blob: 623c54eab02de962bda31ff02da4d8d81dc82035 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkSurfaceCharacterization.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrTexture.h"
#include "include/private/GrRecordingContext.h"
#include "include/private/SkDeferredDisplayList.h"
#include "src/core/SkImagePriv.h"
#include "src/gpu/GrAHardwareBufferUtils.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrContextThreadSafeProxyPriv.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrRenderTargetProxyPriv.h"
#include "src/gpu/SkGpuDevice.h"
#include "src/image/SkImage_Base.h"
#include "src/image/SkImage_Gpu.h"
#include "src/image/SkSurface_Base.h"
#include "src/image/SkSurface_Gpu.h"
#if SK_SUPPORT_GPU
SkSurface_Gpu::SkSurface_Gpu(sk_sp<SkGpuDevice> device)
: INHERITED(device->width(), device->height(), &device->surfaceProps())
, fDevice(std::move(device)) {
SkASSERT(fDevice->accessRenderTargetContext()->asSurfaceProxy()->priv().isExact());
}
SkSurface_Gpu::~SkSurface_Gpu() {
}
static GrRenderTarget* prepare_rt_for_external_access(SkSurface_Gpu* surface,
SkSurface::BackendHandleAccess access) {
switch (access) {
case SkSurface::kFlushRead_BackendHandleAccess:
break;
case SkSurface::kFlushWrite_BackendHandleAccess:
case SkSurface::kDiscardWrite_BackendHandleAccess:
// for now we don't special-case on Discard, but we may in the future.
surface->notifyContentWillChange(SkSurface::kRetain_ContentChangeMode);
break;
}
// Grab the render target *after* firing notifications, as it may get switched if CoW kicks in.
surface->getDevice()->flush(SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo());
GrRenderTargetContext* rtc = surface->getDevice()->accessRenderTargetContext();
return rtc->accessRenderTarget();
}
GrBackendTexture SkSurface_Gpu::onGetBackendTexture(BackendHandleAccess access) {
GrRenderTarget* rt = prepare_rt_for_external_access(this, access);
if (!rt) {
return GrBackendTexture(); // invalid
}
GrTexture* texture = rt->asTexture();
if (texture) {
return texture->getBackendTexture();
}
return GrBackendTexture(); // invalid
}
GrBackendRenderTarget SkSurface_Gpu::onGetBackendRenderTarget(BackendHandleAccess access) {
GrRenderTarget* rt = prepare_rt_for_external_access(this, access);
if (!rt) {
return GrBackendRenderTarget(); // invalid
}
return rt->getBackendRenderTarget();
}
SkCanvas* SkSurface_Gpu::onNewCanvas() { return new SkCanvas(fDevice); }
sk_sp<SkSurface> SkSurface_Gpu::onNewSurface(const SkImageInfo& info) {
int sampleCount = fDevice->accessRenderTargetContext()->numSamples();
GrSurfaceOrigin origin = fDevice->accessRenderTargetContext()->origin();
// TODO: Make caller specify this (change virtual signature of onNewSurface).
static const SkBudgeted kBudgeted = SkBudgeted::kNo;
return SkSurface::MakeRenderTarget(fDevice->context(), kBudgeted, info, sampleCount,
origin, &this->props());
}
sk_sp<SkImage> SkSurface_Gpu::onNewImageSnapshot(const SkIRect* subset) {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
if (!rtc) {
return nullptr;
}
GrContext* ctx = fDevice->context();
if (!rtc->asSurfaceProxy()) {
return nullptr;
}
SkBudgeted budgeted = rtc->asSurfaceProxy()->isBudgeted();
sk_sp<GrTextureProxy> srcProxy = rtc->asTextureProxyRef();
if (subset) {
srcProxy = GrSurfaceProxy::Copy(ctx, rtc->asSurfaceProxy(), rtc->colorInfo().colorType(),
rtc->mipMapped(), *subset, SkBackingFit::kExact, budgeted);
} else if (!srcProxy || rtc->priv().refsWrappedObjects()) {
// If the original render target is a buffer originally created by the client, then we don't
// want to ever retarget the SkSurface at another buffer we create. Force a copy now to avoid
// copy-on-write.
