|  | // Copyright 2012 the V8 project authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #if V8_TARGET_ARCH_ARM | 
|  |  | 
|  | #include "src/regexp/arm/regexp-macro-assembler-arm.h" | 
|  |  | 
|  | #include "src/codegen/assembler-inl.h" | 
|  | #include "src/codegen/macro-assembler.h" | 
|  | #include "src/heap/factory.h" | 
|  | #include "src/logging/log.h" | 
|  | #include "src/objects/objects-inl.h" | 
|  | #include "src/regexp/regexp-macro-assembler.h" | 
|  | #include "src/regexp/regexp-stack.h" | 
|  | #include "src/snapshot/embedded/embedded-data.h" | 
|  | #include "src/strings/unicode.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | /* | 
|  | * This assembler uses the following register assignment convention | 
|  | * - r4 : Temporarily stores the index of capture start after a matching pass | 
|  | *        for a global regexp. | 
|  | * - r5 : Pointer to current Code object including heap object tag. | 
|  | * - r6 : Current position in input, as negative offset from end of string. | 
|  | *        Please notice that this is the byte offset, not the character offset! | 
|  | * - r7 : Currently loaded character. Must be loaded using | 
|  | *        LoadCurrentCharacter before using any of the dispatch methods. | 
|  | * - r8 : Points to tip of backtrack stack | 
|  | * - r9 : Unused, might be used by C code and expected unchanged. | 
|  | * - r10 : End of input (points to byte after last character in input). | 
|  | * - r11 : Frame pointer. Used to access arguments, local variables and | 
|  | *         RegExp registers. | 
|  | * - r12 : IP register, used by assembler. Very volatile. | 
|  | * - r13/sp : Points to tip of C stack. | 
|  | * | 
|  | * The remaining registers are free for computations. | 
|  | * Each call to a public method should retain this convention. | 
|  | * | 
|  | * The stack will have the following structure: | 
|  | *  - fp[56]  Address regexp     (address of the JSRegExp object; unused in | 
|  | *                                native code, passed to match signature of | 
|  | *                                the interpreter) | 
|  | *  - fp[52]  Isolate* isolate   (address of the current isolate) | 
|  | *  - fp[48]  direct_call        (if 1, direct call from JavaScript code, | 
|  | *                                if 0, call through the runtime system). | 
|  | *  - fp[44]  stack_area_base    (high end of the memory area to use as | 
|  | *                                backtracking stack). | 
|  | *  - fp[40]  capture array size (may fit multiple sets of matches) | 
|  | *  - fp[36]  int* capture_array (int[num_saved_registers_], for output). | 
|  | *  --- sp when called --- | 
|  | *  - fp[32]  return address     (lr). | 
|  | *  - fp[28]  old frame pointer  (r11). | 
|  | *  - fp[0..24]  backup of registers r4..r10. | 
|  | *  --- frame pointer ---- | 
|  | *  - fp[-4]  end of input       (address of end of string). | 
|  | *  - fp[-8]  start of input     (address of first character in string). | 
|  | *  - fp[-12] start index        (character index of start). | 
|  | *  - fp[-16] void* input_string (location of a handle containing the string). | 
|  | *  - fp[-20] success counter    (only for global regexps to count matches). | 
|  | *  - fp[-24] Offset of location before start of input (effectively character | 
|  | *            string start - 1). Used to initialize capture registers to a | 
|  | *            non-position. | 
|  | *  - fp[-28] At start (if 1, we are starting at the start of the | 
|  | *    string, otherwise 0) | 
|  | *  - fp[-32] register 0         (Only positions must be stored in the first | 
|  | *  -         register 1          num_saved_registers_ registers) | 
|  | *  -         ... | 
|  | *  -         register num_registers-1 | 
|  | *  --- sp --- | 
|  | * | 
|  | * The first num_saved_registers_ registers are initialized to point to | 
|  | * "character -1" in the string (i.e., char_size() bytes before the first | 
|  | * character of the string). The remaining registers start out as garbage. | 
|  | * | 
|  | * The data up to the return address must be placed there by the calling | 
|  | * code and the remaining arguments are passed in registers, e.g. by calling the | 
|  | * code entry as cast to a function with the signature: | 
|  | * int (*match)(String input_string, | 
|  | *              int start_index, | 
|  | *              Address start, | 
|  | *              Address end, | 
|  | *              int* capture_output_array, | 
|  | *              int num_capture_registers, | 
|  | *              byte* stack_area_base, | 
|  | *              bool direct_call = false, | 
|  | *              Isolate* isolate, | 
|  | *              Address regexp); | 
|  | * The call is performed by NativeRegExpMacroAssembler::Execute() | 
|  | * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper. | 
|  | */ | 
|  |  | 
|  | #define __ ACCESS_MASM(masm_) | 
|  |  | 
|  | const int RegExpMacroAssemblerARM::kRegExpCodeSize; | 
|  |  | 
|  | RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone, | 
|  | Mode mode, | 
|  | int registers_to_save) | 
|  | : NativeRegExpMacroAssembler(isolate, zone), | 
|  | masm_(new MacroAssembler(isolate, CodeObjectRequired::kYes, | 
|  | NewAssemblerBuffer(kRegExpCodeSize))), | 
|  | mode_(mode), | 
|  | num_registers_(registers_to_save), | 
|  | num_saved_registers_(registers_to_save), | 
|  | entry_label_(), | 
|  | start_label_(), | 
|  | success_label_(), | 
|  | backtrack_label_(), | 
|  | exit_label_() { | 
|  | masm_->set_root_array_available(false); | 
|  |  | 
|  | DCHECK_EQ(0, registers_to_save % 2); | 
|  | __ jmp(&entry_label_);   // We'll write the entry code later. | 
|  | __ bind(&start_label_);  // And then continue from here. | 
|  | } | 
|  |  | 
