| /* |
| ****************************************************************************** |
| * |
| * Copyright (C) 2001-2012, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ****************************************************************************** |
| * file name: utrie.cpp |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2001oct20 |
| * created by: Markus W. Scherer |
| * |
| * This is a common implementation of a "folded" trie. |
| * It is a kind of compressed, serializable table of 16- or 32-bit values associated with |
| * Unicode code points (0..0x10ffff). |
| */ |
| |
| #ifdef UTRIE_DEBUG |
| #if !defined(STARBOARD) |
| # include <stdio.h> |
| #endif |
| #endif |
| #include "starboard/client_porting/poem/string_poem.h" |
| #include "unicode/utypes.h" |
| #include "cmemory.h" |
| #include "utrie.h" |
| |
| /* miscellaneous ------------------------------------------------------------ */ |
| |
| #undef ABS |
| #define ABS(x) ((x)>=0 ? (x) : -(x)) |
| |
| static inline UBool |
| equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
| while(length>0 && *s==*t) { |
| ++s; |
| ++t; |
| --length; |
| } |
| return (UBool)(length==0); |
| } |
| |
| /* Building a trie ----------------------------------------------------------*/ |
| |
| U_CAPI UNewTrie * U_EXPORT2 |
| utrie_open(UNewTrie *fillIn, |
| uint32_t *aliasData, int32_t maxDataLength, |
| uint32_t initialValue, uint32_t leadUnitValue, |
| UBool latin1Linear) { |
| UNewTrie *trie; |
| int32_t i, j; |
| |
| if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || |
| (latin1Linear && maxDataLength<1024) |
| ) { |
| return NULL; |
| } |
| |
| if(fillIn!=NULL) { |
| trie=fillIn; |
| } else { |
| trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); |
| if(trie==NULL) { |
| return NULL; |
| } |
| } |
| uprv_memset(trie, 0, sizeof(UNewTrie)); |
| trie->isAllocated= (UBool)(fillIn==NULL); |
| |
| if(aliasData!=NULL) { |
| trie->data=aliasData; |
| trie->isDataAllocated=FALSE; |
| } else { |
| trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); |
| if(trie->data==NULL) { |
| uprv_free(trie); |
| return NULL; |
| } |
| trie->isDataAllocated=TRUE; |
| } |
| |
| /* preallocate and reset the first data block (block index 0) */ |
| j=UTRIE_DATA_BLOCK_LENGTH; |
| |
| if(latin1Linear) { |
| /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ |
| /* made sure above that maxDataLength>=1024 */ |
| |
| /* set indexes to point to consecutive data blocks */ |
| i=0; |
| do { |
| /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ |
| trie->index[i++]=j; |
| j+=UTRIE_DATA_BLOCK_LENGTH; |
| } while(i<(256>>UTRIE_SHIFT)); |
| } |
| |
| /* reset the initially allocated blocks to the initial value */ |
| trie->dataLength=j; |
| while(j>0) { |
| trie->data[--j]=initialValue; |
| } |
| |
| trie->leadUnitValue=leadUnitValue; |
| trie->indexLength=UTRIE_MAX_INDEX_LENGTH; |
| trie->dataCapacity=maxDataLength; |
| trie->isLatin1Linear=latin1Linear; |
| trie->isCompacted=FALSE; |
| return trie; |
| } |
| |
| U_CAPI UNewTrie * U_EXPORT2 |
| utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { |
| UNewTrie *trie; |
| UBool isDataAllocated; |
| |
| /* do not clone if other is not valid or already compacted */ |
| if(other==NULL || other->data==NULL || other->isCompacted) { |
| return NULL; |
| } |
| |
| /* clone data */ |
| if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { |
| isDataAllocated=FALSE; |
| } else { |
| aliasDataCapacity=other->dataCapacity; |
| aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); |
| if(aliasData==NULL) { |
| return NULL; |
| } |
| isDataAllocated=TRUE; |
| } |
| |
| trie=utrie_open(fillIn, aliasData, aliasDataCapacity, |
| other->data[0], other->leadUnitValue, |
| other->isLatin1Linear); |
| if(trie==NULL) { |
| uprv_free(aliasData); |
| } else { |
| uprv_memcpy(trie->index, other->index, sizeof(trie->index)); |
| uprv_memcpy(trie->data, other->data, other->dataLength*4); |
| trie->dataLength=other->dataLength; |
| trie->isDataAllocated=isDataAllocated; |
| } |
| |
| return trie; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| utrie_close(UNewTrie *trie) { |
| if(trie!=NULL) { |
| if(trie->isDataAllocated) { |
| uprv_free(trie->data); |
| trie->data=NULL; |
| } |
| if(trie->isAllocated) { |
| uprv_free(trie); |
