| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_config.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vpx_scale_rtcd.h" |
| #include "vpx_dsp/psnr.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_dsp/vpx_filter.h" |
| #if CONFIG_INTERNAL_STATS |
| #include "vpx_dsp/ssim.h" |
| #endif |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/system_state.h" |
| #include "vpx_ports/vpx_timer.h" |
| #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| #include "vpx_util/vpx_debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| |
| #include "vp9/common/vp9_alloccommon.h" |
| #include "vp9/common/vp9_filter.h" |
| #include "vp9/common/vp9_idct.h" |
| #if CONFIG_NON_GREEDY_MV |
| #include "vp9/common/vp9_mvref_common.h" |
| #endif |
| #if CONFIG_VP9_POSTPROC |
| #include "vp9/common/vp9_postproc.h" |
| #endif |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_tile_common.h" |
| #include "vp9/common/vp9_scan.h" |
| |
| #if !CONFIG_REALTIME_ONLY |
| #include "vp9/encoder/vp9_alt_ref_aq.h" |
| #include "vp9/encoder/vp9_aq_360.h" |
| #include "vp9/encoder/vp9_aq_complexity.h" |
| #endif |
| #include "vp9/encoder/vp9_aq_cyclicrefresh.h" |
| #if !CONFIG_REALTIME_ONLY |
| #include "vp9/encoder/vp9_aq_variance.h" |
| #endif |
| #include "vp9/encoder/vp9_bitstream.h" |
| #if CONFIG_INTERNAL_STATS |
| #include "vp9/encoder/vp9_blockiness.h" |
| #endif |
| #include "vp9/encoder/vp9_context_tree.h" |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_ethread.h" |
| #include "vp9/encoder/vp9_extend.h" |
| #include "vp9/encoder/vp9_firstpass.h" |
| #include "vp9/encoder/vp9_mbgraph.h" |
| #if CONFIG_NON_GREEDY_MV |
| #include "vp9/encoder/vp9_mcomp.h" |
| #endif |
| #include "vp9/encoder/vp9_multi_thread.h" |
| #include "vp9/encoder/vp9_noise_estimate.h" |
| #include "vp9/encoder/vp9_picklpf.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/encoder/vp9_rd.h" |
| #include "vp9/encoder/vp9_resize.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/encoder/vp9_skin_detection.h" |
| #include "vp9/encoder/vp9_speed_features.h" |
| #include "vp9/encoder/vp9_svc_layercontext.h" |
| #include "vp9/encoder/vp9_temporal_filter.h" |
| #include "vp9/vp9_cx_iface.h" |
| |
| #define AM_SEGMENT_ID_INACTIVE 7 |
| #define AM_SEGMENT_ID_ACTIVE 0 |
| |
| // Whether to use high precision mv for altref computation. |
| #define ALTREF_HIGH_PRECISION_MV 1 |
| |
| // Q threshold for high precision mv. Choose a very high value for now so that |
| // HIGH_PRECISION is always chosen. |
| #define HIGH_PRECISION_MV_QTHRESH 200 |
| |
| #define FRAME_SIZE_FACTOR 128 // empirical params for context model threshold |
| #define FRAME_RATE_FACTOR 8 |
| |
| #ifdef OUTPUT_YUV_DENOISED |
| FILE *yuv_denoised_file = NULL; |
| #endif |
| #ifdef OUTPUT_YUV_SKINMAP |
| static FILE *yuv_skinmap_file = NULL; |
| #endif |
| #ifdef OUTPUT_YUV_REC |
| FILE *yuv_rec_file; |
| #endif |
| #ifdef OUTPUT_YUV_SVC_SRC |
| FILE *yuv_svc_src[3] = { NULL, NULL, NULL }; |
| #endif |
| |
| #if 0 |
| FILE *framepsnr; |
| FILE *kf_list; |
| FILE *keyfile; |
| #endif |
| |
| #ifdef ENABLE_KF_DENOISE |
| // Test condition for spatial denoise of source. |
| static int is_spatial_denoise_enabled(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| return (oxcf->pass != 1) && !is_lossless_requested(&cpi->oxcf) && |
| frame_is_intra_only(cm); |
| } |
| #endif |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| void highbd_wht_fwd_txfm(int16_t *src_diff, int bw, tran_low_t *coeff, |
| TX_SIZE tx_size); |
| #endif |
| void wht_fwd_txfm(int16_t *src_diff, int bw, tran_low_t *coeff, |
| TX_SIZE tx_size); |
| |
| #if !CONFIG_REALTIME_ONLY |
| // compute adaptive threshold for skip recoding |
| static int compute_context_model_thresh(const VP9_COMP *const cpi) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const int frame_size = (cm->width * cm->height) >> 10; |
| const int bitrate = (int)(oxcf->target_bandwidth >> 10); |
| const int qindex_factor = cm->base_qindex + (MAXQ >> 1); |
| |
| // This equation makes the threshold adaptive to frame size. |
| // Coding gain obtained by recoding comes from alternate frames of large |
| // content change. We skip recoding if the difference of previous and current |
| // frame context probability model is less than a certain threshold. |
| // The first component is the most critical part to guarantee adaptivity. |
| // Other parameters are estimated based on normal setting of hd resolution |
| // parameters. e.g frame_size = 1920x1080, bitrate = 8000, qindex_factor < 50 |
| const int thresh = |
| ((FRAME_SIZE_FACTOR * frame_size - FRAME_RATE_FACTOR * bitrate) * |
| qindex_factor) >> |
| 9; |
| |
| return thresh; |
| } |
| |
| // compute the total cost difference between current |
| // and previous frame context prob model. |
| static int compute_context_model_diff(const VP9_COMMON *const cm) { |
| const FRAME_CONTEXT *const pre_fc = |
| &cm->frame_contexts[cm->frame_context_idx]; |
| const FRAME_CONTEXT *const cur_fc = cm->fc; |
| const FRAME_COUNTS *counts = &cm->counts; |
| vpx_prob pre_last_prob, cur_last_prob; |
| int diff = 0; |
| int i, j, k, l, m, n; |
| |
| // y_mode_prob |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { |
| for (j = 0; j < INTRA_MODES - 1; ++j) { |
| diff += (int)counts->y_mode[i][j] * |
| (pre_fc->y_mode_prob[i][j] - cur_fc->y_mode_prob[i][j]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->y_mode_prob[i][INTRA_MODES - 2]; |
| cur_last_prob = MAX_PROB - cur_fc->y_mode_prob[i][INTRA_MODES - 2]; |
| |
| diff += (int)counts->y_mode[i][INTRA_MODES - 1] * |
| (pre_last_prob - cur_last_prob); |
| } |
| |
| // uv_mode_prob |
| for (i = 0; i < INTRA_MODES; ++i) { |
| for (j = 0; j < INTRA_MODES - 1; ++j) { |
| diff += (int)counts->uv_mode[i][j] * |
| (pre_fc->uv_mode_prob[i][j] - cur_fc->uv_mode_prob[i][j]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->uv_mode_prob[i][INTRA_MODES - 2]; |
| cur_last_prob = MAX_PROB - cur_fc->uv_mode_prob[i][INTRA_MODES - 2]; |
| |
| diff += (int)counts->uv_mode[i][INTRA_MODES - 1] * |
| (pre_last_prob - cur_last_prob); |
| } |
| |
| // partition_prob |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) { |
| for (j = 0; j < PARTITION_TYPES - 1; ++j) { |
| diff += (int)counts->partition[i][j] * |
| (pre_fc->partition_prob[i][j] - cur_fc->partition_prob[i][j]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->partition_prob[i][PARTITION_TYPES - 2]; |
| cur_last_prob = MAX_PROB - cur_fc->partition_prob[i][PARTITION_TYPES - 2]; |
| |
| diff += (int)counts->partition[i][PARTITION_TYPES - 1] * |
| (pre_last_prob - cur_last_prob); |
| } |
| |
| // coef_probs |
| for (i = 0; i < TX_SIZES; ++i) { |
| for (j = 0; j < PLANE_TYPES; ++j) { |
| for (k = 0; k < REF_TYPES; ++k) { |
| for (l = 0; l < COEF_BANDS; ++l) { |
| for (m = 0; m < BAND_COEFF_CONTEXTS(l); ++m) { |
| for (n = 0; n < UNCONSTRAINED_NODES; ++n) { |
| diff += (int)counts->coef[i][j][k][l][m][n] * |
| (pre_fc->coef_probs[i][j][k][l][m][n] - |
| cur_fc->coef_probs[i][j][k][l][m][n]); |
| } |
| |
| pre_last_prob = |
| MAX_PROB - |
| pre_fc->coef_probs[i][j][k][l][m][UNCONSTRAINED_NODES - 1]; |
| cur_last_prob = |
| MAX_PROB - |
| cur_fc->coef_probs[i][j][k][l][m][UNCONSTRAINED_NODES - 1]; |
| |
| diff += (int)counts->coef[i][j][k][l][m][UNCONSTRAINED_NODES] * |
| (pre_last_prob - cur_last_prob); |
| } |
| } |
| } |
| } |
| } |
| |
| // switchable_interp_prob |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) { |
| for (j = 0; j < SWITCHABLE_FILTERS - 1; ++j) { |
| diff += (int)counts->switchable_interp[i][j] * |
| (pre_fc->switchable_interp_prob[i][j] - |
| cur_fc->switchable_interp_prob[i][j]); |
| } |
| pre_last_prob = |
| MAX_PROB - pre_fc->switchable_interp_prob[i][SWITCHABLE_FILTERS - 2]; |
| cur_last_prob = |
| MAX_PROB - cur_fc->switchable_interp_prob[i][SWITCHABLE_FILTERS - 2]; |
| |
| diff += (int)counts->switchable_interp[i][SWITCHABLE_FILTERS - 1] * |
| (pre_last_prob - cur_last_prob); |
| } |
| |
| // inter_mode_probs |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
| for (j = 0; j < INTER_MODES - 1; ++j) { |
| diff += (int)counts->inter_mode[i][j] * |
| (pre_fc->inter_mode_probs[i][j] - cur_fc->inter_mode_probs[i][j]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->inter_mode_probs[i][INTER_MODES - 2]; |
| cur_last_prob = MAX_PROB - cur_fc->inter_mode_probs[i][INTER_MODES - 2]; |
| |
| diff += (int)counts->inter_mode[i][INTER_MODES - 1] * |
| (pre_last_prob - cur_last_prob); |
| } |
| |
| // intra_inter_prob |
| for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { |
| diff += (int)counts->intra_inter[i][0] * |
| (pre_fc->intra_inter_prob[i] - cur_fc->intra_inter_prob[i]); |
| |
| pre_last_prob = MAX_PROB - pre_fc->intra_inter_prob[i]; |
| cur_last_prob = MAX_PROB - cur_fc->intra_inter_prob[i]; |
| |
| diff += (int)counts->intra_inter[i][1] * (pre_last_prob - cur_last_prob); |
| } |
| |
| // comp_inter_prob |
| for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { |
| diff += (int)counts->comp_inter[i][0] * |
| (pre_fc->comp_inter_prob[i] - cur_fc->comp_inter_prob[i]); |
| |
| pre_last_prob = MAX_PROB - pre_fc->comp_inter_prob[i]; |
| cur_last_prob = MAX_PROB - cur_fc->comp_inter_prob[i]; |
| |
| diff += (int)counts->comp_inter[i][1] * (pre_last_prob - cur_last_prob); |
| } |
| |
| // single_ref_prob |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| for (j = 0; j < 2; ++j) { |
| diff += (int)counts->single_ref[i][j][0] * |
| (pre_fc->single_ref_prob[i][j] - cur_fc->single_ref_prob[i][j]); |
| |
| pre_last_prob = MAX_PROB - pre_fc->single_ref_prob[i][j]; |
| cur_last_prob = MAX_PROB - cur_fc->single_ref_prob[i][j]; |
| |
| diff += |
| (int)counts->single_ref[i][j][1] * (pre_last_prob - cur_last_prob); |
| } |
| } |
| |
| // comp_ref_prob |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| diff += (int)counts->comp_ref[i][0] * |
| (pre_fc->comp_ref_prob[i] - cur_fc->comp_ref_prob[i]); |
| |
| pre_last_prob = MAX_PROB - pre_fc->comp_ref_prob[i]; |
| cur_last_prob = MAX_PROB - cur_fc->comp_ref_prob[i]; |
| |
| diff += (int)counts->comp_ref[i][1] * (pre_last_prob - cur_last_prob); |
| } |
| |
| // tx_probs |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { |
| // p32x32 |
| for (j = 0; j < TX_SIZES - 1; ++j) { |
| diff += (int)counts->tx.p32x32[i][j] * |
| (pre_fc->tx_probs.p32x32[i][j] - cur_fc->tx_probs.p32x32[i][j]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->tx_probs.p32x32[i][TX_SIZES - 2]; |
| cur_last_prob = MAX_PROB - cur_fc->tx_probs.p32x32[i][TX_SIZES - 2]; |
| |
| diff += (int)counts->tx.p32x32[i][TX_SIZES - 1] * |
| (pre_last_prob - cur_last_prob); |
| |
| // p16x16 |
| for (j = 0; j < TX_SIZES - 2; ++j) { |
| diff += (int)counts->tx.p16x16[i][j] * |
| (pre_fc->tx_probs.p16x16[i][j] - cur_fc->tx_probs.p16x16[i][j]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->tx_probs.p16x16[i][TX_SIZES - 3]; |
| cur_last_prob = MAX_PROB - cur_fc->tx_probs.p16x16[i][TX_SIZES - 3]; |
| |
| diff += (int)counts->tx.p16x16[i][TX_SIZES - 2] * |
| (pre_last_prob - cur_last_prob); |
| |
| // p8x8 |
| for (j = 0; j < TX_SIZES - 3; ++j) { |
| diff += (int)counts->tx.p8x8[i][j] * |
| (pre_fc->tx_probs.p8x8[i][j] - cur_fc->tx_probs.p8x8[i][j]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->tx_probs.p8x8[i][TX_SIZES - 4]; |
| cur_last_prob = MAX_PROB - cur_fc->tx_probs.p8x8[i][TX_SIZES - 4]; |
| |
| diff += |
| (int)counts->tx.p8x8[i][TX_SIZES - 3] * (pre_last_prob - cur_last_prob); |
| } |
| |
| // skip_probs |
| for (i = 0; i < SKIP_CONTEXTS; ++i) { |
| diff += (int)counts->skip[i][0] * |
| (pre_fc->skip_probs[i] - cur_fc->skip_probs[i]); |
| |
| pre_last_prob = MAX_PROB - pre_fc->skip_probs[i]; |
| cur_last_prob = MAX_PROB - cur_fc->skip_probs[i]; |
| |
| diff += (int)counts->skip[i][1] * (pre_last_prob - cur_last_prob); |
| } |
| |
| // mv |
| for (i = 0; i < MV_JOINTS - 1; ++i) { |
| diff += (int)counts->mv.joints[i] * |
| (pre_fc->nmvc.joints[i] - cur_fc->nmvc.joints[i]); |
| } |
| pre_last_prob = MAX_PROB - pre_fc->nmvc.joints[MV_JOINTS - 2]; |
| cur_last_prob = MAX_PROB - cur_fc->nmvc.joints[MV_JOINTS - 2]; |
| |
| diff += |
| (int)counts->mv.joints[MV_JOINTS - 1] * (pre_last_prob - cur_last_prob); |
| |
| for (i = 0; i < 2; ++i) { |
| const nmv_component_counts *nmv_count = &counts->mv.comps[i]; |
| const nmv_component *pre_nmv_prob = &pre_fc->nmvc.comps[i]; |
| const nmv_component *cur_nmv_prob = &cur_fc->nmvc.comps[i]; |
| |
| // sign |
| diff += (int)nmv_count->sign[0] * (pre_nmv_prob->sign - cur_nmv_prob->sign); |
| |
| pre_last_prob = MAX_PROB - pre_nmv_prob->sign; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->sign; |
| |
| diff += (int)nmv_count->sign[1] * (pre_last_prob - cur_last_prob); |
| |
| // classes |
| for (j = 0; j < MV_CLASSES - 1; ++j) { |
| diff += (int)nmv_count->classes[j] * |
| (pre_nmv_prob->classes[j] - cur_nmv_prob->classes[j]); |
| } |
| pre_last_prob = MAX_PROB - pre_nmv_prob->classes[MV_CLASSES - 2]; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->classes[MV_CLASSES - 2]; |
| |
| diff += (int)nmv_count->classes[MV_CLASSES - 1] * |
| (pre_last_prob - cur_last_prob); |
| |
| // class0 |
| for (j = 0; j < CLASS0_SIZE - 1; ++j) { |
| diff += (int)nmv_count->class0[j] * |
| (pre_nmv_prob->class0[j] - cur_nmv_prob->class0[j]); |
| } |
| pre_last_prob = MAX_PROB - pre_nmv_prob->class0[CLASS0_SIZE - 2]; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->class0[CLASS0_SIZE - 2]; |
| |
| diff += (int)nmv_count->class0[CLASS0_SIZE - 1] * |
| (pre_last_prob - cur_last_prob); |
| |
| // bits |
| for (j = 0; j < MV_OFFSET_BITS; ++j) { |
| diff += (int)nmv_count->bits[j][0] * |
| (pre_nmv_prob->bits[j] - cur_nmv_prob->bits[j]); |
| |
| pre_last_prob = MAX_PROB - pre_nmv_prob->bits[j]; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->bits[j]; |
| |
| diff += (int)nmv_count->bits[j][1] * (pre_last_prob - cur_last_prob); |
| } |
| |
| // class0_fp |
| for (j = 0; j < CLASS0_SIZE; ++j) { |
| for (k = 0; k < MV_FP_SIZE - 1; ++k) { |
| diff += (int)nmv_count->class0_fp[j][k] * |
| (pre_nmv_prob->class0_fp[j][k] - cur_nmv_prob->class0_fp[j][k]); |
| } |
| pre_last_prob = MAX_PROB - pre_nmv_prob->class0_fp[j][MV_FP_SIZE - 2]; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->class0_fp[j][MV_FP_SIZE - 2]; |
| |
| diff += (int)nmv_count->class0_fp[j][MV_FP_SIZE - 1] * |
| (pre_last_prob - cur_last_prob); |
| } |
| |
| // fp |
| for (j = 0; j < MV_FP_SIZE - 1; ++j) { |
| diff += |
| (int)nmv_count->fp[j] * (pre_nmv_prob->fp[j] - cur_nmv_prob->fp[j]); |
| } |
| pre_last_prob = MAX_PROB - pre_nmv_prob->fp[MV_FP_SIZE - 2]; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->fp[MV_FP_SIZE - 2]; |
| |
| diff += |
| (int)nmv_count->fp[MV_FP_SIZE - 1] * (pre_last_prob - cur_last_prob); |
| |
| // class0_hp |
| diff += (int)nmv_count->class0_hp[0] * |
| (pre_nmv_prob->class0_hp - cur_nmv_prob->class0_hp); |
| |
| pre_last_prob = MAX_PROB - pre_nmv_prob->class0_hp; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->class0_hp; |
| |
| diff += (int)nmv_count->class0_hp[1] * (pre_last_prob - cur_last_prob); |
| |
| // hp |
| diff += (int)nmv_count->hp[0] * (pre_nmv_prob->hp - cur_nmv_prob->hp); |
| |
| pre_last_prob = MAX_PROB - pre_nmv_prob->hp; |
| cur_last_prob = MAX_PROB - cur_nmv_prob->hp; |
| |
| diff += (int)nmv_count->hp[1] * (pre_last_prob - cur_last_prob); |
| } |
| |
| return -diff; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Test for whether to calculate metrics for the frame. |
| static int is_psnr_calc_enabled(const VP9_COMP *cpi) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| return cpi->b_calculate_psnr && (oxcf->pass != 1) && cm->show_frame; |
| } |
| |
| /* clang-format off */ |
| const Vp9LevelSpec vp9_level_defs[VP9_LEVELS] = { |
| // sample rate size breadth bitrate cpb |
| { LEVEL_1, 829440, 36864, 512, 200, 400, 2, 1, 4, 8 }, |
| { LEVEL_1_1, 2764800, 73728, 768, 800, 1000, 2, 1, 4, 8 }, |
| { LEVEL_2, 4608000, 122880, 960, 1800, 1500, 2, 1, 4, 8 }, |
| { LEVEL_2_1, 9216000, 245760, 1344, 3600, 2800, 2, 2, 4, 8 }, |
| { LEVEL_3, 20736000, 552960, 2048, 7200, 6000, 2, 4, 4, 8 }, |
| { LEVEL_3_1, 36864000, 983040, 2752, 12000, 10000, 2, 4, 4, 8 }, |
| { LEVEL_4, 83558400, 2228224, 4160, 18000, 16000, 4, 4, 4, 8 }, |
| { LEVEL_4_1, 160432128, 2228224, 4160, 30000, 18000, 4, 4, 5, 6 }, |
| { LEVEL_5, 311951360, 8912896, 8384, 60000, 36000, 6, 8, 6, 4 }, |
| { LEVEL_5_1, 588251136, 8912896, 8384, 120000, 46000, 8, 8, 10, 4 }, |
| // TODO(huisu): update max_cpb_size for level 5_2 ~ 6_2 when |
| // they are finalized (currently tentative). |
| { LEVEL_5_2, 1176502272, 8912896, 8384, 180000, 90000, 8, 8, 10, 4 }, |
| { LEVEL_6, 1176502272, 35651584, 16832, 180000, 90000, 8, 16, 10, 4 }, |
| { LEVEL_6_1, 2353004544u, 35651584, 16832, 240000, 180000, 8, 16, 10, 4 }, |
| { LEVEL_6_2, 4706009088u, 35651584, 16832, 480000, 360000, 8, 16, 10, 4 }, |
| }; |
| /* clang-format on */ |
| |
| static const char *level_fail_messages[TARGET_LEVEL_FAIL_IDS] = { |
| "The average bit-rate is too high.", |
| "The picture size is too large.", |
| "The picture width/height is too large.", |
| "The luma sample rate is too large.", |
| "The CPB size is too large.", |
| "The compression ratio is too small", |
| "Too many column tiles are used.", |
| "The alt-ref distance is too small.", |
| "Too many reference buffers are used." |
| }; |
| |
| static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) { |
| switch (mode) { |
| case NORMAL: |
| *hr = 1; |
| *hs = 1; |
| break; |
| case FOURFIVE: |
| *hr = 4; |
| *hs = 5; |
| break; |
| case THREEFIVE: |
| *hr = 3; |
| *hs = 5; |
| break; |
| default: |
| assert(mode == ONETWO); |
| *hr = 1; |
| *hs = 2; |
| break; |
| } |
| } |
| |
| // Mark all inactive blocks as active. Other segmentation features may be set |
| // so memset cannot be used, instead only inactive blocks should be reset. |
| static void suppress_active_map(VP9_COMP *cpi) { |
| unsigned char *const seg_map = cpi->segmentation_map; |
| |
| if (cpi->active_map.enabled || cpi->active_map.update) { |
| const int rows = cpi->common.mi_rows; |
| const int cols = cpi->common.mi_cols; |
| int i; |
| |
| for (i = 0; i < rows * cols; ++i) |
| if (seg_map[i] == AM_SEGMENT_ID_INACTIVE) |
| seg_map[i] = AM_SEGMENT_ID_ACTIVE; |
| } |
| } |
| |
| static void apply_active_map(VP9_COMP *cpi) { |
| struct segmentation *const seg = &cpi->common.seg; |
| unsigned char *const seg_map = cpi->segmentation_map; |
| const unsigned char *const active_map = cpi->active_map.map; |
| int i; |
| |
| assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE); |
| |
| if (frame_is_intra_only(&cpi->common)) { |
| cpi->active_map.enabled = 0; |
| cpi->active_map.update = 1; |
| } |
| |
| if (cpi->active_map.update) { |
| if (cpi->active_map.enabled) { |
| for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i) |
| if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i]; |
| vp9_enable_segmentation(seg); |
| vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); |
| vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF); |
| // Setting the data to -MAX_LOOP_FILTER will result in the computed loop |
| // filter level being zero regardless of the value of seg->abs_delta. |
| vp9_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF, |
| -MAX_LOOP_FILTER); |
| } else { |
| vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); |
| vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF); |
| if (seg->enabled) { |
| seg->update_data = 1; |
| seg->update_map = 1; |
| } |
| } |
| cpi->active_map.update = 0; |
| } |
| } |
| |
| static void apply_roi_map(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| struct segmentation *const seg = &cm->seg; |
| vpx_roi_map_t *roi = &cpi->roi; |
| const int *delta_q = roi->delta_q; |
| const int *delta_lf = roi->delta_lf; |
| const int *skip = roi->skip; |
| int ref_frame[8]; |
| int internal_delta_q[MAX_SEGMENTS]; |
| int i; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| |
| // TODO(jianj): Investigate why ROI not working in speed < 5 or in non |
| // realtime mode. |
| if (cpi->oxcf.mode != REALTIME || cpi->oxcf.speed < 5) return; |
| if (!roi->enabled) return; |
| |
| memcpy(&ref_frame, roi->ref_frame, sizeof(ref_frame)); |
| |
| vp9_enable_segmentation(seg); |
| vp9_clearall_segfeatures(seg); |
| // Select delta coding method; |
| seg->abs_delta = SEGMENT_DELTADATA; |
| |
| memcpy(cpi->segmentation_map, roi->roi_map, (cm->mi_rows * cm->mi_cols)); |
| |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| // Translate the external delta q values to internal values. |
| internal_delta_q[i] = vp9_quantizer_to_qindex(abs(delta_q[i])); |
| if (delta_q[i] < 0) internal_delta_q[i] = -internal_delta_q[i]; |
| vp9_disable_segfeature(seg, i, SEG_LVL_ALT_Q); |
| vp9_disable_segfeature(seg, i, SEG_LVL_ALT_LF); |
| if (internal_delta_q[i] != 0) { |
| vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q); |
| vp9_set_segdata(seg, i, SEG_LVL_ALT_Q, internal_delta_q[i]); |
| } |
| if (delta_lf[i] != 0) { |
| vp9_enable_segfeature(seg, i, SEG_LVL_ALT_LF); |
| vp9_set_segdata(seg, i, SEG_LVL_ALT_LF, delta_lf[i]); |
| } |
| if (skip[i] != 0) { |
| vp9_enable_segfeature(seg, i, SEG_LVL_SKIP); |
| vp9_set_segdata(seg, i, SEG_LVL_SKIP, skip[i]); |
| } |
| if (ref_frame[i] >= 0) { |
| int valid_ref = 1; |
| // ALTREF is not used as reference for nonrd_pickmode with 0 lag. |
| if (ref_frame[i] == ALTREF_FRAME && cpi->sf.use_nonrd_pick_mode) |
| valid_ref = 0; |
| // If GOLDEN is selected, make sure it's set as reference. |
| if (ref_frame[i] == GOLDEN_FRAME && |
| !(cpi->ref_frame_flags & flag_list[ref_frame[i]])) { |
| valid_ref = 0; |
| } |
| // GOLDEN was updated in previous encoded frame, so GOLDEN and LAST are |
| // same reference. |
| if (ref_frame[i] == GOLDEN_FRAME && cpi->rc.frames_since_golden == 0) |
| ref_frame[i] = LAST_FRAME; |
| if (valid_ref) { |
| vp9_enable_segfeature(seg, i, SEG_LVL_REF_FRAME); |
| vp9_set_segdata(seg, i, SEG_LVL_REF_FRAME, ref_frame[i]); |
| } |
| } |
| } |
| roi->enabled = 1; |
| } |
| |
| static void init_level_info(Vp9LevelInfo *level_info) { |
| Vp9LevelStats *const level_stats = &level_info->level_stats; |
| Vp9LevelSpec *const level_spec = &level_info->level_spec; |
| |
| memset(level_stats, 0, sizeof(*level_stats)); |
| memset(level_spec, 0, sizeof(*level_spec)); |
| level_spec->level = LEVEL_UNKNOWN; |
| level_spec->min_altref_distance = INT_MAX; |
| } |
| |
| static int check_seg_range(int seg_data[8], int range) { |
| return !(abs(seg_data[0]) > range || abs(seg_data[1]) > range || |
| abs(seg_data[2]) > range || abs(seg_data[3]) > range || |
| abs(seg_data[4]) > range || abs(seg_data[5]) > range || |
| abs(seg_data[6]) > range || abs(seg_data[7]) > range); |
| } |
| |
| VP9_LEVEL vp9_get_level(const Vp9LevelSpec *const level_spec) { |
| int i; |
| const Vp9LevelSpec *this_level; |
| |
| vpx_clear_system_state(); |
| |
| for (i = 0; i < VP9_LEVELS; ++i) { |
| this_level = &vp9_level_defs[i]; |
| if ((double)level_spec->max_luma_sample_rate > |
| (double)this_level->max_luma_sample_rate * |
| (1 + SAMPLE_RATE_GRACE_P) || |
| level_spec->max_luma_picture_size > this_level->max_luma_picture_size || |
| level_spec->max_luma_picture_breadth > |
| this_level->max_luma_picture_breadth || |
| level_spec->average_bitrate > this_level->average_bitrate || |
| level_spec->max_cpb_size > this_level->max_cpb_size || |
| level_spec->compression_ratio < this_level->compression_ratio || |
| level_spec->max_col_tiles > this_level->max_col_tiles || |
| level_spec->min_altref_distance < this_level->min_altref_distance || |
| level_spec->max_ref_frame_buffers > this_level->max_ref_frame_buffers) |
| continue; |
| break; |
| } |
| return (i == VP9_LEVELS) ? LEVEL_UNKNOWN : vp9_level_defs[i].level; |
| } |
| |
| int vp9_set_roi_map(VP9_COMP *cpi, unsigned char *map, unsigned int rows, |
| unsigned int cols, int delta_q[8], int delta_lf[8], |
| int skip[8], int ref_frame[8]) { |
| VP9_COMMON *cm = &cpi->common; |
| vpx_roi_map_t *roi = &cpi->roi; |
| const int range = 63; |
| const int ref_frame_range = 3; // Alt-ref |
| const int skip_range = 1; |
| const int frame_rows = cpi->common.mi_rows; |
| const int frame_cols = cpi->common.mi_cols; |
| |
| // Check number of rows and columns match |
| if (frame_rows != (int)rows || frame_cols != (int)cols) { |
| return -1; |
| } |
| |
| if (!check_seg_range(delta_q, range) || !check_seg_range(delta_lf, range) || |
| !check_seg_range(ref_frame, ref_frame_range) || |
| !check_seg_range(skip, skip_range)) |
| return -1; |
| |
| // Also disable segmentation if no deltas are specified. |
| if (!map || |
| (!(delta_q[0] | delta_q[1] | delta_q[2] | delta_q[3] | delta_q[4] | |
| delta_q[5] | delta_q[6] | delta_q[7] | delta_lf[0] | delta_lf[1] | |
| delta_lf[2] | delta_lf[3] | delta_lf[4] | delta_lf[5] | delta_lf[6] | |
| delta_lf[7] | skip[0] | skip[1] | skip[2] | skip[3] | skip[4] | |
| skip[5] | skip[6] | skip[7]) && |
| (ref_frame[0] == -1 && ref_frame[1] == -1 && ref_frame[2] == -1 && |
| ref_frame[3] == -1 && ref_frame[4] == -1 && ref_frame[5] == -1 && |
| ref_frame[6] == -1 && ref_frame[7] == -1))) { |
| vp9_disable_segmentation(&cm->seg); |
| cpi->roi.enabled = 0; |
| return 0; |
| } |
| |
| if (roi->roi_map) { |
| vpx_free(roi->roi_map); |
| roi->roi_map = NULL; |
| } |
| CHECK_MEM_ERROR(cm, roi->roi_map, vpx_malloc(rows * cols)); |
| |
| // Copy to ROI structure in the compressor. |
| memcpy(roi->roi_map, map, rows * cols); |
| memcpy(&roi->delta_q, delta_q, MAX_SEGMENTS * sizeof(delta_q[0])); |
| memcpy(&roi->delta_lf, delta_lf, MAX_SEGMENTS * sizeof(delta_lf[0])); |
| memcpy(&roi->skip, skip, MAX_SEGMENTS * sizeof(skip[0])); |
| memcpy(&roi->ref_frame, ref_frame, MAX_SEGMENTS * sizeof(ref_frame[0])); |
| roi->enabled = 1; |
| roi->rows = rows; |
| roi->cols = cols; |
| |
| return 0; |
| } |
| |
| int vp9_set_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows, |
| int cols) { |
| if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { |
| unsigned char *const active_map_8x8 = cpi->active_map.map; |
| const int mi_rows = cpi->common.mi_rows; |
| const int mi_cols = cpi->common.mi_cols; |
| cpi->active_map.update = 1; |
| if (new_map_16x16) { |
| int r, c; |
| for (r = 0; r < mi_rows; ++r) { |
| for (c = 0; c < mi_cols; ++c) { |
| active_map_8x8[r * mi_cols + c] = |
| new_map_16x16[(r >> 1) * cols + (c >> 1)] |
| ? AM_SEGMENT_ID_ACTIVE |
| : AM_SEGMENT_ID_INACTIVE; |
| } |
| } |
| cpi->active_map.enabled = 1; |
| } else { |
| cpi->active_map.enabled = 0; |
| } |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| |
| int vp9_get_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows, |
| int cols) { |
| if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols && |
| new_map_16x16) { |
| unsigned char *const seg_map_8x8 = cpi->segmentation_map; |
| const int mi_rows = cpi->common.mi_rows; |
| const int mi_cols = cpi->common.mi_cols; |
| memset(new_map_16x16, !cpi->active_map.enabled, rows * cols); |
| if (cpi->active_map.enabled) { |
| int r, c; |
| for (r = 0; r < mi_rows; ++r) { |
| for (c = 0; c < mi_cols; ++c) { |
| // Cyclic refresh segments are considered active despite not having |
| // AM_SEGMENT_ID_ACTIVE |
| new_map_16x16[(r >> 1) * cols + (c >> 1)] |= |
| seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE; |
| } |
| } |
| } |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| |
| void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) { |
| MACROBLOCK *const mb = &cpi->td.mb; |
| cpi->common.allow_high_precision_mv = allow_high_precision_mv; |
| if (cpi->common.allow_high_precision_mv) { |
| mb->mvcost = mb->nmvcost_hp; |
| mb->mvsadcost = mb->nmvsadcost_hp; |
| } else { |
| mb->mvcost = mb->nmvcost; |
| mb->mvsadcost = mb->nmvsadcost; |
| } |
| } |
| |
| static void setup_frame(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| // Set up entropy context depending on frame type. The decoder mandates |
| // the use of the default context, index 0, for keyframes and inter |
| // frames where the error_resilient_mode or intra_only flag is set. For |
| // other inter-frames the encoder currently uses only two contexts; |
| // context 1 for ALTREF frames and context 0 for the others. |
| if (frame_is_intra_only(cm) || cm->error_resilient_mode) { |
| vp9_setup_past_independence(cm); |
| } else { |
| if (!cpi->use_svc) cm->frame_context_idx = cpi->refresh_alt_ref_frame; |
| } |
| |
| // TODO(jingning): Overwrite the frame_context_idx index in multi-layer ARF |
| // case. Need some further investigation on if we could apply this to single |
| // layer ARF case as well. |
| if (cpi->multi_layer_arf && !cpi->use_svc) { |
| GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| const int gf_group_index = gf_group->index; |
| const int boost_frame = |
| !cpi->rc.is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame); |
| |
| // frame_context_idx Frame Type |
| // 0 Intra only frame, base layer ARF |
| // 1 ARFs with layer depth = 2,3 |
| // 2 ARFs with layer depth > 3 |
| // 3 Non-boosted frames |
| if (frame_is_intra_only(cm)) { |
| cm->frame_context_idx = 0; |
| } else if (boost_frame) { |
| if (gf_group->rf_level[gf_group_index] == GF_ARF_STD) |
| cm->frame_context_idx = 0; |
| else if (gf_group->layer_depth[gf_group_index] <= 3) |
| cm->frame_context_idx = 1; |
| else |
| cm->frame_context_idx = 2; |
| } else { |
| cm->frame_context_idx = 3; |
| } |
| } |
| |
| if (cm->frame_type == KEY_FRAME) { |
| cpi->refresh_golden_frame = 1; |
| cpi->refresh_alt_ref_frame = 1; |
| vp9_zero(cpi->interp_filter_selected); |
| } else { |
| *cm->fc = cm->frame_contexts[cm->frame_context_idx]; |
| vp9_zero(cpi->interp_filter_selected[0]); |
| } |
| } |
| |
| static void vp9_enc_setup_mi(VP9_COMMON *cm) { |
| int i; |
| cm->mi = cm->mip + cm->mi_stride + 1; |
| memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip)); |
| cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; |
