; |
| if (leftT <= 0) { |
| leftT = 0; |
| leftTan = tan0; |
| rightT = segmentLength; |
| rightTan = A*rightT + B; |
| } else if (rightT >= 1) { |
| leftT = 1 - segmentLength; |
| leftTan = A*leftT + B; |
| rightT = 1; |
| rightTan = tan1; |
| } else { |
| leftTan = A*leftT + B; |
| rightTan = A*rightT + B; |
| } |
| |
| // Check if curvature is too strong for a triangle strip on the line segment that crosses max |
| // curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins. |
| // |
| // FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We |
| // would benefit significantly from a quick reject that detects curves that don't need special |
| // treatment for strong curvature. |
| bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta; |
| if (isCurvatureTooStrong) { |
| SkPoint ptsBuffer[5]; |
| const SkPoint* currQuadratic = P; |
| |
| if (leftT > 0) { |
| SkChopQuadAt(currQuadratic, ptsBuffer, leftT); |
| this->quadraticTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1); |
| if (rightT < 1) { |
| rightT = (rightT - leftT) / (1 - leftT); |
| } |
| currQuadratic = ptsBuffer + 2; |
| } else { |
| this->rotateTo(leftJoinVerb, normals[0]); |
| } |
| |
| if (rightT < 1) { |
| SkChopQuadAt(currQuadratic, ptsBuffer, rightT); |
| this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[2]); |
| this->quadraticTo(Verb::kInternalRoundJoin, ptsBuffer + 2, /*maxCurvatureT=*/0); |
| } else { |
| this->lineTo(Verb::kInternalRoundJoin, currQuadratic[2]); |
| this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| } |
| return; |
| } |
| |
| this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]); |
| fNormals.push_back_n(2, normals); |
| |
| this->recordStroke(Verb::kQuadraticStroke, SkNextLog2(numSegments)); |
| p1.store(&fPoints.push_back()); |
| p2.store(&fPoints.push_back()); |
| } |
| |
| void GrCCStrokeGeometry::cubicTo(const SkPoint P[4]) { |
| SkASSERT(fInsideContour); |
| float roots[3]; |
| int numRoots = SkFindCubicMaxCurvature(P, roots); |
| this->cubicTo(fCurrStrokeJoinVerb, P, |
| numRoots > 0 ? roots[numRoots/2] : 0, |
| numRoots > 1 ? roots[0] : kLeftMaxCurvatureNone, |
| numRoots > 2 ? roots[2] : kRightMaxCurvatureNone); |
| } |
| |
| // Wang's formula for cubics (1985) gives us the number of evenly spaced (in the parametric sense) |
| // line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization" |
| // from the actual curve. |
| static inline float wangs_formula_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
| const Sk2f& p3) { |
| static constexpr float k = (3 * 2) / (8 * kMaxErrorFromLinearization); |
| float f = SkScalarSqrt(k * length(Sk2f::Max((p2 - p1*2 + p0).abs(), |
| (p3 - p2*2 + p1).abs()))); |
| return SkScalarCeilToInt(f); |
| } |
| |
| void GrCCStrokeGeometry::cubicTo(Verb leftJoinVerb, const SkPoint P[4], float maxCurvatureT, |
| float leftMaxCurvatureT, float rightMaxCurvatureT) { |
| Sk2f p0 = Sk2f::Load(P); |
| Sk2f p1 = Sk2f::Load(P+1); |
| Sk2f p2 = Sk2f::Load(P+2); |
| Sk2f p3 = Sk2f::Load(P+3); |
| |
| Sk2f tan0 = p1 - p0; |
| Sk2f tan1 = p3 - p2; |
| |
| // Snap control points to endpoints if they are so close that FP error will become an issue. |
| if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1 |
| p1 = p0; |
| tan0 = p2 - p0; |
| if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1 ~= p2 |
| this->lineTo(leftJoinVerb, P[3]); |
| return; |
| } |
| } |
| if ((tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p2 ~= p3 |
| p2 = p3; |
| tan1 = p3 - p1; |
| if ((tan1.abs() < SK_ScalarNearlyZero).allTrue() || // p1 ~= p2 ~= p3 |
| (p0 == p1).allTrue()) { // p0 ~= p1 AND p2 ~= p3 |
| this->lineTo(leftJoinVerb, P[3]); |
| return; |
| } |
| } |
| |
| SkPoint normals[2]; |
| normalize2(tan0, tan1, normals); |
| |
| // Decide how many flat line segments to chop the curve into. |