| } |
| } |
| } |
| |
| U_CAPI uint32_t * U_EXPORT2 |
| utrie_getData(UNewTrie *trie, int32_t *pLength) { |
| if(trie==NULL || pLength==NULL) { |
| return NULL; |
| } |
| |
| *pLength=trie->dataLength; |
| return trie->data; |
| } |
| |
| static int32_t |
| utrie_allocDataBlock(UNewTrie *trie) { |
| int32_t newBlock, newTop; |
| |
| newBlock=trie->dataLength; |
| newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; |
| if(newTop>trie->dataCapacity) { |
| /* out of memory in the data array */ |
| return -1; |
| } |
| trie->dataLength=newTop; |
| return newBlock; |
| } |
| |
| /** |
| * No error checking for illegal arguments. |
| * |
| * @return -1 if no new data block available (out of memory in data array) |
| * @internal |
| */ |
| static int32_t |
| utrie_getDataBlock(UNewTrie *trie, UChar32 c) { |
| int32_t indexValue, newBlock; |
| |
| c>>=UTRIE_SHIFT; |
| indexValue=trie->index[c]; |
| if(indexValue>0) { |
| return indexValue; |
| } |
| |
| /* allocate a new data block */ |
| newBlock=utrie_allocDataBlock(trie); |
| if(newBlock<0) { |
| /* out of memory in the data array */ |
| return -1; |
| } |
| trie->index[c]=newBlock; |
| |
| /* copy-on-write for a block from a setRange() */ |
| uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); |
| return newBlock; |
| } |
| |
| /** |
| * @return TRUE if the value was successfully set |
| */ |
| U_CAPI UBool U_EXPORT2 |
| utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { |
| int32_t block; |
| |
| /* valid, uncompacted trie and valid c? */ |
| if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
| return FALSE; |
| } |
| |
| block=utrie_getDataBlock(trie, c); |
| if(block<0) { |
| return FALSE; |
| } |
| |
| trie->data[block+(c&UTRIE_MASK)]=value; |
| return TRUE; |
| } |
| |
| U_CAPI uint32_t U_EXPORT2 |
| utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { |
| int32_t block; |
| |
| /* valid, uncompacted trie and valid c? */ |
| if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
| if(pInBlockZero!=NULL) { |
| *pInBlockZero=TRUE; |
| } |
| return 0; |
| } |
| |
| block=trie->index[c>>UTRIE_SHIFT]; |
| if(pInBlockZero!=NULL) { |
| *pInBlockZero= (UBool)(block==0); |
| } |
| |
| return trie->data[ABS(block)+(c&UTRIE_MASK)]; |
| } |
| |
| /** |
| * @internal |
| */ |
| static void |
| utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, |
| uint32_t value, uint32_t initialValue, UBool overwrite) { |
| uint32_t *pLimit; |
| |
| pLimit=block+limit; |
| block+=start; |
| if(overwrite) { |
| while(block<pLimit) { |
| *block++=value; |
| } |
| } else { |
| while(block<pLimit) { |
| if(*block==initialValue) { |
| *block=value; |
| } |
| ++block; |
| } |
| } |
| } |
| |
| U_CAPI UBool U_EXPORT2 |
| utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { |
| /* |
| * repeat value in [start..limit[ |
| * mark index values for repeat-data blocks by setting bit 31 of the index values |
| * fill around existing values if any, if(overwrite) |
| */ |
| uint32_t initialValue; |
| int32_t block, rest, repeatBlock; |
| |
| /* valid, uncompacted trie and valid indexes? */ |
| if( trie==NULL || trie->isCompacted || |
| (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit |
| ) { |
| return FALSE; |
| } |
| if(start==limit) { |
| return TRUE; /* nothing to do */ |
| } |
| |
| initialValue=trie->data[0]; |
| if(start&UTRIE_MASK) { |
| UChar32 nextStart; |
| |
| /* set partial block at [start..following block boundary[ */ |
| block=utrie_getDataBlock(trie, start); |
| if(block<0) { |
| return FALSE; |
| } |
| |
| nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; |
| if(nextStart<=limit) { |
| utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, |
| value, initialValue, overwrite); |
| start=nextStart; |
| } else { |
| utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, |
| value, initialValue, overwrite); |
| return TRUE; |
| } |
| } |
| |
| /* number of positions in the last, partial block */ |
| rest=limit&UTRIE_MASK; |
| |
| /* round down limit to a block boundary */ |
| limit&=~UTRIE_MASK; |
| |
| /* iterate over all-value blocks */ |
| if(value==initialValue) { |
| repeatBlock=0; |
| } else { |
| repeatBlock=-1; |
| } |
| while(start<limit) { |
| /* get index value */ |
| block=trie->index[start>>UTRIE_SHIFT]; |
| if(block>0) { |