| // Clear top border row |
| memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride); |
| // Clear left border column |
| for (i = 1; i < cm->mi_rows + 1; ++i) |
| memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip)); |
| |
| cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; |
| cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; |
| |
| memset(cm->mi_grid_base, 0, |
| cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base)); |
| } |
| |
| static int vp9_enc_alloc_mi(VP9_COMMON *cm, int mi_size) { |
| cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip)); |
| if (!cm->mip) return 1; |
| cm->prev_mip = vpx_calloc(mi_size, sizeof(*cm->prev_mip)); |
| if (!cm->prev_mip) return 1; |
| cm->mi_alloc_size = mi_size; |
| |
| cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *)); |
| if (!cm->mi_grid_base) return 1; |
| cm->prev_mi_grid_base = |
| (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *)); |
| if (!cm->prev_mi_grid_base) return 1; |
| |
| return 0; |
| } |
| |
| static void vp9_enc_free_mi(VP9_COMMON *cm) { |
| vpx_free(cm->mip); |
| cm->mip = NULL; |
| vpx_free(cm->prev_mip); |
| cm->prev_mip = NULL; |
| vpx_free(cm->mi_grid_base); |
| cm->mi_grid_base = NULL; |
| vpx_free(cm->prev_mi_grid_base); |
| cm->prev_mi_grid_base = NULL; |
| cm->mi_alloc_size = 0; |
| } |
| |
| static void vp9_swap_mi_and_prev_mi(VP9_COMMON *cm) { |
| // Current mip will be the prev_mip for the next frame. |
| MODE_INFO **temp_base = cm->prev_mi_grid_base; |
| MODE_INFO *temp = cm->prev_mip; |
| |
| // Skip update prev_mi frame in show_existing_frame mode. |
| if (cm->show_existing_frame) return; |
| |
| cm->prev_mip = cm->mip; |
| cm->mip = temp; |
| |
| // Update the upper left visible macroblock ptrs. |
| cm->mi = cm->mip + cm->mi_stride + 1; |
| cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; |
| |
| cm->prev_mi_grid_base = cm->mi_grid_base; |
| cm->mi_grid_base = temp_base; |
| cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; |
| cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; |
| } |
| |
| void vp9_initialize_enc(void) { |
| static volatile int init_done = 0; |
| |
| if (!init_done) { |
| vp9_rtcd(); |
| vpx_dsp_rtcd(); |
| vpx_scale_rtcd(); |
| vp9_init_intra_predictors(); |
| vp9_init_me_luts(); |
| vp9_rc_init_minq_luts(); |
| vp9_entropy_mv_init(); |
| #if !CONFIG_REALTIME_ONLY |
| vp9_temporal_filter_init(); |
| #endif |
| init_done = 1; |
| } |
| } |
| |
| static void dealloc_compressor_data(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| int i; |
| |
| vpx_free(cpi->mbmi_ext_base); |
| cpi->mbmi_ext_base = NULL; |
| |
| vpx_free(cpi->tile_data); |
| cpi->tile_data = NULL; |
| |
| vpx_free(cpi->segmentation_map); |
| cpi->segmentation_map = NULL; |
| vpx_free(cpi->coding_context.last_frame_seg_map_copy); |
| cpi->coding_context.last_frame_seg_map_copy = NULL; |
| |
| vpx_free(cpi->nmvcosts[0]); |
| vpx_free(cpi->nmvcosts[1]); |
| cpi->nmvcosts[0] = NULL; |
| cpi->nmvcosts[1] = NULL; |
| |
| vpx_free(cpi->nmvcosts_hp[0]); |
| vpx_free(cpi->nmvcosts_hp[1]); |
| cpi->nmvcosts_hp[0] = NULL; |
| cpi->nmvcosts_hp[1] = NULL; |
| |
| vpx_free(cpi->nmvsadcosts[0]); |
| vpx_free(cpi->nmvsadcosts[1]); |
| cpi->nmvsadcosts[0] = NULL; |
| cpi->nmvsadcosts[1] = NULL; |
| |
| vpx_free(cpi->nmvsadcosts_hp[0]); |
| vpx_free(cpi->nmvsadcosts_hp[1]); |
| cpi->nmvsadcosts_hp[0] = NULL; |
| cpi->nmvsadcosts_hp[1] = NULL; |
| |
| vpx_free(cpi->skin_map); |
| cpi->skin_map = NULL; |
| |
| vpx_free(cpi->prev_partition); |
| cpi->prev_partition = NULL; |
| |
| vpx_free(cpi->svc.prev_partition_svc); |
| cpi->svc.prev_partition_svc = NULL; |
| |
| vpx_free(cpi->prev_segment_id); |
| cpi->prev_segment_id = NULL; |
| |
| vpx_free(cpi->prev_variance_low); |
| cpi->prev_variance_low = NULL; |
| |
| vpx_free(cpi->copied_frame_cnt); |
| cpi->copied_frame_cnt = NULL; |
| |
| vpx_free(cpi->content_state_sb_fd); |
| cpi->content_state_sb_fd = NULL; |
| |
| vpx_free(cpi->count_arf_frame_usage); |
| cpi->count_arf_frame_usage = NULL; |
| vpx_free(cpi->count_lastgolden_frame_usage); |
| cpi->count_lastgolden_frame_usage = NULL; |
| |
| vp9_cyclic_refresh_free(cpi->cyclic_refresh); |
| cpi->cyclic_refresh = NULL; |
| |
| vpx_free(cpi->active_map.map); |
| cpi->active_map.map = NULL; |
| |
| vpx_free(cpi->roi.roi_map); |
| cpi->roi.roi_map = NULL; |
| |
| vpx_free(cpi->consec_zero_mv); |
| cpi->consec_zero_mv = NULL; |
| |
| vpx_free(cpi->mb_wiener_variance); |
| cpi->mb_wiener_variance = NULL; |
| |
| vpx_free(cpi->mi_ssim_rdmult_scaling_factors); |
| cpi->mi_ssim_rdmult_scaling_factors = NULL; |
| |
| #if CONFIG_RATE_CTRL |
| free_partition_info(cpi); |
| free_motion_vector_info(cpi); |
| free_fp_motion_vector_info(cpi); |
| #endif |
| |
| vp9_free_ref_frame_buffers(cm->buffer_pool); |
| #if CONFIG_VP9_POSTPROC |
| vp9_free_postproc_buffers(cm); |
| #endif |
| vp9_free_context_buffers(cm); |
| |
| vpx_free_frame_buffer(&cpi->last_frame_uf); |
| vpx_free_frame_buffer(&cpi->scaled_source); |
| vpx_free_frame_buffer(&cpi->scaled_last_source); |
| vpx_free_frame_buffer(&cpi->alt_ref_buffer); |
| #ifdef ENABLE_KF_DENOISE |
| vpx_free_frame_buffer(&cpi->raw_unscaled_source); |
| vpx_free_frame_buffer(&cpi->raw_scaled_source); |
| #endif |
| |
| vp9_lookahead_destroy(cpi->lookahead); |
| |
| vpx_free(cpi->tile_tok[0][0]); |
| cpi->tile_tok[0][0] = 0; |
| |
| vpx_free(cpi->tplist[0][0]); |
| cpi->tplist[0][0] = NULL; |
| |
| vp9_free_pc_tree(&cpi->td); |
| |
| for (i = 0; i < cpi->svc.number_spatial_layers; ++i) { |
| LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i]; |
| vpx_free(lc->rc_twopass_stats_in.buf); |
| lc->rc_twopass_stats_in.buf = NULL; |
| lc->rc_twopass_stats_in.sz = 0; |
| } |
| |
| if (cpi->source_diff_var != NULL) { |
| vpx_free(cpi->source_diff_var); |
| cpi->source_diff_var = NULL; |
| } |
| |
| for (i = 0; i < MAX_LAG_BUFFERS; ++i) { |
| vpx_free_frame_buffer(&cpi->svc.scaled_frames[i]); |
| } |
| memset(&cpi->svc.scaled_frames[0], 0, |
| MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0])); |
| |
| vpx_free_frame_buffer(&cpi->svc.scaled_temp); |
| memset(&cpi->svc.scaled_temp, 0, sizeof(cpi->svc.scaled_temp)); |
| |
| vpx_free_frame_buffer(&cpi->svc.empty_frame.img); |
| memset(&cpi->svc.empty_frame, 0, sizeof(cpi->svc.empty_frame)); |
| |
| vp9_free_svc_cyclic_refresh(cpi); |
| } |
| |
| static void save_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| |
| // Stores a snapshot of key state variables which can subsequently be |
| // restored with a call to vp9_restore_coding_context. These functions are |
| // intended for use in a re-code loop in vp9_compress_frame where the |
| // quantizer value is adjusted between loop iterations. |
| vp9_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost); |
| |
| memcpy(cc->nmvcosts[0], cpi->nmvcosts[0], |
| MV_VALS * sizeof(*cpi->nmvcosts[0])); |
| memcpy(cc->nmvcosts[1], cpi->nmvcosts[1], |
| MV_VALS * sizeof(*cpi->nmvcosts[1])); |
| memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0], |
| MV_VALS * sizeof(*cpi->nmvcosts_hp[0])); |
| memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1], |
| MV_VALS * sizeof(*cpi->nmvcosts_hp[1])); |
| |
| vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); |
| |
| memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map, |
| (cm->mi_rows * cm->mi_cols)); |
| |
| vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); |
| vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); |
| |
| cc->fc = *cm->fc; |
| } |
| |
| static void restore_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| |
| // Restore key state variables to the snapshot state stored in the |
| // previous call to vp9_save_coding_context. |
| vp9_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost); |
| |
| memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0])); |
| memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1])); |
| memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0], |
| MV_VALS * sizeof(*cc->nmvcosts_hp[0])); |
| memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1], |
| MV_VALS * sizeof(*cc->nmvcosts_hp[1])); |
| |
| vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); |
| |
| memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy, |
| (cm->mi_rows * cm->mi_cols)); |
| |
| vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); |
| vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); |
| |
| *cm->fc = cc->fc; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void configure_static_seg_features(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| struct segmentation *const seg = &cm->seg; |
| |
| int high_q = (int)(rc->avg_q > 48.0); |
| int qi_delta; |
| |
| // Disable and clear down for KF |
| if (cm->frame_type == KEY_FRAME) { |
| // Clear down the global segmentation map |
| memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); |
| seg->update_map = 0; |
| seg->update_data = 0; |
| cpi->static_mb_pct = 0; |
| |
| // Disable segmentation |
| vp9_disable_segmentation(seg); |
| |
| // Clear down the segment features. |
| vp9_clearall_segfeatures(seg); |
| } else if (cpi->refresh_alt_ref_frame) { |
| // If this is an alt ref frame |
| // Clear down the global segmentation map |
| memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); |
| seg->update_map = 0; |
| seg->update_data = 0; |
| cpi->static_mb_pct = 0; |
| |
| // Disable segmentation and individual segment features by default |
| vp9_disable_segmentation(seg); |
| vp9_clearall_segfeatures(seg); |
| |
| // Scan frames from current to arf frame. |
| // This function re-enables segmentation if appropriate. |
| vp9_update_mbgraph_stats(cpi); |
| |
| // If segmentation was enabled set those features needed for the |
| // arf itself. |
| if (seg->enabled) { |
| seg->update_map = 1; |
| seg->update_data = 1; |
| |
| qi_delta = |
| vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth); |
| vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2); |
| vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); |
| |
| vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); |
| vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); |
| |
| // Where relevant assume segment data is delta data |
| seg->abs_delta = SEGMENT_DELTADATA; |
| } |
| } else if (seg->enabled) { |
| // All other frames if segmentation has been enabled |
| |
| // First normal frame in a valid gf or alt ref group |
| if (rc->frames_since_golden == 0) { |
| // Set up segment features for normal frames in an arf group |
| if (rc->source_alt_ref_active) { |
| seg->update_map = 0; |
| seg->update_data = 1; |
| seg->abs_delta = SEGMENT_DELTADATA; |
| |
| qi_delta = |
| vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, cm->bit_depth); |
| vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2); |
| vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); |
| |
| vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); |
| vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); |
| |
| // Segment coding disabled for compred testing |
| if (high_q || (cpi->static_mb_pct == 100)) { |
| vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); |
| vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); |
| vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); |
| } |
| } else { |
| // Disable segmentation and clear down features if alt ref |
| // is not active for this group |
| |
| vp9_disable_segmentation(seg); |
| |
| memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); |
| |
| seg->update_map = 0; |
| seg->update_data = 0; |
| |
| vp9_clearall_segfeatures(seg); |
| } |
| } else if (rc->is_src_frame_alt_ref) { |
| // Special case where we are coding over the top of a previous |
| // alt ref frame. |
| // Segment coding disabled for compred testing |
| |
| // Enable ref frame features for segment 0 as well |
| vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME); |
| vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); |
| |
| // All mbs should use ALTREF_FRAME |
| vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME); |
| vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME); |
| vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME); |
| vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); |
| |
| // Skip all MBs if high Q (0,0 mv and skip coeffs) |
| if (high_q) { |
| vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP); |
| vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); |
| } |
| // Enable data update |
| seg->update_data = 1; |
| } else { |
| // All other frames. |
| |
| // No updates.. leave things as they are. |
| seg->update_map = 0; |
| seg->update_data = 0; |
| } |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void update_reference_segmentation_map(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; |
| uint8_t *cache_ptr = cm->last_frame_seg_map; |
| int row, col; |
| |
| for (row = 0; row < cm->mi_rows; row++) { |
| MODE_INFO **mi_8x8 = mi_8x8_ptr; |
| uint8_t *cache = cache_ptr; |
| for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++) |
| cache[0] = mi_8x8[0]->segment_id; |
| mi_8x8_ptr += cm->mi_stride; |
| cache_ptr += cm->mi_cols; |
| } |
| } |
| |
| static void alloc_raw_frame_buffers(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| |
| if (!cpi->lookahead) |
| cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| oxcf->lag_in_frames); |
| if (!cpi->lookahead) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate lag buffers"); |
| |
| // TODO(agrange) Check if ARF is enabled and skip allocation if not. |
| if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate altref buffer"); |
| } |
| |
| static void alloc_util_frame_buffers(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (vpx_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate last frame buffer"); |
| |
| if (vpx_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate scaled source buffer"); |
| |
| // For 1 pass cbr: allocate scaled_frame that may be used as an intermediate |
| // buffer for a 2 stage down-sampling: two stages of 1:2 down-sampling for a |
| // target of 1/4x1/4. number_spatial_layers must be greater than 2. |
| if (is_one_pass_cbr_svc(cpi) && !cpi->svc.scaled_temp_is_alloc && |
| cpi->svc.number_spatial_layers > 2) { |
| cpi->svc.scaled_temp_is_alloc = 1; |
| if (vpx_realloc_frame_buffer( |
| &cpi->svc.scaled_temp, cm->width >> 1, cm->height >> 1, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate scaled_frame for svc "); |
| } |
| |
| if (vpx_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate scaled last source buffer"); |
| #ifdef ENABLE_KF_DENOISE |
| if (vpx_realloc_frame_buffer(&cpi->raw_unscaled_source, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate unscaled raw source frame buffer"); |
| |
| if (vpx_realloc_frame_buffer(&cpi->raw_scaled_source, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate scaled raw source frame buffer"); |
| #endif |
| } |
| |
| static int alloc_context_buffers_ext(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int mi_size = cm->mi_cols * cm->mi_rows; |
| |
| cpi->mbmi_ext_base = vpx_calloc(mi_size, sizeof(*cpi->mbmi_ext_base)); |
| if (!cpi->mbmi_ext_base) return 1; |
| |
| return 0; |
| } |
| |
| static void alloc_compressor_data(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int sb_rows; |
| |
| vp9_alloc_context_buffers(cm, cm->width, cm->height); |
| |
| alloc_context_buffers_ext(cpi); |
| |
| vpx_free(cpi->tile_tok[0][0]); |
| |
| { |
| unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols); |
| CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0], |
| vpx_calloc(tokens, sizeof(*cpi->tile_tok[0][0]))); |
| } |
| |
| sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; |
| vpx_free(cpi->tplist[0][0]); |
| CHECK_MEM_ERROR( |
| cm, cpi->tplist[0][0], |
| vpx_calloc(sb_rows * 4 * (1 << 6), sizeof(*cpi->tplist[0][0]))); |
| |
| vp9_setup_pc_tree(&cpi->common, &cpi->td); |
| } |
| |
| void vp9_new_framerate(VP9_COMP *cpi, double framerate) { |
| cpi->framerate = framerate < 0.1 ? 30 : framerate; |
| vp9_rc_update_framerate(cpi); |
| } |
| |
| static void set_tile_limits(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| int min_log2_tile_cols, max_log2_tile_cols; |
| vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
| |
| cm->log2_tile_cols = |
| clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols); |
| cm->log2_tile_rows = cpi->oxcf.tile_rows; |
| |
| if (cpi->oxcf.target_level == LEVEL_AUTO) { |
| const int level_tile_cols = |
| log_tile_cols_from_picsize_level(cpi->common.width, cpi->common.height); |
| if (cm->log2_tile_cols > level_tile_cols) { |
| cm->log2_tile_cols = VPXMAX(level_tile_cols, min_log2_tile_cols); |
| } |
| } |
| } |
| |
| static void update_frame_size(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| vp9_set_mb_mi(cm, cm->width, cm->height); |
| vp9_init_context_buffers(cm); |
| vp9_init_macroblockd(cm, xd, NULL); |
| cpi->td.mb.mbmi_ext_base = cpi->mbmi_ext_base; |
| memset(cpi->mbmi_ext_base, 0, |
| cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base)); |
| |
| set_tile_limits(cpi); |
| } |
| |
| static void init_buffer_indices(VP9_COMP *cpi) { |
| int ref_frame; |
| |
| for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) |
| cpi->ref_fb_idx[ref_frame] = ref_frame; |
| |
| cpi->lst_fb_idx = cpi->ref_fb_idx[LAST_FRAME - 1]; |
| cpi->gld_fb_idx = cpi->ref_fb_idx[GOLDEN_FRAME - 1]; |
| cpi->alt_fb_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1]; |
| } |
| |
| static void init_level_constraint(LevelConstraint *lc) { |
| lc->level_index = -1; |
| lc->max_cpb_size = INT_MAX; |
| lc->max_frame_size = INT_MAX; |
| lc->fail_flag = 0; |
| } |
| |
| static void set_level_constraint(LevelConstraint *ls, int8_t level_index) { |
| vpx_clear_system_state(); |
| ls->level_index = level_index; |
| if (level_index >= 0) { |
| ls->max_cpb_size = vp9_level_defs[level_index].max_cpb_size * (double)1000; |
| } |
| } |
| |
| static void init_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| cpi->oxcf = *oxcf; |
| cpi->framerate = oxcf->init_framerate; |
| cm->profile = oxcf->profile; |
| cm->bit_depth = oxcf->bit_depth; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth = oxcf->use_highbitdepth; |
| #endif |
| cm->color_space = oxcf->color_space; |
| cm->color_range = oxcf->color_range; |
| |
| cpi->target_level = oxcf->target_level; |
| cpi->keep_level_stats = oxcf->target_level != LEVEL_MAX; |
| set_level_constraint(&cpi->level_constraint, |
| get_level_index(cpi->target_level)); |
| |
| cm->width = oxcf->width; |
| cm->height = oxcf->height; |
| alloc_compressor_data(cpi); |
| |
| cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode; |
| |
| // Single thread case: use counts in common. |
| cpi->td.counts = &cm->counts; |
| |
| // Spatial scalability. |
| cpi->svc.number_spatial_layers = oxcf->ss_number_layers; |
| // Temporal scalability. |
| cpi->svc.number_temporal_layers = oxcf->ts_number_layers; |
| |
| if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || |
| ((cpi->svc.number_temporal_layers > 1 || |
| cpi->svc.number_spatial_layers > 1) && |
| cpi->oxcf.pass != 1)) { |
| vp9_init_layer_context(cpi); |
| } |
| |
| // change includes all joint functionality |
| vp9_change_config(cpi, oxcf); |
| |
| cpi->static_mb_pct = 0; |
| cpi->ref_frame_flags = 0; |
| |
| init_buffer_indices(cpi); |
| |
| vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); |
| } |
| |
| void vp9_check_reset_rc_flag(VP9_COMP *cpi) { |
| RATE_CONTROL *rc = &cpi->rc; |
| |
| if (cpi->common.current_video_frame > |
| (unsigned int)cpi->svc.number_spatial_layers) { |
| if (cpi->use_svc) { |
| vp9_svc_check_reset_layer_rc_flag(cpi); |
| } else { |
| if (rc->avg_frame_bandwidth > (3 * rc->last_avg_frame_bandwidth >> 1) || |
| rc->avg_frame_bandwidth < (rc->last_avg_frame_bandwidth >> 1)) { |
| rc->rc_1_frame = 0; |
| rc->rc_2_frame = 0; |
| rc->bits_off_target = rc->optimal_buffer_level; |
| rc->buffer_level = rc->optimal_buffer_level; |
| } |
| } |
| } |
| } |
| |
| void vp9_set_rc_buffer_sizes(VP9_COMP *cpi) { |
| RATE_CONTROL *rc = &cpi->rc; |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| |
| const int64_t bandwidth = oxcf->target_bandwidth; |
| const int64_t starting = oxcf->starting_buffer_level_ms; |
| const int64_t optimal = oxcf->optimal_buffer_level_ms; |
| const int64_t maximum = oxcf->maximum_buffer_size_ms; |
| |
| rc->starting_buffer_level = starting * bandwidth / 1000; |
| rc->optimal_buffer_level = |
| (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000; |
| rc->maximum_buffer_size = |
| (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000; |
| |
| // Under a configuration change, where maximum_buffer_size may change, |
| // keep buffer level clipped to the maximum allowed buffer size. |
| rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size); |
| rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| // TODO(angiebird): make sdx8f available for highbitdepth if needed |
| #define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF) \ |
| cpi->fn_ptr[BT].sdf = SDF; \ |
| cpi->fn_ptr[BT].sdaf = SDAF; \ |
| cpi->fn_ptr[BT].vf = VF; \ |
| cpi->fn_ptr[BT].svf = SVF; \ |
| cpi->fn_ptr[BT].svaf = SVAF; \ |
| cpi->fn_ptr[BT].sdx4df = SDX4DF; \ |
| cpi->fn_ptr[BT].sdx8f = NULL; |
| |
| #define MAKE_BFP_SAD_WRAPPER(fnname) \ |
| static unsigned int fnname##_bits8(const uint8_t *src_ptr, \ |
| int source_stride, \ |
| const uint8_t *ref_ptr, int ref_stride) { \ |
| return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \ |
| } \ |
| static unsigned int fnname##_bits10( \ |
| const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ |
| int ref_stride) { \ |
| return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \ |
| } \ |
| static unsigned int fnname##_bits12( \ |
| const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ |
| int ref_stride) { \ |
| return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \ |
| } |
| |
| #define MAKE_BFP_SADAVG_WRAPPER(fnname) \ |
| static unsigned int fnname##_bits8( \ |
| const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ |
| int ref_stride, const uint8_t *second_pred) { \ |
| return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \ |
| } \ |
| static unsigned int fnname##_bits10( \ |
| const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ |
| int ref_stride, const uint8_t *second_pred) { \ |
| return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ |
| 2; \ |
| } \ |
| static unsigned int fnname##_bits12( \ |
| const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ |
| int ref_stride, const uint8_t *second_pred) { \ |
| return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ |
| 4; \ |
| } |
| |
| #define MAKE_BFP_SAD4D_WRAPPER(fnname) \ |
| static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \ |
| const uint8_t *const ref_ptr[], int ref_stride, \ |
| unsigned int *sad_array) { \ |
| fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ |
| } \ |
| static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \ |
| const uint8_t *const ref_ptr[], int ref_stride, \ |
| unsigned int *sad_array) { \ |
| int i; \ |
| fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ |
| for (i = 0; i < 4; i++) sad_array[i] >>= 2; \ |
| } \ |
| static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \ |
| const uint8_t *const ref_ptr[], int ref_stride, \ |
| unsigned int *sad_array) { \ |
| int i; \ |
| fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ |
| for (i = 0; i < 4; i++) sad_array[i] >>= 4; \ |
| } |
| |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x16) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x16_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x16x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x32) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x32_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x32x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x32) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x32_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x32x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x64) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x64_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x64x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x32) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x32_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x32x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x64) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x64_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x64x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x16) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x16_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x16x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x8) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x8_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x8x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x16) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x16_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x16x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x8) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x8_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x8x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x4) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x4_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x4x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x8) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x8_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x8x4d) |
| MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x4) |
| MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x4_avg) |
| MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x4x4d) |
| |
| static void highbd_set_var_fns(VP9_COMP *const cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (cm->use_highbitdepth) { |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: |
| HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits8, |
| vpx_highbd_sad32x16_avg_bits8, vpx_highbd_8_variance32x16, |
| vpx_highbd_8_sub_pixel_variance32x16, |
| vpx_highbd_8_sub_pixel_avg_variance32x16, |
| vpx_highbd_sad32x16x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits8, |
| vpx_highbd_sad16x32_avg_bits8, vpx_highbd_8_variance16x32, |
| vpx_highbd_8_sub_pixel_variance16x32, |
| vpx_highbd_8_sub_pixel_avg_variance16x32, |
| vpx_highbd_sad16x32x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits8, |
| vpx_highbd_sad64x32_avg_bits8, vpx_highbd_8_variance64x32, |
| vpx_highbd_8_sub_pixel_variance64x32, |
| vpx_highbd_8_sub_pixel_avg_variance64x32, |
| vpx_highbd_sad64x32x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits8, |
| vpx_highbd_sad32x64_avg_bits8, vpx_highbd_8_variance32x64, |
| vpx_highbd_8_sub_pixel_variance32x64, |
| vpx_highbd_8_sub_pixel_avg_variance32x64, |
| vpx_highbd_sad32x64x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits8, |
| vpx_highbd_sad32x32_avg_bits8, vpx_highbd_8_variance32x32, |
| vpx_highbd_8_sub_pixel_variance32x32, |
| vpx_highbd_8_sub_pixel_avg_variance32x32, |
| vpx_highbd_sad32x32x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits8, |
| vpx_highbd_sad64x64_avg_bits8, vpx_highbd_8_variance64x64, |
| vpx_highbd_8_sub_pixel_variance64x64, |
| vpx_highbd_8_sub_pixel_avg_variance64x64, |
| vpx_highbd_sad64x64x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits8, |
| vpx_highbd_sad16x16_avg_bits8, vpx_highbd_8_variance16x16, |
| vpx_highbd_8_sub_pixel_variance16x16, |
| vpx_highbd_8_sub_pixel_avg_variance16x16, |
| vpx_highbd_sad16x16x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits8, |
| vpx_highbd_sad16x8_avg_bits8, vpx_highbd_8_variance16x8, |
| vpx_highbd_8_sub_pixel_variance16x8, |
| vpx_highbd_8_sub_pixel_avg_variance16x8, |
| vpx_highbd_sad16x8x4d_bits8) |
| |
| HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits8, |
| vpx_highbd_sad8x16_avg_bits8, vpx_highbd_8_variance8x16, |
| vpx_highbd_8_sub_pixel_variance8x16, |
| vpx_highbd_8_sub_pixel_avg_variance8x16, |
| vpx_highbd_sad8x16x4d_bits8) |
| |
| HIGHBD_BFP( |
| BLOCK_8X8, vpx_highbd_sad8x8_bits8, vpx_highbd_sad8x8_avg_bits8, |
| vpx_highbd_8_variance8x8, vpx_highbd_8_sub_pixel_variance8x8, |
| vpx_highbd_8_sub_pixel_avg_variance8x8, vpx_highbd_sad8x8x4d_bits8) |
| |
| HIGHBD_BFP( |
| BLOCK_8X4, vpx_highbd_sad8x4_bits8, vpx_highbd_sad8x4_avg_bits8, |
| vpx_highbd_8_variance8x4, vpx_highbd_8_sub_pixel_variance8x4, |
| vpx_highbd_8_sub_pixel_avg_variance8x4, vpx_highbd_sad8x4x4d_bits8) |
| |
| HIGHBD_BFP( |
| BLOCK_4X8, vpx_highbd_sad4x8_bits8, vpx_highbd_sad4x8_avg_bits8, |
| vpx_highbd_8_variance4x8, vpx_highbd_8_sub_pixel_variance4x8, |
| vpx_highbd_8_sub_pixel_avg_variance4x8, vpx_highbd_sad4x8x4d_bits8) |
| |
| HIGHBD_BFP( |
| BLOCK_4X4, vpx_highbd_sad4x4_bits8, vpx_highbd_sad4x4_avg_bits8, |
| vpx_highbd_8_variance4x4, vpx_highbd_8_sub_pixel_variance4x4, |
| vpx_highbd_8_sub_pixel_avg_variance4x4, vpx_highbd_sad4x4x4d_bits8) |
| break; |
| |
| case VPX_BITS_10: |
| HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits10, |
| vpx_highbd_sad32x16_avg_bits10, vpx_highbd_10_variance32x16, |
| vpx_highbd_10_sub_pixel_variance32x16, |
| vpx_highbd_10_sub_pixel_avg_variance32x16, |
| vpx_highbd_sad32x16x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits10, |
| vpx_highbd_sad16x32_avg_bits10, vpx_highbd_10_variance16x32, |
| vpx_highbd_10_sub_pixel_variance16x32, |
| vpx_highbd_10_sub_pixel_avg_variance16x32, |
| vpx_highbd_sad16x32x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits10, |
| vpx_highbd_sad64x32_avg_bits10, vpx_highbd_10_variance64x32, |
| vpx_highbd_10_sub_pixel_variance64x32, |
| vpx_highbd_10_sub_pixel_avg_variance64x32, |
| vpx_highbd_sad64x32x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits10, |
| vpx_highbd_sad32x64_avg_bits10, vpx_highbd_10_variance32x64, |
| vpx_highbd_10_sub_pixel_variance32x64, |
