| //===- Chunks.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Chunks.h" |
| #include "InputFiles.h" |
| #include "Symbols.h" |
| #include "Writer.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/COFF.h" |
| #include "llvm/Object/COFF.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::COFF; |
| using llvm::support::ulittle32_t; |
| |
| namespace lld { |
| namespace coff { |
| |
| SectionChunk::SectionChunk(ObjFile *F, const coff_section *H) |
| : Chunk(SectionKind), Repl(this), Header(H), File(F), |
| Relocs(File->getCOFFObj()->getRelocations(Header)) { |
| // Initialize SectionName. |
| File->getCOFFObj()->getSectionName(Header, SectionName); |
| |
| Alignment = Header->getAlignment(); |
| |
| // If linker GC is disabled, every chunk starts out alive. If linker GC is |
| // enabled, treat non-comdat sections as roots. Generally optimized object |
| // files will be built with -ffunction-sections or /Gy, so most things worth |
| // stripping will be in a comdat. |
| Live = !Config->DoGC || !isCOMDAT(); |
| } |
| |
| static void add16(uint8_t *P, int16_t V) { write16le(P, read16le(P) + V); } |
| static void add32(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); } |
| static void add64(uint8_t *P, int64_t V) { write64le(P, read64le(P) + V); } |
| static void or16(uint8_t *P, uint16_t V) { write16le(P, read16le(P) | V); } |
| static void or32(uint8_t *P, uint32_t V) { write32le(P, read32le(P) | V); } |
| |
| // Verify that given sections are appropriate targets for SECREL |
| // relocations. This check is relaxed because unfortunately debug |
| // sections have section-relative relocations against absolute symbols. |
| static bool checkSecRel(const SectionChunk *Sec, OutputSection *OS) { |
| if (OS) |
| return true; |
| if (Sec->isCodeView()) |
| return false; |
| fatal("SECREL relocation cannot be applied to absolute symbols"); |
| } |
| |
| static void applySecRel(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (!checkSecRel(Sec, OS)) |
| return; |
| uint64_t SecRel = S - OS->getRVA(); |
| if (SecRel > UINT32_MAX) { |
| error("overflow in SECREL relocation in section: " + Sec->getSectionName()); |
| return; |
| } |
| add32(Off, SecRel); |
| } |
| |
| static void applySecIdx(uint8_t *Off, OutputSection *OS) { |
| // Absolute symbol doesn't have section index, but section index relocation |
| // against absolute symbol should be resolved to one plus the last output |
| // section index. This is required for compatibility with MSVC. |
| if (OS) |
| add16(Off, OS->SectionIndex); |
| else |
| add16(Off, DefinedAbsolute::NumOutputSections + 1); |
| } |
| |
| void SectionChunk::applyRelX64(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| switch (Type) { |
| case IMAGE_REL_AMD64_ADDR32: add32(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_AMD64_ADDR64: add64(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_AMD64_ADDR32NB: add32(Off, S); break; |
| case IMAGE_REL_AMD64_REL32: add32(Off, S - P - 4); break; |
| case IMAGE_REL_AMD64_REL32_1: add32(Off, S - P - 5); break; |
| case IMAGE_REL_AMD64_REL32_2: add32(Off, S - P - 6); break; |
| case IMAGE_REL_AMD64_REL32_3: add32(Off, S - P - 7); break; |
| case IMAGE_REL_AMD64_REL32_4: add32(Off, S - P - 8); break; |
| case IMAGE_REL_AMD64_REL32_5: add32(Off, S - P - 9); break; |
| case IMAGE_REL_AMD64_SECTION: applySecIdx(Off, OS); break; |
| case IMAGE_REL_AMD64_SECREL: applySecRel(this, Off, OS, S); break; |
| default: |
| fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| void SectionChunk::applyRelX86(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| switch (Type) { |
| case IMAGE_REL_I386_ABSOLUTE: break; |
| case IMAGE_REL_I386_DIR32: add32(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_I386_DIR32NB: add32(Off, S); break; |
| case IMAGE_REL_I386_REL32: add32(Off, S - P - 4); break; |
| case IMAGE_REL_I386_SECTION: applySecIdx(Off, OS); break; |