| /* already allocated, fill in value */ |
| utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); |
| } else if(trie->data[-block]!=value && (block==0 || overwrite)) { |
| /* set the repeatBlock instead of the current block 0 or range block */ |
| if(repeatBlock>=0) { |
| trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
| } else { |
| /* create and set and fill the repeatBlock */ |
| repeatBlock=utrie_getDataBlock(trie, start); |
| if(repeatBlock<0) { |
| return FALSE; |
| } |
| |
| /* set the negative block number to indicate that it is a repeat block */ |
| trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
| utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); |
| } |
| } |
| |
| start+=UTRIE_DATA_BLOCK_LENGTH; |
| } |
| |
| if(rest>0) { |
| /* set partial block at [last block boundary..limit[ */ |
| block=utrie_getDataBlock(trie, start); |
| if(block<0) { |
| return FALSE; |
| } |
| |
| utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); |
| } |
| |
| return TRUE; |
| } |
| |
| static int32_t |
| _findSameIndexBlock(const int32_t *idx, int32_t indexLength, |
| int32_t otherBlock) { |
| int32_t block, i; |
| |
| for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { |
| for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { |
| if(idx[block+i]!=idx[otherBlock+i]) { |
| break; |
| } |
| } |
| if(i==UTRIE_SURROGATE_BLOCK_COUNT) { |
| return block; |
| } |
| } |
| return indexLength; |
| } |
| |
| /* |
| * Fold the normalization data for supplementary code points into |
| * a compact area on top of the BMP-part of the trie index, |
| * with the lead surrogates indexing this compact area. |
| * |
| * Duplicate the index values for lead surrogates: |
| * From inside the BMP area, where some may be overridden with folded values, |
| * to just after the BMP area, where they can be retrieved for |
| * code point lookups. |
| */ |
| static void |
| utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { |
| int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; |
| int32_t *idx; |
| uint32_t value; |
| UChar32 c; |
| int32_t indexLength, block; |
| #ifdef UTRIE_DEBUG |
| int countLeadCUWithData=0; |
| #endif |
| |
| idx=trie->index; |
| |
| /* copy the lead surrogate indexes into a temporary array */ |
| uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); |
| |
| /* |
| * set all values for lead surrogate code *units* to leadUnitValue |
| * so that, by default, runtime lookups will find no data for associated |
| * supplementary code points, unless there is data for such code points |
| * which will result in a non-zero folding value below that is set for |
| * the respective lead units |
| * |
| * the above saved the indexes for surrogate code *points* |
| * fill the indexes with simplified code from utrie_setRange32() |
| */ |
| if(trie->leadUnitValue==trie->data[0]) { |
| block=0; /* leadUnitValue==initialValue, use all-initial-value block */ |
| } else { |
| /* create and fill the repeatBlock */ |
| block=utrie_allocDataBlock(trie); |
| if(block<0) { |
| /* data table overflow */ |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); |
| block=-block; /* negative block number to indicate that it is a repeat block */ |
| } |
| for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { |
| trie->index[c]=block; |
| } |
| |
| /* |
| * Fold significant index values into the area just after the BMP indexes. |
| * In case the first lead surrogate has significant data, |
| * its index block must be used first (in which case the folding is a no-op). |
| * Later all folded index blocks are moved up one to insert the copied |
| * lead surrogate indexes. |
| */ |
| indexLength=UTRIE_BMP_INDEX_LENGTH; |
| |
| /* search for any index (stage 1) entries for supplementary code points */ |
| for(c=0x10000; c<0x110000;) { |
| if(idx[c>>UTRIE_SHIFT]!=0) { |
| /* there is data, treat the full block for a lead surrogate */ |
| c&=~0x3ff; |
| |
| #ifdef UTRIE_DEBUG |
| ++countLeadCUWithData; |
| /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */ |
| #endif |
| |
| /* is there an identical index block? */ |
| block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); |
| |
| /* |
| * get a folded value for [c..c+0x400[ and, |
| * if different from the value for the lead surrogate code point, |