| vpx_highbd_10_sub_pixel_avg_variance32x64, |
| vpx_highbd_sad32x64x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits10, |
| vpx_highbd_sad32x32_avg_bits10, vpx_highbd_10_variance32x32, |
| vpx_highbd_10_sub_pixel_variance32x32, |
| vpx_highbd_10_sub_pixel_avg_variance32x32, |
| vpx_highbd_sad32x32x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits10, |
| vpx_highbd_sad64x64_avg_bits10, vpx_highbd_10_variance64x64, |
| vpx_highbd_10_sub_pixel_variance64x64, |
| vpx_highbd_10_sub_pixel_avg_variance64x64, |
| vpx_highbd_sad64x64x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits10, |
| vpx_highbd_sad16x16_avg_bits10, vpx_highbd_10_variance16x16, |
| vpx_highbd_10_sub_pixel_variance16x16, |
| vpx_highbd_10_sub_pixel_avg_variance16x16, |
| vpx_highbd_sad16x16x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits10, |
| vpx_highbd_sad16x8_avg_bits10, vpx_highbd_10_variance16x8, |
| vpx_highbd_10_sub_pixel_variance16x8, |
| vpx_highbd_10_sub_pixel_avg_variance16x8, |
| vpx_highbd_sad16x8x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits10, |
| vpx_highbd_sad8x16_avg_bits10, vpx_highbd_10_variance8x16, |
| vpx_highbd_10_sub_pixel_variance8x16, |
| vpx_highbd_10_sub_pixel_avg_variance8x16, |
| vpx_highbd_sad8x16x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_8X8, vpx_highbd_sad8x8_bits10, |
| vpx_highbd_sad8x8_avg_bits10, vpx_highbd_10_variance8x8, |
| vpx_highbd_10_sub_pixel_variance8x8, |
| vpx_highbd_10_sub_pixel_avg_variance8x8, |
| vpx_highbd_sad8x8x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits10, |
| vpx_highbd_sad8x4_avg_bits10, vpx_highbd_10_variance8x4, |
| vpx_highbd_10_sub_pixel_variance8x4, |
| vpx_highbd_10_sub_pixel_avg_variance8x4, |
| vpx_highbd_sad8x4x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits10, |
| vpx_highbd_sad4x8_avg_bits10, vpx_highbd_10_variance4x8, |
| vpx_highbd_10_sub_pixel_variance4x8, |
| vpx_highbd_10_sub_pixel_avg_variance4x8, |
| vpx_highbd_sad4x8x4d_bits10) |
| |
| HIGHBD_BFP(BLOCK_4X4, vpx_highbd_sad4x4_bits10, |
| vpx_highbd_sad4x4_avg_bits10, vpx_highbd_10_variance4x4, |
| vpx_highbd_10_sub_pixel_variance4x4, |
| vpx_highbd_10_sub_pixel_avg_variance4x4, |
| vpx_highbd_sad4x4x4d_bits10) |
| break; |
| |
| default: |
| assert(cm->bit_depth == VPX_BITS_12); |
| HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits12, |
| vpx_highbd_sad32x16_avg_bits12, vpx_highbd_12_variance32x16, |
| vpx_highbd_12_sub_pixel_variance32x16, |
| vpx_highbd_12_sub_pixel_avg_variance32x16, |
| vpx_highbd_sad32x16x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits12, |
| vpx_highbd_sad16x32_avg_bits12, vpx_highbd_12_variance16x32, |
| vpx_highbd_12_sub_pixel_variance16x32, |
| vpx_highbd_12_sub_pixel_avg_variance16x32, |
| vpx_highbd_sad16x32x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits12, |
| vpx_highbd_sad64x32_avg_bits12, vpx_highbd_12_variance64x32, |
| vpx_highbd_12_sub_pixel_variance64x32, |
| vpx_highbd_12_sub_pixel_avg_variance64x32, |
| vpx_highbd_sad64x32x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits12, |
| vpx_highbd_sad32x64_avg_bits12, vpx_highbd_12_variance32x64, |
| vpx_highbd_12_sub_pixel_variance32x64, |
| vpx_highbd_12_sub_pixel_avg_variance32x64, |
| vpx_highbd_sad32x64x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits12, |
| vpx_highbd_sad32x32_avg_bits12, vpx_highbd_12_variance32x32, |
| vpx_highbd_12_sub_pixel_variance32x32, |
| vpx_highbd_12_sub_pixel_avg_variance32x32, |
| vpx_highbd_sad32x32x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits12, |
| vpx_highbd_sad64x64_avg_bits12, vpx_highbd_12_variance64x64, |
| vpx_highbd_12_sub_pixel_variance64x64, |
| vpx_highbd_12_sub_pixel_avg_variance64x64, |
| vpx_highbd_sad64x64x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits12, |
| vpx_highbd_sad16x16_avg_bits12, vpx_highbd_12_variance16x16, |
| vpx_highbd_12_sub_pixel_variance16x16, |
| vpx_highbd_12_sub_pixel_avg_variance16x16, |
| vpx_highbd_sad16x16x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits12, |
| vpx_highbd_sad16x8_avg_bits12, vpx_highbd_12_variance16x8, |
| vpx_highbd_12_sub_pixel_variance16x8, |
| vpx_highbd_12_sub_pixel_avg_variance16x8, |
| vpx_highbd_sad16x8x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits12, |
| vpx_highbd_sad8x16_avg_bits12, vpx_highbd_12_variance8x16, |
| vpx_highbd_12_sub_pixel_variance8x16, |
| vpx_highbd_12_sub_pixel_avg_variance8x16, |
| vpx_highbd_sad8x16x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_8X8, vpx_highbd_sad8x8_bits12, |
| vpx_highbd_sad8x8_avg_bits12, vpx_highbd_12_variance8x8, |
| vpx_highbd_12_sub_pixel_variance8x8, |
| vpx_highbd_12_sub_pixel_avg_variance8x8, |
| vpx_highbd_sad8x8x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits12, |
| vpx_highbd_sad8x4_avg_bits12, vpx_highbd_12_variance8x4, |
| vpx_highbd_12_sub_pixel_variance8x4, |
| vpx_highbd_12_sub_pixel_avg_variance8x4, |
| vpx_highbd_sad8x4x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits12, |
| vpx_highbd_sad4x8_avg_bits12, vpx_highbd_12_variance4x8, |
| vpx_highbd_12_sub_pixel_variance4x8, |
| vpx_highbd_12_sub_pixel_avg_variance4x8, |
| vpx_highbd_sad4x8x4d_bits12) |
| |
| HIGHBD_BFP(BLOCK_4X4, vpx_highbd_sad4x4_bits12, |
| vpx_highbd_sad4x4_avg_bits12, vpx_highbd_12_variance4x4, |
| vpx_highbd_12_sub_pixel_variance4x4, |
| vpx_highbd_12_sub_pixel_avg_variance4x4, |
| vpx_highbd_sad4x4x4d_bits12) |
| break; |
| } |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| static void realloc_segmentation_maps(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| // Create the encoder segmentation map and set all entries to 0 |
| vpx_free(cpi->segmentation_map); |
| CHECK_MEM_ERROR(cm, cpi->segmentation_map, |
| vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); |
| |
| // Create a map used for cyclic background refresh. |
| if (cpi->cyclic_refresh) vp9_cyclic_refresh_free(cpi->cyclic_refresh); |
| CHECK_MEM_ERROR(cm, cpi->cyclic_refresh, |
| vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols)); |
| |
| // Create a map used to mark inactive areas. |
| vpx_free(cpi->active_map.map); |
| CHECK_MEM_ERROR(cm, cpi->active_map.map, |
| vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); |
| |
| // And a place holder structure is the coding context |
| // for use if we want to save and restore it |
| vpx_free(cpi->coding_context.last_frame_seg_map_copy); |
| CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy, |
| vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); |
| } |
| |
| static void alloc_copy_partition_data(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (cpi->prev_partition == NULL) { |
| CHECK_MEM_ERROR(cm, cpi->prev_partition, |
| (BLOCK_SIZE *)vpx_calloc(cm->mi_stride * cm->mi_rows, |
| sizeof(*cpi->prev_partition))); |
| } |
| if (cpi->prev_segment_id == NULL) { |
| CHECK_MEM_ERROR( |
| cm, cpi->prev_segment_id, |
| (int8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1), |
| sizeof(*cpi->prev_segment_id))); |
| } |
| if (cpi->prev_variance_low == NULL) { |
| CHECK_MEM_ERROR(cm, cpi->prev_variance_low, |
| (uint8_t *)vpx_calloc( |
| (cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1) * 25, |
| sizeof(*cpi->prev_variance_low))); |
| } |
| if (cpi->copied_frame_cnt == NULL) { |
| CHECK_MEM_ERROR( |
| cm, cpi->copied_frame_cnt, |
| (uint8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1), |
| sizeof(*cpi->copied_frame_cnt))); |
| } |
| } |
| |
| void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) { |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int last_w = cpi->oxcf.width; |
| int last_h = cpi->oxcf.height; |
| |
| vp9_init_quantizer(cpi); |
| if (cm->profile != oxcf->profile) cm->profile = oxcf->profile; |
| cm->bit_depth = oxcf->bit_depth; |
| cm->color_space = oxcf->color_space; |
| cm->color_range = oxcf->color_range; |
| |
| cpi->target_level = oxcf->target_level; |
| cpi->keep_level_stats = oxcf->target_level != LEVEL_MAX; |
| set_level_constraint(&cpi->level_constraint, |
| get_level_index(cpi->target_level)); |
| |
| if (cm->profile <= PROFILE_1) |
| assert(cm->bit_depth == VPX_BITS_8); |
| else |
| assert(cm->bit_depth > VPX_BITS_8); |
| |
| cpi->oxcf = *oxcf; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cpi->td.mb.e_mbd.bd = (int)cm->bit_depth; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) { |
| rc->baseline_gf_interval = FIXED_GF_INTERVAL; |
| } else { |
| rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2; |
| } |
| |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_last_frame = 1; |
| cm->refresh_frame_context = 1; |
| cm->reset_frame_context = 0; |
| |
| vp9_reset_segment_features(&cm->seg); |
| vp9_set_high_precision_mv(cpi, 0); |
| |
| { |
| int i; |
| |
| for (i = 0; i < MAX_SEGMENTS; i++) |
| cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; |
| } |
| cpi->encode_breakout = cpi->oxcf.encode_breakout; |
| |
| vp9_set_rc_buffer_sizes(cpi); |
| |
| // Set up frame rate and related parameters rate control values. |
| vp9_new_framerate(cpi, cpi->framerate); |
| |
| // Set absolute upper and lower quality limits |
| rc->worst_quality = cpi->oxcf.worst_allowed_q; |
| rc->best_quality = cpi->oxcf.best_allowed_q; |
| |
| cm->interp_filter = cpi->sf.default_interp_filter; |
| |
| if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) { |
| cm->render_width = cpi->oxcf.render_width; |
| cm->render_height = cpi->oxcf.render_height; |
| } else { |
| cm->render_width = cpi->oxcf.width; |
| cm->render_height = cpi->oxcf.height; |
| } |
| if (last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) { |
| cm->width = cpi->oxcf.width; |
| cm->height = cpi->oxcf.height; |
| cpi->external_resize = 1; |
| } |
| |
| if (cpi->initial_width) { |
| int new_mi_size = 0; |
| vp9_set_mb_mi(cm, cm->width, cm->height); |
| new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows); |
| if (cm->mi_alloc_size < new_mi_size) { |
| vp9_free_context_buffers(cm); |
| alloc_compressor_data(cpi); |
| realloc_segmentation_maps(cpi); |
| cpi->initial_width = cpi->initial_height = 0; |
| cpi->external_resize = 0; |
| } else if (cm->mi_alloc_size == new_mi_size && |
| (cpi->oxcf.width > last_w || cpi->oxcf.height > last_h)) { |
| vp9_alloc_loop_filter(cm); |
| } |
| } |
| |
| if (cm->current_video_frame == 0 || last_w != cpi->oxcf.width || |
| last_h != cpi->oxcf.height) |
| update_frame_size(cpi); |
| |
| if (last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) { |
| memset(cpi->consec_zero_mv, 0, |
| cm->mi_rows * cm->mi_cols * sizeof(*cpi->consec_zero_mv)); |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| vp9_cyclic_refresh_reset_resize(cpi); |
| rc->rc_1_frame = 0; |
| rc->rc_2_frame = 0; |
| } |
| |
| if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || |
| ((cpi->svc.number_temporal_layers > 1 || |
| cpi->svc.number_spatial_layers > 1) && |
| cpi->oxcf.pass != 1)) { |
| vp9_update_layer_context_change_config(cpi, |
| (int)cpi->oxcf.target_bandwidth); |
| } |
| |
| vp9_check_reset_rc_flag(cpi); |
| |
| cpi->alt_ref_source = NULL; |
| rc->is_src_frame_alt_ref = 0; |
| |
| #if 0 |
| // Experimental RD Code |
| cpi->frame_distortion = 0; |
| cpi->last_frame_distortion = 0; |
| #endif |
| |
| set_tile_limits(cpi); |
| |
| cpi->ext_refresh_frame_flags_pending = 0; |
| cpi->ext_refresh_frame_context_pending = 0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| highbd_set_var_fns(cpi); |
| #endif |
| |
| vp9_set_row_mt(cpi); |
| } |
| |
| #ifndef M_LOG2_E |
| #define M_LOG2_E 0.693147180559945309417 |
| #endif |
| #define log2f(x) (log(x) / (float)M_LOG2_E) |
| |
| /*********************************************************************** |
| * Read before modifying 'cal_nmvjointsadcost' or 'cal_nmvsadcosts' * |
| *********************************************************************** |
| * The following 2 functions ('cal_nmvjointsadcost' and * |
| * 'cal_nmvsadcosts') are used to calculate cost lookup tables * |
| * used by 'vp9_diamond_search_sad'. The C implementation of the * |
| * function is generic, but the AVX intrinsics optimised version * |
| * relies on the following properties of the computed tables: * |
| * For cal_nmvjointsadcost: * |
| * - mvjointsadcost[1] == mvjointsadcost[2] == mvjointsadcost[3] * |
| * For cal_nmvsadcosts: * |
| * - For all i: mvsadcost[0][i] == mvsadcost[1][i] * |
| * (Equal costs for both components) * |
| * - For all i: mvsadcost[0][i] == mvsadcost[0][-i] * |
| * (Cost function is even) * |
| * If these do not hold, then the AVX optimised version of the * |
| * 'vp9_diamond_search_sad' function cannot be used as it is, in which * |
| * case you can revert to using the C function instead. * |
| ***********************************************************************/ |
| |
| static void cal_nmvjointsadcost(int *mvjointsadcost) { |
| /********************************************************************* |
| * Warning: Read the comments above before modifying this function * |
| *********************************************************************/ |
| mvjointsadcost[0] = 600; |
| mvjointsadcost[1] = 300; |
| mvjointsadcost[2] = 300; |
| mvjointsadcost[3] = 300; |
| } |
| |
| static void cal_nmvsadcosts(int *mvsadcost[2]) { |
| /********************************************************************* |
| * Warning: Read the comments above before modifying this function * |
| *********************************************************************/ |
| int i = 1; |
| |
| mvsadcost[0][0] = 0; |
| mvsadcost[1][0] = 0; |
| |
| do { |
| double z = 256 * (2 * (log2f(8 * i) + .6)); |
| mvsadcost[0][i] = (int)z; |
| mvsadcost[1][i] = (int)z; |
| mvsadcost[0][-i] = (int)z; |
| mvsadcost[1][-i] = (int)z; |
| } while (++i <= MV_MAX); |
| } |
| |
| static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { |
| int i = 1; |
| |
| mvsadcost[0][0] = 0; |
| mvsadcost[1][0] = 0; |
| |
| do { |
| double z = 256 * (2 * (log2f(8 * i) + .6)); |
| mvsadcost[0][i] = (int)z; |
| mvsadcost[1][i] = (int)z; |
| mvsadcost[0][-i] = (int)z; |
| mvsadcost[1][-i] = (int)z; |
| } while (++i <= MV_MAX); |
| } |
| |
| static void init_ref_frame_bufs(VP9_COMMON *cm) { |
| int i; |
| BufferPool *const pool = cm->buffer_pool; |
| cm->new_fb_idx = INVALID_IDX; |
| for (i = 0; i < REF_FRAMES; ++i) { |
| cm->ref_frame_map[i] = INVALID_IDX; |
| } |
| for (i = 0; i < FRAME_BUFFERS; ++i) { |
| pool->frame_bufs[i].ref_count = 0; |
| } |
| } |
| |
| static void update_initial_width(VP9_COMP *cpi, int use_highbitdepth, |
| int subsampling_x, int subsampling_y) { |
| VP9_COMMON *const cm = &cpi->common; |
| #if !CONFIG_VP9_HIGHBITDEPTH |
| (void)use_highbitdepth; |
| assert(use_highbitdepth == 0); |
| #endif |
| |
| if (!cpi->initial_width || |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth != use_highbitdepth || |
| #endif |
| cm->subsampling_x != subsampling_x || |
| cm->subsampling_y != subsampling_y) { |
| cm->subsampling_x = subsampling_x; |
| cm->subsampling_y = subsampling_y; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth = use_highbitdepth; |
| #endif |
| alloc_util_frame_buffers(cpi); |
| cpi->initial_width = cm->width; |
| cpi->initial_height = cm->height; |
| cpi->initial_mbs = cm->MBs; |
| } |
| } |
| |
| // TODO(angiebird): Check whether we can move this function to vpx_image.c |
| static INLINE void vpx_img_chroma_subsampling(vpx_img_fmt_t fmt, |
| unsigned int *subsampling_x, |
| unsigned int *subsampling_y) { |
| switch (fmt) { |
| case VPX_IMG_FMT_I420: |
| case VPX_IMG_FMT_YV12: |
| case VPX_IMG_FMT_I422: |
| case VPX_IMG_FMT_I42016: |
| case VPX_IMG_FMT_I42216: *subsampling_x = 1; break; |
| default: *subsampling_x = 0; break; |
| } |
| |
| switch (fmt) { |
| case VPX_IMG_FMT_I420: |
| case VPX_IMG_FMT_I440: |
| case VPX_IMG_FMT_YV12: |
| case VPX_IMG_FMT_I42016: |
| case VPX_IMG_FMT_I44016: *subsampling_y = 1; break; |
| default: *subsampling_y = 0; break; |
| } |
| } |
| |
| // TODO(angiebird): Check whether we can move this function to vpx_image.c |
| static INLINE int vpx_img_use_highbitdepth(vpx_img_fmt_t fmt) { |
| return fmt & VPX_IMG_FMT_HIGHBITDEPTH; |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| static void setup_denoiser_buffer(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (cpi->oxcf.noise_sensitivity > 0 && |
| !cpi->denoiser.frame_buffer_initialized) { |
| if (vp9_denoiser_alloc(cm, &cpi->svc, &cpi->denoiser, cpi->use_svc, |
| cpi->oxcf.noise_sensitivity, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate denoiser"); |
| } |
| } |
| #endif |
| |
| void vp9_update_compressor_with_img_fmt(VP9_COMP *cpi, vpx_img_fmt_t img_fmt) { |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| unsigned int subsampling_x, subsampling_y; |
| const int use_highbitdepth = vpx_img_use_highbitdepth(img_fmt); |
| vpx_img_chroma_subsampling(img_fmt, &subsampling_x, &subsampling_y); |
| |
| update_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y); |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| setup_denoiser_buffer(cpi); |
| #endif |
| |
| assert(cpi->lookahead == NULL); |
| cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height, subsampling_x, |
| subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| use_highbitdepth, |
| #endif |
| oxcf->lag_in_frames); |
| alloc_raw_frame_buffers(cpi); |
| } |
| |
| VP9_COMP *vp9_create_compressor(const VP9EncoderConfig *oxcf, |
| BufferPool *const pool) { |
| unsigned int i; |
| VP9_COMP *volatile const cpi = vpx_memalign(32, sizeof(VP9_COMP)); |
| VP9_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL; |
| |
| if (!cm) return NULL; |
| |
| vp9_zero(*cpi); |
| |
| if (setjmp(cm->error.jmp)) { |
| cm->error.setjmp = 0; |
| vp9_remove_compressor(cpi); |
| return 0; |
| } |
| |
| cm->error.setjmp = 1; |
| cm->alloc_mi = vp9_enc_alloc_mi; |
| cm->free_mi = vp9_enc_free_mi; |
| cm->setup_mi = vp9_enc_setup_mi; |
| |
| CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc))); |
| CHECK_MEM_ERROR( |
| cm, cm->frame_contexts, |
| (FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS, sizeof(*cm->frame_contexts))); |
| |
| cpi->use_svc = 0; |
| cpi->resize_state = ORIG; |
| cpi->external_resize = 0; |
| cpi->resize_avg_qp = 0; |
| cpi->resize_buffer_underflow = 0; |
| cpi->use_skin_detection = 0; |
| cpi->common.buffer_pool = pool; |
| init_ref_frame_bufs(cm); |
| |
| cpi->force_update_segmentation = 0; |
| |
| init_config(cpi, oxcf); |
| cpi->frame_info = vp9_get_frame_info(oxcf); |
| |
| vp9_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc); |
| |
| init_frame_indexes(cm); |
| cpi->partition_search_skippable_frame = 0; |
| cpi->tile_data = NULL; |
| |
| realloc_segmentation_maps(cpi); |
| |
| CHECK_MEM_ERROR( |
| cm, cpi->skin_map, |
| vpx_calloc(cm->mi_rows * cm->mi_cols, sizeof(cpi->skin_map[0]))); |
| |
| #if !CONFIG_REALTIME_ONLY |
| CHECK_MEM_ERROR(cm, cpi->alt_ref_aq, vp9_alt_ref_aq_create()); |
| #endif |
| |
| CHECK_MEM_ERROR( |
| cm, cpi->consec_zero_mv, |
| vpx_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cpi->consec_zero_mv))); |
| |
| CHECK_MEM_ERROR(cm, cpi->nmvcosts[0], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0]))); |
| CHECK_MEM_ERROR(cm, cpi->nmvcosts[1], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1]))); |
| CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0]))); |
| CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1]))); |
| CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0]))); |
| CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1]))); |
| CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0]))); |
| CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1], |
| vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1]))); |
| |
| for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); |
| i++) { |
| CHECK_MEM_ERROR( |
| cm, cpi->mbgraph_stats[i].mb_stats, |
| vpx_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| cpi->use_fp_mb_stats = 0; |
| if (cpi->use_fp_mb_stats) { |
| // a place holder used to store the first pass mb stats in the first pass |
| CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf, |
| vpx_calloc(cm->MBs * sizeof(uint8_t), 1)); |
| } else { |
| cpi->twopass.frame_mb_stats_buf = NULL; |
| } |
| #endif |
| |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; |
| |
| init_level_info(&cpi->level_info); |
| init_level_constraint(&cpi->level_constraint); |
| |
| #if CONFIG_INTERNAL_STATS |
| cpi->b_calculate_blockiness = 1; |
| cpi->b_calculate_consistency = 1; |
| cpi->total_inconsistency = 0; |
| cpi->psnr.worst = 100.0; |
| cpi->worst_ssim = 100.0; |
| |
| cpi->count = 0; |
| cpi->bytes = 0; |
| |
| if (cpi->b_calculate_psnr) { |
| cpi->total_sq_error = 0; |
| cpi->total_samples = 0; |
| |
| cpi->totalp_sq_error = 0; |
| cpi->totalp_samples = 0; |
| |
| cpi->tot_recode_hits = 0; |
| cpi->summed_quality = 0; |
| cpi->summed_weights = 0; |
| cpi->summedp_quality = 0; |
| cpi->summedp_weights = 0; |
| } |
| |
| cpi->fastssim.worst = 100.0; |
| |
| cpi->psnrhvs.worst = 100.0; |
| |
| if (cpi->b_calculate_blockiness) { |
| cpi->total_blockiness = 0; |
| cpi->worst_blockiness = 0.0; |
| } |
| |
| if (cpi->b_calculate_consistency) { |
| CHECK_MEM_ERROR(cm, cpi->ssim_vars, |
| vpx_calloc(cpi->common.mi_rows * cpi->common.mi_cols, |
| sizeof(*cpi->ssim_vars) * 4)); |
| cpi->worst_consistency = 100.0; |
| } else { |
| cpi->ssim_vars = NULL; |
| } |
| |
| #endif |
| |
| cpi->first_time_stamp_ever = INT64_MAX; |
| |
| /********************************************************************* |
| * Warning: Read the comments around 'cal_nmvjointsadcost' and * |
| * 'cal_nmvsadcosts' before modifying how these tables are computed. * |
| *********************************************************************/ |
| cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost); |
| cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX]; |
| cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX]; |
| cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX]; |
| cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX]; |
| cal_nmvsadcosts(cpi->td.mb.nmvsadcost); |
| |
| cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX]; |
| cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX]; |
| cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX]; |
| cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX]; |
| cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp); |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| #ifdef OUTPUT_YUV_DENOISED |
| yuv_denoised_file = fopen("denoised.yuv", "ab"); |
| #endif |
| #endif |
| #ifdef OUTPUT_YUV_SKINMAP |
| yuv_skinmap_file = fopen("skinmap.yuv", "wb"); |
| #endif |
| #ifdef OUTPUT_YUV_REC |
| yuv_rec_file = fopen("rec.yuv", "wb"); |
| #endif |
| #ifdef OUTPUT_YUV_SVC_SRC |
| yuv_svc_src[0] = fopen("svc_src_0.yuv", "wb"); |
| yuv_svc_src[1] = fopen("svc_src_1.yuv", "wb"); |
| yuv_svc_src[2] = fopen("svc_src_2.yuv", "wb"); |
| #endif |
| |
| #if 0 |
| framepsnr = fopen("framepsnr.stt", "a"); |
| kf_list = fopen("kf_list.stt", "w"); |
| #endif |
| |
| cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (oxcf->pass == 1) { |
| vp9_init_first_pass(cpi); |
| } else if (oxcf->pass == 2) { |
| const size_t packet_sz = sizeof(FIRSTPASS_STATS); |
| const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); |
| |
| if (cpi->svc.number_spatial_layers > 1 || |
| cpi->svc.number_temporal_layers > 1) { |
| FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf; |
| FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = { 0 }; |
| int i; |
| |
| for (i = 0; i < oxcf->ss_number_layers; ++i) { |
| FIRSTPASS_STATS *const last_packet_for_layer = |
| &stats[packets - oxcf->ss_number_layers + i]; |
| const int layer_id = (int)last_packet_for_layer->spatial_layer_id; |
| const int packets_in_layer = (int)last_packet_for_layer->count + 1; |
| if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) { |
| int num_frames; |
| LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id]; |
| |
| vpx_free(lc->rc_twopass_stats_in.buf); |
| |
| lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz; |
| CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf, |
| vpx_malloc(lc->rc_twopass_stats_in.sz)); |
| lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf; |
| lc->twopass.stats_in = lc->twopass.stats_in_start; |
| lc->twopass.stats_in_end = |
| lc->twopass.stats_in_start + packets_in_layer - 1; |
| // Note the last packet is cumulative first pass stats. |
| // So the number of frames is packet number minus one |
| num_frames = packets_in_layer - 1; |
| fps_init_first_pass_info(&lc->twopass.first_pass_info, |
| lc->rc_twopass_stats_in.buf, num_frames); |
| stats_copy[layer_id] = lc->rc_twopass_stats_in.buf; |
| } |
| } |
| |
| for (i = 0; i < packets; ++i) { |
| const int layer_id = (int)stats[i].spatial_layer_id; |
| if (layer_id >= 0 && layer_id < oxcf->ss_number_layers && |
| stats_copy[layer_id] != NULL) { |
| *stats_copy[layer_id] = stats[i]; |
| ++stats_copy[layer_id]; |
| } |
| } |
| |
| vp9_init_second_pass_spatial_svc(cpi); |
| } else { |
| int num_frames; |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| const size_t psz = cpi->common.MBs * sizeof(uint8_t); |
| const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz); |
| |
| cpi->twopass.firstpass_mb_stats.mb_stats_start = |
| oxcf->firstpass_mb_stats_in.buf; |
| cpi->twopass.firstpass_mb_stats.mb_stats_end = |
| cpi->twopass.firstpass_mb_stats.mb_stats_start + |
| (ps - 1) * cpi->common.MBs * sizeof(uint8_t); |
| } |
| #endif |
| |
| cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; |
| cpi->twopass.stats_in = cpi->twopass.stats_in_start; |
| cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1]; |
| // Note the last packet is cumulative first pass stats. |
| // So the number of frames is packet number minus one |
| num_frames = packets - 1; |
| fps_init_first_pass_info(&cpi->twopass.first_pass_info, |
| oxcf->two_pass_stats_in.buf, num_frames); |
| |
| vp9_init_second_pass(cpi); |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| cpi->mb_wiener_var_cols = 0; |
| cpi->mb_wiener_var_rows = 0; |
| cpi->mb_wiener_variance = NULL; |
| |
| vp9_set_speed_features_framesize_independent(cpi, oxcf->speed); |
| vp9_set_speed_features_framesize_dependent(cpi, oxcf->speed); |
| |
| { |
| const int bsize = BLOCK_16X16; |
| const int w = num_8x8_blocks_wide_lookup[bsize]; |
| const int h = num_8x8_blocks_high_lookup[bsize]; |
| const int num_cols = (cm->mi_cols + w - 1) / w; |
| const int num_rows = (cm->mi_rows + h - 1) / h; |
| CHECK_MEM_ERROR(cm, cpi->mi_ssim_rdmult_scaling_factors, |
| vpx_calloc(num_rows * num_cols, |
| sizeof(*cpi->mi_ssim_rdmult_scaling_factors))); |
| } |
| |
| cpi->kmeans_data_arr_alloc = 0; |
| #if CONFIG_NON_GREEDY_MV |
| cpi->tpl_ready = 0; |
| #endif // CONFIG_NON_GREEDY_MV |
| for (i = 0; i < MAX_ARF_GOP_SIZE; ++i) cpi->tpl_stats[i].tpl_stats_ptr = NULL; |
| |
| // Allocate memory to store variances for a frame. |
| CHECK_MEM_ERROR(cm, cpi->source_diff_var, vpx_calloc(cm->MBs, sizeof(diff))); |
| cpi->source_var_thresh = 0; |
| cpi->frames_till_next_var_check = 0; |
| #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, SDX8F) \ |
| cpi->fn_ptr[BT].sdf = SDF; \ |
| cpi->fn_ptr[BT].sdaf = SDAF; \ |
| cpi->fn_ptr[BT].vf = VF; \ |
| cpi->fn_ptr[BT].svf = SVF; \ |
| cpi->fn_ptr[BT].svaf = SVAF; \ |
| cpi->fn_ptr[BT].sdx4df = SDX4DF; \ |
| cpi->fn_ptr[BT].sdx8f = SDX8F; |
| |
| // TODO(angiebird): make sdx8f available for every block size |
| BFP(BLOCK_32X16, vpx_sad32x16, vpx_sad32x16_avg, vpx_variance32x16, |
| vpx_sub_pixel_variance32x16, vpx_sub_pixel_avg_variance32x16, |
| vpx_sad32x16x4d, NULL) |
| |
| BFP(BLOCK_16X32, vpx_sad16x32, vpx_sad16x32_avg, vpx_variance16x32, |
| vpx_sub_pixel_variance16x32, vpx_sub_pixel_avg_variance16x32, |
| vpx_sad16x32x4d, NULL) |
| |
| BFP(BLOCK_64X32, vpx_sad64x32, vpx_sad64x32_avg, vpx_variance64x32, |
| vpx_sub_pixel_variance64x32, vpx_sub_pixel_avg_variance64x32, |
| vpx_sad64x32x4d, NULL) |
| |
| BFP(BLOCK_32X64, vpx_sad32x64, vpx_sad32x64_avg, vpx_variance32x64, |
| vpx_sub_pixel_variance32x64, vpx_sub_pixel_avg_variance32x64, |
| vpx_sad32x64x4d, NULL) |
| |
| BFP(BLOCK_32X32, vpx_sad32x32, vpx_sad32x32_avg, vpx_variance32x32, |
| vpx_sub_pixel_variance32x32, vpx_sub_pixel_avg_variance32x32, |
| vpx_sad32x32x4d, vpx_sad32x32x8) |
| |
| BFP(BLOCK_64X64, vpx_sad64x64, vpx_sad64x64_avg, vpx_variance64x64, |
| vpx_sub_pixel_variance64x64, vpx_sub_pixel_avg_variance64x64, |
| vpx_sad64x64x4d, NULL) |
| |
| BFP(BLOCK_16X16, vpx_sad16x16, vpx_sad16x16_avg, vpx_variance16x16, |
| vpx_sub_pixel_variance16x16, vpx_sub_pixel_avg_variance16x16, |
| vpx_sad16x16x4d, vpx_sad16x16x8) |
| |
| BFP(BLOCK_16X8, vpx_sad16x8, vpx_sad16x8_avg, vpx_variance16x8, |
| vpx_sub_pixel_variance16x8, vpx_sub_pixel_avg_variance16x8, |
| vpx_sad16x8x4d, vpx_sad16x8x8) |
| |
| BFP(BLOCK_8X16, vpx_sad8x16, vpx_sad8x16_avg, vpx_variance8x16, |
| vpx_sub_pixel_variance8x16, vpx_sub_pixel_avg_variance8x16, |
| vpx_sad8x16x4d, vpx_sad8x16x8) |
| |
| BFP(BLOCK_8X8, vpx_sad8x8, vpx_sad8x8_avg, vpx_variance8x8, |
| vpx_sub_pixel_variance8x8, vpx_sub_pixel_avg_variance8x8, vpx_sad8x8x4d, |
| vpx_sad8x8x8) |
| |
| BFP(BLOCK_8X4, vpx_sad8x4, vpx_sad8x4_avg, vpx_variance8x4, |
| vpx_sub_pixel_variance8x4, vpx_sub_pixel_avg_variance8x4, vpx_sad8x4x4d, |
| NULL) |
| |
| BFP(BLOCK_4X8, vpx_sad4x8, vpx_sad4x8_avg, vpx_variance4x8, |
| vpx_sub_pixel_variance4x8, vpx_sub_pixel_avg_variance4x8, vpx_sad4x8x4d, |
| NULL) |
| |
| BFP(BLOCK_4X4, vpx_sad4x4, vpx_sad4x4_avg, vpx_variance4x4, |
| vpx_sub_pixel_variance4x4, vpx_sub_pixel_avg_variance4x4, vpx_sad4x4x4d, |
| vpx_sad4x4x8) |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| highbd_set_var_fns(cpi); |
| #endif |
| |
| /* vp9_init_quantizer() is first called here. Add check in |
| * vp9_frame_init_quantizer() so that vp9_init_quantizer is only |
| * called later when needed. This will avoid unnecessary calls of |
| * vp9_init_quantizer() for every frame. |
