| // Copyright 2011 the V8 project authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "src/numbers/bignum-dtoa.h" | 
 |  | 
 | #include <cmath> | 
 |  | 
 | #include "src/base/logging.h" | 
 | #include "src/numbers/bignum.h" | 
 | #include "src/numbers/double.h" | 
 | #include "src/utils/utils.h" | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | static int NormalizedExponent(uint64_t significand, int exponent) { | 
 |   DCHECK_NE(significand, 0); | 
 |   while ((significand & Double::kHiddenBit) == 0) { | 
 |     significand = significand << 1; | 
 |     exponent = exponent - 1; | 
 |   } | 
 |   return exponent; | 
 | } | 
 |  | 
 | // Forward declarations: | 
 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k. | 
 | static int EstimatePower(int exponent); | 
 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator | 
 | // and denominator. | 
 | static void InitialScaledStartValues(double v, int estimated_power, | 
 |                                      bool need_boundary_deltas, | 
 |                                      Bignum* numerator, Bignum* denominator, | 
 |                                      Bignum* delta_minus, Bignum* delta_plus); | 
 | // Multiplies numerator/denominator so that its values lies in the range 1-10. | 
 | // Returns decimal_point s.t. | 
 | //  v = numerator'/denominator' * 10^(decimal_point-1) | 
 | //     where numerator' and denominator' are the values of numerator and | 
 | //     denominator after the call to this function. | 
 | static void FixupMultiply10(int estimated_power, bool is_even, | 
 |                             int* decimal_point, Bignum* numerator, | 
 |                             Bignum* denominator, Bignum* delta_minus, | 
 |                             Bignum* delta_plus); | 
 | // Generates digits from the left to the right and stops when the generated | 
 | // digits yield the shortest decimal representation of v. | 
 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, | 
 |                                    Bignum* delta_minus, Bignum* delta_plus, | 
 |                                    bool is_even, Vector<char> buffer, | 
 |                                    int* length); | 
 | // Generates 'requested_digits' after the decimal point. | 
 | static void BignumToFixed(int requested_digits, int* decimal_point, | 
 |                           Bignum* numerator, Bignum* denominator, | 
 |                           Vector<char>(buffer), int* length); | 
 | // Generates 'count' digits of numerator/denominator. | 
 | // Once 'count' digits have been produced rounds the result depending on the | 
 | // remainder (remainders of exactly .5 round upwards). Might update the | 
 | // decimal_point when rounding up (for example for 0.9999). | 
 | static void GenerateCountedDigits(int count, int* decimal_point, | 
 |                                   Bignum* numerator, Bignum* denominator, | 
 |                                   Vector<char>(buffer), int* length); | 
 |  | 
 | void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, | 
 |                 Vector<char> buffer, int* length, int* decimal_point) { | 
 |   DCHECK_GT(v, 0); | 
 |   DCHECK(!Double(v).IsSpecial()); | 
 |   uint64_t significand = Double(v).Significand(); | 
 |   bool is_even = (significand & 1) == 0; | 
 |   int exponent = Double(v).Exponent(); | 
 |   int normalized_exponent = NormalizedExponent(significand, exponent); | 
 |   // estimated_power might be too low by 1. | 
 |   int estimated_power = EstimatePower(normalized_exponent); | 
 |  | 
 |   // Shortcut for Fixed. | 
 |   // The requested digits correspond to the digits after the point. If the | 
 |   // number is much too small, then there is no need in trying to get any | 
 |   // digits. | 
 |   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { | 
 |     buffer[0] = '\0'; | 
 |     *length = 0; | 
 |     // Set decimal-point to -requested_digits. This is what Gay does. | 
 |     // Note that it should not have any effect anyways since the string is | 
 |     // empty. | 
 |     *decimal_point = -requested_digits; | 
 |     return; | 
 |   } | 
 |  | 
 |   Bignum numerator; | 
 |   Bignum denominator; | 