SkASSERT(rtc->origin() == rtc->asSurfaceProxy()->origin());
srcProxy = GrSurfaceProxy::Copy(ctx, rtc->asSurfaceProxy(), rtc->colorInfo().colorType(),
rtc->mipMapped(), SkBackingFit::kExact, budgeted);
}
const SkImageInfo info = fDevice->imageInfo();
sk_sp<SkImage> image;
if (srcProxy) {
// The renderTargetContext coming out of SkGpuDevice should always be exact and the
// above copy creates a kExact surfaceContext.
SkASSERT(srcProxy->priv().isExact());
image = sk_make_sp<SkImage_Gpu>(sk_ref_sp(ctx), kNeedNewImageUniqueID, info.alphaType(),
std::move(srcProxy), info.refColorSpace());
}
return image;
}
void SkSurface_Gpu::onWritePixels(const SkPixmap& src, int x, int y) {
fDevice->writePixels(src, x, y);
}
void SkSurface_Gpu::onAsyncRescaleAndReadPixels(const SkImageInfo& info,
const SkIRect& srcRect,
RescaleGamma rescaleGamma,
SkFilterQuality rescaleQuality,
ReadPixelsCallback callback,
ReadPixelsContext context) {
auto* rtc = this->fDevice->accessRenderTargetContext();
rtc->asyncRescaleAndReadPixels(info, srcRect, rescaleGamma, rescaleQuality, callback, context);
}
void SkSurface_Gpu::onAsyncRescaleAndReadPixelsYUV420(SkYUVColorSpace yuvColorSpace,
sk_sp<SkColorSpace> dstColorSpace,
const SkIRect& srcRect,
const SkISize& dstSize,
RescaleGamma rescaleGamma,
SkFilterQuality rescaleQuality,
ReadPixelsCallback callback,
ReadPixelsContext context) {
auto* rtc = this->fDevice->accessRenderTargetContext();
rtc->asyncRescaleAndReadPixelsYUV420(yuvColorSpace,
std::move(dstColorSpace),
srcRect,
dstSize,
rescaleGamma,
rescaleQuality,
callback,
context);
}
// Create a new render target and, if necessary, copy the contents of the old
// render target into it. Note that this flushes the SkGpuDevice but
// doesn't force an OpenGL flush.
void SkSurface_Gpu::onCopyOnWrite(ContentChangeMode mode) {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
// are we sharing our backing proxy with the image? Note this call should never create a new
// image because onCopyOnWrite is only called when there is a cached image.
sk_sp<SkImage> image(this->refCachedImage());
SkASSERT(image);
GrSurfaceProxy* imageProxy = ((SkImage_Base*) image.get())->peekProxy();
SkASSERT(imageProxy);
if (rtc->asSurfaceProxy()->underlyingUniqueID() == imageProxy->underlyingUniqueID()) {
fDevice->replaceRenderTargetContext(SkSurface::kRetain_ContentChangeMode == mode);
} else if (kDiscard_ContentChangeMode == mode) {
this->SkSurface_Gpu::onDiscard();
}
}
void SkSurface_Gpu::onDiscard() {
fDevice->accessRenderTargetContext()->discard();
}
GrSemaphoresSubmitted SkSurface_Gpu::onFlush(BackendSurfaceAccess access,
const GrFlushInfo& info) {
return fDevice->flush(access, info);
}
bool SkSurface_Gpu::onWait(int numSemaphores, const GrBackendSemaphore* waitSemaphores) {
return fDevice->wait(numSemaphores, waitSemaphores);
}
bool SkSurface_Gpu::onCharacterize(SkSurfaceCharacterization* characterization) const {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
GrContext* ctx = fDevice->context();
size_t maxResourceBytes = ctx->getResourceCacheLimit();
bool mipmapped = rtc->asTextureProxy() ? GrMipMapped::kYes == rtc->asTextureProxy()->mipMapped()
: false;
SkColorType ct = GrColorTypeToSkColorType(rtc->colorInfo().colorType());
if (ct == kUnknown_SkColorType) {
return false;
}
bool usesGLFBO0 = rtc->asRenderTargetProxy()->rtPriv().glRTFBOIDIs0();
// We should never get in the situation where we have a texture render target that is also
// backend by FBO 0.
