blob: 40884d7d8f2906d48d6a3a1d5852cd5d35d9a67c [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ccpr/GrCCStrokeGeometry.h"
#include "include/core/SkStrokeRec.h"
#include "include/private/SkNx.h"
#include "src/core/SkGeometry.h"
#include "src/core/SkMathPriv.h"
// This is the maximum distance in pixels that we can stray from the edge of a stroke when
// converting it to flat line segments.
static constexpr float kMaxErrorFromLinearization = 1/8.f;
static inline float length(const Sk2f& n) {
Sk2f nn = n*n;
return SkScalarSqrt(nn[0] + nn[1]);
}
static inline Sk2f normalize(const Sk2f& v) {
Sk2f vv = v*v;
vv += SkNx_shuffle<1,0>(vv);
return v * vv.rsqrt();
}
static inline void transpose(const Sk2f& a, const Sk2f& b, Sk2f* X, Sk2f* Y) {
float transpose[4];
a.store(transpose);
b.store(transpose+2);
Sk2f::Load2(transpose, X, Y);
}
static inline void normalize2(const Sk2f& v0, const Sk2f& v1, SkPoint out[2]) {
Sk2f X, Y;
transpose(v0, v1, &X, &Y);
Sk2f invlength = (X*X + Y*Y).rsqrt();
Sk2f::Store2(out, Y * invlength, -X * invlength);
}
static inline float calc_curvature_costheta(const Sk2f& leftTan, const Sk2f& rightTan) {
Sk2f X, Y;
transpose(leftTan, rightTan, &X, &Y);
Sk2f invlength = (X*X + Y*Y).rsqrt();
Sk2f dotprod = leftTan * rightTan;
return (dotprod[0] + dotprod[1]) * invlength[0] * invlength[1];
}
static GrCCStrokeGeometry::Verb join_verb_from_join(SkPaint::Join join) {
using Verb = GrCCStrokeGeometry::Verb;
switch (join) {
case SkPaint::kBevel_Join:
return Verb::kBevelJoin;
case SkPaint::kMiter_Join:
return Verb::kMiterJoin;
case SkPaint::kRound_Join:
return Verb::kRoundJoin;
}
SK_ABORT("Invalid SkPaint::Join.");
}
void GrCCStrokeGeometry::beginPath(const SkStrokeRec& stroke, float strokeDevWidth,
InstanceTallies* tallies) {
SkASSERT(!fInsideContour);
// Client should have already converted the stroke to device space (i.e. width=1 for hairline).
SkASSERT(strokeDevWidth > 0);
fCurrStrokeRadius = strokeDevWidth/2;
fCurrStrokeJoinVerb = join_verb_from_join(stroke.getJoin());
fCurrStrokeCapType = stroke.getCap();
fCurrStrokeTallies = tallies;
if (Verb::kMiterJoin == fCurrStrokeJoinVerb) {
// We implement miters by placing a triangle-shaped cap on top of a bevel join. Convert the
// "miter limit" to how tall that triangle cap can be.
float m = stroke.getMiter();
fMiterMaxCapHeightOverWidth = .5f * SkScalarSqrt(m*m - 1);
}
// Find the angle of curvature where the arc height above a simple line from point A to point B
// is equal to kMaxErrorFromLinearization.