 |   Bignum delta_minus; | 
 |   Bignum delta_plus; | 
 |   // Make sure the bignum can grow large enough. The smallest double equals | 
 |   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. | 
 |   // The maximum double is 1.7976931348623157e308 which needs fewer than | 
 |   // 308*4 binary digits. | 
 |   DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4); | 
 |   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); | 
 |   InitialScaledStartValues(v, estimated_power, need_boundary_deltas, &numerator, | 
 |                            &denominator, &delta_minus, &delta_plus); | 
 |   // We now have v = (numerator / denominator) * 10^estimated_power. | 
 |   FixupMultiply10(estimated_power, is_even, decimal_point, &numerator, | 
 |                   &denominator, &delta_minus, &delta_plus); | 
 |   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and | 
 |   //  1 <= (numerator + delta_plus) / denominator < 10 | 
 |   switch (mode) { | 
 |     case BIGNUM_DTOA_SHORTEST: | 
 |       GenerateShortestDigits(&numerator, &denominator, &delta_minus, | 
 |                              &delta_plus, is_even, buffer, length); | 
 |       break; | 
 |     case BIGNUM_DTOA_FIXED: | 
 |       BignumToFixed(requested_digits, decimal_point, &numerator, &denominator, | 
 |                     buffer, length); | 
 |       break; | 
 |     case BIGNUM_DTOA_PRECISION: | 
 |       GenerateCountedDigits(requested_digits, decimal_point, &numerator, | 
 |                             &denominator, buffer, length); | 
 |       break; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |   buffer[*length] = '\0'; | 
 | } | 
 |  | 
 | // The procedure starts generating digits from the left to the right and stops | 
 | // when the generated digits yield the shortest decimal representation of v. A | 
 | // decimal representation of v is a number lying closer to v than to any other | 
 | // double, so it converts to v when read. | 
 | // | 
 | // This is true if d, the decimal representation, is between m- and m+, the | 
 | // upper and lower boundaries. d must be strictly between them if !is_even. | 
 | //           m- := (numerator - delta_minus) / denominator | 
 | //           m+ := (numerator + delta_plus) / denominator | 
 | // | 
 | // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. | 
 | //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit | 
 | //   will be produced. This should be the standard precondition. | 
 | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, | 
 |                                    Bignum* delta_minus, Bignum* delta_plus, | 
 |                                    bool is_even, Vector<char> buffer, | 
 |                                    int* length) { | 
 |   // Small optimization: if delta_minus and delta_plus are the same just reuse | 
 |   // one of the two bignums. | 
 |   if (Bignum::Equal(*delta_minus, *delta_plus)) { | 
 |     delta_plus = delta_minus; | 
 |   } | 
 |   *length = 0; | 
 |   while (true) { | 
 |     uint16_t digit; | 
 |     digit = numerator->DivideModuloIntBignum(*denominator); | 
 |     DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive. | 
 |     // digit = numerator / denominator (integer division). | 
 |     // numerator = numerator % denominator. | 
 |     buffer[(*length)++] = digit + '0'; | 
 |  | 
 |     // Can we stop already? | 
 |     // If the remainder of the division is less than the distance to the lower | 
 |     // boundary we can stop. In this case we simply round down (discarding the | 
 |     // remainder). | 
 |     // Similarly we test if we can round up (using the upper boundary). | 
 |     bool in_delta_room_minus; | 
 |     bool in_delta_room_plus; | 
 |     if (is_even) { | 
 |       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); | 
 |     } else { | 
 |       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); | 
 |     } | 
 |     if (is_even) { | 
 |       in_delta_room_plus = | 
 |           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | 
 |     } else { | 
 |       in_delta_room_plus = | 
 |           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | 
 |     } | 