SkASSERT(!usesGLFBO0 || !SkToBool(rtc->asTextureProxy()));
SkImageInfo ii = SkImageInfo::Make(rtc->width(), rtc->height(), ct, kPremul_SkAlphaType,
rtc->colorInfo().refColorSpace());
GrBackendFormat format = rtc->asSurfaceProxy()->backendFormat();
characterization->set(ctx->threadSafeProxy(), maxResourceBytes, ii, format,
rtc->origin(), rtc->numSamples(),
SkSurfaceCharacterization::Textureable(SkToBool(rtc->asTextureProxy())),
SkSurfaceCharacterization::MipMapped(mipmapped),
SkSurfaceCharacterization::UsesGLFBO0(usesGLFBO0),
SkSurfaceCharacterization::VulkanSecondaryCBCompatible(false),
GrProtected(rtc->asRenderTargetProxy()->isProtected()),
this->props());
return true;
}
void SkSurface_Gpu::onDraw(SkCanvas* canvas, SkScalar x, SkScalar y, const SkPaint* paint) {
// If the dst is also GPU we try to not force a new image snapshot (by calling the base class
// onDraw) since that may not always perform the copy-on-write optimization.
auto tryDraw = [&] {
SkASSERT(fDevice->context()->priv().asDirectContext());
GrContext* context = fDevice->context();
GrContext* canvasContext = canvas->getGrContext();
if (!canvasContext) {
return false;
}
if (!canvasContext->priv().asDirectContext() ||
canvasContext->priv().contextID() != context->priv().contextID()) {
return false;
}
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
if (!rtc) {
return false;
}
sk_sp<GrTextureProxy> srcProxy = rtc->asTextureProxyRef();
if (!srcProxy) {
return false;
}
// Possibly we could skip making an image here if SkGpuDevice exposed a lower level way
// of drawing a texture proxy.
const SkImageInfo info = fDevice->imageInfo();
sk_sp<SkImage> image;
image = sk_make_sp<SkImage_Gpu>(sk_ref_sp(context), kNeedNewImageUniqueID, info.alphaType(),
std::move(srcProxy), info.refColorSpace());
canvas->drawImage(image, x, y, paint);
return true;
};
if (!tryDraw()) {
INHERITED::onDraw(canvas, x, y, paint);
}
}
bool SkSurface_Gpu::onIsCompatible(const SkSurfaceCharacterization& characterization) const {
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
GrContext* ctx = fDevice->context();
if (!characterization.isValid()) {
return false;
}
if (characterization.vulkanSecondaryCBCompatible()) {
return false;
}
// As long as the current state if the context allows for greater or equal resources,
// we allow the DDL to be replayed.
// DDL TODO: should we just remove the resource check and ignore the cache limits on playback?
size_t maxResourceBytes = ctx->getResourceCacheLimit();
if (characterization.isTextureable()) {
if (!rtc->asTextureProxy()) {
// If the characterization was textureable we require the replay dest to also be
// textureable. If the characterized surface wasn't textureable we allow the replay
// dest to be textureable.
return false;
}
if (characterization.isMipMapped() &&
GrMipMapped::kNo == rtc->asTextureProxy()->mipMapped()) {
// Fail if the DDL's surface was mipmapped but the replay surface is not.
// Allow drawing to proceed if the DDL was not mipmapped but the replay surface is.
return false;
}
}
if (characterization.usesGLFBO0() != rtc->asRenderTargetProxy()->rtPriv().glRTFBOIDIs0()) {
return false;
}
SkColorType rtcColorType = GrColorTypeToSkColorType(rtc->colorInfo().colorType());
if (rtcColorType == kUnknown_SkColorType) {
return false;
}
GrProtected isProtected = GrProtected(rtc->asSurfaceProxy()->isProtected());
return characterization.contextInfo() && characterization.contextInfo()->priv().matches(ctx) &&
characterization.cacheMaxResourceBytes() <= maxResourceBytes &&
characterization.origin() == rtc->origin() &&
characterization.backendFormat() == rtc->asSurfaceProxy()->backendFormat() &&
characterization.width() == rtc->width() && characterization.height() == rtc->height() &&
characterization.colorType() == rtcColorType &&
characterization.sampleCount() == rtc->numSamples() &&
SkColorSpace::Equals(characterization.colorSpace(), rtc->colorInfo().colorSpace()) &&
characterization.isProtected() == isProtected &&
characterization.surfaceProps() == rtc->surfaceProps();
}
bool SkSurface_Gpu::onDraw(const SkDeferredDisplayList* ddl) {
if (!ddl || !this->isCompatible(ddl->characterization())) {
return false;
}
GrRenderTargetContext* rtc = fDevice->accessRenderTargetContext();
GrContext* ctx = fDevice->context();
ctx->priv().copyRenderTasksFromDDL(ddl, rtc->asRenderTargetProxy());
return true;
}
///////////////////////////////////////////////////////////////////////////////
sk_sp<SkSurface> SkSurface::MakeRenderTarget(GrRecordingContext* context,
const SkSurfaceCharacterization& c,
SkBudgeted budgeted) {
if (!context || !c.isValid()) {
return nullptr;
}
if (c.usesGLFBO0()) {
// If we are making the surface we will never use FBO0.