|  | RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() { | 
|  | delete masm_; | 
|  | // Unuse labels in case we throw away the assembler without calling GetCode. | 
|  | entry_label_.Unuse(); | 
|  | start_label_.Unuse(); | 
|  | success_label_.Unuse(); | 
|  | backtrack_label_.Unuse(); | 
|  | exit_label_.Unuse(); | 
|  | check_preempt_label_.Unuse(); | 
|  | stack_overflow_label_.Unuse(); | 
|  | fallback_label_.Unuse(); | 
|  | } | 
|  |  | 
|  |  | 
|  | int RegExpMacroAssemblerARM::stack_limit_slack()  { | 
|  | return RegExpStack::kStackLimitSlack; | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) { | 
|  | if (by != 0) { | 
|  | __ add(current_input_offset(), | 
|  | current_input_offset(), Operand(by * char_size())); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) { | 
|  | DCHECK_LE(0, reg); | 
|  | DCHECK_GT(num_registers_, reg); | 
|  | if (by != 0) { | 
|  | __ ldr(r0, register_location(reg)); | 
|  | __ add(r0, r0, Operand(by)); | 
|  | __ str(r0, register_location(reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::Backtrack() { | 
|  | CheckPreemption(); | 
|  | if (has_backtrack_limit()) { | 
|  | Label next; | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kBacktrackCount)); | 
|  | __ add(r0, r0, Operand(1)); | 
|  | __ str(r0, MemOperand(frame_pointer(), kBacktrackCount)); | 
|  | __ cmp(r0, Operand(backtrack_limit())); | 
|  | __ b(ne, &next); | 
|  |  | 
|  | // Backtrack limit exceeded. | 
|  | if (can_fallback()) { | 
|  | __ jmp(&fallback_label_); | 
|  | } else { | 
|  | // Can't fallback, so we treat it as a failed match. | 
|  | Fail(); | 
|  | } | 
|  |  | 
|  | __ bind(&next); | 
|  | } | 
|  | // Pop Code offset from backtrack stack, add Code and jump to location. | 
|  | Pop(r0); | 
|  | __ add(pc, r0, Operand(code_pointer())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::Bind(Label* label) { | 
|  | __ bind(label); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) { | 
|  | __ cmp(current_character(), Operand(c)); | 
|  | BranchOrBacktrack(eq, on_equal); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) { | 
|  | __ cmp(current_character(), Operand(limit)); | 
|  | BranchOrBacktrack(gt, on_greater); | 
|  | } | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckAtStart(int cp_offset, Label* on_at_start) { | 
|  | __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  | __ add(r0, current_input_offset(), | 
|  | Operand(-char_size() + cp_offset * char_size())); | 
|  | __ cmp(r0, r1); | 
|  | BranchOrBacktrack(eq, on_at_start); | 
|  | } | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckNotAtStart(int cp_offset, | 
|  | Label* on_not_at_start) { | 
|  | __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  | __ add(r0, current_input_offset(), | 
|  | Operand(-char_size() + cp_offset * char_size())); | 
|  | __ cmp(r0, r1); | 
|  | BranchOrBacktrack(ne, on_not_at_start); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) { | 
|  | __ cmp(current_character(), Operand(limit)); | 
|  | BranchOrBacktrack(lt, on_less); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) { | 
|  | __ ldr(r0, MemOperand(backtrack_stackpointer(), 0)); | 
|  | __ cmp(current_input_offset(), r0); | 
|  | __ add(backtrack_stackpointer(), | 
|  | backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq); | 
|  | BranchOrBacktrack(eq, on_equal); | 
|  | } | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase( | 
|  | int start_reg, bool read_backward, bool unicode, Label* on_no_match) { | 
|  | Label fallthrough; | 
|  | __ ldr(r0, register_location(start_reg));  // Index of start of capture | 
|  | __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture | 
|  | __ sub(r1, r1, r0, SetCC);  // Length of capture. | 
|  |  | 
|  | // At this point, the capture registers are either both set or both cleared. | 
|  | // If the capture length is zero, then the capture is either empty or cleared. | 
|  | // Fall through in both cases. | 
|  | __ b(eq, &fallthrough); | 
|  |  | 
|  | // Check that there are enough characters left in the input. | 
|  | if (read_backward) { | 
|  | __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  | __ add(r3, r3, r1); | 
|  | __ cmp(current_input_offset(), r3); | 
|  | BranchOrBacktrack(le, on_no_match); | 
|  | } else { | 
|  | __ cmn(r1, Operand(current_input_offset())); | 
|  | BranchOrBacktrack(gt, on_no_match); | 
|  | } | 
|  |  | 
|  | if (mode_ == LATIN1) { | 
|  | Label success; | 
|  | Label fail; | 
|  | Label loop_check; | 
|  |  | 
|  | // r0 - offset of start of capture | 
|  | // r1 - length of capture | 
|  | __ add(r0, r0, end_of_input_address()); | 
|  | __ add(r2, end_of_input_address(), current_input_offset()); | 
|  | if (read_backward) { | 
|  | __ sub(r2, r2, r1);  // Offset by length when matching backwards. | 
|  | } | 
|  | __ add(r1, r0, r1); | 
|  |  | 
|  | // r0 - Address of start of capture. | 
|  | // r1 - Address of end of capture | 
|  | // r2 - Address of current input position. | 
|  |  | 
|  | Label loop; | 
|  | __ bind(&loop); | 
|  | __ ldrb(r3, MemOperand(r0, char_size(), PostIndex)); | 
|  | __ ldrb(r4, MemOperand(r2, char_size(), PostIndex)); | 
|  | __ cmp(r4, r3); | 
|  | __ b(eq, &loop_check); | 
|  |  | 
|  | // Mismatch, try case-insensitive match (converting letters to lower-case). | 
|  | __ orr(r3, r3, Operand(0x20));  // Convert capture character to lower-case. | 
|  | __ orr(r4, r4, Operand(0x20));  // Also convert input character. | 
|  | __ cmp(r4, r3); | 
|  | __ b(ne, &fail); | 
|  | __ sub(r3, r3, Operand('a')); | 
|  | __ cmp(r3, Operand('z' - 'a'));  // Is r3 a lowercase letter? | 
|  | __ b(ls, &loop_check);  // In range 'a'-'z'. | 
|  | // Latin-1: Check for values in range [224,254] but not 247. | 
|  | __ sub(r3, r3, Operand(224 - 'a')); | 