 |     if (!in_delta_room_minus && !in_delta_room_plus) { | 
 |       // Prepare for next iteration. | 
 |       numerator->Times10(); | 
 |       delta_minus->Times10(); | 
 |       // We optimized delta_plus to be equal to delta_minus (if they share the | 
 |       // same value). So don't multiply delta_plus if they point to the same | 
 |       // object. | 
 |       if (delta_minus != delta_plus) { | 
 |         delta_plus->Times10(); | 
 |       } | 
 |     } else if (in_delta_room_minus && in_delta_room_plus) { | 
 |       // Let's see if 2*numerator < denominator. | 
 |       // If yes, then the next digit would be < 5 and we can round down. | 
 |       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); | 
 |       if (compare < 0) { | 
 |         // Remaining digits are less than .5. -> Round down (== do nothing). | 
 |       } else if (compare > 0) { | 
 |         // Remaining digits are more than .5 of denominator. -> Round up. | 
 |         // Note that the last digit could not be a '9' as otherwise the whole | 
 |         // loop would have stopped earlier. | 
 |         // We still have an assert here in case the preconditions were not | 
 |         // satisfied. | 
 |         DCHECK_NE(buffer[(*length) - 1], '9'); | 
 |         buffer[(*length) - 1]++; | 
 |       } else { | 
 |         // Halfway case. | 
 |         // TODO(floitsch): need a way to solve half-way cases. | 
 |         //   For now let's round towards even (since this is what Gay seems to | 
 |         //   do). | 
 |  | 
 |         if ((buffer[(*length) - 1] - '0') % 2 == 0) { | 
 |           // Round down => Do nothing. | 
 |         } else { | 
 |           DCHECK_NE(buffer[(*length) - 1], '9'); | 
 |           buffer[(*length) - 1]++; | 
 |         } | 
 |       } | 
 |       return; | 
 |     } else if (in_delta_room_minus) { | 
 |       // Round down (== do nothing). | 
 |       return; | 
 |     } else {  // in_delta_room_plus | 
 |       // Round up. | 
 |       // Note again that the last digit could not be '9' since this would have | 
 |       // stopped the loop earlier. | 
 |       // We still have an DCHECK here, in case the preconditions were not | 
 |       // satisfied. | 
 |       DCHECK_NE(buffer[(*length) - 1], '9'); | 
 |       buffer[(*length) - 1]++; | 
 |       return; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Let v = numerator / denominator < 10. | 
 | // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) | 
 | // from left to right. Once 'count' digits have been produced we decide wether | 
 | // to round up or down. Remainders of exactly .5 round upwards. Numbers such | 
 | // as 9.999999 propagate a carry all the way, and change the | 
 | // exponent (decimal_point), when rounding upwards. | 
 | static void GenerateCountedDigits(int count, int* decimal_point, | 
 |                                   Bignum* numerator, Bignum* denominator, | 
 |                                   Vector<char>(buffer), int* length) { | 
 |   DCHECK_GE(count, 0); | 
 |   for (int i = 0; i < count - 1; ++i) { | 
 |     uint16_t digit; | 
 |     digit = numerator->DivideModuloIntBignum(*denominator); | 
 |     DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive. | 
 |     // digit = numerator / denominator (integer division). | 
 |     // numerator = numerator % denominator. | 
 |     buffer[i] = digit + '0'; | 
 |     // Prepare for next iteration. | 
 |     numerator->Times10(); | 
 |   } | 
 |   // Generate the last digit. | 
 |   uint16_t digit; | 
 |   digit = numerator->DivideModuloIntBignum(*denominator); | 
 |   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | 
 |     digit++; | 
 |   } | 
 |   buffer[count - 1] = digit + '0'; | 
 |   // Correct bad digits (in case we had a sequence of '9's). Propagate the | 
 |   // carry until we hat a non-'9' or til we reach the first digit. | 
 |   for (int i = count - 1; i > 0; --i) { | 
 |     if (buffer[i] != '0' + 10) break; | 
 |     buffer[i] = '0'; | 
 |     buffer[i - 1]++; | 
 |   } | 
 |   if (buffer[0] == '0' + 10) { | 
 |     // Propagate a carry past the top place. | 
 |     buffer[0] = '1'; | 
 |     (*decimal_point)++; | 
 |   } | 
