| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h" |
| |
| #include "include/pathops/SkPathOps.h" |
| #include "src/core/SkMakeUnique.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrClip.h" |
| #include "src/gpu/GrProxyProvider.h" |
| #include "src/gpu/ccpr/GrCCClipProcessor.h" |
| #include "src/gpu/ccpr/GrCCDrawPathsOp.h" |
| #include "src/gpu/ccpr/GrCCPathCache.h" |
| |
| using PathInstance = GrCCPathProcessor::Instance; |
| |
| bool GrCoverageCountingPathRenderer::IsSupported(const GrCaps& caps, CoverageType* coverageType) { |
| const GrShaderCaps& shaderCaps = *caps.shaderCaps(); |
| GrBackendFormat defaultA8Format = caps.getDefaultBackendFormat(GrColorType::kAlpha_8, |
| GrRenderable::kYes); |
| if (caps.driverBlacklistCCPR() || !shaderCaps.integerSupport() || |
| !caps.instanceAttribSupport() || !shaderCaps.floatIs32Bits() || |
| GrCaps::kNone_MapFlags == caps.mapBufferFlags() || |
| !defaultA8Format.isValid() || // This checks both texturable and renderable |
| !caps.halfFloatVertexAttributeSupport()) { |
| return false; |
| } |
| |
| GrBackendFormat defaultAHalfFormat = caps.getDefaultBackendFormat(GrColorType::kAlpha_F16, |
| GrRenderable::kYes); |
| if (caps.allowCoverageCounting() && |
| defaultAHalfFormat.isValid()) { // This checks both texturable and renderable |
| if (coverageType) { |
| *coverageType = CoverageType::kFP16_CoverageCount; |
| } |
| return true; |
| } |
| |
| if (!caps.driverBlacklistMSAACCPR() && |
| caps.internalMultisampleCount(defaultA8Format) > 1 && |
| caps.sampleLocationsSupport() && |
| shaderCaps.sampleVariablesStencilSupport()) { |
| if (coverageType) { |
| *coverageType = CoverageType::kA8_Multisample; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| sk_sp<GrCoverageCountingPathRenderer> GrCoverageCountingPathRenderer::CreateIfSupported( |
| const GrCaps& caps, AllowCaching allowCaching, uint32_t contextUniqueID) { |
| CoverageType coverageType; |
| if (IsSupported(caps, &coverageType)) { |
| return sk_sp<GrCoverageCountingPathRenderer>(new GrCoverageCountingPathRenderer( |
| coverageType, allowCaching, contextUniqueID)); |
| } |
| return nullptr; |
| } |
| |
| GrCoverageCountingPathRenderer::GrCoverageCountingPathRenderer( |
| CoverageType coverageType, AllowCaching allowCaching, uint32_t contextUniqueID) |
| : fCoverageType(coverageType) { |
| if (AllowCaching::kYes == allowCaching) { |
| fPathCache = skstd::make_unique<GrCCPathCache>(contextUniqueID); |
| } |
| } |
| |
| GrCCPerOpsTaskPaths* GrCoverageCountingPathRenderer::lookupPendingPaths(uint32_t opsTaskID) { |
| auto it = fPendingPaths.find(opsTaskID); |
| if (fPendingPaths.end() == it) { |
| sk_sp<GrCCPerOpsTaskPaths> paths = sk_make_sp<GrCCPerOpsTaskPaths>(); |
| it = fPendingPaths.insert(std::make_pair(opsTaskID, std::move(paths))).first; |
| } |
| return it->second.get(); |
| } |
| |
| GrPathRenderer::CanDrawPath GrCoverageCountingPathRenderer::onCanDrawPath( |
| const CanDrawPathArgs& args) const { |
| const GrShape& shape = *args.fShape; |
| // We use "kCoverage", or analytic AA, no mater what the coverage type of our atlas: Even if the |
| // atlas is multisampled, that resolves into analytic coverage before we draw the path to the |
| // main canvas. |
| if (GrAAType::kCoverage != args.fAAType || shape.style().hasPathEffect() || |
| args.fViewMatrix->hasPerspective() || shape.inverseFilled()) { |
| return CanDrawPath::kNo; |
| } |
| |
| SkPath path; |
| shape.asPath(&path); |
| |
| const SkStrokeRec& stroke = shape.style().strokeRec(); |
| switch (stroke.getStyle()) { |
| case SkStrokeRec::kFill_Style: { |