|  | __ cmp(r3, Operand(254 - 224)); | 
|  | __ b(hi, &fail);  // Weren't Latin-1 letters. | 
|  | __ cmp(r3, Operand(247 - 224));  // Check for 247. | 
|  | __ b(eq, &fail); | 
|  |  | 
|  | __ bind(&loop_check); | 
|  | __ cmp(r0, r1); | 
|  | __ b(lt, &loop); | 
|  | __ jmp(&success); | 
|  |  | 
|  | __ bind(&fail); | 
|  | BranchOrBacktrack(al, on_no_match); | 
|  |  | 
|  | __ bind(&success); | 
|  | // Compute new value of character position after the matched part. | 
|  | __ sub(current_input_offset(), r2, end_of_input_address()); | 
|  | if (read_backward) { | 
|  | __ ldr(r0, register_location(start_reg));  // Index of start of capture | 
|  | __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture | 
|  | __ add(current_input_offset(), current_input_offset(), r0); | 
|  | __ sub(current_input_offset(), current_input_offset(), r1); | 
|  | } | 
|  | } else { | 
|  | DCHECK(mode_ == UC16); | 
|  | int argument_count = 4; | 
|  | __ PrepareCallCFunction(argument_count); | 
|  |  | 
|  | // r0 - offset of start of capture | 
|  | // r1 - length of capture | 
|  |  | 
|  | // Put arguments into arguments registers. | 
|  | // Parameters are | 
|  | //   r0: Address byte_offset1 - Address captured substring's start. | 
|  | //   r1: Address byte_offset2 - Address of current character position. | 
|  | //   r2: size_t byte_length - length of capture in bytes(!) | 
|  | //   r3: Isolate* isolate. | 
|  |  | 
|  | // Address of start of capture. | 
|  | __ add(r0, r0, Operand(end_of_input_address())); | 
|  | // Length of capture. | 
|  | __ mov(r2, Operand(r1)); | 
|  | // Save length in callee-save register for use on return. | 
|  | __ mov(r4, Operand(r1)); | 
|  | // Address of current input position. | 
|  | __ add(r1, current_input_offset(), end_of_input_address()); | 
|  | if (read_backward) { | 
|  | __ sub(r1, r1, r4); | 
|  | } | 
|  | // Isolate. | 
|  | __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); | 
|  |  | 
|  | { | 
|  | AllowExternalCallThatCantCauseGC scope(masm_); | 
|  | ExternalReference function = | 
|  | unicode ? ExternalReference::re_case_insensitive_compare_unicode( | 
|  | isolate()) | 
|  | : ExternalReference::re_case_insensitive_compare_non_unicode( | 
|  | isolate()); | 
|  | __ CallCFunction(function, argument_count); | 
|  | } | 
|  |  | 
|  | // Check if function returned non-zero for success or zero for failure. | 
|  | __ cmp(r0, Operand::Zero()); | 
|  | BranchOrBacktrack(eq, on_no_match); | 
|  |  | 
|  | // On success, advance position by length of capture. | 
|  | if (read_backward) { | 
|  | __ sub(current_input_offset(), current_input_offset(), r4); | 
|  | } else { | 
|  | __ add(current_input_offset(), current_input_offset(), r4); | 
|  | } | 
|  | } | 
|  |  | 
|  | __ bind(&fallthrough); | 
|  | } | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckNotBackReference(int start_reg, | 
|  | bool read_backward, | 
|  | Label* on_no_match) { | 
|  | Label fallthrough; | 
|  |  | 
|  | // Find length of back-referenced capture. | 
|  | __ ldr(r0, register_location(start_reg)); | 
|  | __ ldr(r1, register_location(start_reg + 1)); | 
|  | __ sub(r1, r1, r0, SetCC);  // Length to check. | 
|  |  | 
|  | // At this point, the capture registers are either both set or both cleared. | 
|  | // If the capture length is zero, then the capture is either empty or cleared. | 
|  | // Fall through in both cases. | 
|  | __ b(eq, &fallthrough); | 
|  |  | 
|  | // Check that there are enough characters left in the input. | 
|  | if (read_backward) { | 
|  | __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  | __ add(r3, r3, r1); | 
|  | __ cmp(current_input_offset(), r3); | 
|  | BranchOrBacktrack(le, on_no_match); | 
|  | } else { | 
|  | __ cmn(r1, Operand(current_input_offset())); | 
|  | BranchOrBacktrack(gt, on_no_match); | 
|  | } | 
|  |  | 
|  | // r0 - offset of start of capture | 
|  | // r1 - length of capture | 
|  | __ add(r0, r0, end_of_input_address()); | 
|  | __ add(r2, end_of_input_address(), current_input_offset()); | 
|  | if (read_backward) { | 
|  | __ sub(r2, r2, r1);  // Offset by length when matching backwards. | 
|  | } | 
|  | __ add(r1, r0, r1); | 
|  |  | 
|  | Label loop; | 
|  | __ bind(&loop); | 
|  | if (mode_ == LATIN1) { | 
|  | __ ldrb(r3, MemOperand(r0, char_size(), PostIndex)); | 
|  | __ ldrb(r4, MemOperand(r2, char_size(), PostIndex)); | 
|  | } else { | 
|  | DCHECK(mode_ == UC16); | 
|  | __ ldrh(r3, MemOperand(r0, char_size(), PostIndex)); | 
|  | __ ldrh(r4, MemOperand(r2, char_size(), PostIndex)); | 
|  | } | 
|  | __ cmp(r3, r4); | 
|  | BranchOrBacktrack(ne, on_no_match); | 
|  | __ cmp(r0, r1); | 
|  | __ b(lt, &loop); | 
|  |  | 
|  | // Move current character position to position after match. | 
|  | __ sub(current_input_offset(), r2, end_of_input_address()); | 
|  | if (read_backward) { | 
|  | __ ldr(r0, register_location(start_reg));      // Index of start of capture | 
|  | __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture | 
|  | __ add(current_input_offset(), current_input_offset(), r0); | 
|  | __ sub(current_input_offset(), current_input_offset(), r1); | 
|  | } | 
|  |  | 
|  | __ bind(&fallthrough); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c, | 
|  | Label* on_not_equal) { | 
|  | __ cmp(current_character(), Operand(c)); | 
|  | BranchOrBacktrack(ne, on_not_equal); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c, | 
|  | uint32_t mask, | 
|  | Label* on_equal) { | 
|  | if (c == 0) { | 
|  | __ tst(current_character(), Operand(mask)); | 
|  | } else { | 
|  | __ and_(r0, current_character(), Operand(mask)); | 
|  | __ cmp(r0, Operand(c)); | 
|  | } | 
|  | BranchOrBacktrack(eq, on_equal); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c, | 
|  | unsigned mask, | 