float r = SkTMax(1 - kMaxErrorFromLinearization / fCurrStrokeRadius, 0.f);
fMaxCurvatureCosTheta = 2*r*r - 1;
fCurrContourFirstPtIdx = -1;
fCurrContourFirstNormalIdx = -1;
fVerbs.push_back(Verb::kBeginPath);
}
void GrCCStrokeGeometry::moveTo(SkPoint pt) {
SkASSERT(!fInsideContour);
fCurrContourFirstPtIdx = fPoints.count();
fCurrContourFirstNormalIdx = fNormals.count();
fPoints.push_back(pt);
SkDEBUGCODE(fInsideContour = true);
}
void GrCCStrokeGeometry::lineTo(SkPoint pt) {
SkASSERT(fInsideContour);
this->lineTo(fCurrStrokeJoinVerb, pt);
}
void GrCCStrokeGeometry::lineTo(Verb leftJoinVerb, SkPoint pt) {
Sk2f tan = Sk2f::Load(&pt) - Sk2f::Load(&fPoints.back());
if ((tan == 0).allTrue()) {
return;
}
tan = normalize(tan);
SkVector n = SkVector::Make(tan[1], -tan[0]);
this->recordLeftJoinIfNotEmpty(leftJoinVerb, n);
fNormals.push_back(n);
this->recordStroke(Verb::kLinearStroke, 0);
fPoints.push_back(pt);
}
void GrCCStrokeGeometry::quadraticTo(const SkPoint P[3]) {
SkASSERT(fInsideContour);
this->quadraticTo(fCurrStrokeJoinVerb, P, SkFindQuadMaxCurvature(P));
}
// Wang's formula for quadratics (1985) gives us the number of evenly spaced (in the parametric
// sense) line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization"
// from the actual curve.
static inline float wangs_formula_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
static constexpr float k = 2 / (8 * kMaxErrorFromLinearization);
float f = SkScalarSqrt(k * length(p2 - p1*2 + p0));
return SkScalarCeilToInt(f);
}
void GrCCStrokeGeometry::quadraticTo(Verb leftJoinVerb, const SkPoint P[3], float maxCurvatureT) {
Sk2f p0 = Sk2f::Load(P);
Sk2f p1 = Sk2f::Load(P+1);
Sk2f p2 = Sk2f::Load(P+2);
Sk2f tan0 = p1 - p0;
Sk2f tan1 = p2 - p1;
// Snap to a "lineTo" if the control point is so close to an endpoint that FP error will become
// an issue.
if ((tan0.abs() < SK_ScalarNearlyZero).allTrue() || // p0 ~= p1
(tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p1 ~= p2
this->lineTo(leftJoinVerb, P[2]);
return;
}
SkPoint normals[2];
normalize2(tan0, tan1, normals);
// Decide how many flat line segments to chop the curve into.
int numSegments = wangs_formula_quadratic(p0, p1, p2);
numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2);
if (numSegments <= 1) {
this->rotateTo(leftJoinVerb, normals[0]);
this->lineTo(Verb::kInternalRoundJoin, P[2]);
this->rotateTo(Verb::kInternalRoundJoin, normals[1]);
return;
}
// At + B gives a vector tangent to the quadratic.
Sk2f A = p0 - p1*2 + p2;
Sk2f B = p1 - p0;
// Find a line segment that crosses max curvature.
float segmentLength = SkScalarInvert(numSegments);
float leftT = maxCurvatureT - segmentLength/2;
float rightT = maxCurvatureT + segmentLength/2;
Sk2f leftTan, rightTan;
if (leftT <= 0) {
leftT = 0;
leftTan = tan0;
rightT = segmentLength;
rightTan = A*rightT + B;
} else if (rightT >= 1) {
leftT = 1 - segmentLength;
leftTan = A*leftT + B;
rightT = 1;
rightTan = tan1;
} else {
leftTan = A*leftT + B;
rightTan = A*rightT + B;
}
// Check if curvature is too strong for a triangle strip on the line segment that crosses max
// curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins.
//
// FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We
// would benefit significantly from a quick reject that detects curves that don't need special
// treatment for strong curvature.
bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta;
if (isCurvatureTooStrong) {
SkPoint ptsBuffer[5];
const SkPoint* currQuadratic = P;
if (leftT > 0) {
SkChopQuadAt(currQuadratic, ptsBuffer, leftT);
this->quadraticTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1);
if (rightT < 1) {
rightT = (rightT - leftT) / (1 - leftT);
}
currQuadratic = ptsBuffer + 2;
} else {
this->rotateTo(leftJoinVerb, normals[0]);
}
if (rightT < 1) {
SkChopQuadAt(currQuadratic, ptsBuffer, rightT);
this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[2]);
this->quadraticTo(Verb::kInternalRoundJoin, ptsBuffer + 2, /*maxCurvatureT=*/0);
} else {
this->lineTo(Verb::kInternalRoundJoin, currQuadratic[2]);
this->rotateTo(Verb::kInternalRoundJoin, normals[1]);
}
return;
}
this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]);
fNormals.push_back_n(2, normals);
this->recordStroke(Verb::kQuadraticStroke, SkNextLog2(numSegments));
p1.store(&fPoints.push_back());
p2.store(&fPoints.push_back());
}
void GrCCStrokeGeometry::cubicTo(const SkPoint P[4]) {
SkASSERT(fInsideContour);
float roots[3];
int numRoots = SkFindCubicMaxCurvature(P, roots);
this->cubicTo(fCurrStrokeJoinVerb, P,
numRoots > 0 ? roots[numRoots/2] : 0,
numRoots > 1 ? roots[0] : kLeftMaxCurvatureNone,
numRoots > 2 ? roots[2] : kRightMaxCurvatureNone);
}
// Wang's formula for cubics (1985) gives us the number of evenly spaced (in the parametric sense)
// line segments that are guaranteed to be within a distance of "kMaxErrorFromLinearization"
// from the actual curve.
static inline float wangs_formula_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
const Sk2f& p3) {
static constexpr float k = (3 * 2) / (8 * kMaxErrorFromLinearization);
float f = SkScalarSqrt(k * length(Sk2f::Max((p2 - p1*2 + p0).abs(),
(p3 - p2*2 + p1).abs())));
return SkScalarCeilToInt(f);
}
void GrCCStrokeGeometry::cubicTo(Verb leftJoinVerb, const SkPoint P[4], float maxCurvatureT,
float leftMaxCurvatureT, float rightMaxCurvatureT) {
Sk2f p0 = Sk2f::Load(P);
Sk2f p1 = Sk2f::Load(P+1);
Sk2f p2 = Sk2f::Load(P+2);
Sk2f p3 = Sk2f::Load(P+3);
Sk2f tan0 = p1 - p0;
Sk2f tan1 = p3 - p2;
// Snap control points to endpoints if they are so close that FP error will become an issue.
if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1
p1 = p0;
tan0 = p2 - p0;
if ((tan0.abs() < SK_ScalarNearlyZero).allTrue()) { // p0 ~= p1 ~= p2
this->lineTo(leftJoinVerb, P[3]);
return;
}
}
if ((tan1.abs() < SK_ScalarNearlyZero).allTrue()) { // p2 ~= p3
p2 = p3;
tan1 = p3 - p1;
if ((tan1.abs() < SK_ScalarNearlyZero).allTrue() || // p1 ~= p2 ~= p3
(p0 == p1).allTrue()) { // p0 ~= p1 AND p2 ~= p3
this->lineTo(leftJoinVerb, P[3]);
return;
}
}
SkPoint normals[2];
normalize2(tan0, tan1, normals);
// Decide how many flat line segments to chop the curve into.
int numSegments = wangs_formula_cubic(p0, p1, p2, p3);
numSegments = SkTMin(numSegments, 1 << kMaxNumLinearSegmentsLog2);
if (numSegments <= 1) {
this->rotateTo(leftJoinVerb, normals[0]);
this->lineTo(leftJoinVerb, P[3]);
this->rotateTo(Verb::kInternalRoundJoin, normals[1]);
return;
}
// At^2 + Bt + C gives a vector tangent to the cubic. (More specifically, it's the derivative
// minus an irrelevant scale by 3, since all we care about is the direction.)
Sk2f A = p3 + (p1 - p2)*3 - p0;
Sk2f B = (p0 - p1*2 + p2)*2;
Sk2f C = p1 - p0;
// Find a line segment that crosses max curvature.
float segmentLength = SkScalarInvert(numSegments);
float leftT = maxCurvatureT - segmentLength/2;
float rightT = maxCurvatureT + segmentLength/2;
Sk2f leftTan, rightTan;
if (leftT <= 0) {
leftT = 0;
leftTan = tan0;
rightT = segmentLength;
rightTan = A*rightT*rightT + B*rightT + C;
} else if (rightT >= 1) {
leftT = 1 - segmentLength;
leftTan = A*leftT*leftT + B*leftT + C;
rightT = 1;
rightTan = tan1;
} else {
leftTan = A*leftT*leftT + B*leftT + C;
rightTan = A*rightT*rightT + B*rightT + C;
}
// Check if curvature is too strong for a triangle strip on the line segment that crosses max
// curvature. If it is, we will chop and convert the segment to a "lineTo" with round joins.