| SkRect devBounds; |
| args.fViewMatrix->mapRect(&devBounds, path.getBounds()); |
| |
| SkIRect clippedIBounds; |
| devBounds.roundOut(&clippedIBounds); |
| if (!clippedIBounds.intersect(*args.fClipConservativeBounds)) { |
| // The path is completely clipped away. Our code will eventually notice this before |
| // doing any real work. |
| return CanDrawPath::kYes; |
| } |
| |
| int64_t numPixels = sk_64_mul(clippedIBounds.height(), clippedIBounds.width()); |
| if (path.countVerbs() > 1000 && path.countPoints() > numPixels) { |
| // This is a complicated path that has more vertices than pixels! Let's let the SW |
| // renderer have this one: It will probably be faster and a bitmap will require less |
| // total memory on the GPU than CCPR instance buffers would for the raw path data. |
| return CanDrawPath::kNo; |
| } |
| |
| if (numPixels > 256 * 256) { |
| // Large paths can blow up the atlas fast. And they are not ideal for a two-pass |
| // rendering algorithm. Give the simpler direct renderers a chance before we commit |
| // to drawing it. |
| return CanDrawPath::kAsBackup; |
| } |
| |
| if (args.fShape->hasUnstyledKey() && path.countVerbs() > 50) { |
| // Complex paths do better cached in an SDF, if the renderer will accept them. |
| return CanDrawPath::kAsBackup; |
| } |
| |
| return CanDrawPath::kYes; |
| } |
| |
| case SkStrokeRec::kStroke_Style: |
| if (!args.fViewMatrix->isSimilarity()) { |
| // The stroker currently only supports rigid-body transfoms for the stroke lines |
| // themselves. This limitation doesn't affect hairlines since their stroke lines are |
| // defined relative to device space. |
| return CanDrawPath::kNo; |
| } |
| // fallthru |
| case SkStrokeRec::kHairline_Style: { |
| if (CoverageType::kFP16_CoverageCount != fCoverageType) { |
| // Stroking is not yet supported in MSAA atlas mode. |
| return CanDrawPath::kNo; |
| } |
| float inflationRadius; |
| GetStrokeDevWidth(*args.fViewMatrix, stroke, &inflationRadius); |
| if (!(inflationRadius <= kMaxBoundsInflationFromStroke)) { |
| // Let extremely wide strokes be converted to fill paths and drawn by the CCPR |
| // filler instead. (Cast the logic negatively in order to also catch r=NaN.) |
| return CanDrawPath::kNo; |
| } |
| SkASSERT(!SkScalarIsNaN(inflationRadius)); |
| if (SkPathPriv::ConicWeightCnt(path)) { |
| // The stroker does not support conics yet. |
| return CanDrawPath::kNo; |
| } |
| return CanDrawPath::kYes; |
| } |
| |
| case SkStrokeRec::kStrokeAndFill_Style: |
| return CanDrawPath::kNo; |
| } |
| |
| SK_ABORT("Invalid stroke style."); |
| } |
| |
| bool GrCoverageCountingPathRenderer::onDrawPath(const DrawPathArgs& args) { |
| SkASSERT(!fFlushing); |
| |
| SkIRect clipIBounds; |
| GrRenderTargetContext* rtc = args.fRenderTargetContext; |
| args.fClip->getConservativeBounds(rtc->width(), rtc->height(), &clipIBounds, nullptr); |
| |
| auto op = GrCCDrawPathsOp::Make(args.fContext, clipIBounds, *args.fViewMatrix, *args.fShape, |
| std::move(args.fPaint)); |
| this->recordOp(std::move(op), args); |
| return true; |
| } |
| |
| void GrCoverageCountingPathRenderer::recordOp(std::unique_ptr<GrCCDrawPathsOp> op, |
| const DrawPathArgs& args) { |
| if (op) { |
| auto addToOwningPerOpsTaskPaths = [this](GrOp* op, uint32_t opsTaskID) { |
| op->cast<GrCCDrawPathsOp>()->addToOwningPerOpsTaskPaths( |
| sk_ref_sp(this->lookupPendingPaths(opsTaskID))); |
| }; |
| args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op), |
| addToOwningPerOpsTaskPaths); |
| } |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrCoverageCountingPathRenderer::makeClipProcessor( |