| int numSegments = wangs_formula_cubic(p0, p1, p2, p3); |
| numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2); |
| if (numSegments <= 1) { |
| this->rotateTo(leftJoinVerb, normals[0]); |
| this->lineTo(leftJoinVerb, P[3]); |
| this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| return; |
| } |
| |
| // At^2 + Bt + C gives a vector tangent to the cubic. (More specifically, it's the derivative |
| // minus an irrelevant scale by 3, since all we care about is the direction.) |
| Sk2f A = p3 + (p1 - p2)*3 - p0; |
| Sk2f B = (p0 - p1*2 + p2)*2; |
| Sk2f C = p1 - p0; |
| |
| // Find a line segment that crosses max curvature. |
| float segmentLength = SkScalarInvert(numSegments); |
| float leftT = maxCurvatureT - segmentLength/2; |
| float rightT = maxCurvatureT + segmentLength/2; |
| Sk2f leftTan, rightTan; |
| if (leftT <= 0) { |
| leftT = 0; |
| leftTan = tan0; |
| rightT = segmentLength; |
| rightTan = A*rightT*rightT + B*rightT + C; |
| } else if (rightT >= 1) { |
| leftT = 1 - segmentLength; |
| leftTan = A*leftT*leftT + B*leftT + C; |
| rightT = 1; |
| rightTan = tan1; |
| } else { |
| leftTan = A*leftT*leftT + B*leftT + C; |
| rightTan = A*rightT*rightT + B*rightT + C; |
| } |
| |
| // Check if curvature is too strong for a triangle strip on the line segment that crosses max |
| // curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins. |
| // |
| // FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We |
| // would benefit significantly from a quick reject that detects curves that don't need special |
| // treatment for strong curvature. |
| bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta; |
| if (isCurvatureTooStrong) { |
| SkPoint ptsBuffer[7]; |
| p0.store(ptsBuffer); |
| p1.store(ptsBuffer + 1); |
| p2.store(ptsBuffer + 2); |
| p3.store(ptsBuffer + 3); |
| const SkPoint* currCubic = ptsBuffer; |
| |
| if (leftT > 0) { |
| SkChopCubicAt(currCubic, ptsBuffer, leftT); |
| this->cubicTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1, |
| (kLeftMaxCurvatureNone != leftMaxCurvatureT) |
| ? leftMaxCurvatureT/leftT : kLeftMaxCurvatureNone, |
| kRightMaxCurvatureNone); |
| if (rightT < 1) { |
| rightT = (rightT - leftT) / (1 - leftT); |
| } |
| if (rightMaxCurvatureT < 1 && kRightMaxCurvatureNone != rightMaxCurvatureT) { |
| rightMaxCurvatureT = (rightMaxCurvatureT - leftT) / (1 - leftT); |
| } |
| currCubic = ptsBuffer + 3; |
| } else { |
| this->rotateTo(leftJoinVerb, normals[0]); |
| } |
| |
| if (rightT < 1) { |
| SkChopCubicAt(currCubic, ptsBuffer, rightT); |
| this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[3]); |
| currCubic = ptsBuffer + 3; |
| this->cubicTo(Verb::kInternalRoundJoin, currCubic, /*maxCurvatureT=*/0, |
| kLeftMaxCurvatureNone, kRightMaxCurvatureNone); |
| } else { |
| this->lineTo(Verb::kInternalRoundJoin, currCubic[3]); |
| this->rotateTo(Verb::kInternalRoundJoin, normals[1]); |
| } |
| return; |
| } |
| |
| // Recurse and check the other two points of max curvature, if any. |
| if (kRightMaxCurvatureNone != rightMaxCurvatureT) { |
| this->cubicTo(leftJoinVerb, P, rightMaxCurvatureT, leftMaxCurvatureT, |
| kRightMaxCurvatureNone); |
| return; |
| } |
| if (kLeftMaxCurvatureNone != leftMaxCurvatureT) { |
| SkASSERT(kRightMaxCurvatureNone == rightMaxCurvatureT); |
| this->cubicTo(leftJoinVerb, P, leftMaxCurvatureT, kLeftMaxCurvatureNone, |
| kRightMaxCurvatureNone); |
| return; |
| } |
| |
| this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]); |
| fNormals.push_back_n(2, normals); |
| |
| this->recordStroke(Verb::kCubicStroke, SkNextLog2(numSegments)); |
| p1.store(&fPoints.push_back()); |
| p2.store(&fPoints.push_back()); |
| p3.store(&fPoints.push_back()); |
| } |
| |
| void GrCCStrokeGeometry::recordStroke(Verb verb, int numSegmentsLog2) { |