 |   *length = count; | 
 | } | 
 |  | 
 | // Generates 'requested_digits' after the decimal point. It might omit | 
 | // trailing '0's. If the input number is too small then no digits at all are | 
 | // generated (ex.: 2 fixed digits for 0.00001). | 
 | // | 
 | // Input verifies:  1 <= (numerator + delta) / denominator < 10. | 
 | static void BignumToFixed(int requested_digits, int* decimal_point, | 
 |                           Bignum* numerator, Bignum* denominator, | 
 |                           Vector<char>(buffer), int* length) { | 
 |   // Note that we have to look at more than just the requested_digits, since | 
 |   // a number could be rounded up. Example: v=0.5 with requested_digits=0. | 
 |   // Even though the power of v equals 0 we can't just stop here. | 
 |   if (-(*decimal_point) > requested_digits) { | 
 |     // The number is definitively too small. | 
 |     // Ex: 0.001 with requested_digits == 1. | 
 |     // Set decimal-point to -requested_digits. This is what Gay does. | 
 |     // Note that it should not have any effect anyways since the string is | 
 |     // empty. | 
 |     *decimal_point = -requested_digits; | 
 |     *length = 0; | 
 |     return; | 
 |   } else if (-(*decimal_point) == requested_digits) { | 
 |     // We only need to verify if the number rounds down or up. | 
 |     // Ex: 0.04 and 0.06 with requested_digits == 1. | 
 |     DCHECK(*decimal_point == -requested_digits); | 
 |     // Initially the fraction lies in range (1, 10]. Multiply the denominator | 
 |     // by 10 so that we can compare more easily. | 
 |     denominator->Times10(); | 
 |     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | 
 |       // If the fraction is >= 0.5 then we have to include the rounded | 
 |       // digit. | 
 |       buffer[0] = '1'; | 
 |       *length = 1; | 
 |       (*decimal_point)++; | 
 |     } else { | 
 |       // Note that we caught most of similar cases earlier. | 
 |       *length = 0; | 
 |     } | 
 |     return; | 
 |   } else { | 
 |     // The requested digits correspond to the digits after the point. | 
 |     // The variable 'needed_digits' includes the digits before the point. | 
 |     int needed_digits = (*decimal_point) + requested_digits; | 
 |     GenerateCountedDigits(needed_digits, decimal_point, numerator, denominator, | 
 |                           buffer, length); | 
 |   } | 
 | } | 
 |  | 
 | // Returns an estimation of k such that 10^(k-1) <= v < 10^k where | 
 | // v = f * 2^exponent and 2^52 <= f < 2^53. | 
 | // v is hence a normalized double with the given exponent. The output is an | 
 | // approximation for the exponent of the decimal approimation .digits * 10^k. | 
 | // | 
 | // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. | 
 | // Note: this property holds for v's upper boundary m+ too. | 
 | //    10^k <= m+ < 10^k+1. | 
 | //   (see explanation below). | 
 | // | 
 | // Examples: | 
 | //  EstimatePower(0)   => 16 | 
 | //  EstimatePower(-52) => 0 | 
 | // | 
 | // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. | 
 | static int EstimatePower(int exponent) { | 
 |   // This function estimates log10 of v where v = f*2^e (with e == exponent). | 
 |   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). | 
 |   // Note that f is bounded by its container size. Let p = 53 (the double's | 
 |   // significand size). Then 2^(p-1) <= f < 2^p. | 
 |   // | 
 |   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close | 
 |   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). | 
 |   // The computed number undershoots by less than 0.631 (when we compute log3 | 
 |   // and not log10). | 
 |   // | 
 |   // Optimization: since we only need an approximated result this computation | 
 |   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is | 
 |   // not really measurable, though. | 
 |   // | 
 |   // Since we want to avoid overshooting we decrement by 1e10 so that | 
 |   // floating-point imprecisions don't affect us. | 
 |   // | 
 |   // Explanation for v's boundary m+: the computation takes advantage of | 
 |   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement | 
