blob: 2ba546ea474d4394769c3f3ecdca67a3593ae201 [file] [log] [blame]
// Copyright 2021 The Cobalt Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "starboard/xb1/shared/gpu_base_video_decoder.h"
#include <d3d11_1.h>
#include <wrl/client.h>
#include "starboard/shared/uwp/application_uwp.h"
#include "starboard/shared/uwp/async_utils.h"
#include "starboard/shared/uwp/decoder_utils.h"
#include "starboard/shared/uwp/extended_resources_manager.h"
#include "starboard/shared/win32/decode_target_internal.h"
#include "starboard/shared/win32/error_utils.h"
#include "starboard/thread.h"
#include "third_party/angle/include/EGL/egl.h"
#include "third_party/angle/include/EGL/eglext.h"
#include "third_party/angle/include/GLES2/gl2.h"
#include "third_party/angle/include/GLES2/gl2ext.h"
#include "third_party/angle/include/angle_hdr.h"
#if defined(INTERNAL_BUILD)
#include "third_party/internal/libav1_xb1/libav1/d3dx12.h"
#endif // defined(INTERNAL_BUILD)
namespace starboard {
namespace xb1 {
namespace shared {
namespace {
using Microsoft::WRL::ComPtr;
using starboard::shared::starboard::player::JobThread;
using starboard::shared::starboard::player::filter::VideoFrame;
using starboard::shared::uwp::ApplicationUwp;
using starboard::shared::uwp::ExtendedResourcesManager;
using starboard::shared::uwp::FindByTimestamp;
using starboard::shared::uwp::RemoveByTimestamp;
using starboard::shared::uwp::UpdateHdrColorMetadataToCurrentDisplay;
using Windows::Graphics::Display::Core::HdmiDisplayInformation;
// Limit the number of pending buffers.
constexpr int kMaxNumberOfPendingBuffers = 8;
// Limit the cached presenting images.
constexpr int kNumberOfCachedPresentingImage = 3;
const char kDecoderThreadName[] = "gpu_video_decoder_thread";
} // namespace
class GpuVideoDecoderBase::GPUDecodeTargetPrivate
: public SbDecodeTargetPrivate {
public:
GPUDecodeTargetPrivate(
void* egl_display,
void* egl_config,
const scoped_refptr<GpuVideoDecoderBase::DecodedImage>& image)
: egl_display_(egl_display), egl_config_(egl_config), image_(image) {
SB_DCHECK(egl_display_);
SB_DCHECK(egl_config);
if (image->bit_depth() == 8) {
info.format = kSbDecodeTargetFormat3PlaneYUVI420;
} else {
SB_DCHECK(image->bit_depth() == 10);
#if SB_API_VERSION >= 14
info.format = image->is_compacted()
? kSbDecodeTargetFormat3Plane10BitYUVI420Compact
: kSbDecodeTargetFormat3Plane10BitYUVI420;
#else // SB_API_VERSION >= 14
SB_DCHECK(!image->is_compacted());
info.format = kSbDecodeTargetFormat3Plane10BitYUVI420;
#endif // SB_API_VERSION >= 14
}
info.is_opaque = true;
info.width = image->width();
info.height = image->height();
GLuint gl_textures_yuv[kNumberOfPlanes] = {};
glGenTextures(kNumberOfPlanes, gl_textures_yuv);
SB_DCHECK(glGetError() == GL_NO_ERROR);
for (unsigned int i = 0; i < kNumberOfPlanes; ++i) {
const int stride = image->stride(i);
const int subsampling = i > 0;
const int width = info.width >> subsampling;
const int height = info.height >> subsampling;
EGLint texture_attributes[] = {EGL_WIDTH,
static_cast<EGLint>(stride),
EGL_HEIGHT,
static_cast<EGLint>(height),
EGL_TEXTURE_TARGET,
EGL_TEXTURE_2D,
EGL_TEXTURE_FORMAT,
EGL_TEXTURE_RGBA,
EGL_NONE};
surfaces_[i] = eglCreatePbufferFromClientBuffer(