return nullptr;
}
if (c.vulkanSecondaryCBCompatible()) {
return nullptr;
}
GrColorType grColorType = SkColorTypeToGrColorType(c.colorType());
auto rtc = context->priv().makeDeferredRenderTargetContext(SkBackingFit::kExact,
c.width(),
c.height(),
grColorType,
c.refColorSpace(),
c.sampleCount(),
GrMipMapped(c.isMipMapped()),
c.origin(),
&c.surfaceProps(),
budgeted,
c.isProtected());
if (!rtc) {
return nullptr;
}
// CONTEXT TODO: remove this use of 'backdoor' to create an SkGpuDevice
sk_sp<SkGpuDevice> device(SkGpuDevice::Make(context->priv().backdoor(), std::move(rtc),
SkGpuDevice::kClear_InitContents));
if (!device) {
return nullptr;
}
sk_sp<SkSurface> result = sk_make_sp<SkSurface_Gpu>(std::move(device));
#ifdef SK_DEBUG
if (result) {
SkASSERT(result->isCompatible(c));
}
#endif
return result;
}
static bool validate_backend_texture(const GrCaps* caps, const GrBackendTexture& tex,
int sampleCnt, GrColorType grCT,
bool texturable) {
if (!tex.isValid()) {
return false;
}
GrBackendFormat backendFormat = tex.getBackendFormat();
if (!backendFormat.isValid()) {
return false;
}
if (!caps->areColorTypeAndFormatCompatible(grCT, backendFormat)) {
return false;
}
if (!caps->isFormatAsColorTypeRenderable(grCT, backendFormat, sampleCnt)) {
return false;
}
if (texturable && !caps->isFormatTexturable(backendFormat)) {
return false;
}
return true;
}
sk_sp<SkSurface> SkSurface::MakeFromBackendTexture(GrContext* context,
const SkSurfaceCharacterization& c,
const GrBackendTexture& backendTexture,
TextureReleaseProc textureReleaseProc,
ReleaseContext releaseContext) {
if (!context || !c.isValid()) {
return nullptr;
}
if (c.usesGLFBO0()) {
// If we are making the surface we will never use FBO0.
return nullptr;
}
if (!c.isCompatible(backendTexture)) {
return nullptr;
}
GrColorType grCT = SkColorTypeAndFormatToGrColorType(context->priv().caps(), c.colorType(),
backendTexture.getBackendFormat());
if (grCT == GrColorType::kUnknown) {
return nullptr;
}
if (!validate_backend_texture(context->priv().caps(), backendTexture,
c.sampleCount(), grCT, true)) {
return nullptr;
}
auto rtc = context->priv().makeBackendTextureRenderTargetContext(
backendTexture, c.origin(), c.sampleCount(), grCT, c.refColorSpace(), &c.surfaceProps(),
textureReleaseProc, releaseContext);
if (!rtc) {
return nullptr;
}
auto device = SkGpuDevice::Make(context, std::move(rtc), SkGpuDevice::kUninit_InitContents);
if (!device) {
return nullptr;
}
sk_sp<SkSurface> result = sk_make_sp<SkSurface_Gpu>(std::move(device));
#ifdef SK_DEBUG
if (result) {
SkASSERT(result->isCompatible(c));
}
#endif
return result;
}
sk_sp<SkSurface> SkSurface::MakeRenderTarget(GrContext* ctx, SkBudgeted budgeted,
const SkImageInfo& info, int sampleCount,
GrSurfaceOrigin origin, const SkSurfaceProps* props,
bool shouldCreateWithMips) {
if (!ctx) {
return nullptr;
}
sampleCount = SkTMax(1, sampleCount);
GrMipMapped mipMapped = shouldCreateWithMips ? GrMipMapped::kYes : GrMipMapped::kNo;
if (!ctx->priv().caps()->mipMapSupport()) {
mipMapped = GrMipMapped::kNo;
}
sk_sp<SkGpuDevice> device(SkGpuDevice::Make(
ctx, budgeted, info, sampleCount, origin, props, mipMapped,
SkGpuDevice::kClear_InitContents));
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
sk_sp<SkSurface> SkSurface_Gpu::MakeWrappedRenderTarget(
GrContext* context, std::unique_ptr<GrRenderTargetContext> rtc) {
if (!context) {
return nullptr;
}