| */ |
| vp9_init_quantizer(cpi); |
| |
| vp9_loop_filter_init(cm); |
| |
| // Set up the unit scaling factor used during motion search. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_setup_scale_factors_for_frame(&cpi->me_sf, cm->width, cm->height, |
| cm->width, cm->height, |
| cm->use_highbitdepth); |
| #else |
| vp9_setup_scale_factors_for_frame(&cpi->me_sf, cm->width, cm->height, |
| cm->width, cm->height); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| cpi->td.mb.me_sf = &cpi->me_sf; |
| |
| cm->error.setjmp = 0; |
| |
| #if CONFIG_RATE_CTRL |
| encode_command_init(&cpi->encode_command); |
| partition_info_init(cpi); |
| motion_vector_info_init(cpi); |
| fp_motion_vector_info_init(cpi); |
| #endif |
| |
| return cpi; |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| #define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T)) |
| |
| #define SNPRINT2(H, T, V) \ |
| snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V)) |
| #endif // CONFIG_INTERNAL_STATS |
| |
| static void free_tpl_buffer(VP9_COMP *cpi); |
| |
| void vp9_remove_compressor(VP9_COMP *cpi) { |
| VP9_COMMON *cm; |
| unsigned int i; |
| int t; |
| |
| if (!cpi) return; |
| |
| #if CONFIG_INTERNAL_STATS |
| vpx_free(cpi->ssim_vars); |
| #endif |
| |
| cm = &cpi->common; |
| if (cm->current_video_frame > 0) { |
| #if CONFIG_INTERNAL_STATS |
| vpx_clear_system_state(); |
| |
| if (cpi->oxcf.pass != 1) { |
| char headings[512] = { 0 }; |
| char results[512] = { 0 }; |
| FILE *f = fopen("opsnr.stt", "a"); |
| double time_encoded = |
| (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / |
| 10000000.000; |
| double total_encode_time = |
| (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; |
| const double dr = |
| (double)cpi->bytes * (double)8 / (double)1000 / time_encoded; |
| const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1); |
| const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000; |
| const double rate_err = ((100.0 * (dr - target_rate)) / target_rate); |
| |
| if (cpi->b_calculate_psnr) { |
| const double total_psnr = vpx_sse_to_psnr( |
| (double)cpi->total_samples, peak, (double)cpi->total_sq_error); |
| const double totalp_psnr = vpx_sse_to_psnr( |
| (double)cpi->totalp_samples, peak, (double)cpi->totalp_sq_error); |
| const double total_ssim = |
| 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); |
| const double totalp_ssim = |
| 100 * pow(cpi->summedp_quality / cpi->summedp_weights, 8.0); |
| |
| snprintf(headings, sizeof(headings), |
| "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" |
| "VPXSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t" |
| "WstPsnr\tWstSsim\tWstFast\tWstHVS\t" |
| "AVPsnrY\tAPsnrCb\tAPsnrCr"); |
| snprintf(results, sizeof(results), |
| "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" |
| "%7.3f\t%7.3f\t%7.3f", |
| dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr, |
| cpi->psnrp.stat[ALL] / cpi->count, totalp_psnr, total_ssim, |
| totalp_ssim, cpi->fastssim.stat[ALL] / cpi->count, |
| cpi->psnrhvs.stat[ALL] / cpi->count, cpi->psnr.worst, |
| cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst, |
| cpi->psnr.stat[Y] / cpi->count, cpi->psnr.stat[U] / cpi->count, |
| cpi->psnr.stat[V] / cpi->count); |
| |
| if (cpi->b_calculate_blockiness) { |
| SNPRINT(headings, "\t Block\tWstBlck"); |
| SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count); |
| SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness); |
| } |
| |
| if (cpi->b_calculate_consistency) { |
| double consistency = |
| vpx_sse_to_psnr((double)cpi->totalp_samples, peak, |
| (double)cpi->total_inconsistency); |
| |
| SNPRINT(headings, "\tConsist\tWstCons"); |
| SNPRINT2(results, "\t%7.3f", consistency); |
| SNPRINT2(results, "\t%7.3f", cpi->worst_consistency); |
| } |
| |
| SNPRINT(headings, "\t Time\tRcErr\tAbsErr"); |
| SNPRINT2(results, "\t%8.0f", total_encode_time); |
| SNPRINT2(results, "\t%7.2f", rate_err); |
| SNPRINT2(results, "\t%7.2f", fabs(rate_err)); |
| |
| fprintf(f, "%s\tAPsnr611\n", headings); |
| fprintf( |
| f, "%s\t%7.3f\n", results, |
| (6 * cpi->psnr.stat[Y] + cpi->psnr.stat[U] + cpi->psnr.stat[V]) / |
| (cpi->count * 8)); |
| } |
| |
| fclose(f); |
| } |
| #endif |
| |
| #if 0 |
| { |
| printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); |
| printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); |
| printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, |
| cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000, |
| cpi->time_compress_data / 1000, |
| (cpi->time_receive_data + cpi->time_compress_data) / 1000); |
| } |
| #endif |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| vp9_denoiser_free(&(cpi->denoiser)); |
| #endif |
| |
| if (cpi->kmeans_data_arr_alloc) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_destroy(&cpi->kmeans_mutex); |
| #endif |
| vpx_free(cpi->kmeans_data_arr); |
| } |
| |
| free_tpl_buffer(cpi); |
| |
| for (t = 0; t < cpi->num_workers; ++t) { |
| VPxWorker *const worker = &cpi->workers[t]; |
| EncWorkerData *const thread_data = &cpi->tile_thr_data[t]; |
| |
| // Deallocate allocated threads. |
| vpx_get_worker_interface()->end(worker); |
| |
| // Deallocate allocated thread data. |
| if (t < cpi->num_workers - 1) { |
| vpx_free(thread_data->td->counts); |
| vp9_free_pc_tree(thread_data->td); |
| vpx_free(thread_data->td); |
| } |
| } |
| vpx_free(cpi->tile_thr_data); |
| vpx_free(cpi->workers); |
| vp9_row_mt_mem_dealloc(cpi); |
| |
| if (cpi->num_workers > 1) { |
| vp9_loop_filter_dealloc(&cpi->lf_row_sync); |
| vp9_bitstream_encode_tiles_buffer_dealloc(cpi); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| vp9_alt_ref_aq_destroy(cpi->alt_ref_aq); |
| #endif |
| |
| dealloc_compressor_data(cpi); |
| |
| for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); |
| ++i) { |
| vpx_free(cpi->mbgraph_stats[i].mb_stats); |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| vpx_free(cpi->twopass.frame_mb_stats_buf); |
| cpi->twopass.frame_mb_stats_buf = NULL; |
| } |
| #endif |
| |
| vp9_remove_common(cm); |
| vp9_free_ref_frame_buffers(cm->buffer_pool); |
| #if CONFIG_VP9_POSTPROC |
| vp9_free_postproc_buffers(cm); |
| #endif |
| vpx_free(cpi); |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| #ifdef OUTPUT_YUV_DENOISED |
| fclose(yuv_denoised_file); |
| #endif |
| #endif |
| #ifdef OUTPUT_YUV_SKINMAP |
| fclose(yuv_skinmap_file); |
| #endif |
| #ifdef OUTPUT_YUV_REC |
| fclose(yuv_rec_file); |
| #endif |
| #ifdef OUTPUT_YUV_SVC_SRC |
| fclose(yuv_svc_src[0]); |
| fclose(yuv_svc_src[1]); |
| fclose(yuv_svc_src[2]); |
| #endif |
| |
| #if 0 |
| |
| if (keyfile) |
| fclose(keyfile); |
| |
| if (framepsnr) |
| fclose(framepsnr); |
| |
| if (kf_list) |
| fclose(kf_list); |
| |
| #endif |
| } |
| |
| int vp9_get_psnr(const VP9_COMP *cpi, PSNR_STATS *psnr) { |
| if (is_psnr_calc_enabled(cpi)) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vpx_calc_highbd_psnr(cpi->raw_source_frame, cpi->common.frame_to_show, psnr, |
| cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth); |
| #else |
| vpx_calc_psnr(cpi->raw_source_frame, cpi->common.frame_to_show, psnr); |
| #endif |
| return 1; |
| } else { |
| vp9_zero(*psnr); |
| return 0; |
| } |
| } |
| |
| int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) { |
| if (ref_frame_flags > 7) return -1; |
| |
| cpi->ref_frame_flags = ref_frame_flags; |
| return 0; |
| } |
| |
| void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) { |
| cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0; |
| cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0; |
| cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0; |
| cpi->ext_refresh_frame_flags_pending = 1; |
| } |
| |
| static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer( |
| VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag) { |
| MV_REFERENCE_FRAME ref_frame = NONE; |
| if (ref_frame_flag == VP9_LAST_FLAG) |
| ref_frame = LAST_FRAME; |
| else if (ref_frame_flag == VP9_GOLD_FLAG) |
| ref_frame = GOLDEN_FRAME; |
| else if (ref_frame_flag == VP9_ALT_FLAG) |
| ref_frame = ALTREF_FRAME; |
| |
| return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame); |
| } |
| |
| int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, |
| YV12_BUFFER_CONFIG *sd) { |
| YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); |
| if (cfg) { |
| vpx_yv12_copy_frame(cfg, sd); |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| |
| int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, |
| YV12_BUFFER_CONFIG *sd) { |
| YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); |
| if (cfg) { |
| vpx_yv12_copy_frame(sd, cfg); |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| |
| int vp9_update_entropy(VP9_COMP *cpi, int update) { |
| cpi->ext_refresh_frame_context = update; |
| cpi->ext_refresh_frame_context_pending = 1; |
| return 0; |
| } |
| |
| #ifdef OUTPUT_YUV_REC |
| void vp9_write_yuv_rec_frame(VP9_COMMON *cm) { |
| YV12_BUFFER_CONFIG *s = cm->frame_to_show; |
| uint8_t *src = s->y_buffer; |
| int h = cm->height; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (s->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer); |
| |
| do { |
| fwrite(src16, s->y_width, 2, yuv_rec_file); |
| src16 += s->y_stride; |
| } while (--h); |
| |
| src16 = CONVERT_TO_SHORTPTR(s->u_buffer); |
| h = s->uv_height; |
| |
| do { |
| fwrite(src16, s->uv_width, 2, yuv_rec_file); |
| src16 += s->uv_stride; |
| } while (--h); |
| |
| src16 = CONVERT_TO_SHORTPTR(s->v_buffer); |
| h = s->uv_height; |
| |
| do { |
| fwrite(src16, s->uv_width, 2, yuv_rec_file); |
| src16 += s->uv_stride; |
| } while (--h); |
| |
| fflush(yuv_rec_file); |
| return; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| do { |
| fwrite(src, s->y_width, 1, yuv_rec_file); |
| src += s->y_stride; |
| } while (--h); |
| |
| src = s->u_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_rec_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| src = s->v_buffer; |
| h = s->uv_height; |
| |
| do { |
| fwrite(src, s->uv_width, 1, yuv_rec_file); |
| src += s->uv_stride; |
| } while (--h); |
| |
| fflush(yuv_rec_file); |
| } |
| #endif |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, |
| YV12_BUFFER_CONFIG *dst, |
| int bd) { |
| #else |
| static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, |
| YV12_BUFFER_CONFIG *dst) { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| // TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t |
| int i; |
| const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, |
| src->v_buffer }; |
| const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; |
| const int src_widths[3] = { src->y_crop_width, src->uv_crop_width, |
| src->uv_crop_width }; |
| const int src_heights[3] = { src->y_crop_height, src->uv_crop_height, |
| src->uv_crop_height }; |
| uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; |
| const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; |
| const int dst_widths[3] = { dst->y_crop_width, dst->uv_crop_width, |
| dst->uv_crop_width }; |
| const int dst_heights[3] = { dst->y_crop_height, dst->uv_crop_height, |
| dst->uv_crop_height }; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (src->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i], |
| src_strides[i], dsts[i], dst_heights[i], |
| dst_widths[i], dst_strides[i], bd); |
| } else { |
| vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], |
| dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]); |
| } |
| #else |
| vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], |
| dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| vpx_extend_frame_borders(dst); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src, |
| YV12_BUFFER_CONFIG *dst, int bd, |
| INTERP_FILTER filter_type, |
| int phase_scaler) { |
| const int src_w = src->y_crop_width; |
| const int src_h = src->y_crop_height; |
| const int dst_w = dst->y_crop_width; |
| const int dst_h = dst->y_crop_height; |
| const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, |
| src->v_buffer }; |
| const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; |
| uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; |
| const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; |
| const InterpKernel *const kernel = vp9_filter_kernels[filter_type]; |
| int x, y, i; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| const int factor = (i == 0 || i == 3 ? 1 : 2); |
| const int src_stride = src_strides[i]; |
| const int dst_stride = dst_strides[i]; |
| for (y = 0; y < dst_h; y += 16) { |
| const int y_q4 = y * (16 / factor) * src_h / dst_h + phase_scaler; |
| for (x = 0; x < dst_w; x += 16) { |
| const int x_q4 = x * (16 / factor) * src_w / dst_w + phase_scaler; |
| const uint8_t *src_ptr = srcs[i] + |
| (y / factor) * src_h / dst_h * src_stride + |
| (x / factor) * src_w / dst_w; |
| uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor); |
| |
| if (src->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_convolve8(CONVERT_TO_SHORTPTR(src_ptr), src_stride, |
| CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, kernel, |
| x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf, |
| 16 * src_h / dst_h, 16 / factor, 16 / factor, |
| bd); |
| } else { |
| vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, kernel, |
| x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf, |
| 16 * src_h / dst_h, 16 / factor, 16 / factor); |
| } |
| } |
| } |
| } |
| |
| vpx_extend_frame_borders(dst); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| #if !CONFIG_REALTIME_ONLY |
| static int scale_down(VP9_COMP *cpi, int q) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| int scale = 0; |
| assert(frame_is_kf_gf_arf(cpi)); |
| |
| if (rc->frame_size_selector == UNSCALED && |
| q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) { |
| const int max_size_thresh = |
| (int)(rate_thresh_mult[SCALE_STEP1] * |
| VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth)); |
| scale = rc->projected_frame_size > max_size_thresh ? 1 : 0; |
| } |
| return scale; |
| } |
| |
| static int big_rate_miss_high_threshold(VP9_COMP *cpi) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| int big_miss_high; |
| |
| if (frame_is_kf_gf_arf(cpi)) |
| big_miss_high = rc->this_frame_target * 3 / 2; |
| else |
| big_miss_high = rc->this_frame_target * 2; |
| |
| return big_miss_high; |
| } |
| |
| static int big_rate_miss(VP9_COMP *cpi) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| int big_miss_high; |
| int big_miss_low; |
| |
| // Ignore for overlay frames |
| if (rc->is_src_frame_alt_ref) { |
| return 0; |
| } else { |
| big_miss_low = (rc->this_frame_target / 2); |
| big_miss_high = big_rate_miss_high_threshold(cpi); |
| |
| return (rc->projected_frame_size > big_miss_high) || |
| (rc->projected_frame_size < big_miss_low); |
| } |
| } |
| |
| // test in two pass for the first |
| static int two_pass_first_group_inter(VP9_COMP *cpi) { |
| if (cpi->oxcf.pass == 2) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| const int gfg_index = gf_group->index; |
| |
| if (gfg_index == 0) return gf_group->update_type[gfg_index] == LF_UPDATE; |
| return gf_group->update_type[gfg_index - 1] != LF_UPDATE && |
| gf_group->update_type[gfg_index] == LF_UPDATE; |
| } else { |
| return 0; |
| } |
| } |
| |
| // Function to test for conditions that indicate we should loop |
| // back and recode a frame. |
| static int recode_loop_test(VP9_COMP *cpi, int high_limit, int low_limit, int q, |
| int maxq, int minq) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi); |
| int force_recode = 0; |
| |
| if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || |
| big_rate_miss(cpi) || (cpi->sf.recode_loop == ALLOW_RECODE) || |
| (two_pass_first_group_inter(cpi) && |
| (cpi->sf.recode_loop == ALLOW_RECODE_FIRST)) || |
| (frame_is_kfgfarf && (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF))) { |
| if (frame_is_kfgfarf && (oxcf->resize_mode == RESIZE_DYNAMIC) && |
| scale_down(cpi, q)) { |
| // Code this group at a lower resolution. |
| cpi->resize_pending = 1; |
| return 1; |
| } |
| |
| // Force recode for extreme overshoot. |
| if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || |
| (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF && |
| rc->projected_frame_size >= big_rate_miss_high_threshold(cpi))) { |
| return 1; |
| } |
| |
| // TODO(agrange) high_limit could be greater than the scale-down threshold. |
| if ((rc->projected_frame_size > high_limit && q < maxq) || |
| (rc->projected_frame_size < low_limit && q > minq)) { |
| force_recode = 1; |
| } else if (cpi->oxcf.rc_mode == VPX_CQ) { |
| // Deal with frame undershoot and whether or not we are |
| // below the automatically set cq level. |
| if (q > oxcf->cq_level && |
| rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { |
| force_recode = 1; |
| } |
| } |
| } |
| return force_recode; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void update_ref_frames(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| BufferPool *const pool = cm->buffer_pool; |
| GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| |
| if (cpi->rc.show_arf_as_gld) { |
| int tmp = cpi->alt_fb_idx; |
| cpi->alt_fb_idx = cpi->gld_fb_idx; |
| cpi->gld_fb_idx = tmp; |
| } else if (cm->show_existing_frame) { |
| // Pop ARF. |
| cpi->lst_fb_idx = cpi->alt_fb_idx; |
| cpi->alt_fb_idx = |
| stack_pop(gf_group->arf_index_stack, gf_group->stack_size); |
| --gf_group->stack_size; |
| } |
| |
| // At this point the new frame has been encoded. |
| // If any buffer copy / swapping is signaled it should be done here. |
| if (cm->frame_type == KEY_FRAME) { |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->new_fb_idx); |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], |
| cm->new_fb_idx); |
| } else if (vp9_preserve_existing_gf(cpi)) { |
| // We have decided to preserve the previously existing golden frame as our |
| // new ARF frame. However, in the short term in function |
| // vp9_get_refresh_mask() we left it in the GF slot and, if |
| // we're updating the GF with the current decoded frame, we save it to the |
| // ARF slot instead. |
| // We now have to update the ARF with the current frame and swap gld_fb_idx |
| // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF |
| // slot and, if we're updating the GF, the current frame becomes the new GF. |
| int tmp; |
| |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], |
| cm->new_fb_idx); |
| |
| tmp = cpi->alt_fb_idx; |
| cpi->alt_fb_idx = cpi->gld_fb_idx; |
| cpi->gld_fb_idx = tmp; |
| } else { /* For non key/golden frames */ |
| if (cpi->refresh_alt_ref_frame) { |
| int arf_idx = gf_group->top_arf_idx; |
| |
| // Push new ARF into stack. |
| stack_push(gf_group->arf_index_stack, cpi->alt_fb_idx, |
| gf_group->stack_size); |
| ++gf_group->stack_size; |
| |
| assert(arf_idx < REF_FRAMES); |
| |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx); |
| memcpy(cpi->interp_filter_selected[ALTREF_FRAME], |
| cpi->interp_filter_selected[0], |
| sizeof(cpi->interp_filter_selected[0])); |
| |
| cpi->alt_fb_idx = arf_idx; |
| } |
| |
| if (cpi->refresh_golden_frame) { |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->new_fb_idx); |
| if (!cpi->rc.is_src_frame_alt_ref) |
| memcpy(cpi->interp_filter_selected[GOLDEN_FRAME], |
| cpi->interp_filter_selected[0], |
| sizeof(cpi->interp_filter_selected[0])); |
| else |
| memcpy(cpi->interp_filter_selected[GOLDEN_FRAME], |
| cpi->interp_filter_selected[ALTREF_FRAME], |
| sizeof(cpi->interp_filter_selected[ALTREF_FRAME])); |
| } |
| } |
| |
| if (cpi->refresh_last_frame) { |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], |
| cm->new_fb_idx); |
| if (!cpi->rc.is_src_frame_alt_ref) |
| memcpy(cpi->interp_filter_selected[LAST_FRAME], |
| cpi->interp_filter_selected[0], |
| sizeof(cpi->interp_filter_selected[0])); |
| } |
| |
| if (gf_group->update_type[gf_group->index] == MID_OVERLAY_UPDATE) { |
| cpi->alt_fb_idx = |
| stack_pop(gf_group->arf_index_stack, gf_group->stack_size); |
| --gf_group->stack_size; |
| } |
| } |
| |
| void vp9_update_reference_frames(VP9_COMP *cpi) { |
| update_ref_frames(cpi); |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| vp9_denoiser_update_ref_frame(cpi); |
| #endif |
| |
| if (is_one_pass_cbr_svc(cpi)) vp9_svc_update_ref_frame(cpi); |
| } |
| |
| static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) { |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| struct loopfilter *lf = &cm->lf; |
| int is_reference_frame = |
| (cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || |
| cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame); |
| if (cpi->use_svc && |
| cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) |
| is_reference_frame = !cpi->svc.non_reference_frame; |
| |
| // Skip loop filter in show_existing_frame mode. |
| if (cm->show_existing_frame) { |
| lf->filter_level = 0; |
| return; |
| } |
| |
| if (xd->lossless) { |
| lf->filter_level = 0; |
| lf->last_filt_level = 0; |
| } else { |
| struct vpx_usec_timer timer; |
| |
| vpx_clear_system_state(); |
| |
| vpx_usec_timer_start(&timer); |
| |
| if (!cpi->rc.is_src_frame_alt_ref) { |
| if ((cpi->common.frame_type == KEY_FRAME) && |
| (!cpi->rc.this_key_frame_forced)) { |
| lf->last_filt_level = 0; |
| } |
| vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick); |
| lf->last_filt_level = lf->filter_level; |
| } else { |
| lf->filter_level = 0; |
| } |
| |
| vpx_usec_timer_mark(&timer); |
| cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); |
| } |
| |
| if (lf->filter_level > 0 && is_reference_frame) { |
| vp9_build_mask_frame(cm, lf->filter_level, 0); |
| |
| if (cpi->num_workers > 1) |
| vp9_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane, |
| lf->filter_level, 0, 0, cpi->workers, |
| cpi->num_workers, &cpi->lf_row_sync); |
| else |
| vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0); |
| } |
| |
| vpx_extend_frame_inner_borders(cm->frame_to_show); |
| } |
| |
| static INLINE void alloc_frame_mvs(VP9_COMMON *const cm, int buffer_idx) { |
| RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx]; |
| if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows || |
| new_fb_ptr->mi_cols < cm->mi_cols) { |
| vpx_free(new_fb_ptr->mvs); |
| CHECK_MEM_ERROR(cm, new_fb_ptr->mvs, |
| (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols, |
| sizeof(*new_fb_ptr->mvs))); |
| new_fb_ptr->mi_rows = cm->mi_rows; |
| new_fb_ptr->mi_cols = cm->mi_cols; |
| } |
| } |
| |
| void vp9_scale_references(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| MV_REFERENCE_FRAME ref_frame; |
| const VP9_REFFRAME ref_mask[3] = { VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| // Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1). |
| if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) { |
| BufferPool *const pool = cm->buffer_pool; |
| const YV12_BUFFER_CONFIG *const ref = |
| get_ref_frame_buffer(cpi, ref_frame); |
| |
| if (ref == NULL) { |
| cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; |
| continue; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { |
| RefCntBuffer *new_fb_ptr = NULL; |
| int force_scaling = 0; |
| int new_fb = cpi->scaled_ref_idx[ref_frame - 1]; |
| if (new_fb == INVALID_IDX) { |
| new_fb = get_free_fb(cm); |
| force_scaling = 1; |
| } |
| if (new_fb == INVALID_IDX) return; |
| new_fb_ptr = &pool->frame_bufs[new_fb]; |
| if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || |
| new_fb_ptr->buf.y_crop_height != cm->height) { |
| if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| cm->use_highbitdepth, |
| VP9_ENC_BORDER_IN_PIXELS, |
| cm->byte_alignment, NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| scale_and_extend_frame(ref, &new_fb_ptr->buf, (int)cm->bit_depth, |
| EIGHTTAP, 0); |
| cpi->scaled_ref_idx[ref_frame - 1] = new_fb; |
| alloc_frame_mvs(cm, new_fb); |
| } |
| #else |
| if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { |
| RefCntBuffer *new_fb_ptr = NULL; |
| int force_scaling = 0; |
| int new_fb = cpi->scaled_ref_idx[ref_frame - 1]; |
| if (new_fb == INVALID_IDX) { |
| new_fb = get_free_fb(cm); |
| force_scaling = 1; |
| } |
| if (new_fb == INVALID_IDX) return; |
| new_fb_ptr = &pool->frame_bufs[new_fb]; |
| if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || |
| new_fb_ptr->buf.y_crop_height != cm->height) { |
| if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| VP9_ENC_BORDER_IN_PIXELS, |
| cm->byte_alignment, NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| vp9_scale_and_extend_frame(ref, &new_fb_ptr->buf, EIGHTTAP, 0); |
| cpi->scaled_ref_idx[ref_frame - 1] = new_fb; |
| alloc_frame_mvs(cm, new_fb); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } else { |
| int buf_idx; |
| RefCntBuffer *buf = NULL; |
| if (cpi->oxcf.pass == 0 && !cpi->use_svc) { |
| // Check for release of scaled reference. |
| buf_idx = cpi->scaled_ref_idx[ref_frame - 1]; |
| if (buf_idx != INVALID_IDX) { |
| buf = &pool->frame_bufs[buf_idx]; |
| --buf->ref_count; |
| cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; |
| } |
| } |
| buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); |
| buf = &pool->frame_bufs[buf_idx]; |
| buf->buf.y_crop_width = ref->y_crop_width; |
| buf->buf.y_crop_height = ref->y_crop_height; |
| cpi->scaled_ref_idx[ref_frame - 1] = buf_idx; |
| ++buf->ref_count; |
| } |
| } else { |
| if (cpi->oxcf.pass != 0 || cpi->use_svc) |
| cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; |
| } |
| } |
| } |
| |
| static void release_scaled_references(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int i; |
| if (cpi->oxcf.pass == 0 && !cpi->use_svc) { |
| // Only release scaled references under certain conditions: |
| // if reference will be updated, or if scaled reference has same resolution. |
| int refresh[3]; |
| refresh[0] = (cpi->refresh_last_frame) ? 1 : 0; |
| refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0; |
| refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0; |
| for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| const int idx = cpi->scaled_ref_idx[i - 1]; |
| if (idx != INVALID_IDX) { |
| RefCntBuffer *const buf = &cm->buffer_pool->frame_bufs[idx]; |
| const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i); |
| if (refresh[i - 1] || (buf->buf.y_crop_width == ref->y_crop_width && |
| buf->buf.y_crop_height == ref->y_crop_height)) { |
| --buf->ref_count; |
| cpi->scaled_ref_idx[i - 1] = INVALID_IDX; |
| } |
| } |
| } |
| } else { |
| for (i = 0; i < REFS_PER_FRAME; ++i) { |
| const int idx = cpi->scaled_ref_idx[i]; |
| if (idx != INVALID_IDX) { |
| RefCntBuffer *const buf = &cm->buffer_pool->frame_bufs[idx]; |
| --buf->ref_count; |
| cpi->scaled_ref_idx[i] = INVALID_IDX; |
| } |
| } |
| } |
| } |
| |
| static void full_to_model_count(unsigned int *model_count, |
| unsigned int *full_count) { |
| int n; |
| model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN]; |
| model_count[ONE_TOKEN] = full_count[ONE_TOKEN]; |
| model_count[TWO_TOKEN] = full_count[TWO_TOKEN]; |
| for (n = THREE_TOKEN; n < EOB_TOKEN; ++n) |
| model_count[TWO_TOKEN] += full_count[n]; |
| model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN]; |
| } |
| |
| static void full_to_model_counts(vp9_coeff_count_model *model_count, |
| vp9_coeff_count *full_count) { |
| int i, j, k, l; |
| |
| for (i = 0; i < PLANE_TYPES; ++i) |
| for (j = 0; j < REF_TYPES; ++j) |
| for (k = 0; k < COEF_BANDS; ++k) |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) |
| full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]); |
| } |
| |
| #if 0 && CONFIG_INTERNAL_STATS |
| static void output_frame_level_debug_stats(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w"); |
| int64_t recon_err; |
| |
| vpx_clear_system_state(); |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| recon_err = vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| } else { |
| recon_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| } |
| #else |
| recon_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| |
| if (cpi->twopass.total_left_stats.coded_error != 0.0) { |
| double dc_quant_devisor; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: |
| dc_quant_devisor = 4.0; |
| break; |
| case VPX_BITS_10: |
| dc_quant_devisor = 16.0; |
| break; |
| default: |
| assert(cm->bit_depth == VPX_BITS_12); |
| dc_quant_devisor = 64.0; |
| break; |
| } |
| #else |
| dc_quant_devisor = 4.0; |
| #endif |
| |
| if (!cm->current_video_frame) { |
| fprintf(f, "frame, width, height, last ts, last end ts, " |
| "source_alt_ref_pending, source_alt_ref_active, " |
| "this_frame_target, projected_frame_size, " |
| "projected_frame_size / MBs, " |
| "projected_frame_size - this_frame_target, " |
| "vbr_bits_off_target, vbr_bits_off_target_fast, " |
| "twopass.extend_minq, twopass.extend_minq_fast, " |
| "total_target_vs_actual, " |
| "starting_buffer_level - bits_off_target, " |
| "total_actual_bits, base_qindex, q for base_qindex, " |
| "dc quant, q for active_worst_quality, avg_q, q for oxcf.cq_level, " |
| "refresh_last_frame, refresh_golden_frame, refresh_alt_ref_frame, " |
| "frame_type, gfu_boost, " |
| "twopass.bits_left, " |
| "twopass.total_left_stats.coded_error, " |
| "twopass.bits_left / (1 + twopass.total_left_stats.coded_error), " |
| "tot_recode_hits, recon_err, kf_boost, " |
| "twopass.kf_zeromotion_pct, twopass.fr_content_type, " |
| "filter_level, seg.aq_av_offset\n"); |
| } |
| |
| fprintf(f, "%10u, %d, %d, %10"PRId64", %10"PRId64", %d, %d, %10d, %10d, " |
| "%10d, %10d, %10"PRId64", %10"PRId64", %5d, %5d, %10"PRId64", " |
| "%10"PRId64", %10"PRId64", %10d, %7.2lf, %7.2lf, %7.2lf, %7.2lf, " |
| "%7.2lf, %6d, %6d, %5d, %5d, %5d, %10"PRId64", %10.3lf, %10lf, %8u, " |
| "%10"PRId64", %10d, %10d, %10d, %10d, %10d\n", |
| cpi->common.current_video_frame, |
| cm->width, cm->height, |
| cpi->last_time_stamp_seen, |
| cpi->last_end_time_stamp_seen, |
| cpi->rc.source_alt_ref_pending, |