|  | Label* on_not_equal) { | 
|  | if (c == 0) { | 
|  | __ tst(current_character(), Operand(mask)); | 
|  | } else { | 
|  | __ and_(r0, current_character(), Operand(mask)); | 
|  | __ cmp(r0, Operand(c)); | 
|  | } | 
|  | BranchOrBacktrack(ne, on_not_equal); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd( | 
|  | uc16 c, | 
|  | uc16 minus, | 
|  | uc16 mask, | 
|  | Label* on_not_equal) { | 
|  | DCHECK_GT(String::kMaxUtf16CodeUnit, minus); | 
|  | __ sub(r0, current_character(), Operand(minus)); | 
|  | __ and_(r0, r0, Operand(mask)); | 
|  | __ cmp(r0, Operand(c)); | 
|  | BranchOrBacktrack(ne, on_not_equal); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckCharacterInRange( | 
|  | uc16 from, | 
|  | uc16 to, | 
|  | Label* on_in_range) { | 
|  | __ sub(r0, current_character(), Operand(from)); | 
|  | __ cmp(r0, Operand(to - from)); | 
|  | BranchOrBacktrack(ls, on_in_range);  // Unsigned lower-or-same condition. | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckCharacterNotInRange( | 
|  | uc16 from, | 
|  | uc16 to, | 
|  | Label* on_not_in_range) { | 
|  | __ sub(r0, current_character(), Operand(from)); | 
|  | __ cmp(r0, Operand(to - from)); | 
|  | BranchOrBacktrack(hi, on_not_in_range);  // Unsigned higher condition. | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckBitInTable( | 
|  | Handle<ByteArray> table, | 
|  | Label* on_bit_set) { | 
|  | __ mov(r0, Operand(table)); | 
|  | if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { | 
|  | __ and_(r1, current_character(), Operand(kTableSize - 1)); | 
|  | __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag)); | 
|  | } else { | 
|  | __ add(r1, | 
|  | current_character(), | 
|  | Operand(ByteArray::kHeaderSize - kHeapObjectTag)); | 
|  | } | 
|  | __ ldrb(r0, MemOperand(r0, r1)); | 
|  | __ cmp(r0, Operand::Zero()); | 
|  | BranchOrBacktrack(ne, on_bit_set); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type, | 
|  | Label* on_no_match) { | 
|  | // Range checks (c in min..max) are generally implemented by an unsigned | 
|  | // (c - min) <= (max - min) check | 
|  | switch (type) { | 
|  | case 's': | 
|  | // Match space-characters | 
|  | if (mode_ == LATIN1) { | 
|  | // One byte space characters are '\t'..'\r', ' ' and \u00a0. | 
|  | Label success; | 
|  | __ cmp(current_character(), Operand(' ')); | 
|  | __ b(eq, &success); | 
|  | // Check range 0x09..0x0D | 
|  | __ sub(r0, current_character(), Operand('\t')); | 
|  | __ cmp(r0, Operand('\r' - '\t')); | 
|  | __ b(ls, &success); | 
|  | // \u00a0 (NBSP). | 
|  | __ cmp(r0, Operand(0x00A0 - '\t')); | 
|  | BranchOrBacktrack(ne, on_no_match); | 
|  | __ bind(&success); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | case 'S': | 
|  | // The emitted code for generic character classes is good enough. | 
|  | return false; | 
|  | case 'd': | 
|  | // Match ASCII digits ('0'..'9') | 
|  | __ sub(r0, current_character(), Operand('0')); | 
|  | __ cmp(r0, Operand('9' - '0')); | 
|  | BranchOrBacktrack(hi, on_no_match); | 
|  | return true; | 
|  | case 'D': | 
|  | // Match non ASCII-digits | 
|  | __ sub(r0, current_character(), Operand('0')); | 
|  | __ cmp(r0, Operand('9' - '0')); | 
|  | BranchOrBacktrack(ls, on_no_match); | 
|  | return true; | 
|  | case '.': { | 
|  | // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) | 
|  | __ eor(r0, current_character(), Operand(0x01)); | 
|  | // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C | 
|  | __ sub(r0, r0, Operand(0x0B)); | 
|  | __ cmp(r0, Operand(0x0C - 0x0B)); | 
|  | BranchOrBacktrack(ls, on_no_match); | 
|  | if (mode_ == UC16) { | 
|  | // Compare original value to 0x2028 and 0x2029, using the already | 
|  | // computed (current_char ^ 0x01 - 0x0B). I.e., check for | 
|  | // 0x201D (0x2028 - 0x0B) or 0x201E. | 
|  | __ sub(r0, r0, Operand(0x2028 - 0x0B)); | 
|  | __ cmp(r0, Operand(1)); | 
|  | BranchOrBacktrack(ls, on_no_match); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case 'n': { | 
|  | // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) | 
|  | __ eor(r0, current_character(), Operand(0x01)); | 
|  | // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C | 
|  | __ sub(r0, r0, Operand(0x0B)); | 
|  | __ cmp(r0, Operand(0x0C - 0x0B)); | 
|  | if (mode_ == LATIN1) { | 
|  | BranchOrBacktrack(hi, on_no_match); | 
|  | } else { | 
|  | Label done; | 
|  | __ b(ls, &done); | 
|  | // Compare original value to 0x2028 and 0x2029, using the already | 
|  | // computed (current_char ^ 0x01 - 0x0B). I.e., check for | 
|  | // 0x201D (0x2028 - 0x0B) or 0x201E. | 
|  | __ sub(r0, r0, Operand(0x2028 - 0x0B)); | 
|  | __ cmp(r0, Operand(1)); | 
|  | BranchOrBacktrack(hi, on_no_match); | 
|  | __ bind(&done); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case 'w': { | 
|  | if (mode_ != LATIN1) { | 
|  | // Table is 256 entries, so all Latin1 characters can be tested. | 
|  | __ cmp(current_character(), Operand('z')); | 
|  | BranchOrBacktrack(hi, on_no_match); | 
|  | } | 
|  | ExternalReference map = ExternalReference::re_word_character_map(isolate()); | 
|  | __ mov(r0, Operand(map)); | 
|  | __ ldrb(r0, MemOperand(r0, current_character())); | 
|  | __ cmp(r0, Operand::Zero()); | 
|  | BranchOrBacktrack(eq, on_no_match); | 
|  | return true; | 
|  | } | 
|  | case 'W': { | 
|  | Label done; | 
|  | if (mode_ != LATIN1) { | 
|  | // Table is 256 entries, so all Latin1 characters can be tested. | 
|  | __ cmp(current_character(), Operand('z')); | 
|  | __ b(hi, &done); | 
|  | } | 
|  | ExternalReference map = ExternalReference::re_word_character_map(isolate()); | 
|  | __ mov(r0, Operand(map)); | 
|  | __ ldrb(r0, MemOperand(r0, current_character())); | 
|  | __ cmp(r0, Operand::Zero()); | 
|  | BranchOrBacktrack(ne, on_no_match); | 