| * set it for the lead surrogate code unit |
| */ |
| value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); |
| if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { |
| if(!utrie_set32(trie, U16_LEAD(c), value)) { |
| /* data table overflow */ |
| *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| |
| /* if we did not find an identical index block... */ |
| if(block==indexLength) { |
| /* move the actual index (stage 1) entries from the supplementary position to the new one */ |
| uprv_memmove(idx+indexLength, |
| idx+(c>>UTRIE_SHIFT), |
| 4*UTRIE_SURROGATE_BLOCK_COUNT); |
| indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
| } |
| } |
| c+=0x400; |
| } else { |
| c+=UTRIE_DATA_BLOCK_LENGTH; |
| } |
| } |
| #ifdef UTRIE_DEBUG |
| if(countLeadCUWithData>0) { |
| printf("supplementary data for %d lead surrogates\n", countLeadCUWithData); |
| } |
| #endif |
| |
| /* |
| * index array overflow? |
| * This is to guarantee that a folding offset is of the form |
| * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. |
| * If the index is too large, then n>=1024 and more than 10 bits are necessary. |
| * |
| * In fact, it can only ever become n==1024 with completely unfoldable data and |
| * the additional block of duplicated values for lead surrogates. |
| */ |
| if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return; |
| } |
| |
| /* |
| * make space for the lead surrogate index block and |
| * insert it between the BMP indexes and the folded ones |
| */ |
| uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, |
| idx+UTRIE_BMP_INDEX_LENGTH, |
| 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); |
| uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, |
| leadIndexes, |
| 4*UTRIE_SURROGATE_BLOCK_COUNT); |
| indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
| |
| #ifdef UTRIE_DEBUG |
| printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", |
| UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); |
| #endif |
| |
| trie->indexLength=indexLength; |
| } |
| |
| /* |
| * Set a value in the trie index map to indicate which data block |
| * is referenced and which one is not. |
| * utrie_compact() will remove data blocks that are not used at all. |
| * Set |
| * - 0 if it is used |
| * - -1 if it is not used |
| */ |
| static void |
| _findUnusedBlocks(UNewTrie *trie) { |
| int32_t i; |
| |
| /* fill the entire map with "not used" */ |
| uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); |
| |
| /* mark each block that _is_ used with 0 */ |
| for(i=0; i<trie->indexLength; ++i) { |
| trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; |
| } |
| |
| /* never move the all-initial-value block 0 */ |
| trie->map[0]=0; |
| } |
| |
| static int32_t |
| _findSameDataBlock(const uint32_t *data, int32_t dataLength, |
| int32_t otherBlock, int32_t step) { |
| int32_t block; |
| |
| /* ensure that we do not even partially get past dataLength */ |
| dataLength-=UTRIE_DATA_BLOCK_LENGTH; |
| |
| for(block=0; block<=dataLength; block+=step) { |
| if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { |
| return block; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| * Compact a folded build-time trie. |
| * |
| * The compaction |
| * - removes blocks that are identical with earlier ones |
| * - overlaps adjacent blocks as much as possible (if overlap==TRUE) |
| * - moves blocks in steps of the data granularity |
| * - moves and overlaps blocks that overlap with multiple values in the overlap region |
| * |
| * It does not |
| * - try to move and overlap blocks that are not already adjacent |
| */ |
| static void |
| utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { |
| int32_t i, start, newStart, overlapStart; |
| |
| if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| |
| /* valid, uncompacted trie? */ |
| if(trie==NULL) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| if(trie->isCompacted) { |
| return; /* nothing left to do */ |
| } |
| |
| /* compaction */ |
| |
| /* initialize the index map with "block is used/unused" flags */ |
| _findUnusedBlocks(trie); |
| |
| /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ |
| if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { |
| overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; |