//
// FIXME: This is quite costly and the vast majority of curves only have moderate curvature. We
// would benefit significantly from a quick reject that detects curves that don't need special
// treatment for strong curvature.
bool isCurvatureTooStrong = calc_curvature_costheta(leftTan, rightTan) < fMaxCurvatureCosTheta;
if (isCurvatureTooStrong) {
SkPoint ptsBuffer[7];
p0.store(ptsBuffer);
p1.store(ptsBuffer + 1);
p2.store(ptsBuffer + 2);
p3.store(ptsBuffer + 3);
const SkPoint* currCubic = ptsBuffer;
if (leftT > 0) {
SkChopCubicAt(currCubic, ptsBuffer, leftT);
this->cubicTo(leftJoinVerb, ptsBuffer, /*maxCurvatureT=*/1,
(kLeftMaxCurvatureNone != leftMaxCurvatureT)
? leftMaxCurvatureT/leftT : kLeftMaxCurvatureNone,
kRightMaxCurvatureNone);
if (rightT < 1) {
rightT = (rightT - leftT) / (1 - leftT);
}
if (rightMaxCurvatureT < 1 && kRightMaxCurvatureNone != rightMaxCurvatureT) {
rightMaxCurvatureT = (rightMaxCurvatureT - leftT) / (1 - leftT);
}
currCubic = ptsBuffer + 3;
} else {
this->rotateTo(leftJoinVerb, normals[0]);
}
if (rightT < 1) {
SkChopCubicAt(currCubic, ptsBuffer, rightT);
this->lineTo(Verb::kInternalRoundJoin, ptsBuffer[3]);
currCubic = ptsBuffer + 3;
this->cubicTo(Verb::kInternalRoundJoin, currCubic, /*maxCurvatureT=*/0,
kLeftMaxCurvatureNone, kRightMaxCurvatureNone);
} else {
this->lineTo(Verb::kInternalRoundJoin, currCubic[3]);
this->rotateTo(Verb::kInternalRoundJoin, normals[1]);
}
return;
}
// Recurse and check the other two points of max curvature, if any.
if (kRightMaxCurvatureNone != rightMaxCurvatureT) {
this->cubicTo(leftJoinVerb, P, rightMaxCurvatureT, leftMaxCurvatureT,
kRightMaxCurvatureNone);
return;
}
if (kLeftMaxCurvatureNone != leftMaxCurvatureT) {
SkASSERT(kRightMaxCurvatureNone == rightMaxCurvatureT);
this->cubicTo(leftJoinVerb, P, leftMaxCurvatureT, kLeftMaxCurvatureNone,
kRightMaxCurvatureNone);
return;
}
this->recordLeftJoinIfNotEmpty(leftJoinVerb, normals[0]);
fNormals.push_back_n(2, normals);
this->recordStroke(Verb::kCubicStroke, SkNextLog2(numSegments));
p1.store(&fPoints.push_back());
p2.store(&fPoints.push_back());
p3.store(&fPoints.push_back());
}
void GrCCStrokeGeometry::recordStroke(Verb verb, int numSegmentsLog2) {
SkASSERT(Verb::kLinearStroke != verb || 0 == numSegmentsLog2);
SkASSERT(numSegmentsLog2 <= kMaxNumLinearSegmentsLog2);
fVerbs.push_back(verb);
if (Verb::kLinearStroke != verb) {
SkASSERT(numSegmentsLog2 > 0);
fParams.push_back().fNumLinearSegmentsLog2 = numSegmentsLog2;
}
++fCurrStrokeTallies->fStrokes[numSegmentsLog2];
}
void GrCCStrokeGeometry::rotateTo(Verb leftJoinVerb, SkVector normal) {
this->recordLeftJoinIfNotEmpty(leftJoinVerb, normal);
fNormals.push_back(normal);
}
void GrCCStrokeGeometry::recordLeftJoinIfNotEmpty(Verb joinVerb, SkVector nextNormal) {
if (fNormals.count() <= fCurrContourFirstNormalIdx) {
// The contour is empty. Nothing to join with.
SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx);
return;
}
if (Verb::kBevelJoin == joinVerb) {
this->recordBevelJoin(Verb::kBevelJoin);
return;
}
Sk2f n0 = Sk2f::Load(&fNormals.back());
Sk2f n1 = Sk2f::Load(&nextNormal);
Sk2f base = n1 - n0;
if ((base.abs() * fCurrStrokeRadius < kMaxErrorFromLinearization).allTrue()) {
// Treat any join as a bevel when the outside corners of the two adjoining strokes are
// close enough to each other. This is important because "miterCapHeightOverWidth" becomes
// unstable when n0 and n1 are nearly equal.
this->recordBevelJoin(joinVerb);
return;
}
// We implement miters and round joins by placing a triangle-shaped cap on top of a bevel join.
// (For round joins this triangle cap comprises the conic control points.) Find how tall to make
// this triangle cap, relative to its width.
//
// NOTE: This value would be infinite at 180 degrees, but we clamp miterCapHeightOverWidth at
// near-infinity. 180-degree round joins still look perfectly acceptable like this (though
// technically not pure arcs).
Sk2f cross = base * SkNx_shuffle<1,0>(n0);
Sk2f dot = base * n0;
float miterCapHeight = SkScalarAbs(dot[0] + dot[1]);
float miterCapWidth = SkScalarAbs(cross[0] - cross[1]) * 2;
if (Verb::kMiterJoin == joinVerb) {
if (miterCapHeight > fMiterMaxCapHeightOverWidth * miterCapWidth) {
// This join is tighter than the miter limit. Treat it as a bevel.
this->recordBevelJoin(Verb::kMiterJoin);
return;
}
this->recordMiterJoin(miterCapHeight / miterCapWidth);
return;
}
SkASSERT(Verb::kRoundJoin == joinVerb || Verb::kInternalRoundJoin == joinVerb);
// Conic arcs become unstable when they approach 180 degrees. When the conic control point
// begins shooting off to infinity (i.e., height/width > 32), split the conic into two.
static constexpr float kAlmost180Degrees = 32;
if (miterCapHeight > kAlmost180Degrees * miterCapWidth) {
Sk2f bisect = normalize(n0 - n1);
this->rotateTo(joinVerb, SkVector::Make(-bisect[1], bisect[0]));
this->recordLeftJoinIfNotEmpty(joinVerb, nextNormal);
return;
}
float miterCapHeightOverWidth = miterCapHeight / miterCapWidth;
// Find the heights of this round join's conic control point as well as the arc itself.
Sk2f X, Y;
transpose(base * base, n0 * n1, &X, &Y);
Sk2f r = Sk2f::Max(X + Y + Sk2f(0, 1), 0.f).sqrt();
Sk2f heights = SkNx_fma(r, Sk2f(miterCapHeightOverWidth, -SK_ScalarRoot2Over2), Sk2f(0, 1));
float controlPointHeight = SkScalarAbs(heights[0]);
float curveHeight = heights[1];
if (curveHeight * fCurrStrokeRadius < kMaxErrorFromLinearization) {
// Treat round joins as bevels when their curvature is nearly flat.