 |   // (even for denormals where the delta can be much more important). | 
 |  | 
 |   const double k1Log10 = 0.30102999566398114;  // 1/lg(10) | 
 |  | 
 |   // For doubles len(f) == 53 (don't forget the hidden bit). | 
 |   const int kSignificandSize = 53; | 
 |   double estimate = | 
 |       std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); | 
 |   return static_cast<int>(estimate); | 
 | } | 
 |  | 
 | // See comments for InitialScaledStartValues. | 
 | static void InitialScaledStartValuesPositiveExponent( | 
 |     double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator, | 
 |     Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { | 
 |   // A positive exponent implies a positive power. | 
 |   DCHECK_GE(estimated_power, 0); | 
 |   // Since the estimated_power is positive we simply multiply the denominator | 
 |   // by 10^estimated_power. | 
 |  | 
 |   // numerator = v. | 
 |   numerator->AssignUInt64(Double(v).Significand()); | 
 |   numerator->ShiftLeft(Double(v).Exponent()); | 
 |   // denominator = 10^estimated_power. | 
 |   denominator->AssignPowerUInt16(10, estimated_power); | 
 |  | 
 |   if (need_boundary_deltas) { | 
 |     // Introduce a common denominator so that the deltas to the boundaries are | 
 |     // integers. | 
 |     denominator->ShiftLeft(1); | 
 |     numerator->ShiftLeft(1); | 
 |     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | 
 |     // denominator (of 2) delta_plus equals 2^e. | 
 |     delta_plus->AssignUInt16(1); | 
 |     delta_plus->ShiftLeft(Double(v).Exponent()); | 
 |     // Same for delta_minus (with adjustments below if f == 2^p-1). | 
 |     delta_minus->AssignUInt16(1); | 
 |     delta_minus->ShiftLeft(Double(v).Exponent()); | 
 |  | 
 |     // If the significand (without the hidden bit) is 0, then the lower | 
 |     // boundary is closer than just half a ulp (unit in the last place). | 
 |     // There is only one exception: if the next lower number is a denormal then | 
 |     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we | 
 |     // have to test it in the other function where exponent < 0). | 
 |     uint64_t v_bits = Double(v).AsUint64(); | 
 |     if ((v_bits & Double::kSignificandMask) == 0) { | 
 |       // The lower boundary is closer at half the distance of "normal" numbers. | 
 |       // Increase the common denominator and adapt all but the delta_minus. | 
 |       denominator->ShiftLeft(1);  // *2 | 
 |       numerator->ShiftLeft(1);    // *2 | 
 |       delta_plus->ShiftLeft(1);   // *2 | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // See comments for InitialScaledStartValues | 
 | static void InitialScaledStartValuesNegativeExponentPositivePower( | 
 |     double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator, | 
 |     Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { | 
 |   uint64_t significand = Double(v).Significand(); | 
 |   int exponent = Double(v).Exponent(); | 
 |   // v = f * 2^e with e < 0, and with estimated_power >= 0. | 
 |   // This means that e is close to 0 (have a look at how estimated_power is | 
 |   // computed). | 
 |  | 
 |   // numerator = significand | 
 |   //  since v = significand * 2^exponent this is equivalent to | 
 |   //  numerator = v * / 2^-exponent | 
 |   numerator->AssignUInt64(significand); | 
 |   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) | 
 |   denominator->AssignPowerUInt16(10, estimated_power); | 
 |   denominator->ShiftLeft(-exponent); | 
 |  | 
 |   if (need_boundary_deltas) { | 
 |     // Introduce a common denominator so that the deltas to the boundaries are | 
 |     // integers. | 
 |     denominator->ShiftLeft(1); | 
 |     numerator->ShiftLeft(1); | 
 |     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | 
 |     // denominator (of 2) delta_plus equals 2^e. | 
 |     // Given that the denominator already includes v's exponent the distance | 
 |     // to the boundaries is simply 1. | 
 |     delta_plus->AssignUInt16(1); | 
 |     // Same for delta_minus (with adjustments below if f == 2^p-1). | 
 |     delta_minus->AssignUInt16(1); | 
 |  | 
 |     // If the significand (without the hidden bit) is 0, then the lower | 
