|  | // Copyright 2013 the V8 project authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #ifndef V8_CODEGEN_ARM64_UTILS_ARM64_H_ | 
|  | #define V8_CODEGEN_ARM64_UTILS_ARM64_H_ | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | #include "src/codegen/arm64/constants-arm64.h" | 
|  | #include "src/utils/utils.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | // These are global assumptions in v8. | 
|  | STATIC_ASSERT((static_cast<int32_t>(-1) >> 1) == -1); | 
|  | STATIC_ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF); | 
|  |  | 
|  | uint32_t float_sign(float val); | 
|  | uint32_t float_exp(float val); | 
|  | uint32_t float_mantissa(float val); | 
|  | uint32_t double_sign(double val); | 
|  | uint32_t double_exp(double val); | 
|  | uint64_t double_mantissa(double val); | 
|  |  | 
|  | float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa); | 
|  | double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa); | 
|  |  | 
|  | // An fpclassify() function for 16-bit half-precision floats. | 
|  | int float16classify(float16 value); | 
|  |  | 
|  | // Bit counting. | 
|  | int CountLeadingZeros(uint64_t value, int width); | 
|  | int CountLeadingSignBits(int64_t value, int width); | 
|  | V8_EXPORT_PRIVATE int CountSetBits(uint64_t value, int width); | 
|  | int LowestSetBitPosition(uint64_t value); | 
|  | int HighestSetBitPosition(uint64_t value); | 
|  | uint64_t LargestPowerOf2Divisor(uint64_t value); | 
|  | int MaskToBit(uint64_t mask); | 
|  |  | 
|  | template <typename T> | 
|  | T ReverseBytes(T value, int block_bytes_log2) { | 
|  | DCHECK((sizeof(value) == 4) || (sizeof(value) == 8)); | 
|  | DCHECK((1ULL << block_bytes_log2) <= sizeof(value)); | 
|  | // Split the 64-bit value into an 8-bit array, where b[0] is the least | 
|  | // significant byte, and b[7] is the most significant. | 
|  | uint8_t bytes[8]; | 
|  | uint64_t mask = 0xff00000000000000; | 
|  | for (int i = 7; i >= 0; i--) { | 
|  | bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8); | 
|  | mask >>= 8; | 
|  | } | 
|  |  | 
|  | // Permutation tables for REV instructions. | 
|  | //  permute_table[0] is used by REV16_x, REV16_w | 
|  | //  permute_table[1] is used by REV32_x, REV_w | 
|  | //  permute_table[2] is used by REV_x | 
|  | DCHECK((0 < block_bytes_log2) && (block_bytes_log2 < 4)); | 
|  | static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1}, | 
|  | {4, 5, 6, 7, 0, 1, 2, 3}, | 
|  | {0, 1, 2, 3, 4, 5, 6, 7}}; | 
|  | typename std::make_unsigned<T>::type result = 0; | 
|  | for (int i = 0; i < 8; i++) { | 
|  | result <<= 8; | 
|  | result |= bytes[permute_table[block_bytes_log2 - 1][i]]; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // NaN tests. | 
|  | inline bool IsSignallingNaN(double num) { | 
|  | uint64_t raw = bit_cast<uint64_t>(num); | 
|  | if (std::isnan(num) && ((raw & kDQuietNanMask) == 0)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | inline bool IsSignallingNaN(float num) { | 
|  | uint32_t raw = bit_cast<uint32_t>(num); | 
|  | if (std::isnan(num) && ((raw & kSQuietNanMask) == 0)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | inline bool IsSignallingNaN(float16 num) { | 
|  | const uint16_t kFP16QuietNaNMask = 0x0200; | 
|  | return (float16classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline bool IsQuietNaN(T num) { | 
|  | return std::isnan(num) && !IsSignallingNaN(num); | 
|  | } | 
|  |  | 
|  | // Convert the NaN in 'num' to a quiet NaN. | 
|  | inline double ToQuietNaN(double num) { | 
|  | DCHECK(std::isnan(num)); | 
|  | return bit_cast<double>(bit_cast<uint64_t>(num) | kDQuietNanMask); | 
|  | } | 
|  |  | 
|  | inline float ToQuietNaN(float num) { | 
|  | DCHECK(std::isnan(num)); | 
|  | return bit_cast<float>(bit_cast<uint32_t>(num) | | 
|  | static_cast<uint32_t>(kSQuietNanMask)); | 
|  | } | 
|  |  | 
|  | // Fused multiply-add. | 
|  | inline double FusedMultiplyAdd(double op1, double op2, double a) { | 
|  | return fma(op1, op2, a); | 
|  | } | 
|  |  | 
|  | inline float FusedMultiplyAdd(float op1, float op2, float a) { | 
|  | return fmaf(op1, op2, a); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 | 
|  |  | 
|  | #endif  // V8_CODEGEN_ARM64_UTILS_ARM64_H_ |