egl_display_, EGL_D3D_TEXTURE_ANGLE, image->texture(i).Get(),
egl_config, texture_attributes);
SB_DCHECK(glGetError() == GL_NO_ERROR && surfaces_[i] != EGL_NO_SURFACE);
glBindTexture(GL_TEXTURE_2D, gl_textures_yuv[i]);
SB_DCHECK(glGetError() == GL_NO_ERROR);
bool result =
eglBindTexImage(egl_display_, surfaces_[i], EGL_BACK_BUFFER);
SB_DCHECK(result);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
D3D11_TEXTURE2D_DESC tex_desc = {};
image->texture(i)->GetDesc(&tex_desc);
SbDecodeTargetInfoPlane* plane = &info.planes[i];
plane->width =
image->is_compacted() ? tex_desc.Width * 3 : tex_desc.Width;
plane->height = tex_desc.Height;
plane->content_region.left = image->texture_corner_left(i);
plane->content_region.top = plane->height;
plane->content_region.bottom = plane->height - height;
plane->content_region.right = image->texture_corner_left(i) + width;
plane->texture = gl_textures_yuv[i];
plane->gl_texture_target = GL_TEXTURE_2D;
plane->gl_texture_format = GL_RED_EXT;
}
}
~GPUDecodeTargetPrivate() override {
for (unsigned int i = 0; i < kNumberOfPlanes; ++i) {
glDeleteTextures(1, &(info.planes[i].texture));
eglReleaseTexImage(egl_display_, surfaces_[i], EGL_BACK_BUFFER);
eglDestroySurface(egl_display_, surfaces_[i]);
}
}
SbTime timestamp() { return image_->timestamp(); }
void ReleaseImage() {
// Release the codec resource, while the D3D textures are still safe to use.
SB_DCHECK(image_);
image_ = nullptr;
}
private:
// Hold the codec resource until it's not needed in render pipeline to prevent
// it being reused and overwritten.
scoped_refptr<GpuVideoDecoderBase::DecodedImage> image_;
// EGLSurface is defined as void* in "third_party/angle/include/EGL/egl.h".
// Use void* directly here to avoid `egl.h` being included broadly.
void* surfaces_[kNumberOfPlanes];
void* egl_display_;
void* egl_config_;
};
GpuVideoDecoderBase::GpuVideoDecoderBase(
SbDecodeTargetGraphicsContextProvider*
decode_target_graphics_context_provider,
const VideoStreamInfo& video_stream_info,
bool is_hdr_video,
const ComPtr<ID3D12Device>& d3d12_device,
void* d3d12_queue)
: decode_target_context_runner_(decode_target_graphics_context_provider),
is_hdr_video_(is_hdr_video),
d3d12_device_(d3d12_device),
d3d12_queue_(d3d12_queue) {
SB_DCHECK(d3d12_device_);
SB_DCHECK(d3d12_queue_);
egl_display_ = eglGetDisplay(EGL_DEFAULT_DISPLAY);
EGLint attribute_list[] = {EGL_SURFACE_TYPE, // this must be first
EGL_WINDOW_BIT | EGL_PBUFFER_BIT,
EGL_RED_SIZE,
8,
EGL_GREEN_SIZE,
8,
EGL_BLUE_SIZE,
8,
EGL_ALPHA_SIZE,
8,
EGL_BIND_TO_TEXTURE_RGBA,
EGL_TRUE,
EGL_RENDERABLE_TYPE,
EGL_OPENGL_ES2_BIT,
EGL_NONE};
SB_DCHECK(egl_display_);
EGLint num_configs;
int result = eglChooseConfig(egl_display_, attribute_list, &egl_config_, 1,
&num_configs);
SB_DCHECK(result);
ComPtr<ID3D11Device> d3d11_device =
starboard::shared::uwp::GetDirectX11Device(egl_display_);
HRESULT hr = d3d11_device.As(&d3d11_device_);
SB_DCHECK(SUCCEEDED(hr));
if (is_hdr_video_) {
UpdateHdrMetadata(video_stream_info.color_metadata);
}
frame_width_ = video_stream_info.frame_width;
frame_height_ = video_stream_info.frame_height;
}
GpuVideoDecoderBase::~GpuVideoDecoderBase() {
// Reset() should be already called before ~GpuVideoDecoderBase().