| case IMAGE_REL_I386_SECREL: applySecRel(this, Off, OS, S); break; |
| default: |
| fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| static void applyMOV(uint8_t *Off, uint16_t V) { |
| write16le(Off, (read16le(Off) & 0xfbf0) | ((V & 0x800) >> 1) | ((V >> 12) & 0xf)); |
| write16le(Off + 2, (read16le(Off + 2) & 0x8f00) | ((V & 0x700) << 4) | (V & 0xff)); |
| } |
| |
| static uint16_t readMOV(uint8_t *Off) { |
| uint16_t Op1 = read16le(Off); |
| uint16_t Op2 = read16le(Off + 2); |
| return (Op2 & 0x00ff) | ((Op2 >> 4) & 0x0700) | ((Op1 << 1) & 0x0800) | |
| ((Op1 & 0x000f) << 12); |
| } |
| |
| void applyMOV32T(uint8_t *Off, uint32_t V) { |
| uint16_t ImmW = readMOV(Off); // read MOVW operand |
| uint16_t ImmT = readMOV(Off + 4); // read MOVT operand |
| uint32_t Imm = ImmW | (ImmT << 16); |
| V += Imm; // add the immediate offset |
| applyMOV(Off, V); // set MOVW operand |
| applyMOV(Off + 4, V >> 16); // set MOVT operand |
| } |
| |
| static void applyBranch20T(uint8_t *Off, int32_t V) { |
| if (!isInt<21>(V)) |
| fatal("relocation out of range"); |
| uint32_t S = V < 0 ? 1 : 0; |
| uint32_t J1 = (V >> 19) & 1; |
| uint32_t J2 = (V >> 18) & 1; |
| or16(Off, (S << 10) | ((V >> 12) & 0x3f)); |
| or16(Off + 2, (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); |
| } |
| |
| void applyBranch24T(uint8_t *Off, int32_t V) { |
| if (!isInt<25>(V)) |
| fatal("relocation out of range"); |
| uint32_t S = V < 0 ? 1 : 0; |
| uint32_t J1 = ((~V >> 23) & 1) ^ S; |
| uint32_t J2 = ((~V >> 22) & 1) ^ S; |
| or16(Off, (S << 10) | ((V >> 12) & 0x3ff)); |
| // Clear out the J1 and J2 bits which may be set. |
| write16le(Off + 2, (read16le(Off + 2) & 0xd000) | (J1 << 13) | (J2 << 11) | ((V >> 1) & 0x7ff)); |
| } |
| |
| void SectionChunk::applyRelARM(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| // Pointer to thumb code must have the LSB set. |
| uint64_t SX = S; |
| if (OS && (OS->Header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) |
| SX |= 1; |
| switch (Type) { |
| case IMAGE_REL_ARM_ADDR32: add32(Off, SX + Config->ImageBase); break; |
| case IMAGE_REL_ARM_ADDR32NB: add32(Off, SX); break; |
| case IMAGE_REL_ARM_MOV32T: applyMOV32T(Off, SX + Config->ImageBase); break; |
| case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(Off, SX - P - 4); break; |
| case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(Off, SX - P - 4); break; |
| case IMAGE_REL_ARM_BLX23T: applyBranch24T(Off, SX - P - 4); break; |
| case IMAGE_REL_ARM_SECTION: applySecIdx(Off, OS); break; |
| case IMAGE_REL_ARM_SECREL: applySecRel(this, Off, OS, S); break; |
| default: |
| fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| // Interpret the existing immediate value as a byte offset to the |
| // target symbol, then update the instruction with the immediate as |
| // the page offset from the current instruction to the target. |
| static void applyArm64Addr(uint8_t *Off, uint64_t S, uint64_t P, int Shift) { |
| uint32_t Orig = read32le(Off); |
| uint64_t Imm = ((Orig >> 29) & 0x3) | ((Orig >> 3) & 0x1FFFFC); |
| S += Imm; |
| Imm = (S >> Shift) - (P >> Shift); |
| uint32_t ImmLo = (Imm & 0x3) << 29; |
| uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; |
| uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); |
| write32le(Off, (Orig & ~Mask) | ImmLo | ImmHi); |
| } |
| |
| // Update the immediate field in a AARCH64 ldr, str, and add instruction. |
| // Optionally limit the range of the written immediate by one or more bits |
| // (RangeLimit). |
| static void applyArm64Imm(uint8_t *Off, uint64_t Imm, uint32_t RangeLimit) { |
| uint32_t Orig = read32le(Off); |
| Imm += (Orig >> 10) & 0xFFF; |
| Orig &= ~(0xFFF << 10); |
| write32le(Off, Orig | ((Imm & (0xFFF >> RangeLimit)) << 10)); |
| } |
| |
| // Add the 12 bit page offset to the existing immediate. |