| cpi->rc.source_alt_ref_active, |
| cpi->rc.this_frame_target, |
| cpi->rc.projected_frame_size, |
| cpi->rc.projected_frame_size / cpi->common.MBs, |
| (cpi->rc.projected_frame_size - cpi->rc.this_frame_target), |
| cpi->rc.vbr_bits_off_target, |
| cpi->rc.vbr_bits_off_target_fast, |
| cpi->twopass.extend_minq, |
| cpi->twopass.extend_minq_fast, |
| cpi->rc.total_target_vs_actual, |
| (cpi->rc.starting_buffer_level - cpi->rc.bits_off_target), |
| cpi->rc.total_actual_bits, cm->base_qindex, |
| vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth), |
| (double)vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) / |
| dc_quant_devisor, |
| vp9_convert_qindex_to_q(cpi->twopass.active_worst_quality, |
| cm->bit_depth), |
| cpi->rc.avg_q, |
| vp9_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth), |
| cpi->refresh_last_frame, cpi->refresh_golden_frame, |
| cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost, |
| cpi->twopass.bits_left, |
| cpi->twopass.total_left_stats.coded_error, |
| cpi->twopass.bits_left / |
| (1 + cpi->twopass.total_left_stats.coded_error), |
| cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost, |
| cpi->twopass.kf_zeromotion_pct, |
| cpi->twopass.fr_content_type, |
| cm->lf.filter_level, |
| cm->seg.aq_av_offset); |
| } |
| fclose(f); |
| |
| if (0) { |
| FILE *const fmodes = fopen("Modes.stt", "a"); |
| int i; |
| |
| fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, |
| cm->frame_type, cpi->refresh_golden_frame, |
| cpi->refresh_alt_ref_frame); |
| |
| for (i = 0; i < MAX_MODES; ++i) |
| fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); |
| |
| fprintf(fmodes, "\n"); |
| |
| fclose(fmodes); |
| } |
| } |
| #endif |
| |
| static void set_mv_search_params(VP9_COMP *cpi) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const unsigned int max_mv_def = VPXMIN(cm->width, cm->height); |
| |
| // Default based on max resolution. |
| cpi->mv_step_param = vp9_init_search_range(max_mv_def); |
| |
| if (cpi->sf.mv.auto_mv_step_size) { |
| if (frame_is_intra_only(cm)) { |
| // Initialize max_mv_magnitude for use in the first INTER frame |
| // after a key/intra-only frame. |
| cpi->max_mv_magnitude = max_mv_def; |
| } else { |
| if (cm->show_frame) { |
| // Allow mv_steps to correspond to twice the max mv magnitude found |
| // in the previous frame, capped by the default max_mv_magnitude based |
| // on resolution. |
| cpi->mv_step_param = vp9_init_search_range( |
| VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude)); |
| } |
| cpi->max_mv_magnitude = 0; |
| } |
| } |
| } |
| |
| static void set_size_independent_vars(VP9_COMP *cpi) { |
| vp9_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed); |
| vp9_set_rd_speed_thresholds(cpi); |
| vp9_set_rd_speed_thresholds_sub8x8(cpi); |
| cpi->common.interp_filter = cpi->sf.default_interp_filter; |
| } |
| |
| static void set_size_dependent_vars(VP9_COMP *cpi, int *q, int *bottom_index, |
| int *top_index) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| // Setup variables that depend on the dimensions of the frame. |
| vp9_set_speed_features_framesize_dependent(cpi, cpi->oxcf.speed); |
| |
| // Decide q and q bounds. |
| *q = vp9_rc_pick_q_and_bounds(cpi, bottom_index, top_index); |
| |
| if (cpi->oxcf.rc_mode == VPX_CBR && cpi->rc.force_max_q) { |
| *q = cpi->rc.worst_quality; |
| cpi->rc.force_max_q = 0; |
| } |
| |
| if (!frame_is_intra_only(cm)) { |
| vp9_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Configure experimental use of segmentation for enhanced coding of |
| // static regions if indicated. |
| // Only allowed in the second pass of a two pass encode, as it requires |
| // lagged coding, and if the relevant speed feature flag is set. |
| if (cpi->oxcf.pass == 2 && cpi->sf.static_segmentation) |
| configure_static_seg_features(cpi); |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #if CONFIG_VP9_POSTPROC && !(CONFIG_VP9_TEMPORAL_DENOISING) |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| int l = 0; |
| switch (cpi->oxcf.noise_sensitivity) { |
| case 1: l = 20; break; |
| case 2: l = 40; break; |
| case 3: l = 60; break; |
| case 4: |
| case 5: l = 100; break; |
| case 6: l = 150; break; |
| } |
| if (!cpi->common.postproc_state.limits) { |
| cpi->common.postproc_state.limits = |
| vpx_calloc(cpi->un_scaled_source->y_width, |
| sizeof(*cpi->common.postproc_state.limits)); |
| } |
| vp9_denoise(&cpi->common, cpi->Source, cpi->Source, l, |
| cpi->common.postproc_state.limits); |
| } |
| #endif // CONFIG_VP9_POSTPROC |
| } |
| |
| static void init_motion_estimation(VP9_COMP *cpi) { |
| int y_stride = cpi->scaled_source.y_stride; |
| |
| if (cpi->sf.mv.search_method == NSTEP) { |
| vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride); |
| } else if (cpi->sf.mv.search_method == DIAMOND) { |
| vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride); |
| } |
| } |
| |
| static void set_frame_size(VP9_COMP *cpi) { |
| int ref_frame; |
| VP9_COMMON *const cm = &cpi->common; |
| VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (oxcf->pass == 2 && oxcf->rc_mode == VPX_VBR && |
| ((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) || |
| (oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) { |
| calculate_coded_size(cpi, &oxcf->scaled_frame_width, |
| &oxcf->scaled_frame_height); |
| |
| // There has been a change in frame size. |
| vp9_set_size_literal(cpi, oxcf->scaled_frame_width, |
| oxcf->scaled_frame_height); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| if (oxcf->pass == 0 && oxcf->rc_mode == VPX_CBR && |
| oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending != 0) { |
| // For SVC scaled width/height will have been set (svc->resize_set=1) |
| // in get_svc_params based on the layer width/height. |
| if (!cpi->use_svc || !cpi->svc.resize_set) { |
| oxcf->scaled_frame_width = |
| (oxcf->width * cpi->resize_scale_num) / cpi->resize_scale_den; |
| oxcf->scaled_frame_height = |
| (oxcf->height * cpi->resize_scale_num) / cpi->resize_scale_den; |
| // There has been a change in frame size. |
| vp9_set_size_literal(cpi, oxcf->scaled_frame_width, |
| oxcf->scaled_frame_height); |
| } |
| |
| // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed. |
| set_mv_search_params(cpi); |
| |
| vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| // Reset the denoiser on the resized frame. |
| if (cpi->oxcf.noise_sensitivity > 0) { |
| vp9_denoiser_free(&(cpi->denoiser)); |
| setup_denoiser_buffer(cpi); |
| // Dynamic resize is only triggered for non-SVC, so we can force |
| // golden frame update here as temporary fix to denoiser. |
| cpi->refresh_golden_frame = 1; |
| } |
| #endif |
| } |
| |
| if ((oxcf->pass == 2) && !cpi->use_svc) { |
| vp9_set_target_rate(cpi); |
| } |
| |
| alloc_frame_mvs(cm, cm->new_fb_idx); |
| |
| // Reset the frame pointers to the current frame size. |
| if (vpx_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| |
| alloc_util_frame_buffers(cpi); |
| init_motion_estimation(cpi); |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1]; |
| const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); |
| |
| ref_buf->idx = buf_idx; |
| |
| if (buf_idx != INVALID_IDX) { |
| YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf; |
| ref_buf->buf = buf; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_setup_scale_factors_for_frame( |
| &ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width, |
| cm->height, (buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0); |
| #else |
| vp9_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width, |
| buf->y_crop_height, cm->width, |
| cm->height); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| if (vp9_is_scaled(&ref_buf->sf)) vpx_extend_frame_borders(buf); |
| } else { |
| ref_buf->buf = NULL; |
| } |
| } |
| |
| set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); |
| } |
| |
| #if CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| static void save_encode_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| int tile_col, tile_row; |
| int i, j; |
| RD_OPT *rd_opt = &cpi->rd; |
| for (i = 0; i < MAX_REF_FRAMES; i++) { |
| for (j = 0; j < REFERENCE_MODES; j++) |
| rd_opt->prediction_type_threshes_prev[i][j] = |
| rd_opt->prediction_type_threshes[i][j]; |
| |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; j++) |
| rd_opt->filter_threshes_prev[i][j] = rd_opt->filter_threshes[i][j]; |
| } |
| |
| if (cpi->tile_data != NULL) { |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| for (i = 0; i < BLOCK_SIZES; ++i) { |
| for (j = 0; j < MAX_MODES; ++j) { |
| tile_data->thresh_freq_fact_prev[i][j] = |
| tile_data->thresh_freq_fact[i][j]; |
| } |
| } |
| } |
| } |
| } |
| #endif // CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| |
| static INLINE void set_raw_source_frame(VP9_COMP *cpi) { |
| #ifdef ENABLE_KF_DENOISE |
| if (is_spatial_denoise_enabled(cpi)) { |
| cpi->raw_source_frame = vp9_scale_if_required( |
| cm, &cpi->raw_unscaled_source, &cpi->raw_scaled_source, |
| (oxcf->pass == 0), EIGHTTAP, 0); |
| } else { |
| cpi->raw_source_frame = cpi->Source; |
| } |
| #else |
| cpi->raw_source_frame = cpi->Source; |
| #endif |
| } |
| |
| static int encode_without_recode_loop(VP9_COMP *cpi, size_t *size, |
| uint8_t *dest) { |
| VP9_COMMON *const cm = &cpi->common; |
| SVC *const svc = &cpi->svc; |
| int q = 0, bottom_index = 0, top_index = 0; |
| int no_drop_scene_change = 0; |
| const INTERP_FILTER filter_scaler = |
| (is_one_pass_cbr_svc(cpi)) |
| ? svc->downsample_filter_type[svc->spatial_layer_id] |
| : EIGHTTAP; |
| const int phase_scaler = |
| (is_one_pass_cbr_svc(cpi)) |
| ? svc->downsample_filter_phase[svc->spatial_layer_id] |
| : 0; |
| |
| if (cm->show_existing_frame) { |
| cpi->rc.this_frame_target = 0; |
| if (is_psnr_calc_enabled(cpi)) set_raw_source_frame(cpi); |
| return 1; |
| } |
| |
| svc->time_stamp_prev[svc->spatial_layer_id] = svc->time_stamp_superframe; |
| |
| // Flag to check if its valid to compute the source sad (used for |
| // scene detection and for superblock content state in CBR mode). |
| // The flag may get reset below based on SVC or resizing state. |
| cpi->compute_source_sad_onepass = cpi->oxcf.mode == REALTIME; |
| |
| vpx_clear_system_state(); |
| |
| set_frame_size(cpi); |
| |
| if (is_one_pass_cbr_svc(cpi) && |
| cpi->un_scaled_source->y_width == cm->width << 2 && |
| cpi->un_scaled_source->y_height == cm->height << 2 && |
| svc->scaled_temp.y_width == cm->width << 1 && |
| svc->scaled_temp.y_height == cm->height << 1) { |
| // For svc, if it is a 1/4x1/4 downscaling, do a two-stage scaling to take |
| // advantage of the 1:2 optimized scaler. In the process, the 1/2x1/2 |
| // result will be saved in scaled_temp and might be used later. |
| const INTERP_FILTER filter_scaler2 = svc->downsample_filter_type[1]; |
| const int phase_scaler2 = svc->downsample_filter_phase[1]; |
| cpi->Source = vp9_svc_twostage_scale( |
| cm, cpi->un_scaled_source, &cpi->scaled_source, &svc->scaled_temp, |
| filter_scaler, phase_scaler, filter_scaler2, phase_scaler2); |
| svc->scaled_one_half = 1; |
| } else if (is_one_pass_cbr_svc(cpi) && |
| cpi->un_scaled_source->y_width == cm->width << 1 && |
| cpi->un_scaled_source->y_height == cm->height << 1 && |
| svc->scaled_one_half) { |
| // If the spatial layer is 1/2x1/2 and the scaling is already done in the |
| // two-stage scaling, use the result directly. |
| cpi->Source = &svc->scaled_temp; |
| svc->scaled_one_half = 0; |
| } else { |
| cpi->Source = vp9_scale_if_required( |
| cm, cpi->un_scaled_source, &cpi->scaled_source, (cpi->oxcf.pass == 0), |
| filter_scaler, phase_scaler); |
| } |
| #ifdef OUTPUT_YUV_SVC_SRC |
| // Write out at most 3 spatial layers. |
| if (is_one_pass_cbr_svc(cpi) && svc->spatial_layer_id < 3) { |
| vpx_write_yuv_frame(yuv_svc_src[svc->spatial_layer_id], cpi->Source); |
| } |
| #endif |
| // Unfiltered raw source used in metrics calculation if the source |
| // has been filtered. |
| if (is_psnr_calc_enabled(cpi)) { |
| #ifdef ENABLE_KF_DENOISE |
| if (is_spatial_denoise_enabled(cpi)) { |
| cpi->raw_source_frame = vp9_scale_if_required( |
| cm, &cpi->raw_unscaled_source, &cpi->raw_scaled_source, |
| (cpi->oxcf.pass == 0), EIGHTTAP, phase_scaler); |
| } else { |
| cpi->raw_source_frame = cpi->Source; |
| } |
| #else |
| cpi->raw_source_frame = cpi->Source; |
| #endif |
| } |
| |
| if ((cpi->use_svc && |
| (svc->spatial_layer_id < svc->number_spatial_layers - 1 || |
| svc->temporal_layer_id < svc->number_temporal_layers - 1 || |
| svc->current_superframe < 1)) || |
| cpi->resize_pending || cpi->resize_state || cpi->external_resize || |
| cpi->resize_state != ORIG) { |
| cpi->compute_source_sad_onepass = 0; |
| if (cpi->content_state_sb_fd != NULL) |
| memset(cpi->content_state_sb_fd, 0, |
| (cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1) * |
| sizeof(*cpi->content_state_sb_fd)); |
| } |
| |
| // Avoid scaling last_source unless its needed. |
| // Last source is needed if avg_source_sad() is used, or if |
| // partition_search_type == SOURCE_VAR_BASED_PARTITION, or if noise |
| // estimation is enabled. |
| if (cpi->unscaled_last_source != NULL && |
| (cpi->oxcf.content == VP9E_CONTENT_SCREEN || |
| (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_VBR && |
| cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 5) || |
| cpi->sf.partition_search_type == SOURCE_VAR_BASED_PARTITION || |
| (cpi->noise_estimate.enabled && !cpi->oxcf.noise_sensitivity) || |
| cpi->compute_source_sad_onepass)) |
| cpi->Last_Source = vp9_scale_if_required( |
| cm, cpi->unscaled_last_source, &cpi->scaled_last_source, |
| (cpi->oxcf.pass == 0), EIGHTTAP, 0); |
| |
| if (cpi->Last_Source == NULL || |
| cpi->Last_Source->y_width != cpi->Source->y_width || |
| cpi->Last_Source->y_height != cpi->Source->y_height) |
| cpi->compute_source_sad_onepass = 0; |
| |
| if (frame_is_intra_only(cm) || cpi->resize_pending != 0) { |
| memset(cpi->consec_zero_mv, 0, |
| cm->mi_rows * cm->mi_cols * sizeof(*cpi->consec_zero_mv)); |
| } |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && cpi->use_svc) |
| vp9_denoiser_reset_on_first_frame(cpi); |
| #endif |
| |
| // Scene detection is always used for VBR mode or screen-content case. |
| // For other cases (e.g., CBR mode) use it for 5 <= speed < 8 for now |
| // (need to check encoding time cost for doing this for speed 8). |
| cpi->rc.high_source_sad = 0; |
| cpi->rc.hybrid_intra_scene_change = 0; |
| cpi->rc.re_encode_maxq_scene_change = 0; |
| if (cm->show_frame && cpi->oxcf.mode == REALTIME && |
| (cpi->oxcf.rc_mode == VPX_VBR || |
| cpi->oxcf.content == VP9E_CONTENT_SCREEN || |
| (cpi->oxcf.speed >= 5 && cpi->oxcf.speed < 8))) |
| vp9_scene_detection_onepass(cpi); |
| |
| if (svc->spatial_layer_id == svc->first_spatial_layer_to_encode) { |
| svc->high_source_sad_superframe = cpi->rc.high_source_sad; |
| svc->high_num_blocks_with_motion = cpi->rc.high_num_blocks_with_motion; |
| // On scene change reset temporal layer pattern to TL0. |
| // Note that if the base/lower spatial layers are skipped: instead of |
| // inserting base layer here, we force max-q for the next superframe |
| // with lower spatial layers: this is done in vp9_encodedframe_overshoot() |
| // when max-q is decided for the current layer. |
| // Only do this reset for bypass/flexible mode. |
| if (svc->high_source_sad_superframe && svc->temporal_layer_id > 0 && |
| svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { |
| // rc->high_source_sad will get reset so copy it to restore it. |
| int tmp_high_source_sad = cpi->rc.high_source_sad; |
| vp9_svc_reset_temporal_layers(cpi, cm->frame_type == KEY_FRAME); |
| cpi->rc.high_source_sad = tmp_high_source_sad; |
| } |
| } |
| |
| vp9_update_noise_estimate(cpi); |
| |
| // For 1 pass CBR, check if we are dropping this frame. |
| // Never drop on key frame, if base layer is key for svc, |
| // on scene change, or if superframe has layer sync. |
| if ((cpi->rc.high_source_sad || svc->high_source_sad_superframe) && |
| !(cpi->rc.use_post_encode_drop && svc->last_layer_dropped[0])) |
| no_drop_scene_change = 1; |
| if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR && |
| !frame_is_intra_only(cm) && !no_drop_scene_change && |
| !svc->superframe_has_layer_sync && |
| (!cpi->use_svc || |
| !svc->layer_context[svc->temporal_layer_id].is_key_frame)) { |
| if (vp9_rc_drop_frame(cpi)) return 0; |
| } |
| |
| // For 1 pass CBR SVC, only ZEROMV is allowed for spatial reference frame |
| // when svc->force_zero_mode_spatial_ref = 1. Under those conditions we can |
| // avoid this frame-level upsampling (for non intra_only frames). |
| // For SVC single_layer mode, dynamic resize is allowed and we need to |
| // scale references for this case. |
| if (frame_is_intra_only(cm) == 0 && |
| ((svc->single_layer_svc && cpi->oxcf.resize_mode == RESIZE_DYNAMIC) || |
| !(is_one_pass_cbr_svc(cpi) && svc->force_zero_mode_spatial_ref))) { |
| vp9_scale_references(cpi); |
| } |
| |
| set_size_independent_vars(cpi); |
| set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); |
| |
| // search method and step parameter might be changed in speed settings. |
| init_motion_estimation(cpi); |
| |
| if (cpi->sf.copy_partition_flag) alloc_copy_partition_data(cpi); |
| |
| if (cpi->sf.svc_use_lowres_part && |
| svc->spatial_layer_id == svc->number_spatial_layers - 2) { |
| if (svc->prev_partition_svc == NULL) { |
| CHECK_MEM_ERROR( |
| cm, svc->prev_partition_svc, |
| (BLOCK_SIZE *)vpx_calloc(cm->mi_stride * cm->mi_rows, |
| sizeof(*svc->prev_partition_svc))); |
| } |
| } |
| |
| // TODO(jianj): Look into issue of skin detection with high bitdepth. |
| if (cm->bit_depth == 8 && cpi->oxcf.speed >= 5 && cpi->oxcf.pass == 0 && |
| cpi->oxcf.rc_mode == VPX_CBR && |
| cpi->oxcf.content != VP9E_CONTENT_SCREEN && |
| cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| cpi->use_skin_detection = 1; |
| } |
| |
| // Enable post encode frame dropping for CBR on non key frame, when |
| // ext_use_post_encode_drop is specified by user. |
| cpi->rc.use_post_encode_drop = cpi->rc.ext_use_post_encode_drop && |
| cpi->oxcf.rc_mode == VPX_CBR && |
| cm->frame_type != KEY_FRAME; |
| |
| vp9_set_quantizer(cpi, q); |
| vp9_set_variance_partition_thresholds(cpi, q, 0); |
| |
| setup_frame(cpi); |
| |
| suppress_active_map(cpi); |
| |
| if (cpi->use_svc) { |
| // On non-zero spatial layer, check for disabling inter-layer |
| // prediction. |
| if (svc->spatial_layer_id > 0) vp9_svc_constrain_inter_layer_pred(cpi); |
| vp9_svc_assert_constraints_pattern(cpi); |
| } |
| |
| if (cpi->rc.last_post_encode_dropped_scene_change) { |
| cpi->rc.high_source_sad = 1; |
| svc->high_source_sad_superframe = 1; |
| // For now disable use_source_sad since Last_Source will not be the previous |
| // encoded but the dropped one. |
| cpi->sf.use_source_sad = 0; |
| cpi->rc.last_post_encode_dropped_scene_change = 0; |
| } |
| // Check if this high_source_sad (scene/slide change) frame should be |
| // encoded at high/max QP, and if so, set the q and adjust some rate |
| // control parameters. |
| if (cpi->sf.overshoot_detection_cbr_rt == FAST_DETECTION_MAXQ && |
| (cpi->rc.high_source_sad || |
| (cpi->use_svc && svc->high_source_sad_superframe))) { |
| if (vp9_encodedframe_overshoot(cpi, -1, &q)) { |
| vp9_set_quantizer(cpi, q); |
| vp9_set_variance_partition_thresholds(cpi, q, 0); |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Variance adaptive and in frame q adjustment experiments are mutually |
| // exclusive. |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_vaq_frame_setup(cpi); |
| } else if (cpi->oxcf.aq_mode == EQUATOR360_AQ) { |
| vp9_360aq_frame_setup(cpi); |
| } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { |
| vp9_setup_in_frame_q_adj(cpi); |
| } else if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) { |
| // it may be pretty bad for rate-control, |
| // and I should handle it somehow |
| vp9_alt_ref_aq_setup_map(cpi->alt_ref_aq, cpi); |
| } else { |
| #endif |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| vp9_cyclic_refresh_setup(cpi); |
| } else if (cpi->roi.enabled && !frame_is_intra_only(cm)) { |
| apply_roi_map(cpi); |
| } |
| #if !CONFIG_REALTIME_ONLY |
| } |
| #endif |
| |
| apply_active_map(cpi); |
| |
| vp9_encode_frame(cpi); |
| |
| // Check if we should re-encode this frame at high Q because of high |
| // overshoot based on the encoded frame size. Only for frames where |
| // high temporal-source SAD is detected. |
| // For SVC: all spatial layers are checked for re-encoding. |
| if (cpi->sf.overshoot_detection_cbr_rt == RE_ENCODE_MAXQ && |
| (cpi->rc.high_source_sad || |
| (cpi->use_svc && svc->high_source_sad_superframe))) { |
| int frame_size = 0; |
| // Get an estimate of the encoded frame size. |
| save_coding_context(cpi); |
| vp9_pack_bitstream(cpi, dest, size); |
| restore_coding_context(cpi); |
| frame_size = (int)(*size) << 3; |
| // Check if encoded frame will overshoot too much, and if so, set the q and |
| // adjust some rate control parameters, and return to re-encode the frame. |
| if (vp9_encodedframe_overshoot(cpi, frame_size, &q)) { |
| vpx_clear_system_state(); |
| vp9_set_quantizer(cpi, q); |
| vp9_set_variance_partition_thresholds(cpi, q, 0); |
| suppress_active_map(cpi); |
| // Turn-off cyclic refresh for re-encoded frame. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; |
| unsigned char *const seg_map = cpi->segmentation_map; |
| memset(seg_map, 0, cm->mi_rows * cm->mi_cols); |
| memset(cr->last_coded_q_map, MAXQ, |
| cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map)); |
| cr->sb_index = 0; |
| vp9_disable_segmentation(&cm->seg); |
| } |
| apply_active_map(cpi); |
| vp9_encode_frame(cpi); |
| } |
| } |
| |
| // Update some stats from cyclic refresh, and check for golden frame update. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && |
| !frame_is_intra_only(cm)) |
| vp9_cyclic_refresh_postencode(cpi); |
| |
| // Update the skip mb flag probabilities based on the distribution |
| // seen in the last encoder iteration. |
| // update_base_skip_probs(cpi); |
| vpx_clear_system_state(); |
| return 1; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| #define MAX_QSTEP_ADJ 4 |
| static int get_qstep_adj(int rate_excess, int rate_limit) { |
| int qstep = |
| rate_limit ? ((rate_excess + rate_limit / 2) / rate_limit) : INT_MAX; |
| return VPXMIN(qstep, MAX_QSTEP_ADJ); |
| } |
| |
| #if CONFIG_RATE_CTRL |
| #define RATE_CTRL_MAX_RECODE_NUM 7 |
| |
| typedef struct RATE_QINDEX_HISTORY { |
| int recode_count; |
| int q_index_history[RATE_CTRL_MAX_RECODE_NUM]; |
| int rate_history[RATE_CTRL_MAX_RECODE_NUM]; |
| int q_index_high; |
| int q_index_low; |
| } RATE_QINDEX_HISTORY; |
| |
| static void init_rq_history(RATE_QINDEX_HISTORY *rq_history) { |
| rq_history->recode_count = 0; |
| rq_history->q_index_high = 255; |
| rq_history->q_index_low = 0; |
| } |
| |
| static void update_rq_history(RATE_QINDEX_HISTORY *rq_history, int target_bits, |
| int actual_bits, int q_index) { |
| rq_history->q_index_history[rq_history->recode_count] = q_index; |
| rq_history->rate_history[rq_history->recode_count] = actual_bits; |
| if (actual_bits <= target_bits) { |
| rq_history->q_index_high = q_index; |
| } |
| if (actual_bits >= target_bits) { |
| rq_history->q_index_low = q_index; |
| } |
| rq_history->recode_count += 1; |
| } |
| |
| static int guess_q_index_from_model(const RATE_QSTEP_MODEL *rq_model, |
| int target_bits) { |
| // The model predicts bits as follows. |
| // target_bits = bias - ratio * log2(q_step) |
| // Given the target_bits, we compute the q_step as follows. |
| const double q_step = |
| pow(2.0, (rq_model->bias - target_bits) / rq_model->ratio); |
| // TODO(angiebird): Make this function support highbitdepth. |
| return vp9_convert_q_to_qindex(q_step, VPX_BITS_8); |
| } |
| |
| static int guess_q_index_linear(int prev_q_index, int target_bits, |
| int actual_bits, int gap) { |
| int q_index = prev_q_index; |
| if (actual_bits < target_bits) { |
| q_index -= gap; |
| q_index = VPXMAX(q_index, 0); |
| } else { |
| q_index += gap; |
| q_index = VPXMIN(q_index, 255); |
| } |
| return q_index; |
| } |
| |
| static double get_bits_percent_diff(int target_bits, int actual_bits) { |
| double diff = abs(target_bits - actual_bits) * 1. / target_bits; |
| diff *= 100; |
| return diff; |
| } |
| |
| static int rq_model_predict_q_index(const RATE_QSTEP_MODEL *rq_model, |
| const RATE_QINDEX_HISTORY *rq_history, |
| int target_bits) { |
| int q_index = -1; |
| if (rq_history->recode_count > 0) { |
| const int actual_bits = |
| rq_history->rate_history[rq_history->recode_count - 1]; |
| const int prev_q_index = |
| rq_history->q_index_history[rq_history->recode_count - 1]; |
| const double percent_diff = get_bits_percent_diff(target_bits, actual_bits); |
| if (percent_diff > 50) { |
| // Binary search. |
| // When the actual_bits and target_bits are far apart, binary search |
| // q_index is faster. |
| q_index = (rq_history->q_index_low + rq_history->q_index_high) / 2; |
| } else { |
| if (rq_model->ready) { |
| q_index = guess_q_index_from_model(rq_model, target_bits); |
| } else { |
| // TODO(angiebird): Find a better way to set the gap. |
| q_index = |
| guess_q_index_linear(prev_q_index, target_bits, actual_bits, 20); |
| } |
| } |
| } else { |
| if (rq_model->ready) { |
| q_index = guess_q_index_from_model(rq_model, target_bits); |
| } |
| } |
| |
| assert(rq_history->q_index_low <= rq_history->q_index_high); |
| if (q_index <= rq_history->q_index_low) { |
| q_index = rq_history->q_index_low + 1; |
| } |
| if (q_index >= rq_history->q_index_high) { |
| q_index = rq_history->q_index_high - 1; |
| } |
| return q_index; |
| } |
| |
| static void rq_model_update(const RATE_QINDEX_HISTORY *rq_history, |
| int target_bits, RATE_QSTEP_MODEL *rq_model) { |
| const int recode_count = rq_history->recode_count; |
| if (recode_count >= 2) { |
| // Fit the ratio and bias of rq_model based on last two recode histories. |
| const double s1 = vp9_convert_qindex_to_q( |
| rq_history->q_index_history[recode_count - 2], VPX_BITS_8); |
| const double s2 = vp9_convert_qindex_to_q( |
| rq_history->q_index_history[recode_count - 1], VPX_BITS_8); |
| const double r1 = rq_history->rate_history[recode_count - 2]; |
| const double r2 = rq_history->rate_history[recode_count - 1]; |
| rq_model->ratio = (r2 - r1) / (log2(s1) - log2(s2)); |
| rq_model->bias = r1 + (rq_model->ratio) * log2(s1); |
| rq_model->ready = 1; |
| } else if (recode_count == 1) { |
| if (rq_model->ready) { |
| // Update the ratio only when the initial model exists and we only have |
| // one recode history. |
| const int prev_q = rq_history->q_index_history[recode_count - 1]; |
| const double prev_q_step = vp9_convert_qindex_to_q(prev_q, VPX_BITS_8); |
| const int actual_bits = rq_history->rate_history[recode_count - 1]; |
| rq_model->ratio = |
| rq_model->ratio - (target_bits - actual_bits) / log2(prev_q_step); |
| } |
| } |
| } |
| #endif // CONFIG_RATE_CTRL |
| |
| static void encode_with_recode_loop(VP9_COMP *cpi, size_t *size, |
| uint8_t *dest) { |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| VP9_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int bottom_index, top_index; |
| int loop_count = 0; |
| int loop_at_this_size = 0; |
| int loop = 0; |
| int overshoot_seen = 0; |
| int undershoot_seen = 0; |
| int frame_over_shoot_limit; |
| int frame_under_shoot_limit; |
| int q = 0, q_low = 0, q_high = 0; |
| int enable_acl; |
| #ifdef AGGRESSIVE_VBR |
| int qrange_adj = 1; |
| #endif |
| |
| #if CONFIG_RATE_CTRL |
| const FRAME_UPDATE_TYPE update_type = |
| cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index]; |
| const ENCODE_FRAME_TYPE frame_type = get_encode_frame_type(update_type); |
| RATE_QSTEP_MODEL *rq_model = &cpi->rq_model[frame_type]; |
| RATE_QINDEX_HISTORY rq_history; |
| init_rq_history(&rq_history); |
| #endif // CONFIG_RATE_CTRL |
| |
| if (cm->show_existing_frame) { |
| rc->this_frame_target = 0; |
| if (is_psnr_calc_enabled(cpi)) set_raw_source_frame(cpi); |
| return; |
| } |
| |
| set_size_independent_vars(cpi); |
| |
| enable_acl = cpi->sf.allow_acl ? (cm->frame_type == KEY_FRAME) || |
| (cpi->twopass.gf_group.index == 1) |
| : 0; |
| |
| do { |
| vpx_clear_system_state(); |
| |
| set_frame_size(cpi); |
| |
| if (loop_count == 0 || cpi->resize_pending != 0) { |
| set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); |
| |
| #ifdef AGGRESSIVE_VBR |
| if (two_pass_first_group_inter(cpi)) { |
| // Adjustment limits for min and max q |
| qrange_adj = VPXMAX(1, (top_index - bottom_index) / 2); |
| |
| bottom_index = |
| VPXMAX(bottom_index - qrange_adj / 2, oxcf->best_allowed_q); |
| top_index = VPXMIN(oxcf->worst_allowed_q, top_index + qrange_adj / 2); |
| } |
| #endif |
| // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed. |
| set_mv_search_params(cpi); |
| |
| // Reset the loop state for new frame size. |
| overshoot_seen = 0; |
| undershoot_seen = 0; |
| |
| // Reconfiguration for change in frame size has concluded. |
| cpi->resize_pending = 0; |
| |
| q_low = bottom_index; |
| q_high = top_index; |
| |
| loop_at_this_size = 0; |
| } |
| |
| #if CONFIG_RATE_CTRL |
| { |
| const int suggested_q_index = rq_model_predict_q_index( |
| rq_model, &rq_history, rc->this_frame_target); |
| if (suggested_q_index != -1) { |
| q = suggested_q_index; |
| } |
| } |
| #endif // CONFIG_RATE_CTRL |
| // Decide frame size bounds first time through. |
| if (loop_count == 0) { |
| vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, |
| &frame_under_shoot_limit, |
| &frame_over_shoot_limit); |
| } |
| |
| cpi->Source = |
| vp9_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source, |
| (oxcf->pass == 0), EIGHTTAP, 0); |
| |
| // Unfiltered raw source used in metrics calculation if the source |
| // has been filtered. |
| if (is_psnr_calc_enabled(cpi)) { |