| } else { |
| overlapStart=UTRIE_DATA_BLOCK_LENGTH; |
| } |
| |
| newStart=UTRIE_DATA_BLOCK_LENGTH; |
| for(start=newStart; start<trie->dataLength;) { |
| /* |
| * start: index of first entry of current block |
| * newStart: index where the current block is to be moved |
| * (right after current end of already-compacted data) |
| */ |
| |
| /* skip blocks that are not used */ |
| if(trie->map[start>>UTRIE_SHIFT]<0) { |
| /* advance start to the next block */ |
| start+=UTRIE_DATA_BLOCK_LENGTH; |
| |
| /* leave newStart with the previous block! */ |
| continue; |
| } |
| |
| /* search for an identical block */ |
| if( start>=overlapStart && |
| (i=_findSameDataBlock(trie->data, newStart, start, |
| overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) |
| >=0 |
| ) { |
| /* found an identical block, set the other block's index value for the current block */ |
| trie->map[start>>UTRIE_SHIFT]=i; |
| |
| /* advance start to the next block */ |
| start+=UTRIE_DATA_BLOCK_LENGTH; |
| |
| /* leave newStart with the previous block! */ |
| continue; |
| } |
| |
| /* see if the beginning of this block can be overlapped with the end of the previous block */ |
| if(overlap && start>=overlapStart) { |
| /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ |
| for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; |
| i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); |
| i-=UTRIE_DATA_GRANULARITY) {} |
| } else { |
| i=0; |
| } |
| |
| if(i>0) { |
| /* some overlap */ |
| trie->map[start>>UTRIE_SHIFT]=newStart-i; |
| |
| /* move the non-overlapping indexes to their new positions */ |
| start+=i; |
| for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { |
| trie->data[newStart++]=trie->data[start++]; |
| } |
| } else if(newStart<start) { |
| /* no overlap, just move the indexes to their new positions */ |
| trie->map[start>>UTRIE_SHIFT]=newStart; |
| for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { |
| trie->data[newStart++]=trie->data[start++]; |
| } |
| } else /* no overlap && newStart==start */ { |
| trie->map[start>>UTRIE_SHIFT]=start; |
| newStart+=UTRIE_DATA_BLOCK_LENGTH; |
| start=newStart; |
| } |
| } |
| |
| /* now adjust the index (stage 1) table */ |
| for(i=0; i<trie->indexLength; ++i) { |
| trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; |
| } |
| |
| #ifdef UTRIE_DEBUG |
| /* we saved some space */ |
| printf("compacting trie: count of 32-bit words %lu->%lu\n", |
| (long)trie->dataLength, (long)newStart); |
| #endif |
| |
| trie->dataLength=newStart; |
| } |
| |
| /* serialization ------------------------------------------------------------ */ |
| |
| /* |
| * Default function for the folding value: |
| * Just store the offset (16 bits) if there is any non-initial-value entry. |
| * |
| * The offset parameter is never 0. |
| * Returning the offset itself is safe for UTRIE_SHIFT>=5 because |
| * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 |
| * which fits into 16-bit trie values; |
| * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. |
| * |
| * Theoretically, it would be safer for all possible UTRIE_SHIFT including |
| * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS |
| * which would always result in a value of 0x40..0x43f |
| * (start/end 1k blocks of supplementary Unicode code points). |
| * However, this would be uglier, and would not work for some existing |
| * binary data file formats. |
| * |
| * Also, we do not plan to change UTRIE_SHIFT because it would change binary |
| * data file formats, and we would probably not make it smaller because of |
| * the then even larger BMP index length even for empty tries. |
| */ |
| static uint32_t U_CALLCONV |
| defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { |
| uint32_t value, initialValue; |
| UChar32 limit; |
| UBool inBlockZero; |
| |
| initialValue=trie->data[0]; |
| limit=start+0x400; |
| while(start<limit) { |
| value=utrie_get32(trie, start, &inBlockZero); |
| if(inBlockZero) { |
| start+=UTRIE_DATA_BLOCK_LENGTH; |
| } else if(value!=initialValue) { |
| return (uint32_t)offset; |
| } else { |
| ++start; |
| } |
| } |
| return 0; |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, |
| UNewTrieGetFoldedValue *getFoldedValue, |
| UBool reduceTo16Bits, |
| UErrorCode *pErrorCode) { |