| // Ldr/str instructions store the opcode immediate scaled |
| // by the load/store size (giving a larger range for larger |
| // loads/stores). The immediate is always (both before and after |
| // fixing up the relocation) stored scaled similarly. |
| // Even if larger loads/stores have a larger range, limit the |
| // effective offset to 12 bit, since it is intended to be a |
| // page offset. |
| static void applyArm64Ldr(uint8_t *Off, uint64_t Imm) { |
| uint32_t Orig = read32le(Off); |
| uint32_t Size = Orig >> 30; |
| // 0x04000000 indicates SIMD/FP registers |
| // 0x00800000 indicates 128 bit |
| if ((Orig & 0x4800000) == 0x4800000) |
| Size += 4; |
| if ((Imm & ((1 << Size) - 1)) != 0) |
| fatal("misaligned ldr/str offset"); |
| applyArm64Imm(Off, Imm >> Size, Size); |
| } |
| |
| static void applySecRelLow12A(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (checkSecRel(Sec, OS)) |
| applyArm64Imm(Off, (S - OS->getRVA()) & 0xfff, 0); |
| } |
| |
| static void applySecRelHigh12A(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (!checkSecRel(Sec, OS)) |
| return; |
| uint64_t SecRel = (S - OS->getRVA()) >> 12; |
| if (0xfff < SecRel) { |
| error("overflow in SECREL_HIGH12A relocation in section: " + |
| Sec->getSectionName()); |
| return; |
| } |
| applyArm64Imm(Off, SecRel & 0xfff, 0); |
| } |
| |
| static void applySecRelLdr(const SectionChunk *Sec, uint8_t *Off, |
| OutputSection *OS, uint64_t S) { |
| if (checkSecRel(Sec, OS)) |
| applyArm64Ldr(Off, (S - OS->getRVA()) & 0xfff); |
| } |
| |
| static void applyArm64Branch26(uint8_t *Off, int64_t V) { |
| if (!isInt<28>(V)) |
| fatal("relocation out of range"); |
| or32(Off, (V & 0x0FFFFFFC) >> 2); |
| } |
| |
| static void applyArm64Branch19(uint8_t *Off, int64_t V) { |
| if (!isInt<21>(V)) |
| fatal("relocation out of range"); |
| or32(Off, (V & 0x001FFFFC) << 3); |
| } |
| |
| static void applyArm64Branch14(uint8_t *Off, int64_t V) { |
| if (!isInt<16>(V)) |
| fatal("relocation out of range"); |
| or32(Off, (V & 0x0000FFFC) << 3); |
| } |
| |
| void SectionChunk::applyRelARM64(uint8_t *Off, uint16_t Type, OutputSection *OS, |
| uint64_t S, uint64_t P) const { |
| switch (Type) { |
| case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(Off, S, P, 12); break; |
| case IMAGE_REL_ARM64_REL21: applyArm64Addr(Off, S, P, 0); break; |
| case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(Off, S & 0xfff, 0); break; |
| case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(Off, S & 0xfff); break; |
| case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(Off, S - P); break; |
| case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(Off, S - P); break; |
| case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(Off, S - P); break; |
| case IMAGE_REL_ARM64_ADDR32: add32(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_ARM64_ADDR32NB: add32(Off, S); break; |
| case IMAGE_REL_ARM64_ADDR64: add64(Off, S + Config->ImageBase); break; |
| case IMAGE_REL_ARM64_SECREL: applySecRel(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, Off, OS, S); break; |
| case IMAGE_REL_ARM64_SECTION: applySecIdx(Off, OS); break; |
| default: |
| fatal("unsupported relocation type 0x" + Twine::utohexstr(Type) + " in " + |
| toString(File)); |
| } |
| } |
| |
| void SectionChunk::writeTo(uint8_t *Buf) const { |
| if (!hasData()) |
| return; |
| // Copy section contents from source object file to output file. |
| ArrayRef<uint8_t> A = getContents(); |
| if (!A.empty()) |
| memcpy(Buf + OutputSectionOff, A.data(), A.size()); |
| |
| // Apply relocations. |
| size_t InputSize = getSize(); |
| for (const coff_relocation &Rel : Relocs) { |
| // Check for an invalid relocation offset. This check isn't perfect, because |
| // we don't have the relocation size, which is only known after checking the |
| // machine and relocation type. As a result, a relocation may overwrite the |