SB_DCHECK(!decoder_thread_);
SB_DCHECK(pending_inputs_.empty());
SB_DCHECK(written_inputs_.empty());
SB_DCHECK(output_queue_.empty());
SB_DCHECK(decoder_behavior_.load() == kDecodingStopped);
// All presenting decode targets should be released.
SB_DCHECK(presenting_decode_targets_.empty());
if (ApplicationUwp::Get()->IsHdrSupported() && IsHdrAngleModeEnabled()) {
SetHdrAngleModeEnabled(false);
auto hdmi_display_info = HdmiDisplayInformation::GetForCurrentView();
starboard::shared::uwp::WaitForComplete(
hdmi_display_info->SetDefaultDisplayModeAsync());
}
}
void GpuVideoDecoderBase::Initialize(const DecoderStatusCB& decoder_status_cb,
const ErrorCB& error_cb) {
SB_DCHECK(decoder_status_cb);
SB_DCHECK(!decoder_status_cb_);
SB_DCHECK(error_cb);
SB_DCHECK(!error_cb_);
decoder_status_cb_ = decoder_status_cb;
error_cb_ = error_cb;
}
size_t GpuVideoDecoderBase::GetMaxNumberOfCachedFrames() const {
return GetMaxNumberOfCachedFramesInternal() -
number_of_presenting_decode_targets_;
}
void GpuVideoDecoderBase::WriteInputBuffers(const InputBuffers& input_buffers) {
SB_DCHECK(BelongsToCurrentThread());
SB_DCHECK(decoder_status_cb_);
SB_DCHECK(input_buffers.size() == 1);
SB_DCHECK(input_buffers[0]);
SB_DCHECK(decoder_behavior_.load() != kResettingDecoder);
SB_DCHECK(decoder_behavior_.load() != kEndingStream);
if (error_occured_.load()) {
return;
}
const auto& input_buffer = input_buffers[0];
if (!decoder_thread_) {
decoder_thread_.reset(new JobThread(kDecoderThreadName));
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::InitializeCodecIfNeededInternal, this));
}
bool needs_more_input = false;
{
ScopedLock pending_inputs_lock(pending_inputs_mutex_);
pending_inputs_.push_back(input_buffer);
needs_more_input = pending_inputs_.size() < kMaxNumberOfPendingBuffers;
}
decoder_behavior_.store(kDecodingFrames);
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::DecodeOneBuffer, this));
if (needs_more_input) {
decoder_status_cb_(kNeedMoreInput, nullptr);
}
}
void GpuVideoDecoderBase::WriteEndOfStream() {
SB_DCHECK(BelongsToCurrentThread());
SB_DCHECK(decoder_status_cb_);
SB_DCHECK(decoder_behavior_.load() != kResettingDecoder);
SB_DCHECK(decoder_behavior_.load() != kEndingStream);
if (error_occured_.load()) {
return;
}
if (decoder_thread_) {
SB_DCHECK(decoder_behavior_.load() == kDecodingFrames);
decoder_behavior_.store(kEndingStream);
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::DecodeEndOfStream, this));
return;
}
SB_DCHECK(decoder_behavior_.load() == kDecodingStopped);
decoder_status_cb_(kBufferFull, VideoFrame::CreateEOSFrame());
}
void GpuVideoDecoderBase::Reset() {
SB_DCHECK(BelongsToCurrentThread());
SB_DCHECK(decoder_status_cb_);
decoder_behavior_.store(kResettingDecoder);
if (decoder_thread_) {
// Release stored frames to free frame buffers.
decoder_status_cb_(kReleaseAllFrames, nullptr);
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::DrainDecoder, this));
decoder_thread_.reset();
}
pending_inputs_.clear();
written_inputs_.clear();
// Release all frames after decoder thread is destroyed.