|  | if (mode_ != LATIN1) { | 
|  | __ bind(&done); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case '*': | 
|  | // Match any character. | 
|  | return true; | 
|  | // No custom implementation (yet): s(UC16), S(UC16). | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::Fail() { | 
|  | __ mov(r0, Operand(FAILURE)); | 
|  | __ jmp(&exit_label_); | 
|  | } | 
|  |  | 
|  |  | 
|  | Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) { | 
|  | Label return_r0; | 
|  | // Finalize code - write the entry point code now we know how many | 
|  | // registers we need. | 
|  |  | 
|  | // Entry code: | 
|  | __ bind(&entry_label_); | 
|  |  | 
|  | // Tell the system that we have a stack frame.  Because the type is MANUAL, no | 
|  | // is generated. | 
|  | FrameScope scope(masm_, StackFrame::MANUAL); | 
|  |  | 
|  | // Actually emit code to start a new stack frame. | 
|  | // Push arguments | 
|  | // Save callee-save registers. | 
|  | // Start new stack frame. | 
|  | // Store link register in existing stack-cell. | 
|  | // Order here should correspond to order of offset constants in header file. | 
|  | RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() | | 
|  | r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit(); | 
|  | RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit(); | 
|  | __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit()); | 
|  | // Set frame pointer in space for it if this is not a direct call | 
|  | // from generated code. | 
|  | __ add(frame_pointer(), sp, Operand(4 * kPointerSize)); | 
|  |  | 
|  | STATIC_ASSERT(kSuccessfulCaptures == kInputString - kSystemPointerSize); | 
|  | __ mov(r0, Operand::Zero()); | 
|  | __ push(r0);  // Make room for success counter and initialize it to 0. | 
|  | STATIC_ASSERT(kStringStartMinusOne == | 
|  | kSuccessfulCaptures - kSystemPointerSize); | 
|  | __ push(r0);  // Make room for "string start - 1" constant. | 
|  | STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize); | 
|  | __ push(r0);  // The backtrack counter. | 
|  |  | 
|  | // Check if we have space on the stack for registers. | 
|  | Label stack_limit_hit; | 
|  | Label stack_ok; | 
|  |  | 
|  | ExternalReference stack_limit = | 
|  | ExternalReference::address_of_jslimit(isolate()); | 
|  | __ mov(r0, Operand(stack_limit)); | 
|  | __ ldr(r0, MemOperand(r0)); | 
|  | __ sub(r0, sp, r0, SetCC); | 
|  | // Handle it if the stack pointer is already below the stack limit. | 
|  | __ b(ls, &stack_limit_hit); | 
|  | // Check if there is room for the variable number of registers above | 
|  | // the stack limit. | 
|  | __ cmp(r0, Operand(num_registers_ * kPointerSize)); | 
|  | __ b(hs, &stack_ok); | 
|  | // Exit with OutOfMemory exception. There is not enough space on the stack | 
|  | // for our working registers. | 
|  | __ mov(r0, Operand(EXCEPTION)); | 
|  | __ jmp(&return_r0); | 
|  |  | 
|  | __ bind(&stack_limit_hit); | 
|  | CallCheckStackGuardState(); | 
|  | __ cmp(r0, Operand::Zero()); | 
|  | // If returned value is non-zero, we exit with the returned value as result. | 
|  | __ b(ne, &return_r0); | 
|  |  | 
|  | __ bind(&stack_ok); | 
|  |  | 
|  | // Allocate space on stack for registers. | 
|  | __ AllocateStackSpace(num_registers_ * kPointerSize); | 
|  | // Load string end. | 
|  | __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); | 
|  | // Load input start. | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kInputStart)); | 
|  | // Find negative length (offset of start relative to end). | 
|  | __ sub(current_input_offset(), r0, end_of_input_address()); | 
|  | // Set r0 to address of char before start of the input string | 
|  | // (effectively string position -1). | 
|  | __ ldr(r1, MemOperand(frame_pointer(), kStartIndex)); | 
|  | __ sub(r0, current_input_offset(), Operand(char_size())); | 
|  | __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0)); | 
|  | // Store this value in a local variable, for use when clearing | 
|  | // position registers. | 
|  | __ str(r0, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  |  | 
|  | // Initialize code pointer register | 
|  | __ mov(code_pointer(), Operand(masm_->CodeObject())); | 
|  |  | 
|  | Label load_char_start_regexp, start_regexp; | 
|  | // Load newline if index is at start, previous character otherwise. | 
|  | __ cmp(r1, Operand::Zero()); | 
|  | __ b(ne, &load_char_start_regexp); | 
|  | __ mov(current_character(), Operand('\n'), LeaveCC, eq); | 
|  | __ jmp(&start_regexp); | 
|  |  | 
|  | // Global regexp restarts matching here. | 
|  | __ bind(&load_char_start_regexp); | 
|  | // Load previous char as initial value of current character register. | 
|  | LoadCurrentCharacterUnchecked(-1, 1); | 
|  | __ bind(&start_regexp); | 
|  |  | 
|  | // Initialize on-stack registers. | 
|  | if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp. | 
|  | // Fill saved registers with initial value = start offset - 1 | 
|  | if (num_saved_registers_ > 8) { | 
|  | // Address of register 0. | 
|  | __ add(r1, frame_pointer(), Operand(kRegisterZero)); | 
|  | __ mov(r2, Operand(num_saved_registers_)); | 
|  | Label init_loop; | 
|  | __ bind(&init_loop); | 
|  | __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex)); | 
|  | __ sub(r2, r2, Operand(1), SetCC); | 
|  | __ b(ne, &init_loop); | 
|  | } else { | 
|  | for (int i = 0; i < num_saved_registers_; i++) { | 
|  | __ str(r0, register_location(i)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initialize backtrack stack pointer. | 
|  | __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); | 
|  |  | 
|  | __ jmp(&start_label_); | 
|  |  | 
|  | // Exit code: | 
|  | if (success_label_.is_linked()) { | 
|  | // Save captures when successful. | 
|  | __ bind(&success_label_); | 