| // beginning of the following input section. |
| if (Rel.VirtualAddress >= InputSize) |
| fatal("relocation points beyond the end of its parent section"); |
| |
| uint8_t *Off = Buf + OutputSectionOff + Rel.VirtualAddress; |
| |
| // Get the output section of the symbol for this relocation. The output |
| // section is needed to compute SECREL and SECTION relocations used in debug |
| // info. |
| auto *Sym = |
| dyn_cast_or_null<Defined>(File->getSymbol(Rel.SymbolTableIndex)); |
| if (!Sym) { |
| if (isCodeView() || isDWARF()) |
| continue; |
| // Symbols in early discarded sections are represented using null pointers, |
| // so we need to retrieve the name from the object file. |
| COFFSymbolRef Sym = |
| check(File->getCOFFObj()->getSymbol(Rel.SymbolTableIndex)); |
| StringRef Name; |
| File->getCOFFObj()->getSymbolName(Sym, Name); |
| fatal("relocation against symbol in discarded section: " + Name); |
| } |
| Chunk *C = Sym->getChunk(); |
| OutputSection *OS = C ? C->getOutputSection() : nullptr; |
| |
| // Only absolute and __ImageBase symbols lack an output section. For any |
| // other symbol, this indicates that the chunk was discarded. Normally |
| // relocations against discarded sections are an error. However, debug info |
| // sections are not GC roots and can end up with these kinds of relocations. |
| // Skip these relocations. |
| if (!OS && !isa<DefinedAbsolute>(Sym) && !isa<DefinedSynthetic>(Sym)) { |
| if (isCodeView() || isDWARF()) |
| continue; |
| fatal("relocation against symbol in discarded section: " + |
| Sym->getName()); |
| } |
| uint64_t S = Sym->getRVA(); |
| |
| // Compute the RVA of the relocation for relative relocations. |
| uint64_t P = RVA + Rel.VirtualAddress; |
| switch (Config->Machine) { |
| case AMD64: |
| applyRelX64(Off, Rel.Type, OS, S, P); |
| break; |
| case I386: |
| applyRelX86(Off, Rel.Type, OS, S, P); |
| break; |
| case ARMNT: |
| applyRelARM(Off, Rel.Type, OS, S, P); |
| break; |
| case ARM64: |
| applyRelARM64(Off, Rel.Type, OS, S, P); |
| break; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| } |
| |
| void SectionChunk::addAssociative(SectionChunk *Child) { |
| AssocChildren.push_back(Child); |
| } |
| |
| static uint8_t getBaserelType(const coff_relocation &Rel) { |
| switch (Config->Machine) { |
| case AMD64: |
| if (Rel.Type == IMAGE_REL_AMD64_ADDR64) |
| return IMAGE_REL_BASED_DIR64; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case I386: |
| if (Rel.Type == IMAGE_REL_I386_DIR32) |
| return IMAGE_REL_BASED_HIGHLOW; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case ARMNT: |
| if (Rel.Type == IMAGE_REL_ARM_ADDR32) |
| return IMAGE_REL_BASED_HIGHLOW; |
| if (Rel.Type == IMAGE_REL_ARM_MOV32T) |
| return IMAGE_REL_BASED_ARM_MOV32T; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case ARM64: |
| if (Rel.Type == IMAGE_REL_ARM64_ADDR64) |
| return IMAGE_REL_BASED_DIR64; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| // Windows-specific. |
| // Collect all locations that contain absolute addresses, which need to be |
| // fixed by the loader if load-time relocation is needed. |
| // Only called when base relocation is enabled. |
| void SectionChunk::getBaserels(std::vector<Baserel> *Res) { |
| for (const coff_relocation &Rel : Relocs) { |
| uint8_t Ty = getBaserelType(Rel); |
| if (Ty == IMAGE_REL_BASED_ABSOLUTE) |
| continue; |
| Symbol *Target = File->getSymbol(Rel.SymbolTableIndex); |
| if (!Target || isa<DefinedAbsolute>(Target)) |
| continue; |
| Res->emplace_back(RVA + Rel.VirtualAddress, Ty); |
| } |
| } |
| |
| bool SectionChunk::hasData() const { |
| return !(Header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); |
| } |
| |
| uint32_t SectionChunk::getOutputCharacteristics() const { |
| return Header->Characteristics & (PermMask | TypeMask); |
| } |
| |
| bool SectionChunk::isCOMDAT() const { |