| UTrieHeader *header; |
| uint32_t *p; |
| uint16_t *dest16; |
| int32_t i, length; |
| uint8_t* data = NULL; |
| |
| /* argument check */ |
| if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| |
| if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| if(getFoldedValue==NULL) { |
| getFoldedValue=defaultGetFoldedValue; |
| } |
| |
| data = (uint8_t*)dt; |
| /* fold and compact if necessary, also checks that indexLength is within limits */ |
| if(!trie->isCompacted) { |
| /* compact once without overlap to improve folding */ |
| utrie_compact(trie, FALSE, pErrorCode); |
| |
| /* fold the supplementary part of the index array */ |
| utrie_fold(trie, getFoldedValue, pErrorCode); |
| |
| /* compact again with overlap for minimum data array length */ |
| utrie_compact(trie, TRUE, pErrorCode); |
| |
| trie->isCompacted=TRUE; |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| } |
| |
| /* is dataLength within limits? */ |
| if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| } |
| |
| length=sizeof(UTrieHeader)+2*trie->indexLength; |
| if(reduceTo16Bits) { |
| length+=2*trie->dataLength; |
| } else { |
| length+=4*trie->dataLength; |
| } |
| |
| if(length>capacity) { |
| return length; /* preflighting */ |
| } |
| |
| #ifdef UTRIE_DEBUG |
| printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n", |
| (long)trie->indexLength, (long)trie->dataLength, (long)length); |
| #endif |
| |
| /* set the header fields */ |
| header=(UTrieHeader *)data; |
| data+=sizeof(UTrieHeader); |
| |
| header->signature=0x54726965; /* "Trie" */ |
| header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); |
| |
| if(!reduceTo16Bits) { |
| header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; |
| } |
| if(trie->isLatin1Linear) { |
| header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; |
| } |
| |
| header->indexLength=trie->indexLength; |
| header->dataLength=trie->dataLength; |
| |
| /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ |
| if(reduceTo16Bits) { |
| /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ |
| p=(uint32_t *)trie->index; |
| dest16=(uint16_t *)data; |
| for(i=trie->indexLength; i>0; --i) { |
| *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); |
| } |
| |
| /* write 16-bit data values */ |
| p=trie->data; |
| for(i=trie->dataLength; i>0; --i) { |
| *dest16++=(uint16_t)*p++; |
| } |
| } else { |
| /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ |
| p=(uint32_t *)trie->index; |
| dest16=(uint16_t *)data; |
| for(i=trie->indexLength; i>0; --i) { |
| *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); |
| } |
| |
| /* write 32-bit data values */ |
| uprv_memcpy(dest16, trie->data, 4*trie->dataLength); |
| } |
| |
| return length; |
| } |
| |
| /* inverse to defaultGetFoldedValue() */ |
| U_CAPI int32_t U_EXPORT2 |
| utrie_defaultGetFoldingOffset(uint32_t data) { |
| return (int32_t)data; |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { |
| const UTrieHeader *header; |
| const uint16_t *p16; |
| uint32_t options; |
| |
| if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| return -1; |
| } |
| |
| /* enough data for a trie header? */ |
| if(length<(int32_t)sizeof(UTrieHeader)) { |
| *pErrorCode=U_INVALID_FORMAT_ERROR; |
| return -1; |
| } |
| |
| /* check the signature */ |
| header=(const UTrieHeader *)data; |
| if(header->signature!=0x54726965) { |
| *pErrorCode=U_INVALID_FORMAT_ERROR; |
| return -1; |
| } |
| |
| /* get the options and check the shift values */ |
| options=header->options; |
| if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || |
| ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT |
| ) { |
| *pErrorCode=U_INVALID_FORMAT_ERROR; |
| return -1; |
| } |
| trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); |
| |
| /* get the length values */ |
| trie->indexLength=header->indexLength; |
| trie->dataLength=header->dataLength; |
| |
| length-=(int32_t)sizeof(UTrieHeader); |
| |
| /* enough data for the index? */ |
| if(length<2*trie->indexLength) { |
| *pErrorCode=U_INVALID_FORMAT_ERROR; |
| return -1; |
| } |
| p16=(const uint16_t *)(header+1); |
| trie->index=p16; |
| p16+=trie->indexLength; |
| length-=2*trie->indexLength; |
| |
| /* get the data */ |
| if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { |
| if(length<4*trie->dataLength) { |
| *pErrorCode=U_INVALID_FORMAT_ERROR; |
| return -1; |
| } |
| trie->data32=(const uint32_t *)p16; |
| trie->initialValue=trie->data32[0]; |
| length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; |
| } else { |
| if(length<2*trie->dataLength) { |
| *pErrorCode=U_INVALID_FORMAT_ERROR; |
| return -1; |
| } |
| |
| /* the "data16" data is used via the index pointer */ |
| trie->data32=NULL; |
| trie->initialValue=trie->index[trie->indexLength]; |
| length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; |
| } |
| |
| trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
| |
| return length; |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utrie_unserializeDummy(UTrie *trie, |
| void *data, int32_t length, |
| uint32_t initialValue, uint32_t leadUnitValue, |
| UBool make16BitTrie, |
| UErrorCode *pErrorCode) { |
| uint16_t *p16; |
| int32_t actualLength, latin1Length, i, limit; |
| uint16_t block; |
| |
| if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| return -1; |
| } |
| |
| /* calculate the actual size of the dummy trie data */ |
| |
| /* max(Latin-1, block 0) */ |
| latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/ |
| |
| trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; |
| trie->dataLength=latin1Length; |
| if(leadUnitValue!=initialValue) { |
| trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; |
| } |
| |
| actualLength=trie->indexLength*2; |
| if(make16BitTrie) { |
| actualLength+=trie->dataLength*2; |
| } else { |
| actualLength+=trie->dataLength*4; |
| } |
| |
| /* enough space for the dummy trie? */ |
| if(length<actualLength) { |
| *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| return actualLength; |
| } |
| |
| trie->isLatin1Linear=TRUE; |
| trie->initialValue=initialValue; |
| |
| /* fill the index and data arrays */ |
| p16=(uint16_t *)data; |
| trie->index=p16; |
| |
| if(make16BitTrie) { |
| /* indexes to block 0 */ |
| block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); |
| limit=trie->indexLength; |
| for(i=0; i<limit; ++i) { |
| p16[i]=block; |
| } |
| |
| if(leadUnitValue!=initialValue) { |
| /* indexes for lead surrogate code units to the block after Latin-1 */ |
| block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
| i=0xd800>>UTRIE_SHIFT; |
| limit=0xdc00>>UTRIE_SHIFT; |
| for(; i<limit; ++i) { |
| p16[i]=block; |
| } |
| } |
| |
| trie->data32=NULL; |
| |
| /* Latin-1 data */ |
| p16+=trie->indexLength; |
| for(i=0; i<latin1Length; ++i) { |
| p16[i]=(uint16_t)initialValue; |
| } |
| |
| /* data for lead surrogate code units */ |
| if(leadUnitValue!=initialValue) { |
| limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
| for(/* i=latin1Length */; i<limit; ++i) { |
| p16[i]=(uint16_t)leadUnitValue; |
| } |
| } |
| } else { |
| uint32_t *p32; |
| |
| /* indexes to block 0 */ |
| uprv_memset(p16, 0, trie->indexLength*2); |
| |
| if(leadUnitValue!=initialValue) { |
| /* indexes for lead surrogate code units to the block after Latin-1 */ |
| block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
| i=0xd800>>UTRIE_SHIFT; |
| limit=0xdc00>>UTRIE_SHIFT; |
| for(; i<limit; ++i) { |
| p16[i]=block; |
| } |
| } |
| |
| trie->data32=p32=(uint32_t *)(p16+trie->indexLength); |
| |
| /* Latin-1 data */ |
| for(i=0; i<latin1Length; ++i) { |
| p32[i]=initialValue; |
| } |
| |
| /* data for lead surrogate code units */ |
| if(leadUnitValue!=initialValue) { |
| limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
| for(/* i=latin1Length */; i<limit; ++i) { |
| p32[i]=leadUnitValue; |
| } |
| } |
| } |
| |
| trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
| |
| return actualLength; |
| } |
| |
| /* enumeration -------------------------------------------------------------- */ |
| |
| /* default UTrieEnumValue() returns the input value itself */ |
| static uint32_t U_CALLCONV |
| enumSameValue(const void * /*context*/, uint32_t value) { |
| return value; |
| } |
| |
| /** |
| * Enumerate all ranges of code points with the same relevant values. |
| * The values are transformed from the raw trie entries by the enumValue function. |
| */ |
| U_CAPI void U_EXPORT2 |
| utrie_enum(const UTrie *trie, |
| UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { |
| const uint32_t *data32; |