|  | if (num_saved_registers_ > 0) { | 
|  | // copy captures to output | 
|  | __ ldr(r1, MemOperand(frame_pointer(), kInputStart)); | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput)); | 
|  | __ ldr(r2, MemOperand(frame_pointer(), kStartIndex)); | 
|  | __ sub(r1, end_of_input_address(), r1); | 
|  | // r1 is length of input in bytes. | 
|  | if (mode_ == UC16) { | 
|  | __ mov(r1, Operand(r1, LSR, 1)); | 
|  | } | 
|  | // r1 is length of input in characters. | 
|  | __ add(r1, r1, Operand(r2)); | 
|  | // r1 is length of string in characters. | 
|  |  | 
|  | DCHECK_EQ(0, num_saved_registers_ % 2); | 
|  | // Always an even number of capture registers. This allows us to | 
|  | // unroll the loop once to add an operation between a load of a register | 
|  | // and the following use of that register. | 
|  | for (int i = 0; i < num_saved_registers_; i += 2) { | 
|  | __ ldr(r2, register_location(i)); | 
|  | __ ldr(r3, register_location(i + 1)); | 
|  | if (i == 0 && global_with_zero_length_check()) { | 
|  | // Keep capture start in r4 for the zero-length check later. | 
|  | __ mov(r4, r2); | 
|  | } | 
|  | if (mode_ == UC16) { | 
|  | __ add(r2, r1, Operand(r2, ASR, 1)); | 
|  | __ add(r3, r1, Operand(r3, ASR, 1)); | 
|  | } else { | 
|  | __ add(r2, r1, Operand(r2)); | 
|  | __ add(r3, r1, Operand(r3)); | 
|  | } | 
|  | __ str(r2, MemOperand(r0, kPointerSize, PostIndex)); | 
|  | __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (global()) { | 
|  | // Restart matching if the regular expression is flagged as global. | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures)); | 
|  | __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters)); | 
|  | __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput)); | 
|  | // Increment success counter. | 
|  | __ add(r0, r0, Operand(1)); | 
|  | __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures)); | 
|  | // Capture results have been stored, so the number of remaining global | 
|  | // output registers is reduced by the number of stored captures. | 
|  | __ sub(r1, r1, Operand(num_saved_registers_)); | 
|  | // Check whether we have enough room for another set of capture results. | 
|  | __ cmp(r1, Operand(num_saved_registers_)); | 
|  | __ b(lt, &return_r0); | 
|  |  | 
|  | __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters)); | 
|  | // Advance the location for output. | 
|  | __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize)); | 
|  | __ str(r2, MemOperand(frame_pointer(), kRegisterOutput)); | 
|  |  | 
|  | // Prepare r0 to initialize registers with its value in the next run. | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  |  | 
|  | if (global_with_zero_length_check()) { | 
|  | // Special case for zero-length matches. | 
|  | // r4: capture start index | 
|  | __ cmp(current_input_offset(), r4); | 
|  | // Not a zero-length match, restart. | 
|  | __ b(ne, &load_char_start_regexp); | 
|  | // Offset from the end is zero if we already reached the end. | 
|  | __ cmp(current_input_offset(), Operand::Zero()); | 
|  | __ b(eq, &exit_label_); | 
|  | // Advance current position after a zero-length match. | 
|  | Label advance; | 
|  | __ bind(&advance); | 
|  | __ add(current_input_offset(), | 
|  | current_input_offset(), | 
|  | Operand((mode_ == UC16) ? 2 : 1)); | 
|  | if (global_unicode()) CheckNotInSurrogatePair(0, &advance); | 
|  | } | 
|  |  | 
|  | __ b(&load_char_start_regexp); | 
|  | } else { | 
|  | __ mov(r0, Operand(SUCCESS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Exit and return r0 | 
|  | __ bind(&exit_label_); | 
|  | if (global()) { | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures)); | 
|  | } | 
|  |  | 
|  | __ bind(&return_r0); | 
|  | // Skip sp past regexp registers and local variables.. | 
|  | __ mov(sp, frame_pointer()); | 
|  | // Restore registers r4..r11 and return (restoring lr to pc). | 
|  | __ ldm(ia_w, sp, registers_to_retain | pc.bit()); | 
|  |  | 
|  | // Backtrack code (branch target for conditional backtracks). | 
|  | if (backtrack_label_.is_linked()) { | 
|  | __ bind(&backtrack_label_); | 
|  | Backtrack(); | 
|  | } | 
|  |  | 
|  | Label exit_with_exception; | 
|  |  | 
|  | // Preempt-code | 
|  | if (check_preempt_label_.is_linked()) { | 
|  | SafeCallTarget(&check_preempt_label_); | 
|  |  | 
|  | CallCheckStackGuardState(); | 
|  | __ cmp(r0, Operand::Zero()); | 
|  | // If returning non-zero, we should end execution with the given | 
|  | // result as return value. | 
|  | __ b(ne, &return_r0); | 
|  |  | 
|  | // String might have moved: Reload end of string from frame. | 
|  | __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); | 
|  | SafeReturn(); | 
|  | } | 
|  |  | 
|  | // Backtrack stack overflow code. | 
|  | if (stack_overflow_label_.is_linked()) { | 
|  | SafeCallTarget(&stack_overflow_label_); | 
|  | // Reached if the backtrack-stack limit has been hit. | 
|  |  | 
|  | // Call GrowStack(backtrack_stackpointer(), &stack_base) | 
|  | static const int num_arguments = 3; | 
|  | __ PrepareCallCFunction(num_arguments); | 
|  | __ mov(r0, backtrack_stackpointer()); | 
|  | __ add(r1, frame_pointer(), Operand(kStackHighEnd)); | 
|  | __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); | 
|  | ExternalReference grow_stack = | 
|  | ExternalReference::re_grow_stack(isolate()); | 
|  | __ CallCFunction(grow_stack, num_arguments); | 
|  | // If return nullptr, we have failed to grow the stack, and | 
|  | // must exit with a stack-overflow exception. | 
|  | __ cmp(r0, Operand::Zero()); | 
|  | __ b(eq, &exit_with_exception); | 
|  | // Otherwise use return value as new stack pointer. | 
|  | __ mov(backtrack_stackpointer(), r0); | 
|  | // Restore saved registers and continue. | 
|  | SafeReturn(); | 
|  | } | 
|  |  | 