| #ifdef ENABLE_KF_DENOISE |
| if (is_spatial_denoise_enabled(cpi)) { |
| cpi->raw_source_frame = vp9_scale_if_required( |
| cm, &cpi->raw_unscaled_source, &cpi->raw_scaled_source, |
| (oxcf->pass == 0), EIGHTTAP, 0); |
| } else { |
| cpi->raw_source_frame = cpi->Source; |
| } |
| #else |
| cpi->raw_source_frame = cpi->Source; |
| #endif |
| } |
| |
| if (cpi->unscaled_last_source != NULL) |
| cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source, |
| &cpi->scaled_last_source, |
| (oxcf->pass == 0), EIGHTTAP, 0); |
| |
| if (frame_is_intra_only(cm) == 0) { |
| if (loop_count > 0) { |
| release_scaled_references(cpi); |
| } |
| vp9_scale_references(cpi); |
| } |
| |
| #if CONFIG_RATE_CTRL |
| // TODO(angiebird): This is a hack for making sure the encoder use the |
| // external_quantize_index exactly. Avoid this kind of hack later. |
| if (cpi->encode_command.use_external_quantize_index) { |
| q = cpi->encode_command.external_quantize_index; |
| } |
| #endif |
| |
| vp9_set_quantizer(cpi, q); |
| |
| if (loop_count == 0) setup_frame(cpi); |
| |
| // Variance adaptive and in frame q adjustment experiments are mutually |
| // exclusive. |
| if (oxcf->aq_mode == VARIANCE_AQ) { |
| vp9_vaq_frame_setup(cpi); |
| } else if (oxcf->aq_mode == EQUATOR360_AQ) { |
| vp9_360aq_frame_setup(cpi); |
| } else if (oxcf->aq_mode == COMPLEXITY_AQ) { |
| vp9_setup_in_frame_q_adj(cpi); |
| } else if (oxcf->aq_mode == LOOKAHEAD_AQ) { |
| vp9_alt_ref_aq_setup_map(cpi->alt_ref_aq, cpi); |
| } else if (oxcf->aq_mode == PSNR_AQ) { |
| vp9_psnr_aq_mode_setup(&cm->seg); |
| } |
| |
| vp9_encode_frame(cpi); |
| |
| // Update the skip mb flag probabilities based on the distribution |
| // seen in the last encoder iteration. |
| // update_base_skip_probs(cpi); |
| |
| vpx_clear_system_state(); |
| |
| // Dummy pack of the bitstream using up to date stats to get an |
| // accurate estimate of output frame size to determine if we need |
| // to recode. |
| if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) { |
| save_coding_context(cpi); |
| if (!cpi->sf.use_nonrd_pick_mode) vp9_pack_bitstream(cpi, dest, size); |
| |
| rc->projected_frame_size = (int)(*size) << 3; |
| |
| if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; |
| } |
| |
| #if CONFIG_RATE_CTRL |
| // This part needs to be after save_coding_context() because |
| // restore_coding_context will be called in the end of this function. |
| // TODO(angiebird): This is a hack for making sure the encoder use the |
| // external_quantize_index exactly. Avoid this kind of hack later. |
| if (cpi->encode_command.use_external_quantize_index) { |
| break; |
| } |
| |
| if (cpi->encode_command.use_external_target_frame_bits) { |
| const double percent_diff = get_bits_percent_diff( |
| rc->this_frame_target, rc->projected_frame_size); |
| update_rq_history(&rq_history, rc->this_frame_target, |
| rc->projected_frame_size, q); |
| loop_count += 1; |
| |
| rq_model_update(&rq_history, rc->this_frame_target, rq_model); |
| |
| // Check if we hit the target bitrate. |
| if (percent_diff <= 15 || |
| rq_history.recode_count >= RATE_CTRL_MAX_RECODE_NUM || |
| rq_history.q_index_low >= rq_history.q_index_high) { |
| break; |
| } |
| |
| loop = 1; |
| restore_coding_context(cpi); |
| continue; |
| } |
| #endif // CONFIG_RATE_CTRL |
| |
| if (oxcf->rc_mode == VPX_Q) { |
| loop = 0; |
| } else { |
| if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced && |
| (rc->projected_frame_size < rc->max_frame_bandwidth)) { |
| int last_q = q; |
| int64_t kf_err; |
| |
| int64_t high_err_target = cpi->ambient_err; |
| int64_t low_err_target = cpi->ambient_err >> 1; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| kf_err = vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| } else { |
| kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| } |
| #else |
| kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Prevent possible divide by zero error below for perfect KF |
| kf_err += !kf_err; |
| |
| // The key frame is not good enough or we can afford |
| // to make it better without undue risk of popping. |
| if ((kf_err > high_err_target && |
| rc->projected_frame_size <= frame_over_shoot_limit) || |
| (kf_err > low_err_target && |
| rc->projected_frame_size <= frame_under_shoot_limit)) { |
| // Lower q_high |
| q_high = q > q_low ? q - 1 : q_low; |
| |
| // Adjust Q |
| q = (int)((q * high_err_target) / kf_err); |
| q = VPXMIN(q, (q_high + q_low) >> 1); |
| } else if (kf_err < low_err_target && |
| rc->projected_frame_size >= frame_under_shoot_limit) { |
| // The key frame is much better than the previous frame |
| // Raise q_low |
| q_low = q < q_high ? q + 1 : q_high; |
| |
| // Adjust Q |
| q = (int)((q * low_err_target) / kf_err); |
| q = VPXMIN(q, (q_high + q_low + 1) >> 1); |
| } |
| |
| // Clamp Q to upper and lower limits: |
| q = clamp(q, q_low, q_high); |
| |
| loop = q != last_q; |
| } else if (recode_loop_test(cpi, frame_over_shoot_limit, |
| frame_under_shoot_limit, q, |
| VPXMAX(q_high, top_index), bottom_index)) { |
| // Is the projected frame size out of range and are we allowed |
| // to attempt to recode. |
| int last_q = q; |
| int retries = 0; |
| int qstep; |
| |
| if (cpi->resize_pending == 1) { |
| // Change in frame size so go back around the recode loop. |
| cpi->rc.frame_size_selector = |
| SCALE_STEP1 - cpi->rc.frame_size_selector; |
| cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector; |
| |
| #if CONFIG_INTERNAL_STATS |
| ++cpi->tot_recode_hits; |
| #endif |
| ++loop_count; |
| loop = 1; |
| continue; |
| } |
| |
| // Frame size out of permitted range: |
| // Update correction factor & compute new Q to try... |
| |
| // Frame is too large |
| if (rc->projected_frame_size > rc->this_frame_target) { |
| // Special case if the projected size is > the max allowed. |
| if ((q == q_high) && |
| ((rc->projected_frame_size >= rc->max_frame_bandwidth) || |
| (!rc->is_src_frame_alt_ref && |
| (rc->projected_frame_size >= |
| big_rate_miss_high_threshold(cpi))))) { |
| int max_rate = VPXMAX(1, VPXMIN(rc->max_frame_bandwidth, |
| big_rate_miss_high_threshold(cpi))); |
| double q_val_high; |
| q_val_high = vp9_convert_qindex_to_q(q_high, cm->bit_depth); |
| q_val_high = |
| q_val_high * ((double)rc->projected_frame_size / max_rate); |
| q_high = vp9_convert_q_to_qindex(q_val_high, cm->bit_depth); |
| q_high = clamp(q_high, rc->best_quality, rc->worst_quality); |
| } |
| |
| // Raise Qlow as to at least the current value |
| qstep = |
| get_qstep_adj(rc->projected_frame_size, rc->this_frame_target); |
| q_low = VPXMIN(q + qstep, q_high); |
| |
| if (undershoot_seen || loop_at_this_size > 1) { |
| // Update rate_correction_factor unless |
| vp9_rc_update_rate_correction_factors(cpi); |
| |
| q = (q_high + q_low + 1) / 2; |
| } else { |
| // Update rate_correction_factor unless |
| vp9_rc_update_rate_correction_factors(cpi); |
| |
| q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, |
| VPXMAX(q_high, top_index)); |
| |
| while (q < q_low && retries < 10) { |
| vp9_rc_update_rate_correction_factors(cpi); |
| q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, |
| VPXMAX(q_high, top_index)); |
| retries++; |
| } |
| } |
| |
| overshoot_seen = 1; |
| } else { |
| // Frame is too small |
| qstep = |
| get_qstep_adj(rc->this_frame_target, rc->projected_frame_size); |
| q_high = VPXMAX(q - qstep, q_low); |
| |
| if (overshoot_seen || loop_at_this_size > 1) { |
| vp9_rc_update_rate_correction_factors(cpi); |
| q = (q_high + q_low) / 2; |
| } else { |
| vp9_rc_update_rate_correction_factors(cpi); |
| q = vp9_rc_regulate_q(cpi, rc->this_frame_target, |
| VPXMIN(q_low, bottom_index), top_index); |
| // Special case reset for qlow for constrained quality. |
| // This should only trigger where there is very substantial |
| // undershoot on a frame and the auto cq level is above |
| // the user passed in value. |
| if (oxcf->rc_mode == VPX_CQ && q < q_low) { |
| q_low = q; |
| } |
| |
| while (q > q_high && retries < 10) { |
| vp9_rc_update_rate_correction_factors(cpi); |
| q = vp9_rc_regulate_q(cpi, rc->this_frame_target, |
| VPXMIN(q_low, bottom_index), top_index); |
| retries++; |
| } |
| } |
| undershoot_seen = 1; |
| } |
| |
| // Clamp Q to upper and lower limits: |
| q = clamp(q, q_low, q_high); |
| |
| loop = (q != last_q); |
| } else { |
| loop = 0; |
| } |
| } |
| |
| // Special case for overlay frame. |
| if (rc->is_src_frame_alt_ref && |
| rc->projected_frame_size < rc->max_frame_bandwidth) |
| loop = 0; |
| |
| if (loop) { |
| ++loop_count; |
| ++loop_at_this_size; |
| |
| #if CONFIG_INTERNAL_STATS |
| ++cpi->tot_recode_hits; |
| #endif |
| } |
| |
| if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) |
| if (loop) restore_coding_context(cpi); |
| } while (loop); |
| |
| #ifdef AGGRESSIVE_VBR |
| if (two_pass_first_group_inter(cpi)) { |
| cpi->twopass.active_worst_quality = |
| VPXMIN(q + qrange_adj, oxcf->worst_allowed_q); |
| } else if (!frame_is_kf_gf_arf(cpi)) { |
| #else |
| if (!frame_is_kf_gf_arf(cpi)) { |
| #endif |
| // Have we been forced to adapt Q outside the expected range by an extreme |
| // rate miss. If so adjust the active maxQ for the subsequent frames. |
| if (!rc->is_src_frame_alt_ref && (q > cpi->twopass.active_worst_quality)) { |
| cpi->twopass.active_worst_quality = q; |
| } else if (oxcf->vbr_corpus_complexity && q == q_low && |
| rc->projected_frame_size < rc->this_frame_target) { |
| cpi->twopass.active_worst_quality = |
| VPXMAX(q, cpi->twopass.active_worst_quality - 1); |
| } |
| } |
| |
| if (enable_acl) { |
| // Skip recoding, if model diff is below threshold |
| const int thresh = compute_context_model_thresh(cpi); |
| const int diff = compute_context_model_diff(cm); |
| if (diff >= thresh) { |
| vp9_encode_frame(cpi); |
| } |
| } |
| if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) { |
| vpx_clear_system_state(); |
| restore_coding_context(cpi); |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static int get_ref_frame_flags(const VP9_COMP *cpi) { |
| const int *const map = cpi->common.ref_frame_map; |
| const int gold_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx]; |
| const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx]; |
| const int gold_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx]; |
| int flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; |
| |
| if (gold_is_last) flags &= ~VP9_GOLD_FLAG; |
| |
| if (cpi->rc.frames_till_gf_update_due == INT_MAX && |
| (cpi->svc.number_temporal_layers == 1 && |
| cpi->svc.number_spatial_layers == 1)) |
| flags &= ~VP9_GOLD_FLAG; |
| |
| if (alt_is_last) flags &= ~VP9_ALT_FLAG; |
| |
| if (gold_is_alt) flags &= ~VP9_ALT_FLAG; |
| |
| return flags; |
| } |
| |
| static void set_ext_overrides(VP9_COMP *cpi) { |
| // Overrides the defaults with the externally supplied values with |
| // vp9_update_reference() and vp9_update_entropy() calls |
| // Note: The overrides are valid only for the next frame passed |
| // to encode_frame_to_data_rate() function |
| if (cpi->ext_refresh_frame_context_pending) { |
| cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context; |
| cpi->ext_refresh_frame_context_pending = 0; |
| } |
| if (cpi->ext_refresh_frame_flags_pending) { |
| cpi->refresh_last_frame = cpi->ext_refresh_last_frame; |
| cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame; |
| cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame; |
| } |
| } |
| |
| YV12_BUFFER_CONFIG *vp9_svc_twostage_scale( |
| VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, |
| YV12_BUFFER_CONFIG *scaled_temp, INTERP_FILTER filter_type, |
| int phase_scaler, INTERP_FILTER filter_type2, int phase_scaler2) { |
| if (cm->mi_cols * MI_SIZE != unscaled->y_width || |
| cm->mi_rows * MI_SIZE != unscaled->y_height) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->bit_depth == VPX_BITS_8) { |
| vp9_scale_and_extend_frame(unscaled, scaled_temp, filter_type2, |
| phase_scaler2); |
| vp9_scale_and_extend_frame(scaled_temp, scaled, filter_type, |
| phase_scaler); |
| } else { |
| scale_and_extend_frame(unscaled, scaled_temp, (int)cm->bit_depth, |
| filter_type2, phase_scaler2); |
| scale_and_extend_frame(scaled_temp, scaled, (int)cm->bit_depth, |
| filter_type, phase_scaler); |
| } |
| #else |
| vp9_scale_and_extend_frame(unscaled, scaled_temp, filter_type2, |
| phase_scaler2); |
| vp9_scale_and_extend_frame(scaled_temp, scaled, filter_type, phase_scaler); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| return scaled; |
| } else { |
| return unscaled; |
| } |
| } |
| |
| YV12_BUFFER_CONFIG *vp9_scale_if_required( |
| VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, |
| int use_normative_scaler, INTERP_FILTER filter_type, int phase_scaler) { |
| if (cm->mi_cols * MI_SIZE != unscaled->y_width || |
| cm->mi_rows * MI_SIZE != unscaled->y_height) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (use_normative_scaler && unscaled->y_width <= (scaled->y_width << 1) && |
| unscaled->y_height <= (scaled->y_height << 1)) |
| if (cm->bit_depth == VPX_BITS_8) |
| vp9_scale_and_extend_frame(unscaled, scaled, filter_type, phase_scaler); |
| else |
| scale_and_extend_frame(unscaled, scaled, (int)cm->bit_depth, |
| filter_type, phase_scaler); |
| else |
| scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth); |
| #else |
| if (use_normative_scaler && unscaled->y_width <= (scaled->y_width << 1) && |
| unscaled->y_height <= (scaled->y_height << 1)) |
| vp9_scale_and_extend_frame(unscaled, scaled, filter_type, phase_scaler); |
| else |
| scale_and_extend_frame_nonnormative(unscaled, scaled); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| return scaled; |
| } else { |
| return unscaled; |
| } |
| } |
| |
| static void set_ref_sign_bias(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| RefCntBuffer *const ref_buffer = get_ref_cnt_buffer(cm, cm->new_fb_idx); |
| const int cur_frame_index = ref_buffer->frame_index; |
| MV_REFERENCE_FRAME ref_frame; |
| |
| for (ref_frame = LAST_FRAME; ref_frame < MAX_REF_FRAMES; ++ref_frame) { |
| const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); |
| const RefCntBuffer *const ref_cnt_buf = |
| get_ref_cnt_buffer(&cpi->common, buf_idx); |
| if (ref_cnt_buf) { |
| cm->ref_frame_sign_bias[ref_frame] = |
| cur_frame_index < ref_cnt_buf->frame_index; |
| } |
| } |
| } |
| |
| static int setup_interp_filter_search_mask(VP9_COMP *cpi) { |
| INTERP_FILTER ifilter; |
| int ref_total[MAX_REF_FRAMES] = { 0 }; |
| MV_REFERENCE_FRAME ref; |
| int mask = 0; |
| if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame) |
| return mask; |
| for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) |
| for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) |
| ref_total[ref] += cpi->interp_filter_selected[ref][ifilter]; |
| |
| for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) { |
| if ((ref_total[LAST_FRAME] && |
| cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) && |
| (ref_total[GOLDEN_FRAME] == 0 || |
| cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 < |
| ref_total[GOLDEN_FRAME]) && |
| (ref_total[ALTREF_FRAME] == 0 || |
| cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50 < |
| ref_total[ALTREF_FRAME])) |
| mask |= 1 << ifilter; |
| } |
| return mask; |
| } |
| |
| #ifdef ENABLE_KF_DENOISE |
| // Baseline kernel weights for denoise |
| static uint8_t dn_kernal_3[9] = { 1, 2, 1, 2, 4, 2, 1, 2, 1 }; |
| static uint8_t dn_kernal_5[25] = { 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, |
| 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1 }; |
| |
| static INLINE void add_denoise_point(int centre_val, int data_val, int thresh, |
| uint8_t point_weight, int *sum_val, |
| int *sum_weight) { |
| if (abs(centre_val - data_val) <= thresh) { |
| *sum_weight += point_weight; |
| *sum_val += (int)data_val * (int)point_weight; |
| } |
| } |
| |
| static void spatial_denoise_point(uint8_t *src_ptr, const int stride, |
| const int strength) { |
| int sum_weight = 0; |
| int sum_val = 0; |
| int thresh = strength; |
| int kernal_size = 5; |
| int half_k_size = 2; |
| int i, j; |
| int max_diff = 0; |
| uint8_t *tmp_ptr; |
| uint8_t *kernal_ptr; |
| |
| // Find the maximum deviation from the source point in the locale. |
| tmp_ptr = src_ptr - (stride * (half_k_size + 1)) - (half_k_size + 1); |
| for (i = 0; i < kernal_size + 2; ++i) { |
| for (j = 0; j < kernal_size + 2; ++j) { |
| max_diff = VPXMAX(max_diff, abs((int)*src_ptr - (int)tmp_ptr[j])); |
| } |
| tmp_ptr += stride; |
| } |
| |
| // Select the kernel size. |
| if (max_diff > (strength + (strength >> 1))) { |
| kernal_size = 3; |
| half_k_size = 1; |
| thresh = thresh >> 1; |
| } |
| kernal_ptr = (kernal_size == 3) ? dn_kernal_3 : dn_kernal_5; |
| |
| // Apply the kernel |
| tmp_ptr = src_ptr - (stride * half_k_size) - half_k_size; |
| for (i = 0; i < kernal_size; ++i) { |
| for (j = 0; j < kernal_size; ++j) { |
| add_denoise_point((int)*src_ptr, (int)tmp_ptr[j], thresh, *kernal_ptr, |
| &sum_val, &sum_weight); |
| ++kernal_ptr; |
| } |
| tmp_ptr += stride; |
| } |
| |
| // Update the source value with the new filtered value |
| *src_ptr = (uint8_t)((sum_val + (sum_weight >> 1)) / sum_weight); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void highbd_spatial_denoise_point(uint16_t *src_ptr, const int stride, |
| const int strength) { |
| int sum_weight = 0; |
| int sum_val = 0; |
| int thresh = strength; |
| int kernal_size = 5; |
| int half_k_size = 2; |
| int i, j; |
| int max_diff = 0; |
| uint16_t *tmp_ptr; |
| uint8_t *kernal_ptr; |
| |
| // Find the maximum deviation from the source point in the locale. |
| tmp_ptr = src_ptr - (stride * (half_k_size + 1)) - (half_k_size + 1); |
| for (i = 0; i < kernal_size + 2; ++i) { |
| for (j = 0; j < kernal_size + 2; ++j) { |
| max_diff = VPXMAX(max_diff, abs((int)src_ptr - (int)tmp_ptr[j])); |
| } |
| tmp_ptr += stride; |
| } |
| |
| // Select the kernel size. |
| if (max_diff > (strength + (strength >> 1))) { |
| kernal_size = 3; |
| half_k_size = 1; |
| thresh = thresh >> 1; |
| } |
| kernal_ptr = (kernal_size == 3) ? dn_kernal_3 : dn_kernal_5; |
| |
| // Apply the kernel |
| tmp_ptr = src_ptr - (stride * half_k_size) - half_k_size; |
| for (i = 0; i < kernal_size; ++i) { |
| for (j = 0; j < kernal_size; ++j) { |
| add_denoise_point((int)*src_ptr, (int)tmp_ptr[j], thresh, *kernal_ptr, |
| &sum_val, &sum_weight); |
| ++kernal_ptr; |
| } |
| tmp_ptr += stride; |
| } |
| |
| // Update the source value with the new filtered value |
| *src_ptr = (uint16_t)((sum_val + (sum_weight >> 1)) / sum_weight); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Apply thresholded spatial noise suppression to a given buffer. |
| static void spatial_denoise_buffer(VP9_COMP *cpi, uint8_t *buffer, |
| const int stride, const int width, |
| const int height, const int strength) { |
| VP9_COMMON *const cm = &cpi->common; |
| uint8_t *src_ptr = buffer; |
| int row; |
| int col; |
| |
| for (row = 0; row < height; ++row) { |
| for (col = 0; col < width; ++col) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| highbd_spatial_denoise_point(CONVERT_TO_SHORTPTR(&src_ptr[col]), stride, |
| strength); |
| else |
| spatial_denoise_point(&src_ptr[col], stride, strength); |
| #else |
| spatial_denoise_point(&src_ptr[col], stride, strength); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| src_ptr += stride; |
| } |
| } |
| |
| // Apply thresholded spatial noise suppression to source. |
| static void spatial_denoise_frame(VP9_COMP *cpi) { |
| YV12_BUFFER_CONFIG *src = cpi->Source; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| VP9_COMMON *const cm = &cpi->common; |
| |
| // Base the filter strength on the current active max Q. |
| const int q = (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality, |
| cm->bit_depth)); |
| int strength = |
| VPXMAX(oxcf->arnr_strength >> 2, VPXMIN(oxcf->arnr_strength, (q >> 4))); |
| |
| // Denoise each of Y,U and V buffers. |
| spatial_denoise_buffer(cpi, src->y_buffer, src->y_stride, src->y_width, |
| src->y_height, strength); |
| |
| strength += (strength >> 1); |
| spatial_denoise_buffer(cpi, src->u_buffer, src->uv_stride, src->uv_width, |
| src->uv_height, strength << 1); |
| |
| spatial_denoise_buffer(cpi, src->v_buffer, src->uv_stride, src->uv_width, |
| src->uv_height, strength << 1); |
| } |
| #endif // ENABLE_KF_DENOISE |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void vp9_try_disable_lookahead_aq(VP9_COMP *cpi, size_t *size, |
| uint8_t *dest) { |
| if (cpi->common.seg.enabled) |
| if (ALT_REF_AQ_PROTECT_GAIN) { |
| size_t nsize = *size; |
| int overhead; |
| |
| // TODO(yuryg): optimize this, as |
| // we don't really need to repack |
| |
| save_coding_context(cpi); |
| vp9_disable_segmentation(&cpi->common.seg); |
| vp9_pack_bitstream(cpi, dest, &nsize); |
| restore_coding_context(cpi); |
| |
| overhead = (int)*size - (int)nsize; |
| |
| if (vp9_alt_ref_aq_disable_if(cpi->alt_ref_aq, overhead, (int)*size)) |
| vp9_encode_frame(cpi); |
| else |
| vp9_enable_segmentation(&cpi->common.seg); |
| } |
| } |
| #endif |
| |
| static void set_frame_index(VP9_COMP *cpi, VP9_COMMON *cm) { |
| RefCntBuffer *const ref_buffer = get_ref_cnt_buffer(cm, cm->new_fb_idx); |
| |
| if (ref_buffer) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| ref_buffer->frame_index = |
| cm->current_video_frame + gf_group->arf_src_offset[gf_group->index]; |
| #if CONFIG_RATE_CTRL |
| ref_buffer->frame_coding_index = cm->current_frame_coding_index; |
| #endif // CONFIG_RATE_CTRL |
| } |
| } |
| |
| static void set_mb_ssim_rdmult_scaling(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| ThreadData *td = &cpi->td; |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| uint8_t *y_buffer = cpi->Source->y_buffer; |
| const int y_stride = cpi->Source->y_stride; |
| const int block_size = BLOCK_16X16; |
| |
| const int num_8x8_w = num_8x8_blocks_wide_lookup[block_size]; |
| const int num_8x8_h = num_8x8_blocks_high_lookup[block_size]; |
| const int num_cols = (cm->mi_cols + num_8x8_w - 1) / num_8x8_w; |
| const int num_rows = (cm->mi_rows + num_8x8_h - 1) / num_8x8_h; |
| double log_sum = 0.0; |
| int row, col; |
| |
| // Loop through each 64x64 block. |
| for (row = 0; row < num_rows; ++row) { |
| for (col = 0; col < num_cols; ++col) { |
| int mi_row, mi_col; |
| double var = 0.0, num_of_var = 0.0; |
| const int index = row * num_cols + col; |
| |
| for (mi_row = row * num_8x8_h; |
| mi_row < cm->mi_rows && mi_row < (row + 1) * num_8x8_h; ++mi_row) { |
| for (mi_col = col * num_8x8_w; |
| mi_col < cm->mi_cols && mi_col < (col + 1) * num_8x8_w; ++mi_col) { |
| struct buf_2d buf; |
| const int row_offset_y = mi_row << 3; |
| const int col_offset_y = mi_col << 3; |
| |
| buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y; |
| buf.stride = y_stride; |
| |
| // In order to make SSIM_VAR_SCALE in a same scale for both 8 bit |
| // and high bit videos, the variance needs to be divided by 2.0 or |
| // 64.0 separately. |
| // TODO(sdeng): need to tune for 12bit videos. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cpi->Source->flags & YV12_FLAG_HIGHBITDEPTH) |
| var += vp9_high_get_sby_variance(cpi, &buf, BLOCK_8X8, xd->bd); |
| else |
| #endif |
| var += vp9_get_sby_variance(cpi, &buf, BLOCK_8X8); |
| |
| num_of_var += 1.0; |
| } |
| } |
| var = var / num_of_var / 64.0; |
| |
| // Curve fitting with an exponential model on all 16x16 blocks from the |
| // Midres dataset. |
| var = 67.035434 * (1 - exp(-0.0021489 * var)) + 17.492222; |
| cpi->mi_ssim_rdmult_scaling_factors[index] = var; |
| log_sum += log(var); |
| } |
| } |
| log_sum = exp(log_sum / (double)(num_rows * num_cols)); |
| |
| for (row = 0; row < num_rows; ++row) { |
| for (col = 0; col < num_cols; ++col) { |
| const int index = row * num_cols + col; |
| cpi->mi_ssim_rdmult_scaling_factors[index] /= log_sum; |
| } |
| } |
| |
| (void)xd; |
| } |
| |
| // Process the wiener variance in 16x16 block basis. |
| static int qsort_comp(const void *elem1, const void *elem2) { |
| int a = *((const int *)elem1); |
| int b = *((const int *)elem2); |
| if (a > b) return 1; |
| if (a < b) return -1; |
| return 0; |
| } |
| |
| static void init_mb_wiener_var_buffer(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| |
| if (cpi->mb_wiener_variance && cpi->mb_wiener_var_rows >= cm->mb_rows && |
| cpi->mb_wiener_var_cols >= cm->mb_cols) |
| return; |
| |
| vpx_free(cpi->mb_wiener_variance); |
| cpi->mb_wiener_variance = NULL; |
| |
| CHECK_MEM_ERROR( |
| cm, cpi->mb_wiener_variance, |
| vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->mb_wiener_variance))); |
| cpi->mb_wiener_var_rows = cm->mb_rows; |
| cpi->mb_wiener_var_cols = cm->mb_cols; |
| } |
| |
| static void set_mb_wiener_variance(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| uint8_t *buffer = cpi->Source->y_buffer; |
| int buf_stride = cpi->Source->y_stride; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| ThreadData *td = &cpi->td; |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| DECLARE_ALIGNED(16, uint16_t, zero_pred16[32 * 32]); |
| DECLARE_ALIGNED(16, uint8_t, zero_pred8[32 * 32]); |
| uint8_t *zero_pred; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, zero_pred[32 * 32]); |
| #endif |
| |
| DECLARE_ALIGNED(16, int16_t, src_diff[32 * 32]); |
| DECLARE_ALIGNED(16, tran_low_t, coeff[32 * 32]); |
| |
| int mb_row, mb_col, count = 0; |
| // Hard coded operating block size |
| const int block_size = 16; |
| const int coeff_count = block_size * block_size; |
| const TX_SIZE tx_size = TX_16X16; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| xd->cur_buf = cpi->Source; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| zero_pred = CONVERT_TO_BYTEPTR(zero_pred16); |
| memset(zero_pred16, 0, sizeof(*zero_pred16) * coeff_count); |
| } else { |
| zero_pred = zero_pred8; |
| memset(zero_pred8, 0, sizeof(*zero_pred8) * coeff_count); |
| } |
| #else |
| memset(zero_pred, 0, sizeof(*zero_pred) * coeff_count); |
| #endif |
| |
| cpi->norm_wiener_variance = 0; |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { |
| for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { |
| int idx; |
| int16_t median_val = 0; |
| uint8_t *mb_buffer = |
| buffer + mb_row * block_size * buf_stride + mb_col * block_size; |
| int64_t wiener_variance = 0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_subtract_block(block_size, block_size, src_diff, block_size, |
| mb_buffer, buf_stride, zero_pred, block_size, |
| xd->bd); |
| highbd_wht_fwd_txfm(src_diff, block_size, coeff, tx_size); |
| } else { |
| vpx_subtract_block(block_size, block_size, src_diff, block_size, |
| mb_buffer, buf_stride, zero_pred, block_size); |
| wht_fwd_txfm(src_diff, block_size, coeff, tx_size); |
| } |
| #else |
| vpx_subtract_block(block_size, block_size, src_diff, block_size, |
| mb_buffer, buf_stride, zero_pred, block_size); |
| wht_fwd_txfm(src_diff, block_size, coeff, tx_size); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| coeff[0] = 0; |
| for (idx = 1; idx < coeff_count; ++idx) coeff[idx] = abs(coeff[idx]); |
| |
| qsort(coeff, coeff_count - 1, sizeof(*coeff), qsort_comp); |
| |
| // Noise level estimation |
| median_val = coeff[coeff_count / 2]; |
| |
| // Wiener filter |
| for (idx = 1; idx < coeff_count; ++idx) { |
| int64_t sqr_coeff = (int64_t)coeff[idx] * coeff[idx]; |
| int64_t tmp_coeff = (int64_t)coeff[idx]; |
| if (median_val) { |
| tmp_coeff = (sqr_coeff * coeff[idx]) / |
| (sqr_coeff + (int64_t)median_val * median_val); |
| } |
| wiener_variance += tmp_coeff * tmp_coeff; |
| } |
| cpi->mb_wiener_variance[mb_row * cm->mb_cols + mb_col] = |
| wiener_variance / coeff_count; |
| cpi->norm_wiener_variance += |
| cpi->mb_wiener_variance[mb_row * cm->mb_cols + mb_col]; |
| ++count; |
| } |
| } |
| |
| if (count) cpi->norm_wiener_variance /= count; |
| cpi->norm_wiener_variance = VPXMAX(1, cpi->norm_wiener_variance); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void update_encode_frame_result( |
| int ref_frame_flags, FRAME_UPDATE_TYPE update_type, |
| const YV12_BUFFER_CONFIG *source_frame, const RefCntBuffer *coded_frame_buf, |
| RefCntBuffer *ref_frame_buf[MAX_INTER_REF_FRAMES], int quantize_index, |
| uint32_t bit_depth, uint32_t input_bit_depth, const FRAME_COUNTS *counts, |
| #if CONFIG_RATE_CTRL |
| const PARTITION_INFO *partition_info, |
| const MOTION_VECTOR_INFO *motion_vector_info, |
| #endif // CONFIG_RATE_CTRL |
| ENCODE_FRAME_RESULT *encode_frame_result); |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static void encode_frame_to_data_rate( |
| VP9_COMP *cpi, size_t *size, uint8_t *dest, unsigned int *frame_flags, |
| ENCODE_FRAME_RESULT *encode_frame_result) { |
| VP9_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| struct segmentation *const seg = &cm->seg; |
| TX_SIZE t; |
| |
| // SVC: skip encoding of enhancement layer if the layer target bandwidth = 0. |
| // No need to set svc.skip_enhancement_layer if whole superframe will be |
| // dropped. |
| if (cpi->use_svc && cpi->svc.spatial_layer_id > 0 && |
| cpi->oxcf.target_bandwidth == 0 && |
| !(cpi->svc.framedrop_mode != LAYER_DROP && |
| (cpi->svc.framedrop_mode != CONSTRAINED_FROM_ABOVE_DROP || |
| cpi->svc |
| .force_drop_constrained_from_above[cpi->svc.number_spatial_layers - |
| 1]) && |
| cpi->svc.drop_spatial_layer[0])) { |
| cpi->svc.skip_enhancement_layer = 1; |
| vp9_rc_postencode_update_drop_frame(cpi); |
| cpi->ext_refresh_frame_flags_pending = 0; |
| cpi->last_frame_dropped = 1; |
| cpi->svc.last_layer_dropped[cpi->svc.spatial_layer_id] = 1; |
| cpi->svc.drop_spatial_layer[cpi->svc.spatial_layer_id] = 1; |
| vp9_inc_frame_in_layer(cpi); |
| return; |
| } |
| |
| set_ext_overrides(cpi); |
| vpx_clear_system_state(); |
| |
| #ifdef ENABLE_KF_DENOISE |
| // Spatial denoise of key frame. |
| if (is_spatial_denoise_enabled(cpi)) spatial_denoise_frame(cpi); |
| #endif |
| |
| if (cm->show_existing_frame == 0) { |