| uint32_t opsTaskID, const SkPath& deviceSpacePath, const SkIRect& accessRect, |
| const GrCaps& caps) { |
| SkASSERT(!fFlushing); |
| |
| uint32_t key = deviceSpacePath.getGenerationID(); |
| if (CoverageType::kA8_Multisample == fCoverageType) { |
| // We only need to consider fill rule in MSAA mode. In coverage count mode Even/Odd and |
| // Nonzero both reference the same coverage count mask. |
| key = (key << 1) | (uint32_t)GrFillRuleForSkPath(deviceSpacePath); |
| } |
| GrCCClipPath& clipPath = |
| this->lookupPendingPaths(opsTaskID)->fClipPaths[key]; |
| if (!clipPath.isInitialized()) { |
| // This ClipPath was just created during lookup. Initialize it. |
| const SkRect& pathDevBounds = deviceSpacePath.getBounds(); |
| if (SkTMax(pathDevBounds.height(), pathDevBounds.width()) > kPathCropThreshold) { |
| // The path is too large. Crop it or analytic AA can run out of fp32 precision. |
| SkPath croppedPath; |
| int maxRTSize = caps.maxRenderTargetSize(); |
| CropPath(deviceSpacePath, SkIRect::MakeWH(maxRTSize, maxRTSize), &croppedPath); |
| clipPath.init(croppedPath, accessRect, fCoverageType, caps); |
| } else { |
| clipPath.init(deviceSpacePath, accessRect, fCoverageType, caps); |
| } |
| } else { |
| clipPath.addAccess(accessRect); |
| } |
| |
| auto isCoverageCount = GrCCClipProcessor::IsCoverageCount( |
| CoverageType::kFP16_CoverageCount == fCoverageType); |
| auto mustCheckBounds = GrCCClipProcessor::MustCheckBounds( |
| !clipPath.pathDevIBounds().contains(accessRect)); |
| return skstd::make_unique<GrCCClipProcessor>(&clipPath, isCoverageCount, mustCheckBounds); |
| } |
| |
| void GrCoverageCountingPathRenderer::preFlush( |
| GrOnFlushResourceProvider* onFlushRP, const uint32_t* opsTaskIDs, int numOpsTaskIDs) { |
| using DoCopiesToA8Coverage = GrCCDrawPathsOp::DoCopiesToA8Coverage; |
| SkASSERT(!fFlushing); |
| SkASSERT(fFlushingPaths.empty()); |
| SkDEBUGCODE(fFlushing = true); |
| |
| if (fPathCache) { |
| fPathCache->doPreFlushProcessing(); |
| } |
| |
| if (fPendingPaths.empty()) { |
| return; // Nothing to draw. |
| } |
| |
| GrCCPerFlushResourceSpecs specs; |
| int maxPreferredRTSize = onFlushRP->caps()->maxPreferredRenderTargetSize(); |
| specs.fCopyAtlasSpecs.fMaxPreferredTextureSize = SkTMin(2048, maxPreferredRTSize); |
| SkASSERT(0 == specs.fCopyAtlasSpecs.fMinTextureSize); |
| specs.fRenderedAtlasSpecs.fMaxPreferredTextureSize = maxPreferredRTSize; |
| specs.fRenderedAtlasSpecs.fMinTextureSize = SkTMin(512, maxPreferredRTSize); |
| |
| // Move the per-opsTask paths that are about to be flushed from fPendingPaths to fFlushingPaths, |
| // and count them up so we can preallocate buffers. |
| fFlushingPaths.reserve(numOpsTaskIDs); |
| for (int i = 0; i < numOpsTaskIDs; ++i) { |
| auto iter = fPendingPaths.find(opsTaskIDs[i]); |
| if (fPendingPaths.end() == iter) { |
| continue; // No paths on this opsTask. |
| } |
| |
| fFlushingPaths.push_back(std::move(iter->second)); |
| fPendingPaths.erase(iter); |
| |
| for (GrCCDrawPathsOp* op : fFlushingPaths.back()->fDrawOps) { |
| op->accountForOwnPaths(fPathCache.get(), onFlushRP, &specs); |
| } |
| for (const auto& clipsIter : fFlushingPaths.back()->fClipPaths) { |
| clipsIter.second.accountForOwnPath(&specs); |
| } |
| } |
| |
| if (specs.isEmpty()) { |
| return; // Nothing to draw. |
| } |
| |
| // Determine if there are enough reusable paths from last flush for it to be worth our time to |
| // copy them to cached atlas(es). |
| int numCopies = specs.fNumCopiedPaths[GrCCPerFlushResourceSpecs::kFillIdx] + |