| return Header->Characteristics & IMAGE_SCN_LNK_COMDAT; |
| } |
| |
| void SectionChunk::printDiscardedMessage() const { |
| // Removed by dead-stripping. If it's removed by ICF, ICF already |
| // printed out the name, so don't repeat that here. |
| if (Sym && this == Repl) |
| message("Discarded " + Sym->getName()); |
| } |
| |
| StringRef SectionChunk::getDebugName() { |
| if (Sym) |
| return Sym->getName(); |
| return ""; |
| } |
| |
| ArrayRef<uint8_t> SectionChunk::getContents() const { |
| ArrayRef<uint8_t> A; |
| File->getCOFFObj()->getSectionContents(Header, A); |
| return A; |
| } |
| |
| void SectionChunk::replace(SectionChunk *Other) { |
| Alignment = std::max(Alignment, Other->Alignment); |
| Other->Repl = Repl; |
| Other->Live = false; |
| } |
| |
| CommonChunk::CommonChunk(const COFFSymbolRef S) : Sym(S) { |
| // Common symbols are aligned on natural boundaries up to 32 bytes. |
| // This is what MSVC link.exe does. |
| Alignment = std::min(uint64_t(32), PowerOf2Ceil(Sym.getValue())); |
| } |
| |
| uint32_t CommonChunk::getOutputCharacteristics() const { |
| return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | |
| IMAGE_SCN_MEM_WRITE; |
| } |
| |
| void StringChunk::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, Str.data(), Str.size()); |
| } |
| |
| ImportThunkChunkX64::ImportThunkChunkX64(Defined *S) : ImpSymbol(S) { |
| // Intel Optimization Manual says that all branch targets |
| // should be 16-byte aligned. MSVC linker does this too. |
| Alignment = 16; |
| } |
| |
| void ImportThunkChunkX64::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); |
| // The first two bytes is a JMP instruction. Fill its operand. |
| write32le(Buf + OutputSectionOff + 2, ImpSymbol->getRVA() - RVA - getSize()); |
| } |
| |
| void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *Res) { |
| Res->emplace_back(getRVA() + 2); |
| } |
| |
| void ImportThunkChunkX86::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, ImportThunkX86, sizeof(ImportThunkX86)); |
| // The first two bytes is a JMP instruction. Fill its operand. |
| write32le(Buf + OutputSectionOff + 2, |
| ImpSymbol->getRVA() + Config->ImageBase); |
| } |
| |
| void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *Res) { |
| Res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); |
| } |
| |
| void ImportThunkChunkARM::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, ImportThunkARM, sizeof(ImportThunkARM)); |
| // Fix mov.w and mov.t operands. |
| applyMOV32T(Buf + OutputSectionOff, ImpSymbol->getRVA() + Config->ImageBase); |
| } |
| |
| void ImportThunkChunkARM64::writeTo(uint8_t *Buf) const { |
| int64_t Off = ImpSymbol->getRVA() & 0xfff; |
| memcpy(Buf + OutputSectionOff, ImportThunkARM64, sizeof(ImportThunkARM64)); |
| applyArm64Addr(Buf + OutputSectionOff, ImpSymbol->getRVA(), RVA, 12); |
| applyArm64Ldr(Buf + OutputSectionOff + 4, Off); |
| } |
| |
| void LocalImportChunk::getBaserels(std::vector<Baserel> *Res) { |
| Res->emplace_back(getRVA()); |
| } |
| |
| size_t LocalImportChunk::getSize() const { |
| return Config->is64() ? 8 : 4; |
| } |
| |
| void LocalImportChunk::writeTo(uint8_t *Buf) const { |
| if (Config->is64()) { |
| write64le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); |
| } else { |
| write32le(Buf + OutputSectionOff, Sym->getRVA() + Config->ImageBase); |
| } |
| } |
| |
| void RVATableChunk::writeTo(uint8_t *Buf) const { |
| ulittle32_t *Begin = reinterpret_cast<ulittle32_t *>(Buf + OutputSectionOff); |
| size_t Cnt = 0; |
| for (const ChunkAndOffset &CO : Syms) |
| Begin[Cnt++] = CO.InputChunk->getRVA() + CO.Offset; |
| std::sort(Begin, Begin + Cnt); |
| assert(std::unique(Begin, Begin + Cnt) == Begin + Cnt && |
| "RVA tables should be de-duplicated"); |
| } |
| |
| // Windows-specific. This class represents a block in .reloc section. |
| // The format is described here. |
| // |