| // Update frame index |
| set_frame_index(cpi, cm); |
| |
| // Set the arf sign bias for this frame. |
| set_ref_sign_bias(cpi); |
| } |
| |
| // Set default state for segment based loop filter update flags. |
| cm->lf.mode_ref_delta_update = 0; |
| |
| if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search) |
| cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi); |
| |
| // Set various flags etc to special state if it is a key frame. |
| if (frame_is_intra_only(cm)) { |
| // Reset the loop filter deltas and segmentation map. |
| vp9_reset_segment_features(&cm->seg); |
| |
| // If segmentation is enabled force a map update for key frames. |
| if (seg->enabled) { |
| seg->update_map = 1; |
| seg->update_data = 1; |
| } |
| |
| // The alternate reference frame cannot be active for a key frame. |
| cpi->rc.source_alt_ref_active = 0; |
| |
| cm->error_resilient_mode = oxcf->error_resilient_mode; |
| cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode; |
| |
| // By default, encoder assumes decoder can use prev_mi. |
| if (cm->error_resilient_mode) { |
| cm->frame_parallel_decoding_mode = 1; |
| cm->reset_frame_context = 0; |
| cm->refresh_frame_context = 0; |
| } else if (cm->intra_only) { |
| // Only reset the current context. |
| cm->reset_frame_context = 2; |
| } |
| } |
| |
| if (oxcf->tuning == VP8_TUNE_SSIM) set_mb_ssim_rdmult_scaling(cpi); |
| |
| if (oxcf->aq_mode == PERCEPTUAL_AQ) { |
| init_mb_wiener_var_buffer(cpi); |
| set_mb_wiener_variance(cpi); |
| } |
| |
| vpx_clear_system_state(); |
| |
| #if CONFIG_INTERNAL_STATS |
| memset(cpi->mode_chosen_counts, 0, |
| MAX_MODES * sizeof(*cpi->mode_chosen_counts)); |
| #endif |
| #if CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| // Backup to ensure consistency between recodes |
| save_encode_params(cpi); |
| #endif // CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL |
| |
| if (cpi->sf.recode_loop == DISALLOW_RECODE) { |
| if (!encode_without_recode_loop(cpi, size, dest)) return; |
| } else { |
| #if !CONFIG_REALTIME_ONLY |
| encode_with_recode_loop(cpi, size, dest); |
| #endif |
| } |
| |
| // TODO(jingning): When using show existing frame mode, we assume that the |
| // current ARF will be directly used as the final reconstructed frame. This is |
| // an encoder control scheme. One could in principle explore other |
| // possibilities to arrange the reference frame buffer and their coding order. |
| if (cm->show_existing_frame) { |
| ref_cnt_fb(cm->buffer_pool->frame_bufs, &cm->new_fb_idx, |
| cm->ref_frame_map[cpi->alt_fb_idx]); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Disable segmentation if it decrease rate/distortion ratio |
| if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) |
| vp9_try_disable_lookahead_aq(cpi, size, dest); |
| #endif |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| #ifdef OUTPUT_YUV_DENOISED |
| if (oxcf->noise_sensitivity > 0 && denoise_svc(cpi)) { |
| vpx_write_yuv_frame(yuv_denoised_file, |
| &cpi->denoiser.running_avg_y[INTRA_FRAME]); |
| } |
| #endif |
| #endif |
| #ifdef OUTPUT_YUV_SKINMAP |
| if (cpi->common.current_video_frame > 1) { |
| vp9_output_skin_map(cpi, yuv_skinmap_file); |
| } |
| #endif |
| |
| // Special case code to reduce pulsing when key frames are forced at a |
| // fixed interval. Note the reconstruction error if it is the frame before |
| // the force key frame |
| if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| cpi->ambient_err = |
| vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| } else { |
| cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| } |
| #else |
| cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| // If the encoder forced a KEY_FRAME decision |
| if (cm->frame_type == KEY_FRAME) cpi->refresh_last_frame = 1; |
| |
| cm->frame_to_show = get_frame_new_buffer(cm); |
| cm->frame_to_show->color_space = cm->color_space; |
| cm->frame_to_show->color_range = cm->color_range; |
| cm->frame_to_show->render_width = cm->render_width; |
| cm->frame_to_show->render_height = cm->render_height; |
| |
| // Pick the loop filter level for the frame. |
| loopfilter_frame(cpi, cm); |
| |
| if (cpi->rc.use_post_encode_drop) save_coding_context(cpi); |
| |
| // build the bitstream |
| vp9_pack_bitstream(cpi, dest, size); |
| |
| #if CONFIG_REALTIME_ONLY |
| (void)encode_frame_result; |
| assert(encode_frame_result == NULL); |
| #else // CONFIG_REALTIME_ONLY |
| if (encode_frame_result != NULL) { |
| const int ref_frame_flags = get_ref_frame_flags(cpi); |
| const RefCntBuffer *coded_frame_buf = |
| get_ref_cnt_buffer(cm, cm->new_fb_idx); |
| RefCntBuffer *ref_frame_bufs[MAX_INTER_REF_FRAMES]; |
| get_ref_frame_bufs(cpi, ref_frame_bufs); |
| // update_encode_frame_result() depends on twopass.gf_group.index and |
| // cm->new_fb_idx, cpi->Source, cpi->lst_fb_idx, cpi->gld_fb_idx and |
| // cpi->alt_fb_idx are updated for current frame and have |
| // not been updated for the next frame yet. |
| // The update locations are as follows. |
| // 1) twopass.gf_group.index is initialized at define_gf_group by vp9_zero() |
| // for the first frame in the gf_group and is updated for the next frame at |
| // vp9_twopass_postencode_update(). |
| // 2) cpi->Source is updated at the beginning of vp9_get_compressed_data() |
| // 3) cm->new_fb_idx is updated at the beginning of |
| // vp9_get_compressed_data() by get_free_fb(cm). |
| // 4) cpi->lst_fb_idx/gld_fb_idx/alt_fb_idx will be updated for the next |
| // frame at vp9_update_reference_frames(). |
| // This function needs to be called before vp9_update_reference_frames(). |
| // TODO(angiebird): Improve the codebase to make the update of frame |
| // dependent variables more robust. |
| update_encode_frame_result( |
| ref_frame_flags, |
| cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index], |
| cpi->Source, coded_frame_buf, ref_frame_bufs, vp9_get_quantizer(cpi), |
| cpi->oxcf.input_bit_depth, cm->bit_depth, cpi->td.counts, |
| #if CONFIG_RATE_CTRL |
| cpi->partition_info, cpi->motion_vector_info, |
| #endif // CONFIG_RATE_CTRL |
| encode_frame_result); |
| } |
| #endif // CONFIG_REALTIME_ONLY |
| |
| if (cpi->rc.use_post_encode_drop && cm->base_qindex < cpi->rc.worst_quality && |
| cpi->svc.spatial_layer_id == 0 && post_encode_drop_cbr(cpi, size)) { |
| restore_coding_context(cpi); |
| return; |
| } |
| |
| cpi->last_frame_dropped = 0; |
| cpi->svc.last_layer_dropped[cpi->svc.spatial_layer_id] = 0; |
| if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) |
| cpi->svc.num_encoded_top_layer++; |
| |
| // Keep track of the frame buffer index updated/refreshed for the |
| // current encoded TL0 superframe. |
| if (cpi->svc.temporal_layer_id == 0) { |
| if (cpi->refresh_last_frame) |
| cpi->svc.fb_idx_upd_tl0[cpi->svc.spatial_layer_id] = cpi->lst_fb_idx; |
| else if (cpi->refresh_golden_frame) |
| cpi->svc.fb_idx_upd_tl0[cpi->svc.spatial_layer_id] = cpi->gld_fb_idx; |
| else if (cpi->refresh_alt_ref_frame) |
| cpi->svc.fb_idx_upd_tl0[cpi->svc.spatial_layer_id] = cpi->alt_fb_idx; |
| } |
| |
| if (cm->seg.update_map) update_reference_segmentation_map(cpi); |
| |
| if (frame_is_intra_only(cm) == 0) { |
| release_scaled_references(cpi); |
| } |
| vp9_update_reference_frames(cpi); |
| |
| if (!cm->show_existing_frame) { |
| for (t = TX_4X4; t <= TX_32X32; ++t) { |
| full_to_model_counts(cpi->td.counts->coef[t], |
| cpi->td.rd_counts.coef_counts[t]); |
| } |
| |
| if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { |
| if (!frame_is_intra_only(cm)) { |
| vp9_adapt_mode_probs(cm); |
| vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); |
| } |
| vp9_adapt_coef_probs(cm); |
| } |
| } |
| |
| cpi->ext_refresh_frame_flags_pending = 0; |
| |
| if (cpi->refresh_golden_frame == 1) |
| cpi->frame_flags |= FRAMEFLAGS_GOLDEN; |
| else |
| cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN; |
| |
| if (cpi->refresh_alt_ref_frame == 1) |
| cpi->frame_flags |= FRAMEFLAGS_ALTREF; |
| else |
| cpi->frame_flags &= ~FRAMEFLAGS_ALTREF; |
| |
| cpi->ref_frame_flags = get_ref_frame_flags(cpi); |
| |
| cm->last_frame_type = cm->frame_type; |
| |
| vp9_rc_postencode_update(cpi, *size); |
| |
| if (oxcf->pass == 0 && !frame_is_intra_only(cm) && |
| (!cpi->use_svc || |
| (cpi->use_svc && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1))) { |
| vp9_compute_frame_low_motion(cpi); |
| } |
| |
| *size = VPXMAX(1, *size); |
| |
| #if 0 |
| output_frame_level_debug_stats(cpi); |
| #endif |
| |
| if (cm->frame_type == KEY_FRAME) { |
| // Tell the caller that the frame was coded as a key frame |
| *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY; |
| } else { |
| *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY; |
| } |
| |
| // Clear the one shot update flags for segmentation map and mode/ref loop |
| // filter deltas. |
| cm->seg.update_map = 0; |
| cm->seg.update_data = 0; |
| cm->lf.mode_ref_delta_update = 0; |
| |
| // keep track of the last coded dimensions |
| cm->last_width = cm->width; |
| cm->last_height = cm->height; |
| |
| // reset to normal state now that we are done. |
| if (!cm->show_existing_frame) { |
| cm->last_show_frame = cm->show_frame; |
| cm->prev_frame = cm->cur_frame; |
| } |
| |
| if (cm->show_frame) { |
| vp9_swap_mi_and_prev_mi(cm); |
| if (cpi->use_svc) vp9_inc_frame_in_layer(cpi); |
| } |
| update_frame_indexes(cm, cm->show_frame); |
| |
| if (cpi->use_svc) { |
| cpi->svc |
| .layer_context[cpi->svc.spatial_layer_id * |
| cpi->svc.number_temporal_layers + |
| cpi->svc.temporal_layer_id] |
| .last_frame_type = cm->frame_type; |
| // Reset layer_sync back to 0 for next frame. |
| cpi->svc.spatial_layer_sync[cpi->svc.spatial_layer_id] = 0; |
| } |
| |
| cpi->force_update_segmentation = 0; |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) |
| vp9_alt_ref_aq_unset_all(cpi->alt_ref_aq, cpi); |
| #endif |
| |
| cpi->svc.previous_frame_is_intra_only = cm->intra_only; |
| cpi->svc.set_intra_only_frame = 0; |
| } |
| |
| static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest, |
| unsigned int *frame_flags) { |
| vp9_rc_get_svc_params(cpi); |
| encode_frame_to_data_rate(cpi, size, dest, frame_flags, |
| /*encode_frame_result = */ NULL); |
| } |
| |
| static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, |
| unsigned int *frame_flags) { |
| if (cpi->oxcf.rc_mode == VPX_CBR) { |
| vp9_rc_get_one_pass_cbr_params(cpi); |
| } else { |
| vp9_rc_get_one_pass_vbr_params(cpi); |
| } |
| encode_frame_to_data_rate(cpi, size, dest, frame_flags, |
| /*encode_frame_result = */ NULL); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void Pass2Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, |
| unsigned int *frame_flags, |
| ENCODE_FRAME_RESULT *encode_frame_result) { |
| cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_move_frame_idx_w(); |
| #endif |
| encode_frame_to_data_rate(cpi, size, dest, frame_flags, encode_frame_result); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| int vp9_receive_raw_frame(VP9_COMP *cpi, vpx_enc_frame_flags_t frame_flags, |
| YV12_BUFFER_CONFIG *sd, int64_t time_stamp, |
| int64_t end_time) { |
| VP9_COMMON *const cm = &cpi->common; |
| struct vpx_usec_timer timer; |
| int res = 0; |
| const int subsampling_x = sd->subsampling_x; |
| const int subsampling_y = sd->subsampling_y; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; |
| #else |
| const int use_highbitdepth = 0; |
| #endif |
| |
| update_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y); |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| setup_denoiser_buffer(cpi); |
| #endif |
| |
| alloc_raw_frame_buffers(cpi); |
| |
| vpx_usec_timer_start(&timer); |
| |
| if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, |
| use_highbitdepth, frame_flags)) |
| res = -1; |
| vpx_usec_timer_mark(&timer); |
| cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); |
| |
| if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) && |
| (subsampling_x != 1 || subsampling_y != 1)) { |
| vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM, |
| "Non-4:2:0 color format requires profile 1 or 3"); |
| res = -1; |
| } |
| if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) && |
| (subsampling_x == 1 && subsampling_y == 1)) { |
| vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM, |
| "4:2:0 color format requires profile 0 or 2"); |
| res = -1; |
| } |
| |
| return res; |
| } |
| |
| static int frame_is_reference(const VP9_COMP *cpi) { |
| const VP9_COMMON *cm = &cpi->common; |
| |
| return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || |
| cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame || |
| cm->refresh_frame_context || cm->lf.mode_ref_delta_update || |
| cm->seg.update_map || cm->seg.update_data; |
| } |
| |
| static void adjust_frame_rate(VP9_COMP *cpi, |
| const struct lookahead_entry *source) { |
| int64_t this_duration; |
| int step = 0; |
| |
| if (source->ts_start == cpi->first_time_stamp_ever) { |
| this_duration = source->ts_end - source->ts_start; |
| step = 1; |
| } else { |
| int64_t last_duration = |
| cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; |
| |
| this_duration = source->ts_end - cpi->last_end_time_stamp_seen; |
| |
| // do a step update if the duration changes by 10% |
| if (last_duration) |
| step = (int)((this_duration - last_duration) * 10 / last_duration); |
| } |
| |
| if (this_duration) { |
| if (step) { |
| vp9_new_framerate(cpi, 10000000.0 / this_duration); |
| } else { |
| // Average this frame's rate into the last second's average |
| // frame rate. If we haven't seen 1 second yet, then average |
| // over the whole interval seen. |
| const double interval = VPXMIN( |
| (double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0); |
| double avg_duration = 10000000.0 / cpi->framerate; |
| avg_duration *= (interval - avg_duration + this_duration); |
| avg_duration /= interval; |
| |
| vp9_new_framerate(cpi, 10000000.0 / avg_duration); |
| } |
| } |
| cpi->last_time_stamp_seen = source->ts_start; |
| cpi->last_end_time_stamp_seen = source->ts_end; |
| } |
| |
| // Returns 0 if this is not an alt ref else the offset of the source frame |
| // used as the arf midpoint. |
| static int get_arf_src_index(VP9_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| int arf_src_index = 0; |
| if (is_altref_enabled(cpi)) { |
| if (cpi->oxcf.pass == 2) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { |
| arf_src_index = gf_group->arf_src_offset[gf_group->index]; |
| } |
| } else if (rc->source_alt_ref_pending) { |
| arf_src_index = rc->frames_till_gf_update_due; |
| } |
| } |
| return arf_src_index; |
| } |
| |
| static void check_src_altref(VP9_COMP *cpi, |
| const struct lookahead_entry *source) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| if (cpi->oxcf.pass == 2) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| rc->is_src_frame_alt_ref = |
| (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE); |
| } else { |
| rc->is_src_frame_alt_ref = |
| cpi->alt_ref_source && (source == cpi->alt_ref_source); |
| } |
| |
| if (rc->is_src_frame_alt_ref) { |
| // Current frame is an ARF overlay frame. |
| cpi->alt_ref_source = NULL; |
| |
| // Don't refresh the last buffer for an ARF overlay frame. It will |
| // become the GF so preserve last as an alternative prediction option. |
| cpi->refresh_last_frame = 0; |
| } |
| } |
| |
| #if CONFIG_INTERNAL_STATS |
| static void adjust_image_stat(double y, double u, double v, double all, |
| ImageStat *s) { |
| s->stat[Y] += y; |
| s->stat[U] += u; |
| s->stat[V] += v; |
| s->stat[ALL] += all; |
| s->worst = VPXMIN(s->worst, all); |
| } |
| #endif // CONFIG_INTERNAL_STATS |
| |
| // Adjust the maximum allowable frame size for the target level. |
| static void level_rc_framerate(VP9_COMP *cpi, int arf_src_index) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| LevelConstraint *const ls = &cpi->level_constraint; |
| VP9_COMMON *const cm = &cpi->common; |
| const double max_cpb_size = ls->max_cpb_size; |
| vpx_clear_system_state(); |
| rc->max_frame_bandwidth = VPXMIN(rc->max_frame_bandwidth, ls->max_frame_size); |
| if (frame_is_intra_only(cm)) { |
| rc->max_frame_bandwidth = |
| VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.5)); |
| } else if (arf_src_index > 0) { |
| rc->max_frame_bandwidth = |
| VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.4)); |
| } else { |
| rc->max_frame_bandwidth = |
| VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.2)); |
| } |
| } |
| |
| static void update_level_info(VP9_COMP *cpi, size_t *size, int arf_src_index) { |
| VP9_COMMON *const cm = &cpi->common; |
| Vp9LevelInfo *const level_info = &cpi->level_info; |
| Vp9LevelSpec *const level_spec = &level_info->level_spec; |
| Vp9LevelStats *const level_stats = &level_info->level_stats; |
| int i, idx; |
| uint64_t luma_samples, dur_end; |
| const uint32_t luma_pic_size = cm->width * cm->height; |
| const uint32_t luma_pic_breadth = VPXMAX(cm->width, cm->height); |
| LevelConstraint *const level_constraint = &cpi->level_constraint; |
| const int8_t level_index = level_constraint->level_index; |
| double cpb_data_size; |
| |
| vpx_clear_system_state(); |
| |
| // update level_stats |
| level_stats->total_compressed_size += *size; |
| if (cm->show_frame) { |
| level_stats->total_uncompressed_size += |
| luma_pic_size + |
| 2 * (luma_pic_size >> (cm->subsampling_x + cm->subsampling_y)); |
| level_stats->time_encoded = |
| (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / |
| (double)TICKS_PER_SEC; |
| } |
| |
| if (arf_src_index > 0) { |
| if (!level_stats->seen_first_altref) { |
| level_stats->seen_first_altref = 1; |
| } else if (level_stats->frames_since_last_altref < |
| level_spec->min_altref_distance) { |
| level_spec->min_altref_distance = level_stats->frames_since_last_altref; |
| } |
| level_stats->frames_since_last_altref = 0; |
| } else { |
| ++level_stats->frames_since_last_altref; |
| } |
| |
| if (level_stats->frame_window_buffer.len < FRAME_WINDOW_SIZE - 1) { |
| idx = (level_stats->frame_window_buffer.start + |
| level_stats->frame_window_buffer.len++) % |
| FRAME_WINDOW_SIZE; |
| } else { |
| idx = level_stats->frame_window_buffer.start; |
| level_stats->frame_window_buffer.start = (idx + 1) % FRAME_WINDOW_SIZE; |
| } |
| level_stats->frame_window_buffer.buf[idx].ts = cpi->last_time_stamp_seen; |
| level_stats->frame_window_buffer.buf[idx].size = (uint32_t)(*size); |
| level_stats->frame_window_buffer.buf[idx].luma_samples = luma_pic_size; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| level_stats->ref_refresh_map = 0; |
| } else { |
| int count = 0; |
| level_stats->ref_refresh_map |= vp9_get_refresh_mask(cpi); |
| // Also need to consider the case where the encoder refers to a buffer |
| // that has been implicitly refreshed after encoding a keyframe. |
| if (!cm->intra_only) { |
| level_stats->ref_refresh_map |= (1 << cpi->lst_fb_idx); |
| level_stats->ref_refresh_map |= (1 << cpi->gld_fb_idx); |
| level_stats->ref_refresh_map |= (1 << cpi->alt_fb_idx); |
| } |
| for (i = 0; i < REF_FRAMES; ++i) { |
| count += (level_stats->ref_refresh_map >> i) & 1; |
| } |
| if (count > level_spec->max_ref_frame_buffers) { |
| level_spec->max_ref_frame_buffers = count; |
| } |
| } |
| |
| // update average_bitrate |
| level_spec->average_bitrate = (double)level_stats->total_compressed_size / |
| 125.0 / level_stats->time_encoded; |
| |
| // update max_luma_sample_rate |
| luma_samples = 0; |
| for (i = 0; i < level_stats->frame_window_buffer.len; ++i) { |
| idx = (level_stats->frame_window_buffer.start + |
| level_stats->frame_window_buffer.len - 1 - i) % |
| FRAME_WINDOW_SIZE; |
| if (i == 0) { |
| dur_end = level_stats->frame_window_buffer.buf[idx].ts; |
| } |
| if (dur_end - level_stats->frame_window_buffer.buf[idx].ts >= |
| TICKS_PER_SEC) { |
| break; |
| } |
| luma_samples += level_stats->frame_window_buffer.buf[idx].luma_samples; |
| } |
| if (luma_samples > level_spec->max_luma_sample_rate) { |
| level_spec->max_luma_sample_rate = luma_samples; |
| } |
| |
| // update max_cpb_size |
| cpb_data_size = 0; |
| for (i = 0; i < CPB_WINDOW_SIZE; ++i) { |
| if (i >= level_stats->frame_window_buffer.len) break; |
| idx = (level_stats->frame_window_buffer.start + |
| level_stats->frame_window_buffer.len - 1 - i) % |
| FRAME_WINDOW_SIZE; |
| cpb_data_size += level_stats->frame_window_buffer.buf[idx].size; |
| } |
| cpb_data_size = cpb_data_size / 125.0; |
| if (cpb_data_size > level_spec->max_cpb_size) { |
| level_spec->max_cpb_size = cpb_data_size; |
| } |
| |
| // update max_luma_picture_size |
| if (luma_pic_size > level_spec->max_luma_picture_size) { |
| level_spec->max_luma_picture_size = luma_pic_size; |
| } |
| |
| // update max_luma_picture_breadth |
| if (luma_pic_breadth > level_spec->max_luma_picture_breadth) { |
| level_spec->max_luma_picture_breadth = luma_pic_breadth; |
| } |
| |
| // update compression_ratio |
| level_spec->compression_ratio = (double)level_stats->total_uncompressed_size * |
| cm->bit_depth / |
| level_stats->total_compressed_size / 8.0; |
| |
| // update max_col_tiles |
| if (level_spec->max_col_tiles < (1 << cm->log2_tile_cols)) { |
| level_spec->max_col_tiles = (1 << cm->log2_tile_cols); |
| } |
| |
| if (level_index >= 0 && level_constraint->fail_flag == 0) { |
| if (level_spec->max_luma_picture_size > |
| vp9_level_defs[level_index].max_luma_picture_size) { |
| level_constraint->fail_flag |= (1 << LUMA_PIC_SIZE_TOO_LARGE); |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Failed to encode to the target level %d. %s", |
| vp9_level_defs[level_index].level, |
| level_fail_messages[LUMA_PIC_SIZE_TOO_LARGE]); |
| } |
| |
| if (level_spec->max_luma_picture_breadth > |
| vp9_level_defs[level_index].max_luma_picture_breadth) { |
| level_constraint->fail_flag |= (1 << LUMA_PIC_BREADTH_TOO_LARGE); |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Failed to encode to the target level %d. %s", |
| vp9_level_defs[level_index].level, |
| level_fail_messages[LUMA_PIC_BREADTH_TOO_LARGE]); |
| } |
| |
| if ((double)level_spec->max_luma_sample_rate > |
| (double)vp9_level_defs[level_index].max_luma_sample_rate * |
| (1 + SAMPLE_RATE_GRACE_P)) { |
| level_constraint->fail_flag |= (1 << LUMA_SAMPLE_RATE_TOO_LARGE); |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Failed to encode to the target level %d. %s", |
| vp9_level_defs[level_index].level, |
| level_fail_messages[LUMA_SAMPLE_RATE_TOO_LARGE]); |
| } |
| |
| if (level_spec->max_col_tiles > vp9_level_defs[level_index].max_col_tiles) { |
| level_constraint->fail_flag |= (1 << TOO_MANY_COLUMN_TILE); |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Failed to encode to the target level %d. %s", |
| vp9_level_defs[level_index].level, |
| level_fail_messages[TOO_MANY_COLUMN_TILE]); |
| } |
| |
| if (level_spec->min_altref_distance < |
| vp9_level_defs[level_index].min_altref_distance) { |
| level_constraint->fail_flag |= (1 << ALTREF_DIST_TOO_SMALL); |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Failed to encode to the target level %d. %s", |
| vp9_level_defs[level_index].level, |
| level_fail_messages[ALTREF_DIST_TOO_SMALL]); |
| } |
| |
| if (level_spec->max_ref_frame_buffers > |
| vp9_level_defs[level_index].max_ref_frame_buffers) { |
| level_constraint->fail_flag |= (1 << TOO_MANY_REF_BUFFER); |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Failed to encode to the target level %d. %s", |
| vp9_level_defs[level_index].level, |
| level_fail_messages[TOO_MANY_REF_BUFFER]); |
| } |
| |
| if (level_spec->max_cpb_size > vp9_level_defs[level_index].max_cpb_size) { |
| level_constraint->fail_flag |= (1 << CPB_TOO_LARGE); |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Failed to encode to the target level %d. %s", |
| vp9_level_defs[level_index].level, |
| level_fail_messages[CPB_TOO_LARGE]); |
| } |
| |
| // Set an upper bound for the next frame size. It will be used in |
| // level_rc_framerate() before encoding the next frame. |
| cpb_data_size = 0; |
| for (i = 0; i < CPB_WINDOW_SIZE - 1; ++i) { |
| if (i >= level_stats->frame_window_buffer.len) break; |
| idx = (level_stats->frame_window_buffer.start + |
| level_stats->frame_window_buffer.len - 1 - i) % |
| FRAME_WINDOW_SIZE; |
| cpb_data_size += level_stats->frame_window_buffer.buf[idx].size; |
| } |
| cpb_data_size = cpb_data_size / 125.0; |
| level_constraint->max_frame_size = |
| (int)((vp9_level_defs[level_index].max_cpb_size - cpb_data_size) * |
| 1000.0); |
| if (level_stats->frame_window_buffer.len < CPB_WINDOW_SIZE - 1) |
| level_constraint->max_frame_size >>= 1; |
| } |
| } |
| |
| typedef struct GF_PICTURE { |
| YV12_BUFFER_CONFIG *frame; |
| int ref_frame[3]; |
| FRAME_UPDATE_TYPE update_type; |
| } GF_PICTURE; |
| |
| static void init_gop_frames(VP9_COMP *cpi, GF_PICTURE *gf_picture, |
| const GF_GROUP *gf_group, int *tpl_group_frames) { |
| VP9_COMMON *cm = &cpi->common; |
| int frame_idx = 0; |
| int i; |
| int gld_index = -1; |
| int alt_index = -1; |
| int lst_index = -1; |
| int arf_index_stack[MAX_ARF_LAYERS]; |
| int arf_stack_size = 0; |
| int extend_frame_count = 0; |
| int pframe_qindex = cpi->tpl_stats[2].base_qindex; |
| int frame_gop_offset = 0; |
| |
| RefCntBuffer *frame_bufs = cm->buffer_pool->frame_bufs; |
| int8_t recon_frame_index[REFS_PER_FRAME + MAX_ARF_LAYERS]; |
| |
| memset(recon_frame_index, -1, sizeof(recon_frame_index)); |
| stack_init(arf_index_stack, MAX_ARF_LAYERS); |
| |
| // TODO(jingning): To be used later for gf frame type parsing. |
| (void)gf_group; |
| |
| for (i = 0; i < FRAME_BUFFERS; ++i) { |
| if (frame_bufs[i].ref_count == 0) { |
| alloc_frame_mvs(cm, i); |
| if (vpx_realloc_frame_buffer(&frame_bufs[i].buf, cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, |
| NULL, NULL, NULL)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| |
| recon_frame_index[frame_idx] = i; |
| ++frame_idx; |
| |
| if (frame_idx >= REFS_PER_FRAME + cpi->oxcf.enable_auto_arf) break; |
| } |
| } |
| |
| for (i = 0; i < REFS_PER_FRAME + 1; ++i) { |
| assert(recon_frame_index[i] >= 0); |
| cpi->tpl_recon_frames[i] = &frame_bufs[recon_frame_index[i]].buf; |
| } |
| |
| *tpl_group_frames = 0; |
| |
| // Initialize Golden reference frame. |
| gf_picture[0].frame = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| for (i = 0; i < 3; ++i) gf_picture[0].ref_frame[i] = -1; |
| gf_picture[0].update_type = gf_group->update_type[0]; |
| gld_index = 0; |
| ++*tpl_group_frames; |
| |
| // Initialize base layer ARF frame |
| gf_picture[1].frame = cpi->Source; |
| gf_picture[1].ref_frame[0] = gld_index; |
| gf_picture[1].ref_frame[1] = lst_index; |
| gf_picture[1].ref_frame[2] = alt_index; |
| gf_picture[1].update_type = gf_group->update_type[1]; |
| alt_index = 1; |
| ++*tpl_group_frames; |
| |
| // Initialize P frames |
| for (frame_idx = 2; frame_idx < MAX_ARF_GOP_SIZE; ++frame_idx) { |
| struct lookahead_entry *buf; |
| frame_gop_offset = gf_group->frame_gop_index[frame_idx]; |
| buf = vp9_lookahead_peek(cpi->lookahead, frame_gop_offset - 1); |
| |
| if (buf == NULL) break; |
| |
| gf_picture[frame_idx].frame = &buf->img; |
| gf_picture[frame_idx].ref_frame[0] = gld_index; |
| gf_picture[frame_idx].ref_frame[1] = lst_index; |
| gf_picture[frame_idx].ref_frame[2] = alt_index; |
| gf_picture[frame_idx].update_type = gf_group->update_type[frame_idx]; |
| |
| switch (gf_group->update_type[frame_idx]) { |
| case ARF_UPDATE: |
| stack_push(arf_index_stack, alt_index, arf_stack_size); |
| ++arf_stack_size; |
| alt_index = frame_idx; |
| break; |
| case LF_UPDATE: lst_index = frame_idx; break; |
| case OVERLAY_UPDATE: |
| gld_index = frame_idx; |
| alt_index = stack_pop(arf_index_stack, arf_stack_size); |
| --arf_stack_size; |
| break; |
| case USE_BUF_FRAME: |
| lst_index = alt_index; |
| alt_index = stack_pop(arf_index_stack, arf_stack_size); |
| --arf_stack_size; |
| break; |
| default: break; |
| } |
| |
| ++*tpl_group_frames; |
| |
| // The length of group of pictures is baseline_gf_interval, plus the |
| // beginning golden frame from last GOP, plus the last overlay frame in |
| // the same GOP. |
| if (frame_idx == gf_group->gf_group_size) break; |
| } |
| |
| alt_index = -1; |
| ++frame_idx; |
| ++frame_gop_offset; |
| |
| // Extend two frames outside the current gf group. |
| for (; frame_idx < MAX_LAG_BUFFERS && extend_frame_count < 2; ++frame_idx) { |
| struct lookahead_entry *buf = |
| vp9_lookahead_peek(cpi->lookahead, frame_gop_offset - 1); |
| |
| if (buf == NULL) break; |
| |
| cpi->tpl_stats[frame_idx].base_qindex = pframe_qindex; |
| |
| gf_picture[frame_idx].frame = &buf->img; |
| gf_picture[frame_idx].ref_frame[0] = gld_index; |
| gf_picture[frame_idx].ref_frame[1] = lst_index; |
| gf_picture[frame_idx].ref_frame[2] = alt_index; |
| gf_picture[frame_idx].update_type = LF_UPDATE; |
| lst_index = frame_idx; |
| ++*tpl_group_frames; |
| ++extend_frame_count; |
| ++frame_gop_offset; |
| } |
| } |
| |
| static void init_tpl_stats(VP9_COMP *cpi) { |
| int frame_idx; |
| for (frame_idx = 0; frame_idx < MAX_ARF_GOP_SIZE; ++frame_idx) { |
| TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx]; |
| memset(tpl_frame->tpl_stats_ptr, 0, |
| tpl_frame->height * tpl_frame->width * |
| sizeof(*tpl_frame->tpl_stats_ptr)); |
| tpl_frame->is_valid = 0; |
| } |
| } |
| |
| #if CONFIG_NON_GREEDY_MV |
| static uint32_t full_pixel_motion_search(VP9_COMP *cpi, ThreadData *td, |
| MotionField *motion_field, |
| int frame_idx, uint8_t *cur_frame_buf, |
| uint8_t *ref_frame_buf, int stride, |
| BLOCK_SIZE bsize, int mi_row, |
| int mi_col, MV *mv) { |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; |
| int step_param; |
| uint32_t bestsme = UINT_MAX; |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| // lambda is used to adjust the importance of motion vector consistency. |
| // TODO(angiebird): Figure out lambda's proper value. |
| const int lambda = cpi->tpl_stats[frame_idx].lambda; |
| int_mv nb_full_mvs[NB_MVS_NUM]; |