 |     // boundary is closer than just one ulp (unit in the last place). | 
 |     // There is only one exception: if the next lower number is a denormal | 
 |     // then the distance is 1 ulp. Since the exponent is close to zero | 
 |     // (otherwise estimated_power would have been negative) this cannot happen | 
 |     // here either. | 
 |     uint64_t v_bits = Double(v).AsUint64(); | 
 |     if ((v_bits & Double::kSignificandMask) == 0) { | 
 |       // The lower boundary is closer at half the distance of "normal" numbers. | 
 |       // Increase the denominator and adapt all but the delta_minus. | 
 |       denominator->ShiftLeft(1);  // *2 | 
 |       numerator->ShiftLeft(1);    // *2 | 
 |       delta_plus->ShiftLeft(1);   // *2 | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // See comments for InitialScaledStartValues | 
 | static void InitialScaledStartValuesNegativeExponentNegativePower( | 
 |     double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator, | 
 |     Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { | 
 |   const uint64_t kMinimalNormalizedExponent = 0x0010'0000'0000'0000; | 
 |   uint64_t significand = Double(v).Significand(); | 
 |   int exponent = Double(v).Exponent(); | 
 |   // Instead of multiplying the denominator with 10^estimated_power we | 
 |   // multiply all values (numerator and deltas) by 10^-estimated_power. | 
 |  | 
 |   // Use numerator as temporary container for power_ten. | 
 |   Bignum* power_ten = numerator; | 
 |   power_ten->AssignPowerUInt16(10, -estimated_power); | 
 |  | 
 |   if (need_boundary_deltas) { | 
 |     // Since power_ten == numerator we must make a copy of 10^estimated_power | 
 |     // before we complete the computation of the numerator. | 
 |     // delta_plus = delta_minus = 10^estimated_power | 
 |     delta_plus->AssignBignum(*power_ten); | 
 |     delta_minus->AssignBignum(*power_ten); | 
 |   } | 
 |  | 
 |   // numerator = significand * 2 * 10^-estimated_power | 
 |   //  since v = significand * 2^exponent this is equivalent to | 
 |   // numerator = v * 10^-estimated_power * 2 * 2^-exponent. | 
 |   // Remember: numerator has been abused as power_ten. So no need to assign it | 
 |   //  to itself. | 
 |   DCHECK(numerator == power_ten); | 
 |   numerator->MultiplyByUInt64(significand); | 
 |  | 
 |   // denominator = 2 * 2^-exponent with exponent < 0. | 
 |   denominator->AssignUInt16(1); | 
 |   denominator->ShiftLeft(-exponent); | 
 |  | 
 |   if (need_boundary_deltas) { | 
 |     // Introduce a common denominator so that the deltas to the boundaries are | 
 |     // integers. | 
 |     numerator->ShiftLeft(1); | 
 |     denominator->ShiftLeft(1); | 
 |     // With this shift the boundaries have their correct value, since | 
 |     // delta_plus = 10^-estimated_power, and | 
 |     // delta_minus = 10^-estimated_power. | 
 |     // These assignments have been done earlier. | 
 |  | 
 |     // The special case where the lower boundary is twice as close. | 
 |     // This time we have to look out for the exception too. | 
 |     uint64_t v_bits = Double(v).AsUint64(); | 
 |     if ((v_bits & Double::kSignificandMask) == 0 && | 
 |         // The only exception where a significand == 0 has its boundaries at | 
 |         // "normal" distances: | 
 |         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { | 
 |       numerator->ShiftLeft(1);    // *2 | 
 |       denominator->ShiftLeft(1);  // *2 | 
 |       delta_plus->ShiftLeft(1);   // *2 | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Let v = significand * 2^exponent. | 
 | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator | 
 | // and denominator. The functions GenerateShortestDigits and | 
 | // GenerateCountedDigits will then convert this ratio to its decimal | 
 | // representation d, with the required accuracy. | 
 | // Then d * 10^estimated_power is the representation of v. | 
 | // (Note: the fraction and the estimated_power might get adjusted before | 
 | // generating the decimal representation.) | 
 | // | 
 | // The initial start values consist of: | 
 | //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. | 
 | //  - a scaled (common) denominator. | 