| specs.fNumCopiedPaths[GrCCPerFlushResourceSpecs::kStrokeIdx]; |
| auto doCopies = DoCopiesToA8Coverage(numCopies > 100 || |
| specs.fCopyAtlasSpecs.fApproxNumPixels > 256 * 256); |
| if (numCopies && DoCopiesToA8Coverage::kNo == doCopies) { |
| specs.cancelCopies(); |
| } |
| |
| auto resources = sk_make_sp<GrCCPerFlushResources>(onFlushRP, fCoverageType, specs); |
| if (!resources->isMapped()) { |
| return; // Some allocation failed. |
| } |
| |
| // Layout the atlas(es) and parse paths. |
| for (const auto& flushingPaths : fFlushingPaths) { |
| for (GrCCDrawPathsOp* op : flushingPaths->fDrawOps) { |
| op->setupResources(fPathCache.get(), onFlushRP, resources.get(), doCopies); |
| } |
| for (auto& clipsIter : flushingPaths->fClipPaths) { |
| clipsIter.second.renderPathInAtlas(resources.get(), onFlushRP); |
| } |
| } |
| |
| if (fPathCache) { |
| // Purge invalidated textures from previous atlases *before* calling finalize(). That way, |
| // the underlying textures objects can be freed up and reused for the next atlases. |
| fPathCache->purgeInvalidatedAtlasTextures(onFlushRP); |
| } |
| |
| // Allocate resources and then render the atlas(es). |
| if (!resources->finalize(onFlushRP)) { |
| return; |
| } |
| |
| // Commit flushing paths to the resources once they are successfully completed. |
| for (auto& flushingPaths : fFlushingPaths) { |
| SkASSERT(!flushingPaths->fFlushResources); |
| flushingPaths->fFlushResources = resources; |
| } |
| } |
| |
| void GrCoverageCountingPathRenderer::postFlush(GrDeferredUploadToken, const uint32_t* opsTaskIDs, |
| int numOpsTaskIDs) { |
| SkASSERT(fFlushing); |
| |
| if (!fFlushingPaths.empty()) { |
| // In DDL mode these aren't guaranteed to be deleted so we must clear out the perFlush |
| // resources manually. |
| for (auto& flushingPaths : fFlushingPaths) { |
| flushingPaths->fFlushResources = nullptr; |
| } |
| |
| // We wait to erase these until after flush, once Ops and FPs are done accessing their data. |
| fFlushingPaths.reset(); |
| } |
| |
| SkDEBUGCODE(fFlushing = false); |
| } |
| |
| void GrCoverageCountingPathRenderer::purgeCacheEntriesOlderThan( |
| GrProxyProvider* proxyProvider, const GrStdSteadyClock::time_point& purgeTime) { |
| if (fPathCache) { |
| fPathCache->purgeEntriesOlderThan(proxyProvider, purgeTime); |
| } |
| } |
| |
| void GrCoverageCountingPathRenderer::CropPath(const SkPath& path, const SkIRect& cropbox, |
| SkPath* out) { |
| SkPath cropboxPath; |
| cropboxPath.addRect(SkRect::Make(cropbox)); |
| if (!Op(cropboxPath, path, kIntersect_SkPathOp, out)) { |
| // This can fail if the PathOps encounter NaN or infinities. |
| out->reset(); |
| } |
| out->setIsVolatile(true); |
| } |
| |
| float GrCoverageCountingPathRenderer::GetStrokeDevWidth(const SkMatrix& m, |
| const SkStrokeRec& stroke, |
| float* inflationRadius) { |
| float strokeDevWidth; |
| if (stroke.isHairlineStyle()) { |
| strokeDevWidth = 1; |
| } else { |
| SkASSERT(SkStrokeRec::kStroke_Style == stroke.getStyle()); |
| SkASSERT(m.isSimilarity()); // Otherwise matrixScaleFactor = m.getMaxScale(). |
| float matrixScaleFactor = SkVector::Length(m.getScaleX(), m.getSkewY()); |
| strokeDevWidth = stroke.getWidth() * matrixScaleFactor; |
| } |
| if (inflationRadius) { |
| // Inflate for a minimum stroke width of 1. In some cases when the stroke is less than 1px |
| // wide, we may inflate it to 1px and instead reduce the opacity. |
| *inflationRadius = SkStrokeRec::GetInflationRadius( |
| stroke.getJoin(), stroke.getMiter(), stroke.getCap(), SkTMax(strokeDevWidth, 1.f)); |
| } |
| return strokeDevWidth; |
| } |