this->recordBevelJoin(joinVerb);
return;
}
float w = curveHeight / (controlPointHeight - curveHeight);
this->recordRoundJoin(joinVerb, miterCapHeightOverWidth, w);
}
void GrCCStrokeGeometry::recordBevelJoin(Verb originalJoinVerb) {
if (!IsInternalJoinVerb(originalJoinVerb)) {
fVerbs.push_back(Verb::kBevelJoin);
++fCurrStrokeTallies->fTriangles;
} else {
fVerbs.push_back(Verb::kInternalBevelJoin);
fCurrStrokeTallies->fTriangles += 2;
}
}
void GrCCStrokeGeometry::recordMiterJoin(float miterCapHeightOverWidth) {
fVerbs.push_back(Verb::kMiterJoin);
fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth;
fCurrStrokeTallies->fTriangles += 2;
}
void GrCCStrokeGeometry::recordRoundJoin(Verb joinVerb, float miterCapHeightOverWidth,
float conicWeight) {
fVerbs.push_back(joinVerb);
fParams.push_back().fConicWeight = conicWeight;
fParams.push_back().fMiterCapHeightOverWidth = miterCapHeightOverWidth;
if (Verb::kRoundJoin == joinVerb) {
++fCurrStrokeTallies->fTriangles;
++fCurrStrokeTallies->fConics;
} else {
SkASSERT(Verb::kInternalRoundJoin == joinVerb);
fCurrStrokeTallies->fTriangles += 2;
fCurrStrokeTallies->fConics += 2;
}
}
void GrCCStrokeGeometry::closeContour() {
SkASSERT(fInsideContour);
SkASSERT(fPoints.count() > fCurrContourFirstPtIdx);
if (fPoints.back() != fPoints[fCurrContourFirstPtIdx]) {
// Draw a line back to the beginning.
this->lineTo(fCurrStrokeJoinVerb, fPoints[fCurrContourFirstPtIdx]);
}
if (fNormals.count() > fCurrContourFirstNormalIdx) {
// Join the first and last lines.
this->rotateTo(fCurrStrokeJoinVerb,fNormals[fCurrContourFirstNormalIdx]);
} else {
// This contour is empty. Add a bogus normal since the iterator always expects one.
SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx);
fNormals.push_back({0, 0});
}
fVerbs.push_back(Verb::kEndContour);
SkDEBUGCODE(fInsideContour = false);
}
void GrCCStrokeGeometry::capContourAndExit() {
SkASSERT(fInsideContour);
if (fCurrContourFirstNormalIdx >= fNormals.count()) {
// This contour is empty. Add a normal in the direction that caps orient on empty geometry.
SkASSERT(fNormals.count() == fCurrContourFirstNormalIdx);
fNormals.push_back({1, 0});
}
this->recordCapsIfAny();
fVerbs.push_back(Verb::kEndContour);
SkDEBUGCODE(fInsideContour = false);
}
void GrCCStrokeGeometry::recordCapsIfAny() {
SkASSERT(fInsideContour);
SkASSERT(fCurrContourFirstNormalIdx < fNormals.count());
if (SkPaint::kButt_Cap == fCurrStrokeCapType) {
return;
}
Verb capVerb;
if (SkPaint::kSquare_Cap == fCurrStrokeCapType) {
if (fCurrStrokeRadius * SK_ScalarRoot2Over2 < kMaxErrorFromLinearization) {
return;
}
capVerb = Verb::kSquareCap;
fCurrStrokeTallies->fStrokes[0] += 2;
} else {
SkASSERT(SkPaint::kRound_Cap == fCurrStrokeCapType);
if (fCurrStrokeRadius < kMaxErrorFromLinearization) {
return;
}
capVerb = Verb::kRoundCap;
fCurrStrokeTallies->fTriangles += 2;
fCurrStrokeTallies->fConics += 4;
}
fVerbs.push_back(capVerb);
fVerbs.push_back(Verb::kEndContour);
fVerbs.push_back(capVerb);
// Reserve the space first, since push_back() takes the point by reference and might
// invalidate the reference if the array grows.
fPoints.reserve(fPoints.count() + 1);
fPoints.push_back(fPoints[fCurrContourFirstPtIdx]);
// Reserve the space first, since push_back() takes the normal by reference and might
// invalidate the reference if the array grows. (Although in this case we should be fine
// since there is a negate operator.)
fNormals.reserve(fNormals.count() + 1);
fNormals.push_back(-fNormals[fCurrContourFirstNormalIdx]);
}