decoder_status_cb_(kReleaseAllFrames, nullptr);
{
ScopedLock output_queue_lock(output_queue_mutex_);
output_queue_.clear();
}
error_occured_.store(false);
decoder_behavior_.store(kDecodingStopped);
is_drain_decoder_called_ = false;
}
SbDecodeTarget GpuVideoDecoderBase::GetCurrentDecodeTarget() {
scoped_refptr<DecodedImage> image = nullptr;
{
ScopedLock output_queue_lock(output_queue_mutex_);
if (!output_queue_.empty()) {
image = output_queue_.front();
}
}
if (!image && presenting_decode_targets_.empty()) {
return kSbDecodeTargetInvalid;
}
if (presenting_decode_targets_.empty() ||
(image &&
image->timestamp() != presenting_decode_targets_.back()->timestamp())) {
// Create the new decode target and update hdr meta data.
if (is_hdr_video_) {
UpdateHdrMetadata(image->color_metadata());
}
presenting_decode_targets_.push_back(
new GPUDecodeTargetPrivate(egl_display_, egl_config_, image));
number_of_presenting_decode_targets_++;
}
// Increment the refcount for the returned decode target.
presenting_decode_targets_.back()->AddRef();
// There's a data synchronization issue (b/180532476) between decoder and
// render pipelines. If we release the decode target immediately after it's
// released on render pipeline (the underllying resources may be reused by the
// libvpx/av1 decoder), there's a chance that the rendering frame gets
// overwritten. The root cause is still unclear and under investigating. So,
// as a workaround, we retain the decode target for longer time until it's no
// longer used by the renderer thread.
while (presenting_decode_targets_.size() > kNumberOfCachedPresentingImage &&
presenting_decode_targets_.front()->refcount == 1) {
SbDecodeTargetRelease(presenting_decode_targets_.front());
presenting_decode_targets_.pop_front();
number_of_presenting_decode_targets_--;
}
return presenting_decode_targets_.back();
}
bool GpuVideoDecoderBase::BelongsToDecoderThread() const {
return decoder_thread_->job_queue()->BelongsToCurrentThread();
}
void GpuVideoDecoderBase::OnOutputRetrieved(
const scoped_refptr<DecodedImage>& image) {
SB_DCHECK(decoder_thread_);
SB_DCHECK(decoder_status_cb_);
SB_DCHECK(image);
if (decoder_behavior_.load() == kResettingDecoder || error_occured_) {
return;
}
if (!BelongsToDecoderThread()) {
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::OnOutputRetrieved, this, image));
return;
}
SbTime timestamp = image->timestamp();
const auto iter = FindByTimestamp(written_inputs_, timestamp);
SB_DCHECK(iter != written_inputs_.cend());
if (is_hdr_video_) {
image->AttachColorMetadata((*iter)->video_stream_info().color_metadata);
}
written_inputs_.erase(iter);
scoped_refptr<VideoFrameImpl> frame(new VideoFrameImpl(
timestamp, std::bind(&GpuVideoDecoderBase::DeleteVideoFrame, this,
std::placeholders::_1)));
decoder_status_cb_(
decoder_behavior_.load() == kEndingStream ? kBufferFull : kNeedMoreInput,
frame);
if (!frame->HasOneRef()) {
ScopedLock output_queue_lock(output_queue_mutex_);
output_queue_.push_back(image);
}
}
void GpuVideoDecoderBase::OnDecoderDrained() {
SB_DCHECK(decoder_thread_);
SB_DCHECK(decoder_status_cb_);
SB_DCHECK(decoder_behavior_.load() == kEndingStream ||
decoder_behavior_.load() == kResettingDecoder);
if (decoder_behavior_.load() == kResettingDecoder || error_occured_) {
return;
}
if (!BelongsToDecoderThread()) {
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::OnDecoderDrained, this));
return;
}
SB_DCHECK(written_inputs_.empty());
if (decoder_behavior_.load() == kEndingStream) {
decoder_status_cb_(kBufferFull, VideoFrame::CreateEOSFrame());
}
decoder_behavior_.store(kDecodingStopped);
}
void GpuVideoDecoderBase::ClearCachedImages() {
SB_DCHECK(output_queue_.empty());
// All cached images should be released.