 | //  optionally (used by GenerateShortestDigits to decide if it has the shortest | 
 | //  decimal converting back to v): | 
 | //  - v - m-: the distance to the lower boundary. | 
 | //  - m+ - v: the distance to the upper boundary. | 
 | // | 
 | // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. | 
 | // | 
 | // Let ep == estimated_power, then the returned values will satisfy: | 
 | //  v / 10^ep = numerator / denominator. | 
 | //  v's boundarys m- and m+: | 
 | //    m- / 10^ep == v / 10^ep - delta_minus / denominator | 
 | //    m+ / 10^ep == v / 10^ep + delta_plus / denominator | 
 | //  Or in other words: | 
 | //    m- == v - delta_minus * 10^ep / denominator; | 
 | //    m+ == v + delta_plus * 10^ep / denominator; | 
 | // | 
 | // Since 10^(k-1) <= v < 10^k    (with k == estimated_power) | 
 | //  or       10^k <= v < 10^(k+1) | 
 | //  we then have 0.1 <= numerator/denominator < 1 | 
 | //           or    1 <= numerator/denominator < 10 | 
 | // | 
 | // It is then easy to kickstart the digit-generation routine. | 
 | // | 
 | // The boundary-deltas are only filled if need_boundary_deltas is set. | 
 | static void InitialScaledStartValues(double v, int estimated_power, | 
 |                                      bool need_boundary_deltas, | 
 |                                      Bignum* numerator, Bignum* denominator, | 
 |                                      Bignum* delta_minus, Bignum* delta_plus) { | 
 |   if (Double(v).Exponent() >= 0) { | 
 |     InitialScaledStartValuesPositiveExponent( | 
 |         v, estimated_power, need_boundary_deltas, numerator, denominator, | 
 |         delta_minus, delta_plus); | 
 |   } else if (estimated_power >= 0) { | 
 |     InitialScaledStartValuesNegativeExponentPositivePower( | 
 |         v, estimated_power, need_boundary_deltas, numerator, denominator, | 
 |         delta_minus, delta_plus); | 
 |   } else { | 
 |     InitialScaledStartValuesNegativeExponentNegativePower( | 
 |         v, estimated_power, need_boundary_deltas, numerator, denominator, | 
 |         delta_minus, delta_plus); | 
 |   } | 
 | } | 
 |  | 
 | // This routine multiplies numerator/denominator so that its values lies in the | 
 | // range 1-10. That is after a call to this function we have: | 
 | //    1 <= (numerator + delta_plus) /denominator < 10. | 
 | // Let numerator the input before modification and numerator' the argument | 
 | // after modification, then the output-parameter decimal_point is such that | 
 | //  numerator / denominator * 10^estimated_power == | 
 | //    numerator' / denominator' * 10^(decimal_point - 1) | 
 | // In some cases estimated_power was too low, and this is already the case. We | 
 | // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == | 
 | // estimated_power) but do not touch the numerator or denominator. | 
 | // Otherwise the routine multiplies the numerator and the deltas by 10. | 
 | static void FixupMultiply10(int estimated_power, bool is_even, | 
 |                             int* decimal_point, Bignum* numerator, | 
 |                             Bignum* denominator, Bignum* delta_minus, | 
 |                             Bignum* delta_plus) { | 
 |   bool in_range; | 
 |   if (is_even) { | 
 |     // For IEEE doubles half-way cases (in decimal system numbers ending with 5) | 
 |     // are rounded to the closest floating-point number with even significand. | 
 |     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | 
 |   } else { | 
 |     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | 
 |   } | 
 |   if (in_range) { | 
 |     // Since numerator + delta_plus >= denominator we already have | 
 |     // 1 <= numerator/denominator < 10. Simply update the estimated_power. | 
 |     *decimal_point = estimated_power + 1; | 
 |   } else { | 
 |     *decimal_point = estimated_power; | 
 |     numerator->Times10(); | 
 |     if (Bignum::Equal(*delta_minus, *delta_plus)) { | 
 |       delta_minus->Times10(); | 
 |       delta_plus->AssignBignum(*delta_minus); | 
 |     } else { | 
 |       delta_minus->Times10(); | 
 |       delta_plus->Times10(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace v8 |