auto device = SkGpuDevice::Make(context, std::move(rtc), SkGpuDevice::kUninit_InitContents);
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
sk_sp<SkSurface> SkSurface::MakeFromBackendTexture(GrContext* context, const GrBackendTexture& tex,
GrSurfaceOrigin origin, int sampleCnt,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props,
SkSurface::TextureReleaseProc textureReleaseProc,
SkSurface::ReleaseContext releaseContext) {
if (!context) {
return nullptr;
}
sampleCnt = SkTMax(1, sampleCnt);
GrColorType grColorType = SkColorTypeAndFormatToGrColorType(context->priv().caps(), colorType,
tex.getBackendFormat());
if (grColorType == GrColorType::kUnknown) {
return nullptr;
}
if (!validate_backend_texture(context->priv().caps(), tex, sampleCnt, grColorType, true)) {
return nullptr;
}
auto rtc = context->priv().makeBackendTextureRenderTargetContext(
tex, origin, sampleCnt, grColorType, std::move(colorSpace), props, textureReleaseProc,
releaseContext);
if (!rtc) {
return nullptr;
}
auto device = SkGpuDevice::Make(context, std::move(rtc), SkGpuDevice::kUninit_InitContents);
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
bool SkSurface_Gpu::onReplaceBackendTexture(const GrBackendTexture& backendTexture,
GrSurfaceOrigin origin, TextureReleaseProc releaseProc,
ReleaseContext releaseContext) {
auto context = this->fDevice->context();
if (context->abandoned()) {
return false;
}
if (!backendTexture.isValid()) {
return false;
}
if (backendTexture.width() != this->width() || backendTexture.height() != this->height()) {
return false;
}
auto* oldRTC = fDevice->accessRenderTargetContext();
auto oldProxy = sk_ref_sp(oldRTC->asTextureProxy());
if (!oldProxy) {
return false;
}
auto* oldTexture = oldProxy->peekTexture();
if (!oldTexture) {
return false;
}
if (!oldTexture->resourcePriv().refsWrappedObjects()) {
return false;
}
if (oldTexture->backendFormat() != backendTexture.getBackendFormat()) {
return false;
}
if (oldTexture->getBackendTexture().isSameTexture(backendTexture)) {
return false;
}
SkASSERT(oldTexture->asRenderTarget());
int sampleCnt = oldTexture->asRenderTarget()->numSamples();
GrColorType grColorType = SkColorTypeToGrColorType(this->getCanvas()->imageInfo().colorType());
auto colorSpace = sk_ref_sp(oldRTC->colorInfo().colorSpace());
if (!validate_backend_texture(context->priv().caps(), backendTexture,
sampleCnt, grColorType, true)) {
return false;
}
auto rtc =
context->priv().makeBackendTextureRenderTargetContext(backendTexture,
origin,
sampleCnt,
oldRTC->colorInfo().colorType(),
std::move(colorSpace),
&this->props(),
releaseProc,
releaseContext);
if (!rtc) {
return false;
}
fDevice->replaceRenderTargetContext(std::move(rtc), true);
return true;
}
bool validate_backend_render_target(const GrCaps* caps, const GrBackendRenderTarget& rt,
GrColorType grCT) {
if (!caps->areColorTypeAndFormatCompatible(grCT, rt.getBackendFormat())) {
return false;
}
if (!caps->isFormatAsColorTypeRenderable(grCT, rt.getBackendFormat(), rt.sampleCnt())) {
return false;
}
return true;
}
sk_sp<SkSurface> SkSurface::MakeFromBackendRenderTarget(GrContext* context,
const GrBackendRenderTarget& rt,
GrSurfaceOrigin origin,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props,
SkSurface::RenderTargetReleaseProc relProc,
SkSurface::ReleaseContext releaseContext) {
if (!context) {
return nullptr;
}
GrColorType grColorType = SkColorTypeAndFormatToGrColorType(context->priv().caps(), colorType,