decode_target_context_runner_.RunOnGlesContext(
std::bind(&GpuVideoDecoderBase::ClearPresentingDecodeTargets, this));
}
void GpuVideoDecoderBase::ReportError(const SbPlayerError error,
const std::string& error_message) {
SB_DCHECK(error_cb_);
if (!error_occured_.exchange(true)) {
SB_LOG(ERROR) << error_message << " (error code: " << error << " )";
error_cb_(error, error_message);
}
}
bool GpuVideoDecoderBase::IsCacheFull() {
SB_DCHECK(decoder_thread_);
SB_DCHECK(BelongsToDecoderThread());
ScopedLock output_queue_lock(output_queue_mutex_);
return written_inputs_.size() + output_queue_.size() +
number_of_presenting_decode_targets_ >=
GetMaxNumberOfCachedFramesInternal();
}
void GpuVideoDecoderBase::DecodeOneBuffer() {
SB_DCHECK(decoder_thread_);
SB_DCHECK(BelongsToDecoderThread());
if (decoder_behavior_.load() == kResettingDecoder || error_occured_) {
return;
}
if (IsCacheFull()) {
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::DecodeOneBuffer, this),
kSbTimeMillisecond);
return;
}
{
ScopedLock pending_inputs_lock(pending_inputs_mutex_);
SB_DCHECK(!pending_inputs_.empty());
written_inputs_.push_back(pending_inputs_.front());
pending_inputs_.pop_front();
}
DecodeInternal(written_inputs_.back());
}
void GpuVideoDecoderBase::DecodeEndOfStream() {
SB_DCHECK(decoder_thread_);
SB_DCHECK(BelongsToDecoderThread());
SB_DCHECK(decoder_status_cb_);
if (decoder_behavior_.load() == kResettingDecoder || error_occured_) {
return;
}
{
ScopedLock pending_inputs_lock(pending_inputs_mutex_);
if (!pending_inputs_.empty()) {
decoder_thread_->job_queue()->Schedule(
std::bind(&GpuVideoDecoderBase::DecodeEndOfStream, this),
kSbTimeMillisecond);
return;
}
}
DrainDecoder();
}
void GpuVideoDecoderBase::DrainDecoder() {
SB_DCHECK(BelongsToDecoderThread());
// Use |is_drain_decoder_called_| to prevent calling DrainDecoderInternal()
// twice. Theoretically, if Reset() is called during DecodeEndOfStream()
// executing, DrainDecoderInternal() could be called twice, one from
// DecodeEndOfStream(), and one from Reset().
if (!is_drain_decoder_called_) {
is_drain_decoder_called_ = true;
DrainDecoderInternal();
}
}
void GpuVideoDecoderBase::DeleteVideoFrame(const VideoFrame* video_frame) {
ScopedLock output_queue_lock(output_queue_mutex_);
RemoveByTimestamp(&output_queue_, video_frame->timestamp());
}
void GpuVideoDecoderBase::UpdateHdrMetadata(
const SbMediaColorMetadata& color_metadata) {
SB_DCHECK(is_hdr_video_);
if (!ApplicationUwp::Get()->IsHdrSupported()) {
ReportError(kSbPlayerErrorCapabilityChanged,
"HDR sink lost while HDR video playing.");
return;
}
if (!needs_hdr_metadata_update_) {
return;
}
needs_hdr_metadata_update_ = false;
if (!IsHdrAngleModeEnabled()) {
SetHdrAngleModeEnabled(true);
}
if (memcmp(&color_metadata, &last_presented_color_metadata_,
sizeof(color_metadata)) != 0) {
last_presented_color_metadata_ = color_metadata;
UpdateHdrColorMetadataToCurrentDisplay(color_metadata);
}
}
void GpuVideoDecoderBase::ClearPresentingDecodeTargets() {
// Delete all unused decode targets.
while (!presenting_decode_targets_.empty() &&
presenting_decode_targets_.front()->refcount == 1) {
SbDecodeTargetRelease(presenting_decode_targets_.front());
presenting_decode_targets_.pop_front();
}
// The remaining decode targets are still used by the render pipeline. Force
// to release the underlying image to release the codec resources and
// decrement the refcount.
for (auto it = presenting_decode_targets_.begin();
it != presenting_decode_targets_.end(); ++it) {
(*it)->ReleaseImage();
SbDecodeTargetRelease(*it);
}
presenting_decode_targets_.clear();
number_of_presenting_decode_targets_ = 0;
}
} // namespace shared
} // namespace xb1
} // namespace starboard