| const uint16_t *idx; |
| |
| uint32_t value, prevValue, initialValue; |
| UChar32 c, prev; |
| int32_t l, i, j, block, prevBlock, nullBlock, offset; |
| |
| /* check arguments */ |
| if(trie==NULL || trie->index==NULL || enumRange==NULL) { |
| return; |
| } |
| if(enumValue==NULL) { |
| enumValue=enumSameValue; |
| } |
| |
| idx=trie->index; |
| data32=trie->data32; |
| |
| /* get the enumeration value that corresponds to an initial-value trie data entry */ |
| initialValue=enumValue(context, trie->initialValue); |
| |
| if(data32==NULL) { |
| nullBlock=trie->indexLength; |
| } else { |
| nullBlock=0; |
| } |
| |
| /* set variables for previous range */ |
| prevBlock=nullBlock; |
| prev=0; |
| prevValue=initialValue; |
| |
| /* enumerate BMP - the main loop enumerates data blocks */ |
| for(i=0, c=0; c<=0xffff; ++i) { |
| if(c==0xd800) { |
| /* skip lead surrogate code _units_, go to lead surr. code _points_ */ |
| i=UTRIE_BMP_INDEX_LENGTH; |
| } else if(c==0xdc00) { |
| /* go back to regular BMP code points */ |
| i=c>>UTRIE_SHIFT; |
| } |
| |
| block=idx[i]<<UTRIE_INDEX_SHIFT; |
| if(block==prevBlock) { |
| /* the block is the same as the previous one, and filled with value */ |
| c+=UTRIE_DATA_BLOCK_LENGTH; |
| } else if(block==nullBlock) { |
| /* this is the all-initial-value block */ |
| if(prevValue!=initialValue) { |
| if(prev<c) { |
| if(!enumRange(context, prev, c, prevValue)) { |
| return; |
| } |
| } |
| prevBlock=nullBlock; |
| prev=c; |
| prevValue=initialValue; |
| } |
| c+=UTRIE_DATA_BLOCK_LENGTH; |
| } else { |
| prevBlock=block; |
| for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
| value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
| if(value!=prevValue) { |
| if(prev<c) { |
| if(!enumRange(context, prev, c, prevValue)) { |
| return; |
| } |
| } |
| if(j>0) { |
| /* the block is not filled with all the same value */ |
| prevBlock=-1; |
| } |
| prev=c; |
| prevValue=value; |
| } |
| ++c; |
| } |
| } |
| } |
| |
| /* enumerate supplementary code points */ |
| for(l=0xd800; l<0xdc00;) { |
| /* lead surrogate access */ |
| offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; |
| if(offset==nullBlock) { |
| /* no entries for a whole block of lead surrogates */ |
| if(prevValue!=initialValue) { |
| if(prev<c) { |
| if(!enumRange(context, prev, c, prevValue)) { |
| return; |
| } |
| } |
| prevBlock=nullBlock; |
| prev=c; |
| prevValue=initialValue; |
| } |
| |
| l+=UTRIE_DATA_BLOCK_LENGTH; |
| c+=UTRIE_DATA_BLOCK_LENGTH<<10; |
| continue; |
| } |
| |
| value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)]; |
| |
| /* enumerate trail surrogates for this lead surrogate */ |
| offset=trie->getFoldingOffset(value); |
| if(offset<=0) { |
| /* no data for this lead surrogate */ |
| if(prevValue!=initialValue) { |
| if(prev<c) { |
| if(!enumRange(context, prev, c, prevValue)) { |
| return; |
| } |
| } |
| prevBlock=nullBlock; |
| prev=c; |
| prevValue=initialValue; |
| } |
| |
| /* nothing else to do for the supplementary code points for this lead surrogate */ |
| c+=0x400; |
| } else { |
| /* enumerate code points for this lead surrogate */ |
| i=offset; |
| offset+=UTRIE_SURROGATE_BLOCK_COUNT; |
| do { |
| /* copy of most of the body of the BMP loop */ |
| block=idx[i]<<UTRIE_INDEX_SHIFT; |
| if(block==prevBlock) { |
| /* the block is the same as the previous one, and filled with value */ |
| c+=UTRIE_DATA_BLOCK_LENGTH; |
| } else if(block==nullBlock) { |
| /* this is the all-initial-value block */ |
| if(prevValue!=initialValue) { |
| if(prev<c) { |
| if(!enumRange(context, prev, c, prevValue)) { |
| return; |
| } |
| } |
| prevBlock=nullBlock; |
| prev=c; |
| prevValue=initialValue; |
| } |
| c+=UTRIE_DATA_BLOCK_LENGTH; |
| } else { |
| prevBlock=block; |
| for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
| value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
| if(value!=prevValue) { |
| if(prev<c) { |
| if(!enumRange(context, prev, c, prevValue)) { |
| return; |
| } |
| } |
| if(j>0) { |
| /* the block is not filled with all the same value */ |
| prevBlock=-1; |
| } |
| prev=c; |
| prevValue=value; |
| } |
| ++c; |
| } |
| } |
| } while(++i<offset); |
| } |
| |
| ++l; |
| } |
| |
| /* deliver last range */ |
| enumRange(context, prev, c, prevValue); |
| } |