| SkASSERT(Verb::kLinearStroke != verb || 0 == numSegmentsLog2); |
| SkASSERT(numSegmentsLog2 <= kMaxNumLinearSegmentsLog2); |
| fVerbs.push_back(verb); |
| if (Verb::kLinearStroke != verb) { |
| SkASSERT(numSegmentsLog2 > 0); |
| fParams.push_back().fNumLinearSegmentsLog2 = numSegmentsLog2; |
| } |
| ++fCurrStrokeTallies->fStrokes[numSegmentsLog2]; |
| } |
| |
| void GrCCStrokeGeometry::rotateTo(Verb leftJoinVerb, SkVector normal) { |
| this->recordLeftJoinIfNotEmpty(leftJoinVerb, normal); |
| fNormals.push_back(normal); |
| } |
| |
| void GrCCStrokeGeometry::recordLeftJoinIfNotEmpty(Verb joinVerb, SkVector nextNormal) { |
| if (fNormals.count() <= fCurrContourFirstNormalIdx) { |
| // The contour is empty. Nothing to join with. |
| SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); |
| return; |
| } |
| |
| if (Verb::kBevelJoin == joinVerb) { |
| this->recordBevelJoin(Verb::kBevelJoin); |
| return; |
| } |
| |
| Sk2f n0 = Sk2f::Load(&fNormals.back()); |
| Sk2f n1 = Sk2f::Load(&nextNormal); |
| Sk2f base = n1 - n0; |
| if ((base.abs() * fCurrStrokeRadius < kMaxErrorFromLinearization).allTrue()) { |
| // Treat any join as a bevel when the outside corners of the two adjoining strokes are |
| // close enough to each other. This is important because "miterCapHeightOverWidth" becomes |
| // unstable when n0 and n1 are nearly equal. |
| this->recordBevelJoin(joinVerb); |
| return; |
| } |
| |
| // We implement miters and round joins by placing a triangle-shaped cap on top of a bevel join. |
| // (For round joins this triangle cap comprises the conic control points.) Find how tall to make |
| // this triangle cap, relative to its width. |
| // |
| // NOTE: This value would be infinite at 180 degrees, but we clamp miterCapHeightOverWidth at |
| // near-infinity. 180-degree round joins still look perfectly acceptable like this (though |
| // technically not pure arcs). |
| Sk2f cross = base * SkNx_shuffle<1,0>(n0); |
| Sk2f dot = base * n0; |
| float miterCapHeight = SkScalarAbs(dot[0] + dot[1]); |
| float miterCapWidth = SkScalarAbs(cross[0] - cross[1]) * 2; |
| |
| if (Verb::kMiterJoin == joinVerb) { |
| if (miterCapHeight > fMiterMaxCapHeightOverWidth * miterCapWidth) { |
| // This join is tighter than the miter limit. Treat it as a bevel. |
| this->recordBevelJoin(Verb::kMiterJoin); |
| return; |
| } |
| this->recordMiterJoin(miterCapHeight / miterCapWidth); |
| return; |
| } |
| |
| SkASSERT(Verb::kRoundJoin == joinVerb || Verb::kInternalRoundJoin == joinVerb); |
| |
| // Conic arcs become unstable when they approach 180 degrees. When the conic control point |
| // begins shooting off to infinity (i.e., height/width > 32), split the conic into two. |
| static constexpr float kAlmost180Degrees = 32; |
| if (miterCapHeight > kAlmost180Degrees * miterCapWidth) { |
| Sk2f bisect = normalize(n0 - n1); |
| this->rotateTo(joinVerb, SkVector::Make(-bisect[1], bisect[0])); |
| this->recordLeftJoinIfNotEmpty(joinVerb, nextNormal); |
| return; |
| } |
| |
| float miterCapHeightOverWidth = miterCapHeight / miterCapWidth; |
| |
| // Find the heights of this round join's conic control point as well as the arc itself. |
| Sk2f X, Y; |
| transpose(base * base, n0 * n1, &X, &Y); |
| Sk2f r = Sk2f::Max(X + Y + Sk2f(0, 1), 0.f).sqrt(); |
| Sk2f heights = SkNx_fma(r, Sk2f(miterCapHeightOverWidth, -SK_ScalarRoot2Over2), Sk2f(0, 1)); |
| float controlPointHeight = SkScalarAbs(heights[0]); |
| float curveHeight = heights[1]; |
| if (curveHeight * fCurrStrokeRadius < kMaxErrorFromLinearization) { |
| // Treat round joins as bevels when their curvature is nearly flat. |
| this->recordBevelJoin(joinVerb); |
| return; |
| } |
| |
| float w = curveHeight / (controlPointHeight - curveHeight); |