rt.getBackendFormat());
if (grColorType == GrColorType::kUnknown) {
return nullptr;
}
if (!validate_backend_render_target(context->priv().caps(), rt, grColorType)) {
return nullptr;
}
auto rtc = context->priv().makeBackendRenderTargetRenderTargetContext(
rt, origin, grColorType, std::move(colorSpace), props, relProc, releaseContext);
if (!rtc) {
return nullptr;
}
auto device = SkGpuDevice::Make(context, std::move(rtc), SkGpuDevice::kUninit_InitContents);
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
sk_sp<SkSurface> SkSurface::MakeFromBackendTextureAsRenderTarget(GrContext* context,
const GrBackendTexture& tex,
GrSurfaceOrigin origin,
int sampleCnt,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* props) {
if (!context) {
return nullptr;
}
sampleCnt = SkTMax(1, sampleCnt);
GrColorType grColorType = SkColorTypeAndFormatToGrColorType(context->priv().caps(), colorType,
tex.getBackendFormat());
if (grColorType == GrColorType::kUnknown) {
return nullptr;
}
if (!validate_backend_texture(context->priv().caps(), tex, sampleCnt, grColorType, false)) {
return nullptr;
}
auto rtc = context->priv().makeBackendTextureAsRenderTargetRenderTargetContext(
tex, origin, sampleCnt, grColorType, std::move(colorSpace), props);
if (!rtc) {
return nullptr;
}
auto device = SkGpuDevice::Make(context, std::move(rtc), SkGpuDevice::kUninit_InitContents);
if (!device) {
return nullptr;
}
return sk_make_sp<SkSurface_Gpu>(std::move(device));
}
#if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26
sk_sp<SkSurface> SkSurface::MakeFromAHardwareBuffer(GrContext* context,
AHardwareBuffer* hardwareBuffer,
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* surfaceProps) {
AHardwareBuffer_Desc bufferDesc;
AHardwareBuffer_describe(hardwareBuffer, &bufferDesc);
if (!SkToBool(bufferDesc.usage & AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT)) {
return nullptr;
}
bool isTextureable = SkToBool(bufferDesc.usage & AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE);
bool isProtectedContent = SkToBool(bufferDesc.usage & AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT);
// We currently don't support protected content
if (isProtectedContent) {
SkDebugf("We currently don't support protected content on android\n");
return nullptr;
}
GrBackendFormat backendFormat = GrAHardwareBufferUtils::GetBackendFormat(context,
hardwareBuffer,
bufferDesc.format,
true);
if (!backendFormat.isValid()) {
return nullptr;
}
if (isTextureable) {
GrAHardwareBufferUtils::DeleteImageProc deleteImageProc = nullptr;
GrAHardwareBufferUtils::UpdateImageProc updateImageProc = nullptr;
GrAHardwareBufferUtils::TexImageCtx deleteImageCtx = nullptr;
GrBackendTexture backendTexture =
GrAHardwareBufferUtils::MakeBackendTexture(context, hardwareBuffer,
bufferDesc.width, bufferDesc.height,
&deleteImageProc, &updateImageProc,
&deleteImageCtx, isProtectedContent,
backendFormat, true);
if (!backendTexture.isValid()) {
return nullptr;
}
SkColorType colorType =
GrAHardwareBufferUtils::GetSkColorTypeFromBufferFormat(bufferDesc.format);
sk_sp<SkSurface> surface = SkSurface::MakeFromBackendTexture(context, backendTexture,
origin, 0, colorType, std::move(colorSpace), surfaceProps, deleteImageProc,
deleteImageCtx);
if (!surface) {
SkASSERT(deleteImageProc);
deleteImageProc(deleteImageCtx);
}
return surface;
} else {
return nullptr;
}
}
#endif
#endif