| // On Windows, each DLL is linked against a fixed base address and |
| // usually loaded to that address. However, if there's already another |
| // DLL that overlaps, the loader has to relocate it. To do that, DLLs |
| // contain .reloc sections which contain offsets that need to be fixed |
| // up at runtime. If the loader finds that a DLL cannot be loaded to its |
| // desired base address, it loads it to somewhere else, and add <actual |
| // base address> - <desired base address> to each offset that is |
| // specified by the .reloc section. In ELF terms, .reloc sections |
| // contain relative relocations in REL format (as opposed to RELA.) |
| // |
| // This already significantly reduces the size of relocations compared |
| // to ELF .rel.dyn, but Windows does more to reduce it (probably because |
| // it was invented for PCs in the late '80s or early '90s.) Offsets in |
| // .reloc are grouped by page where the page size is 12 bits, and |
| // offsets sharing the same page address are stored consecutively to |
| // represent them with less space. This is very similar to the page |
| // table which is grouped by (multiple stages of) pages. |
| // |
| // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, |
| // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 |
| // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they |
| // are represented like this: |
| // |
| // 0x00000 -- page address (4 bytes) |
| // 16 -- size of this block (4 bytes) |
| // 0xA030 -- entries (2 bytes each) |
| // 0xA500 |
| // 0xA700 |
| // 0xAA00 |
| // 0x20000 -- page address (4 bytes) |
| // 12 -- size of this block (4 bytes) |
| // 0xA004 -- entries (2 bytes each) |
| // 0xA008 |
| // |
| // Usually we have a lot of relocations for each page, so the number of |
| // bytes for one .reloc entry is close to 2 bytes on average. |
| BaserelChunk::BaserelChunk(uint32_t Page, Baserel *Begin, Baserel *End) { |
| // Block header consists of 4 byte page RVA and 4 byte block size. |
| // Each entry is 2 byte. Last entry may be padding. |
| Data.resize(alignTo((End - Begin) * 2 + 8, 4)); |
| uint8_t *P = Data.data(); |
| write32le(P, Page); |
| write32le(P + 4, Data.size()); |
| P += 8; |
| for (Baserel *I = Begin; I != End; ++I) { |
| write16le(P, (I->Type << 12) | (I->RVA - Page)); |
| P += 2; |
| } |
| } |
| |
| void BaserelChunk::writeTo(uint8_t *Buf) const { |
| memcpy(Buf + OutputSectionOff, Data.data(), Data.size()); |
| } |
| |
| uint8_t Baserel::getDefaultType() { |
| switch (Config->Machine) { |
| case AMD64: |
| case ARM64: |
| return IMAGE_REL_BASED_DIR64; |
| case I386: |
| case ARMNT: |
| return IMAGE_REL_BASED_HIGHLOW; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| std::map<uint32_t, MergeChunk *> MergeChunk::Instances; |
| |
| MergeChunk::MergeChunk(uint32_t Alignment) |
| : Builder(StringTableBuilder::RAW, Alignment) { |
| this->Alignment = Alignment; |
| } |
| |
| void MergeChunk::addSection(SectionChunk *C) { |
| auto *&MC = Instances[C->Alignment]; |
| if (!MC) |
| MC = make<MergeChunk>(C->Alignment); |
| MC->Sections.push_back(C); |
| } |
| |
| void MergeChunk::finalizeContents() { |
| for (SectionChunk *C : Sections) |
| if (C->isLive()) |
| Builder.add(toStringRef(C->getContents())); |
| Builder.finalize(); |
| |
| for (SectionChunk *C : Sections) { |
| if (!C->isLive()) |
| continue; |
| size_t Off = Builder.getOffset(toStringRef(C->getContents())); |
| C->setOutputSection(Out); |
| C->setRVA(RVA + Off); |
| C->OutputSectionOff = OutputSectionOff + Off; |
| } |
| } |
| |
| uint32_t MergeChunk::getOutputCharacteristics() const { |
| return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; |
| } |
| |
| size_t MergeChunk::getSize() const { |
| return Builder.getSize(); |
| } |
| |
| void MergeChunk::writeTo(uint8_t *Buf) const { |
| Builder.write(Buf + OutputSectionOff); |
| } |
| |
| } // namespace coff |
| } // namespace lld |