| this->recordRoundJoin(joinVerb, miterCapHeightOverWidth, w); |
| } |
| |
| void GrCCStrokeGeometry::recordBevelJoin(Verb originalJoinVerb) { |
| if (!IsInternalJoinVerb(originalJoinVerb)) { |
| fVerbs.push_back(Verb::kBevelJoin); |
| ++fCurrStrokeTallies->fTriangles; |
| } else { |
| fVerbs.push_back(Verb::kInternalBevelJoin); |
| fCurrStrokeTallies->fTriangles += 2; |
| } |
| } |
| |
| void GrCCStrokeGeometry::recordMiterJoin(float miterCapHeightOverWidth) { |
| fVerbs.push_back(Verb::kMiterJoin); |
| fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth; |
| fCurrStrokeTallies->fTriangles += 2; |
| } |
| |
| void GrCCStrokeGeometry::recordRoundJoin(Verb joinVerb, float miterCapHeightOverWidth, |
| float conicWeight) { |
| fVerbs.push_back(joinVerb); |
| fParams.push_back().fConicWeight = conicWeight; |
| fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth; |
| if (Verb::kRoundJoin == joinVerb) { |
| ++fCurrStrokeTallies->fTriangles; |
| ++fCurrStrokeTallies->fConics; |
| } else { |
| SkASSERT(Verb::kInternalRoundJoin == joinVerb); |
| fCurrStrokeTallies->fTriangles += 2; |
| fCurrStrokeTallies->fConics += 2; |
| } |
| } |
| |
| void GrCCStrokeGeometry::closeContour() { |
| SkASSERT(fInsideContour); |
| SkASSERT(fPoints.count() > fCurrContourFirstPtIdx); |
| if (fPoints.back() != fPoints[fCurrContourFirstPtIdx]) { |
| // Draw a line back to the beginning. |
| this->lineTo(fCurrStrokeJoinVerb, fPoints[fCurrContourFirstPtIdx]); |
| } |
| if (fNormals.count() > fCurrContourFirstNormalIdx) { |
| // Join the first and last lines. |
| this->rotateTo(fCurrStrokeJoinVerb,fNormals[fCurrContourFirstNormalIdx]); |
| } else { |
| // This contour is empty. Add a bogus normal since the iterator always expects one. |
| SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); |
| fNormals.push_back({0, 0}); |
| } |
| fVerbs.push_back(Verb::kEndContour); |
| SkDEBUGCODE(fInsideContour = false); |
| } |
| |
| void GrCCStrokeGeometry::capContourAndExit() { |
| SkASSERT(fInsideContour); |
| if (fCurrContourFirstNormalIdx >= fNormals.count()) { |
| // This contour is empty. Add a normal in the direction that caps orient on empty geometry. |
| SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx); |
| fNormals.push_back({1, 0}); |
| } |
| |
| this->recordCapsIfAny(); |
| fVerbs.push_back(Verb::kEndContour); |
| |
| SkDEBUGCODE(fInsideContour = false); |
| } |
| |
| void GrCCStrokeGeometry::recordCapsIfAny() { |
| SkASSERT(fInsideContour); |
| SkASSERT(fCurrContourFirstNormalIdx < fNormals.count()); |
| |
| if (SkPaint::kButt_Cap == fCurrStrokeCapType) { |
| return; |
| } |
| |
| Verb capVerb; |
| if (SkPaint::kSquare_Cap == fCurrStrokeCapType) { |
| if (fCurrStrokeRadius * SK_ScalarRoot2Over2 < kMaxErrorFromLinearization) { |
| return; |
| } |
| capVerb = Verb::kSquareCap; |
| fCurrStrokeTallies->fStrokes[0] += 2; |
| } else { |
| SkASSERT(SkPaint::kRound_Cap == fCurrStrokeCapType); |
| if (fCurrStrokeRadius < kMaxErrorFromLinearization) { |
| return; |
| } |
| capVerb = Verb::kRoundCap; |
| fCurrStrokeTallies->fTriangles += 2; |
| fCurrStrokeTallies->fConics += 4; |
| } |
| |
| fVerbs.push_back(capVerb); |
| fVerbs.push_back(Verb::kEndContour); |
| |
| fVerbs.push_back(capVerb); |
| |
| // Reserve the space first, since push_back() takes the point by reference and might |
| // invalidate the reference if the array grows. |
| fPoints.reserve(fPoints.count() + 1); |
| fPoints.push_back(fPoints[fCurrContourFirstPtIdx]); |
| |
| // Reserve the space first, since push_back() takes the normal by reference and might |
| // invalidate the reference if the array grows. (Although in this case we should be fine |
| // since there is a negate operator.) |
| fNormals.reserve(fNormals.count() + 1); |
| fNormals.push_back(-fNormals[fCurrContourFirstNormalIdx]); |
| } |