|  | if (exit_with_exception.is_linked()) { | 
|  | // If any of the code above needed to exit with an exception. | 
|  | __ bind(&exit_with_exception); | 
|  | // Exit with Result EXCEPTION(-1) to signal thrown exception. | 
|  | __ mov(r0, Operand(EXCEPTION)); | 
|  | __ jmp(&return_r0); | 
|  | } | 
|  |  | 
|  | if (fallback_label_.is_linked()) { | 
|  | __ bind(&fallback_label_); | 
|  | __ mov(r0, Operand(FALLBACK_TO_EXPERIMENTAL)); | 
|  | __ jmp(&return_r0); | 
|  | } | 
|  |  | 
|  | CodeDesc code_desc; | 
|  | masm_->GetCode(isolate(), &code_desc); | 
|  | Handle<Code> code = | 
|  | Factory::CodeBuilder(isolate(), code_desc, CodeKind::REGEXP) | 
|  | .set_self_reference(masm_->CodeObject()) | 
|  | .Build(); | 
|  | PROFILE(masm_->isolate(), | 
|  | RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source)); | 
|  | return Handle<HeapObject>::cast(code); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::GoTo(Label* to) { | 
|  | BranchOrBacktrack(al, to); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::IfRegisterGE(int reg, | 
|  | int comparand, | 
|  | Label* if_ge) { | 
|  | __ ldr(r0, register_location(reg)); | 
|  | __ cmp(r0, Operand(comparand)); | 
|  | BranchOrBacktrack(ge, if_ge); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::IfRegisterLT(int reg, | 
|  | int comparand, | 
|  | Label* if_lt) { | 
|  | __ ldr(r0, register_location(reg)); | 
|  | __ cmp(r0, Operand(comparand)); | 
|  | BranchOrBacktrack(lt, if_lt); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg, | 
|  | Label* if_eq) { | 
|  | __ ldr(r0, register_location(reg)); | 
|  | __ cmp(r0, Operand(current_input_offset())); | 
|  | BranchOrBacktrack(eq, if_eq); | 
|  | } | 
|  |  | 
|  |  | 
|  | RegExpMacroAssembler::IrregexpImplementation | 
|  | RegExpMacroAssemblerARM::Implementation() { | 
|  | return kARMImplementation; | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::PopCurrentPosition() { | 
|  | Pop(current_input_offset()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::PopRegister(int register_index) { | 
|  | Pop(r0); | 
|  | __ str(r0, register_location(register_index)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::PushBacktrack(Label* label) { | 
|  | __ mov_label_offset(r0, label); | 
|  | Push(r0); | 
|  | CheckStackLimit(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::PushCurrentPosition() { | 
|  | Push(current_input_offset()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::PushRegister(int register_index, | 
|  | StackCheckFlag check_stack_limit) { | 
|  | __ ldr(r0, register_location(register_index)); | 
|  | Push(r0); | 
|  | if (check_stack_limit) CheckStackLimit(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) { | 
|  | __ ldr(current_input_offset(), register_location(reg)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) { | 
|  | __ ldr(backtrack_stackpointer(), register_location(reg)); | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd)); | 
|  | __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) { | 
|  | Label after_position; | 
|  | __ cmp(current_input_offset(), Operand(-by * char_size())); | 
|  | __ b(ge, &after_position); | 
|  | __ mov(current_input_offset(), Operand(-by * char_size())); | 
|  | // On RegExp code entry (where this operation is used), the character before | 
|  | // the current position is expected to be already loaded. | 
|  | // We have advanced the position, so it's safe to read backwards. | 
|  | LoadCurrentCharacterUnchecked(-1, 1); | 
|  | __ bind(&after_position); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) { | 
|  | DCHECK(register_index >= num_saved_registers_);  // Reserved for positions! | 
|  | __ mov(r0, Operand(to)); | 
|  | __ str(r0, register_location(register_index)); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool RegExpMacroAssemblerARM::Succeed() { | 
|  | __ jmp(&success_label_); | 
|  | return global(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg, | 
|  | int cp_offset) { | 
|  | if (cp_offset == 0) { | 
|  | __ str(current_input_offset(), register_location(reg)); | 
|  | } else { | 
|  | __ add(r0, current_input_offset(), Operand(cp_offset * char_size())); | 
|  | __ str(r0, register_location(reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) { | 
|  | DCHECK(reg_from <= reg_to); | 
|  | __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  | for (int reg = reg_from; reg <= reg_to; reg++) { | 
|  | __ str(r0, register_location(reg)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) { | 
|  | __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd)); | 
|  | __ sub(r0, backtrack_stackpointer(), r1); | 
|  | __ str(r0, register_location(reg)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Private methods: | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CallCheckStackGuardState() { | 
|  | DCHECK(!isolate()->IsGeneratingEmbeddedBuiltins()); | 
|  | DCHECK(!masm_->options().isolate_independent_code); | 
|  |  | 
|  | __ PrepareCallCFunction(3); | 
|  |  | 
|  | // RegExp code frame pointer. | 
|  | __ mov(r2, frame_pointer()); | 
|  | // Code of self. | 
|  | __ mov(r1, Operand(masm_->CodeObject())); | 
|  |  | 
|  | // We need to make room for the return address on the stack. | 
|  | int stack_alignment = base::OS::ActivationFrameAlignment(); | 
|  | DCHECK(IsAligned(stack_alignment, kPointerSize)); | 
|  | __ AllocateStackSpace(stack_alignment); | 
|  |  | 
|  | // r0 will point to the return address, placed by DirectCEntry. | 
|  | __ mov(r0, sp); | 
|  |  | 
|  | ExternalReference stack_guard_check = | 
|  | ExternalReference::re_check_stack_guard_state(isolate()); | 
|  | __ mov(ip, Operand(stack_guard_check)); | 
|  |  | 
|  | EmbeddedData d = EmbeddedData::FromBlob(); | 
|  | Address entry = d.InstructionStartOfBuiltin(Builtins::kDirectCEntry); | 
|  | __ mov(lr, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); | 
|  | __ Call(lr); | 
|  |  | 
|  | // Drop the return address from the stack. | 
|  | __ add(sp, sp, Operand(stack_alignment)); | 
|  |  | 
|  | DCHECK_NE(0, stack_alignment); | 
|  | __ ldr(sp, MemOperand(sp, 0)); | 
|  |  | 
|  | __ mov(code_pointer(), Operand(masm_->CodeObject())); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Helper function for reading a value out of a stack frame. | 
|  | template <typename T> | 
|  | static T& frame_entry(Address re_frame, int frame_offset) { | 
|  | return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset)); | 
|  | } | 
|  |  | 
|  |  | 
|  | template <typename T> | 
|  | static T* frame_entry_address(Address re_frame, int frame_offset) { | 
|  | return reinterpret_cast<T*>(re_frame + frame_offset); | 
|  | } | 
|  |  | 
|  | int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address, | 
|  | Address raw_code, | 
|  | Address re_frame) { | 
|  | Code re_code = Code::cast(Object(raw_code)); | 
|  | return NativeRegExpMacroAssembler::CheckStackGuardState( | 
|  | frame_entry<Isolate*>(re_frame, kIsolate), | 
|  | frame_entry<int>(re_frame, kStartIndex), | 
|  | static_cast<RegExp::CallOrigin>(frame_entry<int>(re_frame, kDirectCall)), | 
|  | return_address, re_code, | 
|  | frame_entry_address<Address>(re_frame, kInputString), | 
|  | frame_entry_address<const byte*>(re_frame, kInputStart), | 
|  | frame_entry_address<const byte*>(re_frame, kInputEnd)); | 
|  | } | 
|  |  | 
|  |  | 
|  | MemOperand RegExpMacroAssemblerARM::register_location(int register_index) { | 
|  | DCHECK(register_index < (1<<30)); | 
|  | if (num_registers_ <= register_index) { | 
|  | num_registers_ = register_index + 1; | 
|  | } | 
|  | return MemOperand(frame_pointer(), | 
|  | kRegisterZero - register_index * kPointerSize); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckPosition(int cp_offset, | 
|  | Label* on_outside_input) { | 
|  | if (cp_offset >= 0) { | 
|  | __ cmp(current_input_offset(), Operand(-cp_offset * char_size())); | 
|  | BranchOrBacktrack(ge, on_outside_input); | 
|  | } else { | 
|  | __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne)); | 
|  | __ add(r0, current_input_offset(), Operand(cp_offset * char_size())); | 
|  | __ cmp(r0, r1); | 
|  | BranchOrBacktrack(le, on_outside_input); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition, | 
|  | Label* to) { | 
|  | if (condition == al) {  // Unconditional. | 
|  | if (to == nullptr) { | 
|  | Backtrack(); | 
|  | return; | 
|  | } | 
|  | __ jmp(to); | 
|  | return; | 
|  | } | 
|  | if (to == nullptr) { | 
|  | __ b(condition, &backtrack_label_); | 
|  | return; | 
|  | } | 
|  | __ b(condition, to); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) { | 
|  | __ bl(to, cond); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::SafeReturn() { | 
|  | __ pop(lr); | 
|  | __ add(pc, lr, Operand(masm_->CodeObject())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) { | 
|  | __ bind(name); | 
|  | __ sub(lr, lr, Operand(masm_->CodeObject())); | 
|  | __ push(lr); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::Push(Register source) { | 
|  | DCHECK(source != backtrack_stackpointer()); | 
|  | __ str(source, | 
|  | MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::Pop(Register target) { | 
|  | DCHECK(target != backtrack_stackpointer()); | 
|  | __ ldr(target, | 
|  | MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckPreemption() { | 
|  | // Check for preemption. | 
|  | ExternalReference stack_limit = | 
|  | ExternalReference::address_of_jslimit(isolate()); | 
|  | __ mov(r0, Operand(stack_limit)); | 
|  | __ ldr(r0, MemOperand(r0)); | 
|  | __ cmp(sp, r0); | 
|  | SafeCall(&check_preempt_label_, ls); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::CheckStackLimit() { | 
|  | ExternalReference stack_limit = | 
|  | ExternalReference::address_of_regexp_stack_limit_address(isolate()); | 
|  | __ mov(r0, Operand(stack_limit)); | 
|  | __ ldr(r0, MemOperand(r0)); | 
|  | __ cmp(backtrack_stackpointer(), Operand(r0)); | 
|  | SafeCall(&stack_overflow_label_, ls); | 
|  | } | 
|  |  | 
|  |  | 
|  | void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset, | 
|  | int characters) { | 
|  | Register offset = current_input_offset(); | 
|  | if (cp_offset != 0) { | 
|  | // r4 is not being used to store the capture start index at this point. | 
|  | __ add(r4, current_input_offset(), Operand(cp_offset * char_size())); | 
|  | offset = r4; | 
|  | } | 
|  | // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU | 
|  | // and the operating system running on the target allow it. | 
|  | // If unaligned load/stores are not supported then this function must only | 
|  | // be used to load a single character at a time. | 
|  | if (!CanReadUnaligned()) { | 
|  | DCHECK_EQ(1, characters); | 
|  | } | 
|  |  | 
|  | if (mode_ == LATIN1) { | 
|  | if (characters == 4) { | 
|  | __ ldr(current_character(), MemOperand(end_of_input_address(), offset)); | 
|  | } else if (characters == 2) { | 
|  | __ ldrh(current_character(), MemOperand(end_of_input_address(), offset)); | 
|  | } else { | 
|  | DCHECK_EQ(1, characters); | 
|  | __ ldrb(current_character(), MemOperand(end_of_input_address(), offset)); | 
|  | } | 
|  | } else { | 
|  | DCHECK(mode_ == UC16); | 
|  | if (characters == 2) { | 
|  | __ ldr(current_character(), MemOperand(end_of_input_address(), offset)); | 
|  | } else { | 
|  | DCHECK_EQ(1, characters); | 
|  | __ ldrh(current_character(), MemOperand(end_of_input_address(), offset)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #undef __ | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 | 
|  |  | 
|  | #endif  // V8_TARGET_ARCH_ARM |