| int nb_full_mv_num; |
| |
| MV best_ref_mv1 = { 0, 0 }; |
| MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ |
| |
| best_ref_mv1_full.col = best_ref_mv1.col >> 3; |
| best_ref_mv1_full.row = best_ref_mv1.row >> 3; |
| |
| // Setup frame pointers |
| x->plane[0].src.buf = cur_frame_buf; |
| x->plane[0].src.stride = stride; |
| xd->plane[0].pre[0].buf = ref_frame_buf; |
| xd->plane[0].pre[0].stride = stride; |
| |
| step_param = mv_sf->reduce_first_step_size; |
| step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2); |
| |
| vp9_set_mv_search_range(&x->mv_limits, &best_ref_mv1); |
| |
| nb_full_mv_num = |
| vp9_prepare_nb_full_mvs(motion_field, mi_row, mi_col, nb_full_mvs); |
| vp9_full_pixel_diamond_new(cpi, x, bsize, &best_ref_mv1_full, step_param, |
| lambda, 1, nb_full_mvs, nb_full_mv_num, mv); |
| |
| /* restore UMV window */ |
| x->mv_limits = tmp_mv_limits; |
| |
| return bestsme; |
| } |
| |
| static uint32_t sub_pixel_motion_search(VP9_COMP *cpi, ThreadData *td, |
| uint8_t *cur_frame_buf, |
| uint8_t *ref_frame_buf, int stride, |
| BLOCK_SIZE bsize, MV *mv) { |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; |
| uint32_t bestsme = UINT_MAX; |
| uint32_t distortion; |
| uint32_t sse; |
| int cost_list[5]; |
| |
| MV best_ref_mv1 = { 0, 0 }; |
| |
| // Setup frame pointers |
| x->plane[0].src.buf = cur_frame_buf; |
| x->plane[0].src.stride = stride; |
| xd->plane[0].pre[0].buf = ref_frame_buf; |
| xd->plane[0].pre[0].stride = stride; |
| |
| // TODO(yunqing): may use higher tap interp filter than 2 taps. |
| // Ignore mv costing by sending NULL pointer instead of cost array |
| bestsme = cpi->find_fractional_mv_step( |
| x, mv, &best_ref_mv1, cpi->common.allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], 0, mv_sf->subpel_search_level, |
| cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, 0, 0, |
| USE_2_TAPS); |
| |
| return bestsme; |
| } |
| |
| #else // CONFIG_NON_GREEDY_MV |
| static uint32_t motion_compensated_prediction(VP9_COMP *cpi, ThreadData *td, |
| uint8_t *cur_frame_buf, |
| uint8_t *ref_frame_buf, |
| int stride, BLOCK_SIZE bsize, |
| MV *mv) { |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; |
| const SEARCH_METHODS search_method = NSTEP; |
| int step_param; |
| int sadpb = x->sadperbit16; |
| uint32_t bestsme = UINT_MAX; |
| uint32_t distortion; |
| uint32_t sse; |
| int cost_list[5]; |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| |
| MV best_ref_mv1 = { 0, 0 }; |
| MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ |
| |
| best_ref_mv1_full.col = best_ref_mv1.col >> 3; |
| best_ref_mv1_full.row = best_ref_mv1.row >> 3; |
| |
| // Setup frame pointers |
| x->plane[0].src.buf = cur_frame_buf; |
| x->plane[0].src.stride = stride; |
| xd->plane[0].pre[0].buf = ref_frame_buf; |
| xd->plane[0].pre[0].stride = stride; |
| |
| step_param = mv_sf->reduce_first_step_size; |
| step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2); |
| |
| vp9_set_mv_search_range(&x->mv_limits, &best_ref_mv1); |
| |
| vp9_full_pixel_search(cpi, x, bsize, &best_ref_mv1_full, step_param, |
| search_method, sadpb, cond_cost_list(cpi, cost_list), |
| &best_ref_mv1, mv, 0, 0); |
| |
| /* restore UMV window */ |
| x->mv_limits = tmp_mv_limits; |
| |
| // TODO(yunqing): may use higher tap interp filter than 2 taps. |
| // Ignore mv costing by sending NULL pointer instead of cost array |
| bestsme = cpi->find_fractional_mv_step( |
| x, mv, &best_ref_mv1, cpi->common.allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], 0, mv_sf->subpel_search_level, |
| cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, 0, 0, |
| USE_2_TAPS); |
| |
| return bestsme; |
| } |
| #endif |
| |
| static int get_overlap_area(int grid_pos_row, int grid_pos_col, int ref_pos_row, |
| int ref_pos_col, int block, BLOCK_SIZE bsize) { |
| int width = 0, height = 0; |
| int bw = 4 << b_width_log2_lookup[bsize]; |
| int bh = 4 << b_height_log2_lookup[bsize]; |
| |
| switch (block) { |
| case 0: |
| width = grid_pos_col + bw - ref_pos_col; |
| height = grid_pos_row + bh - ref_pos_row; |
| break; |
| case 1: |
| width = ref_pos_col + bw - grid_pos_col; |
| height = grid_pos_row + bh - ref_pos_row; |
| break; |
| case 2: |
| width = grid_pos_col + bw - ref_pos_col; |
| height = ref_pos_row + bh - grid_pos_row; |
| break; |
| case 3: |
| width = ref_pos_col + bw - grid_pos_col; |
| height = ref_pos_row + bh - grid_pos_row; |
| break; |
| default: assert(0); |
| } |
| |
| return width * height; |
| } |
| |
| static int round_floor(int ref_pos, int bsize_pix) { |
| int round; |
| if (ref_pos < 0) |
| round = -(1 + (-ref_pos - 1) / bsize_pix); |
| else |
| round = ref_pos / bsize_pix; |
| |
| return round; |
| } |
| |
| static void tpl_model_store(TplDepStats *tpl_stats, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int stride) { |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const TplDepStats *src_stats = &tpl_stats[mi_row * stride + mi_col]; |
| int idx, idy; |
| |
| for (idy = 0; idy < mi_height; ++idy) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| TplDepStats *tpl_ptr = &tpl_stats[(mi_row + idy) * stride + mi_col + idx]; |
| const int64_t mc_flow = tpl_ptr->mc_flow; |
| const int64_t mc_ref_cost = tpl_ptr->mc_ref_cost; |
| *tpl_ptr = *src_stats; |
| tpl_ptr->mc_flow = mc_flow; |
| tpl_ptr->mc_ref_cost = mc_ref_cost; |
| tpl_ptr->mc_dep_cost = tpl_ptr->intra_cost + tpl_ptr->mc_flow; |
| } |
| } |
| } |
| |
| static void tpl_model_update_b(TplDepFrame *tpl_frame, TplDepStats *tpl_stats, |
| int mi_row, int mi_col, const BLOCK_SIZE bsize) { |
| TplDepFrame *ref_tpl_frame = &tpl_frame[tpl_stats->ref_frame_index]; |
| TplDepStats *ref_stats = ref_tpl_frame->tpl_stats_ptr; |
| MV mv = tpl_stats->mv.as_mv; |
| int mv_row = mv.row >> 3; |
| int mv_col = mv.col >> 3; |
| |
| int ref_pos_row = mi_row * MI_SIZE + mv_row; |
| int ref_pos_col = mi_col * MI_SIZE + mv_col; |
| |
| const int bw = 4 << b_width_log2_lookup[bsize]; |
| const int bh = 4 << b_height_log2_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int pix_num = bw * bh; |
| |
| // top-left on grid block location in pixel |
| int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh; |
| int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw; |
| int block; |
| |
| for (block = 0; block < 4; ++block) { |
| int grid_pos_row = grid_pos_row_base + bh * (block >> 1); |
| int grid_pos_col = grid_pos_col_base + bw * (block & 0x01); |
| |
| if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE && |
| grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) { |
| int overlap_area = get_overlap_area( |
| grid_pos_row, grid_pos_col, ref_pos_row, ref_pos_col, block, bsize); |
| int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height; |
| int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width; |
| |
| int64_t mc_flow = tpl_stats->mc_dep_cost - |
| (tpl_stats->mc_dep_cost * tpl_stats->inter_cost) / |
| tpl_stats->intra_cost; |
| |
| int idx, idy; |
| |
| for (idy = 0; idy < mi_height; ++idy) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| TplDepStats *des_stats = |
| &ref_stats[(ref_mi_row + idy) * ref_tpl_frame->stride + |
| (ref_mi_col + idx)]; |
| |
| des_stats->mc_flow += (mc_flow * overlap_area) / pix_num; |
| des_stats->mc_ref_cost += |
| ((tpl_stats->intra_cost - tpl_stats->inter_cost) * overlap_area) / |
| pix_num; |
| assert(overlap_area >= 0); |
| } |
| } |
| } |
| } |
| } |
| |
| static void tpl_model_update(TplDepFrame *tpl_frame, TplDepStats *tpl_stats, |
| int mi_row, int mi_col, const BLOCK_SIZE bsize) { |
| int idx, idy; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| |
| for (idy = 0; idy < mi_height; ++idy) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| TplDepStats *tpl_ptr = |
| &tpl_stats[(mi_row + idy) * tpl_frame->stride + (mi_col + idx)]; |
| tpl_model_update_b(tpl_frame, tpl_ptr, mi_row + idy, mi_col + idx, |
| BLOCK_8X8); |
| } |
| } |
| } |
| |
| static void get_quantize_error(MACROBLOCK *x, int plane, tran_low_t *coeff, |
| tran_low_t *qcoeff, tran_low_t *dqcoeff, |
| TX_SIZE tx_size, int64_t *recon_error, |
| int64_t *sse) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; |
| uint16_t eob; |
| int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]; |
| const int shift = tx_size == TX_32X32 ? 0 : 2; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_highbd_quantize_fp_32x32(coeff, pix_num, x->skip_block, p->round_fp, |
| p->quant_fp, qcoeff, dqcoeff, pd->dequant, |
| &eob, scan_order->scan, scan_order->iscan); |
| } else { |
| vp9_quantize_fp_32x32(coeff, pix_num, x->skip_block, p->round_fp, |
| p->quant_fp, qcoeff, dqcoeff, pd->dequant, &eob, |
| scan_order->scan, scan_order->iscan); |
| } |
| #else |
| vp9_quantize_fp_32x32(coeff, pix_num, x->skip_block, p->round_fp, p->quant_fp, |
| qcoeff, dqcoeff, pd->dequant, &eob, scan_order->scan, |
| scan_order->iscan); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| *recon_error = vp9_block_error(coeff, dqcoeff, pix_num, sse) >> shift; |
| *recon_error = VPXMAX(*recon_error, 1); |
| |
| *sse = (*sse) >> shift; |
| *sse = VPXMAX(*sse, 1); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| void highbd_wht_fwd_txfm(int16_t *src_diff, int bw, tran_low_t *coeff, |
| TX_SIZE tx_size) { |
| // TODO(sdeng): Implement SIMD based high bit-depth Hadamard transforms. |
| switch (tx_size) { |
| case TX_8X8: vpx_highbd_hadamard_8x8(src_diff, bw, coeff); break; |
| case TX_16X16: vpx_highbd_hadamard_16x16(src_diff, bw, coeff); break; |
| case TX_32X32: vpx_highbd_hadamard_32x32(src_diff, bw, coeff); break; |
| default: assert(0); |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| void wht_fwd_txfm(int16_t *src_diff, int bw, tran_low_t *coeff, |
| TX_SIZE tx_size) { |
| switch (tx_size) { |
| case TX_8X8: vpx_hadamard_8x8(src_diff, bw, coeff); break; |
| case TX_16X16: vpx_hadamard_16x16(src_diff, bw, coeff); break; |
| case TX_32X32: vpx_hadamard_32x32(src_diff, bw, coeff); break; |
| default: assert(0); |
| } |
| } |
| |
| static void set_mv_limits(const VP9_COMMON *cm, MACROBLOCK *x, int mi_row, |
| int mi_col) { |
| x->mv_limits.row_min = -((mi_row * MI_SIZE) + (17 - 2 * VP9_INTERP_EXTEND)); |
| x->mv_limits.row_max = |
| (cm->mi_rows - 1 - mi_row) * MI_SIZE + (17 - 2 * VP9_INTERP_EXTEND); |
| x->mv_limits.col_min = -((mi_col * MI_SIZE) + (17 - 2 * VP9_INTERP_EXTEND)); |
| x->mv_limits.col_max = |
| ((cm->mi_cols - 1 - mi_col) * MI_SIZE) + (17 - 2 * VP9_INTERP_EXTEND); |
| } |
| |
| static void mode_estimation(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| struct scale_factors *sf, GF_PICTURE *gf_picture, |
| int frame_idx, TplDepFrame *tpl_frame, |
| int16_t *src_diff, tran_low_t *coeff, |
| tran_low_t *qcoeff, tran_low_t *dqcoeff, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, TX_SIZE tx_size, |
| YV12_BUFFER_CONFIG *ref_frame[], uint8_t *predictor, |
| int64_t *recon_error, int64_t *sse) { |
| VP9_COMMON *cm = &cpi->common; |
| ThreadData *td = &cpi->td; |
| |
| const int bw = 4 << b_width_log2_lookup[bsize]; |
| const int bh = 4 << b_height_log2_lookup[bsize]; |
| const int pix_num = bw * bh; |
| int best_rf_idx = -1; |
| int_mv best_mv; |
| int64_t best_inter_cost = INT64_MAX; |
| int64_t inter_cost; |
| int rf_idx; |
| const InterpKernel *const kernel = vp9_filter_kernels[EIGHTTAP]; |
| |
| int64_t best_intra_cost = INT64_MAX; |
| int64_t intra_cost; |
| PREDICTION_MODE mode; |
| int mb_y_offset = mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE; |
| MODE_INFO mi_above, mi_left; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| TplDepStats *tpl_stats = |
| &tpl_frame->tpl_stats_ptr[mi_row * tpl_frame->stride + mi_col]; |
| |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = ((cm->mi_rows - 1 - mi_row) * MI_SIZE) * 8; |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| xd->mb_to_right_edge = ((cm->mi_cols - 1 - mi_col) * MI_SIZE) * 8; |
| xd->above_mi = (mi_row > 0) ? &mi_above : NULL; |
| xd->left_mi = (mi_col > 0) ? &mi_left : NULL; |
| |
| // Intra prediction search |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| uint8_t *src, *dst; |
| int src_stride, dst_stride; |
| |
| src = xd->cur_buf->y_buffer + mb_y_offset; |
| src_stride = xd->cur_buf->y_stride; |
| |
| dst = &predictor[0]; |
| dst_stride = bw; |
| |
| xd->mi[0]->sb_type = bsize; |
| xd->mi[0]->ref_frame[0] = INTRA_FRAME; |
| |
| vp9_predict_intra_block(xd, b_width_log2_lookup[bsize], tx_size, mode, src, |
| src_stride, dst, dst_stride, 0, 0, 0); |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst, |
| dst_stride, xd->bd); |
| highbd_wht_fwd_txfm(src_diff, bw, coeff, tx_size); |
| intra_cost = vpx_highbd_satd(coeff, pix_num); |
| } else { |
| vpx_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst, |
| dst_stride); |
| wht_fwd_txfm(src_diff, bw, coeff, tx_size); |
| intra_cost = vpx_satd(coeff, pix_num); |
| } |
| #else |
| vpx_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst, dst_stride); |
| wht_fwd_txfm(src_diff, bw, coeff, tx_size); |
| intra_cost = vpx_satd(coeff, pix_num); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if (intra_cost < best_intra_cost) best_intra_cost = intra_cost; |
| } |
| |
| // Motion compensated prediction |
| best_mv.as_int = 0; |
| |
| set_mv_limits(cm, x, mi_row, mi_col); |
| |
| for (rf_idx = 0; rf_idx < MAX_INTER_REF_FRAMES; ++rf_idx) { |
| int_mv mv; |
| #if CONFIG_NON_GREEDY_MV |
| MotionField *motion_field; |
| #endif |
| if (ref_frame[rf_idx] == NULL) continue; |
| |
| #if CONFIG_NON_GREEDY_MV |
| (void)td; |
| motion_field = vp9_motion_field_info_get_motion_field( |
| &cpi->motion_field_info, frame_idx, rf_idx, bsize); |
| mv = vp9_motion_field_mi_get_mv(motion_field, mi_row, mi_col); |
| #else |
| motion_compensated_prediction(cpi, td, xd->cur_buf->y_buffer + mb_y_offset, |
| ref_frame[rf_idx]->y_buffer + mb_y_offset, |
| xd->cur_buf->y_stride, bsize, &mv.as_mv); |
| #endif |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp9_highbd_build_inter_predictor( |
| CONVERT_TO_SHORTPTR(ref_frame[rf_idx]->y_buffer + mb_y_offset), |
| ref_frame[rf_idx]->y_stride, CONVERT_TO_SHORTPTR(&predictor[0]), bw, |
| &mv.as_mv, sf, bw, bh, 0, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, |
| mi_row * MI_SIZE, xd->bd); |
| vpx_highbd_subtract_block( |
| bh, bw, src_diff, bw, xd->cur_buf->y_buffer + mb_y_offset, |
| xd->cur_buf->y_stride, &predictor[0], bw, xd->bd); |
| highbd_wht_fwd_txfm(src_diff, bw, coeff, tx_size); |
| inter_cost = vpx_highbd_satd(coeff, pix_num); |
| } else { |
| vp9_build_inter_predictor( |
| ref_frame[rf_idx]->y_buffer + mb_y_offset, |
| ref_frame[rf_idx]->y_stride, &predictor[0], bw, &mv.as_mv, sf, bw, bh, |
| 0, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE); |
| vpx_subtract_block(bh, bw, src_diff, bw, |
| xd->cur_buf->y_buffer + mb_y_offset, |
| xd->cur_buf->y_stride, &predictor[0], bw); |
| wht_fwd_txfm(src_diff, bw, coeff, tx_size); |
| inter_cost = vpx_satd(coeff, pix_num); |
| } |
| #else |
| vp9_build_inter_predictor(ref_frame[rf_idx]->y_buffer + mb_y_offset, |
| ref_frame[rf_idx]->y_stride, &predictor[0], bw, |
| &mv.as_mv, sf, bw, bh, 0, kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE, mi_row * MI_SIZE); |
| vpx_subtract_block(bh, bw, src_diff, bw, |
| xd->cur_buf->y_buffer + mb_y_offset, |
| xd->cur_buf->y_stride, &predictor[0], bw); |
| wht_fwd_txfm(src_diff, bw, coeff, tx_size); |
| inter_cost = vpx_satd(coeff, pix_num); |
| #endif |
| |
| if (inter_cost < best_inter_cost) { |
| best_rf_idx = rf_idx; |
| best_inter_cost = inter_cost; |
| best_mv.as_int = mv.as_int; |
| get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, recon_error, |
| sse); |
| } |
| } |
| best_intra_cost = VPXMAX(best_intra_cost, 1); |
| best_inter_cost = VPXMIN(best_intra_cost, best_inter_cost); |
| tpl_stats->inter_cost = VPXMAX( |
| 1, (best_inter_cost << TPL_DEP_COST_SCALE_LOG2) / (mi_height * mi_width)); |
| tpl_stats->intra_cost = VPXMAX( |
| 1, (best_intra_cost << TPL_DEP_COST_SCALE_LOG2) / (mi_height * mi_width)); |
| tpl_stats->ref_frame_index = gf_picture[frame_idx].ref_frame[best_rf_idx]; |
| tpl_stats->mv.as_int = best_mv.as_int; |
| } |
| |
| #if CONFIG_NON_GREEDY_MV |
| static int get_block_src_pred_buf(MACROBLOCKD *xd, GF_PICTURE *gf_picture, |
| int frame_idx, int rf_idx, int mi_row, |
| int mi_col, struct buf_2d *src, |
| struct buf_2d *pre) { |
| const int mb_y_offset = |
| mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE; |
| YV12_BUFFER_CONFIG *ref_frame = NULL; |
| int ref_frame_idx = gf_picture[frame_idx].ref_frame[rf_idx]; |
| if (ref_frame_idx != -1) { |
| ref_frame = gf_picture[ref_frame_idx].frame; |
| src->buf = xd->cur_buf->y_buffer + mb_y_offset; |
| src->stride = xd->cur_buf->y_stride; |
| pre->buf = ref_frame->y_buffer + mb_y_offset; |
| pre->stride = ref_frame->y_stride; |
| assert(src->stride == pre->stride); |
| return 1; |
| } else { |
| printf("invalid ref_frame_idx"); |
| assert(ref_frame_idx != -1); |
| return 0; |
| } |
| } |
| |
| #define kMvPreCheckLines 5 |
| #define kMvPreCheckSize 15 |
| |
| #define MV_REF_POS_NUM 3 |
| POSITION mv_ref_pos[MV_REF_POS_NUM] = { |
| { -1, 0 }, |
| { 0, -1 }, |
| { -1, -1 }, |
| }; |
| |
| static int_mv *get_select_mv(VP9_COMP *cpi, TplDepFrame *tpl_frame, int mi_row, |
| int mi_col) { |
| return &cpi->select_mv_arr[mi_row * tpl_frame->stride + mi_col]; |
| } |
| |
| static int_mv find_ref_mv(int mv_mode, VP9_COMP *cpi, TplDepFrame *tpl_frame, |
| BLOCK_SIZE bsize, int mi_row, int mi_col) { |
| int i; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int_mv nearest_mv, near_mv, invalid_mv; |
| nearest_mv.as_int = INVALID_MV; |
| near_mv.as_int = INVALID_MV; |
| invalid_mv.as_int = INVALID_MV; |
| for (i = 0; i < MV_REF_POS_NUM; ++i) { |
| int nb_row = mi_row + mv_ref_pos[i].row * mi_height; |
| int nb_col = mi_col + mv_ref_pos[i].col * mi_width; |
| assert(mv_ref_pos[i].row <= 0); |
| assert(mv_ref_pos[i].col <= 0); |
| if (nb_row >= 0 && nb_col >= 0) { |
| if (nearest_mv.as_int == INVALID_MV) { |
| nearest_mv = *get_select_mv(cpi, tpl_frame, nb_row, nb_col); |
| } else { |
| int_mv mv = *get_select_mv(cpi, tpl_frame, nb_row, nb_col); |
| if (mv.as_int == nearest_mv.as_int) { |
| continue; |
| } else { |
| near_mv = mv; |
| break; |
| } |
| } |
| } |
| } |
| if (nearest_mv.as_int == INVALID_MV) { |
| nearest_mv.as_mv.row = 0; |
| nearest_mv.as_mv.col = 0; |
| } |
| if (near_mv.as_int == INVALID_MV) { |
| near_mv.as_mv.row = 0; |
| near_mv.as_mv.col = 0; |
| } |
| if (mv_mode == NEAREST_MV_MODE) { |
| return nearest_mv; |
| } |
| if (mv_mode == NEAR_MV_MODE) { |
| return near_mv; |
| } |
| assert(0); |
| return invalid_mv; |
| } |
| |
| static int_mv get_mv_from_mv_mode(int mv_mode, VP9_COMP *cpi, |
| MotionField *motion_field, |
| TplDepFrame *tpl_frame, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| int_mv mv; |
| switch (mv_mode) { |
| case ZERO_MV_MODE: |
| mv.as_mv.row = 0; |
| mv.as_mv.col = 0; |
| break; |
| case NEW_MV_MODE: |
| mv = vp9_motion_field_mi_get_mv(motion_field, mi_row, mi_col); |
| break; |
| case NEAREST_MV_MODE: |
| mv = find_ref_mv(mv_mode, cpi, tpl_frame, bsize, mi_row, mi_col); |
| break; |
| case NEAR_MV_MODE: |
| mv = find_ref_mv(mv_mode, cpi, tpl_frame, bsize, mi_row, mi_col); |
| break; |
| default: |
| mv.as_int = INVALID_MV; |
| assert(0); |
| break; |
| } |
| return mv; |
| } |
| |
| static double get_mv_dist(int mv_mode, VP9_COMP *cpi, MACROBLOCKD *xd, |
| GF_PICTURE *gf_picture, MotionField *motion_field, |
| int frame_idx, TplDepFrame *tpl_frame, int rf_idx, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv *mv) { |
| uint32_t sse; |
| struct buf_2d src; |
| struct buf_2d pre; |
| MV full_mv; |
| *mv = get_mv_from_mv_mode(mv_mode, cpi, motion_field, tpl_frame, bsize, |
| mi_row, mi_col); |
| full_mv = get_full_mv(&mv->as_mv); |
| if (get_block_src_pred_buf(xd, gf_picture, frame_idx, rf_idx, mi_row, mi_col, |
| &src, &pre)) { |
| // TODO(angiebird): Consider subpixel when computing the sse. |
| cpi->fn_ptr[bsize].vf(src.buf, src.stride, get_buf_from_mv(&pre, &full_mv), |
| pre.stride, &sse); |
| return (double)(sse << VP9_DIST_SCALE_LOG2); |
| } else { |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static int get_mv_mode_cost(int mv_mode) { |
| // TODO(angiebird): The probabilities are roughly inferred from |
| // default_inter_mode_probs. Check if there is a better way to set the |
| // probabilities. |
| const int zero_mv_prob = 16; |
| const int new_mv_prob = 24 * 1; |
| const int ref_mv_prob = 256 - zero_mv_prob - new_mv_prob; |
| assert(zero_mv_prob + new_mv_prob + ref_mv_prob == 256); |
| switch (mv_mode) { |
| case ZERO_MV_MODE: return vp9_prob_cost[zero_mv_prob]; break; |
| case NEW_MV_MODE: return vp9_prob_cost[new_mv_prob]; break; |
| case NEAREST_MV_MODE: return vp9_prob_cost[ref_mv_prob]; break; |
| case NEAR_MV_MODE: return vp9_prob_cost[ref_mv_prob]; break; |
| default: assert(0); return -1; |
| } |
| } |
| |
| static INLINE double get_mv_diff_cost(MV *new_mv, MV *ref_mv) { |
| double mv_diff_cost = log2(1 + abs(new_mv->row - ref_mv->row)) + |
| log2(1 + abs(new_mv->col - ref_mv->col)); |
| mv_diff_cost *= (1 << VP9_PROB_COST_SHIFT); |
| return mv_diff_cost; |
| } |
| static double get_mv_cost(int mv_mode, VP9_COMP *cpi, MotionField *motion_field, |
| TplDepFrame *tpl_frame, BLOCK_SIZE bsize, int mi_row, |
| int mi_col) { |
| double mv_cost = get_mv_mode_cost(mv_mode); |
| if (mv_mode == NEW_MV_MODE) { |
| MV new_mv = get_mv_from_mv_mode(mv_mode, cpi, motion_field, tpl_frame, |
| bsize, mi_row, mi_col) |
| .as_mv; |
| MV nearest_mv = get_mv_from_mv_mode(NEAREST_MV_MODE, cpi, motion_field, |
| tpl_frame, bsize, mi_row, mi_col) |
| .as_mv; |
| MV near_mv = get_mv_from_mv_mode(NEAR_MV_MODE, cpi, motion_field, tpl_frame, |
| bsize, mi_row, mi_col) |
| .as_mv; |
| double nearest_cost = get_mv_diff_cost(&new_mv, &nearest_mv); |
| double near_cost = get_mv_diff_cost(&new_mv, &near_mv); |
| mv_cost += nearest_cost < near_cost ? nearest_cost : near_cost; |
| } |
| return mv_cost; |
| } |
| |
| static double eval_mv_mode(int mv_mode, VP9_COMP *cpi, MACROBLOCK *x, |
| GF_PICTURE *gf_picture, MotionField *motion_field, |
| int frame_idx, TplDepFrame *tpl_frame, int rf_idx, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv *mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| double mv_dist = |
| get_mv_dist(mv_mode, cpi, xd, gf_picture, motion_field, frame_idx, |
| tpl_frame, rf_idx, bsize, mi_row, mi_col, mv); |
| double mv_cost = |
| get_mv_cost(mv_mode, cpi, motion_field, tpl_frame, bsize, mi_row, mi_col); |
| double mult = 180; |
| |
| return mv_cost + mult * log2f(1 + mv_dist); |
| } |
| |
| static int find_best_ref_mv_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| GF_PICTURE *gf_picture, |
| MotionField *motion_field, int frame_idx, |
| TplDepFrame *tpl_frame, int rf_idx, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| double *rd, int_mv *mv) { |
| int best_mv_mode = ZERO_MV_MODE; |
| int update = 0; |
| int mv_mode; |
| *rd = 0; |
| for (mv_mode = 0; mv_mode < MAX_MV_MODE; ++mv_mode) { |
| double this_rd; |
| int_mv this_mv; |
| if (mv_mode == NEW_MV_MODE) { |
| continue; |
| } |
| this_rd = eval_mv_mode(mv_mode, cpi, x, gf_picture, motion_field, frame_idx, |
| tpl_frame, rf_idx, bsize, mi_row, mi_col, &this_mv); |
| if (update == 0) { |
| *rd = this_rd; |
| *mv = this_mv; |
| best_mv_mode = mv_mode; |
| update = 1; |
| } else { |
| if (this_rd < *rd) { |
| *rd = this_rd; |
| *mv = this_mv; |
| best_mv_mode = mv_mode; |
| } |
| } |
| } |
| return best_mv_mode; |
| } |
| |
| static void predict_mv_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| GF_PICTURE *gf_picture, MotionField *motion_field, |
| int frame_idx, TplDepFrame *tpl_frame, int rf_idx, |
| BLOCK_SIZE bsize, int mi_row, int mi_col) { |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int tmp_mv_mode_arr[kMvPreCheckSize]; |
| int *mv_mode_arr = tpl_frame->mv_mode_arr[rf_idx]; |
| double *rd_diff_arr = tpl_frame->rd_diff_arr[rf_idx]; |
| int_mv *select_mv_arr = cpi->select_mv_arr; |
| int_mv tmp_select_mv_arr[kMvPreCheckSize]; |
| int stride = tpl_frame->stride; |
| double new_mv_rd = 0; |
| double no_new_mv_rd = 0; |
| double this_new_mv_rd = 0; |
| double this_no_new_mv_rd = 0; |
| int idx; |
| int tmp_idx; |
| assert(kMvPreCheckSize == (kMvPreCheckLines * (kMvPreCheckLines + 1)) >> 1); |
| |
| // no new mv |
| // diagonal scan order |
| tmp_idx = 0; |
| for (idx = 0; idx < kMvPreCheckLines; ++idx) { |
| int r; |
| for (r = 0; r <= idx; ++r) { |
| int c = idx - r; |
| int nb_row = mi_row + r * mi_height; |
| int nb_col = mi_col + c * mi_width; |
| if (nb_row < tpl_frame->mi_rows && nb_col < tpl_frame->mi_cols) { |
| double this_rd; |
| int_mv *mv = &select_mv_arr[nb_row * stride + nb_col]; |
| mv_mode_arr[nb_row * stride + nb_col] = find_best_ref_mv_mode( |
| cpi, x, gf_picture, motion_field, frame_idx, tpl_frame, rf_idx, |
| bsize, nb_row, nb_col, &this_rd, mv); |
| if (r == 0 && c == 0) { |
| this_no_new_mv_rd = this_rd; |
| } |
| no_new_mv_rd += this_rd; |
| tmp_mv_mode_arr[tmp_idx] = mv_mode_arr[nb_row * stride + nb_col]; |
| tmp_select_mv_arr[tmp_idx] = select_mv_arr[nb_row * stride + nb_col]; |
| ++tmp_idx; |
| } |
| } |
| } |
| |
| // new mv |
| mv_mode_arr[mi_row * stride + mi_col] = NEW_MV_MODE; |
| this_new_mv_rd = eval_mv_mode( |
| NEW_MV_MODE, cpi, x, gf_picture, motion_field, frame_idx, tpl_frame, |
| rf_idx, bsize, mi_row, mi_col, &select_mv_arr[mi_row * stride + mi_col]); |
| new_mv_rd = this_new_mv_rd; |
| // We start from idx = 1 because idx = 0 is evaluated as NEW_MV_MODE |
| // beforehand. |
| for (idx = 1; idx < kMvPreCheckLines; ++idx) { |
| int r; |
| for (r = 0; r <= idx; ++r) { |
| int c = idx - r; |
| int nb_row = mi_row + r * mi_height; |
| int nb_col = mi_col + c * mi_width; |
| if (nb_row < tpl_frame->mi_rows && nb_col < tpl_frame->mi_cols) { |
| double this_rd; |
| int_mv *mv = &select_mv_arr[nb_row * stride + nb_col]; |
| mv_mode_arr[nb_row * stride + nb_col] = find_best_ref_mv_mode( |
| cpi, x, gf_picture, motion_field, frame_idx, tpl_frame, rf_idx, |
| bsize, nb_row, nb_col, &this_rd, mv); |
| new_mv_rd += this_rd; |
| } |
| } |
| } |
| |
| // update best_mv_mode |
| tmp_idx = 0; |
| if (no_new_mv_rd < new_mv_rd) { |
| for (idx = 0; idx < kMvPreCheckLines; ++idx) { |
| int r; |
| for (r = 0; r <= idx; ++r) { |
| int c = idx - r; |
| int nb_row = mi_row + r * mi_height; |
| int nb_col = mi_col + c * mi_width; |
| if (nb_row < tpl_frame->mi_rows && nb_col < tpl_frame->mi_cols) { |
| mv_mode_arr[nb_row * stride + nb_col] = tmp_mv_mode_arr[tmp_idx]; |
| select_mv_arr[nb_row * stride + nb_col] = tmp_select_mv_arr[tmp_idx]; |
| ++tmp_idx; |
| } |
| } |
| } |
| rd_diff_arr[mi_row * stride + mi_col] = 0; |
| } else { |
| rd_diff_arr[mi_row * stride + mi_col] = |
| (no_new_mv_rd - this_no_new_mv_rd) - (new_mv_rd - this_new_mv_rd); |
| } |
| } |
| |
| static void predict_mv_mode_arr(VP9_COMP *cpi, MACROBLOCK *x, |
| GF_PICTURE *gf_picture, |
| MotionField *motion_field, int frame_idx, |
| TplDepFrame *tpl_frame, int rf_idx, |
| BLOCK_SIZE bsize) { |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int unit_rows = tpl_frame->mi_rows / mi_height; |
| const int unit_cols = tpl_frame->mi_cols / mi_width; |
| const int max_diagonal_lines = unit_rows + unit_cols - 1; |
| int idx; |
| for (idx = 0; idx < max_diagonal_lines; ++idx) { |
| int r; |
| for (r = VPXMAX(idx - unit_cols + 1, 0); r <= VPXMIN(idx, unit_rows - 1); |
| ++r) { |
| int c = idx - r; |
| int mi_row = r * mi_height; |
| int mi_col = c * mi_width; |
| assert(c >= 0 && c < unit_cols); |
| assert(mi_row >= 0 && mi_row < tpl_frame->mi_rows); |
| assert(mi_col >= 0 && mi_col < tpl_frame->mi_cols); |
| predict_mv_mode(cpi, x, gf_picture, motion_field, frame_idx, tpl_frame, |
| rf_idx, bsize, mi_row, mi_col); |
| } |
| } |
| } |
| |
| static void do_motion_search(VP9_COMP *cpi, ThreadData *td, |
| MotionField *motion_field, int frame_idx, |
| YV12_BUFFER_CONFIG *ref_frame, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int mb_y_offset = |
| mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE; |
| assert(ref_frame != NULL); |
| set_mv_limits(cm, x, mi_row, mi_col); |
| { |
| int_mv mv = vp9_motion_field_mi_get_mv(motion_field, mi_row, mi_col); |
| uint8_t *cur_frame_buf = xd->cur_buf->y_buffer + mb_y_offset; |
| uint8_t *ref_frame_buf = ref_frame->y_buffer + mb_y_offset; |
| const int stride = xd->cur_buf->y_stride; |
| full_pixel_motion_search(cpi, td, motion_field, frame_idx, cur_frame_buf, |
| ref_frame_buf, stride, bsize, mi_row, mi_col, |
| &mv.as_mv); |
| sub_pixel_motion_search(cpi, td, cur_frame_buf, ref_frame_buf, stride, |
| bsize, &mv.as_mv); |
| vp9_motion_field_mi_set_mv(motion_field, mi_row, mi_col, mv); |
| } |
| } |
| |
| static void build_motion_field( |
| VP9_COMP *cpi, int frame_idx, |
| YV12_BUFFER_CONFIG *ref_frame[MAX_INTER_REF_FRAMES], BLOCK_SIZE bsize) { |
| VP9_COMMON *cm = &cpi->common; |
| ThreadData *td = &cpi->td; |
| TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int pw = num_4x4_blocks_wide_lookup[bsize] << 2; |
| const int ph = num_4x4_blocks_high_lookup[bsize] << 2; |
| int mi_row, mi_col; |
| int rf_idx; |
| |
| tpl_frame->lambda = (pw * ph) >> 2; |
| assert(pw * ph == tpl_frame->lambda << 2); |
| |
| for (rf_idx = 0; rf_idx < MAX_INTER_REF_FRAMES; ++rf_idx) { |
| MotionField *motion_field = vp9_motion_field_info_get_motion_field( |
| &cpi->motion_field_info, frame_idx, rf_idx, bsize); |
| if (ref_frame[rf_idx] == NULL) { |
| continue; |
| } |
| vp9_motion_field_reset_mvs(motion_field); |
| for (mi_row = 0; mi_row < cm->mi_rows; mi_row += mi_height) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += mi_width) { |
| do_motion_search(cpi, td, motion_field, frame_idx, ref_frame[rf_idx], |
| bsize, mi_row, mi_col); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_NON_GREEDY_MV |
| |
| static void mc_flow_dispenser(VP9_COMP *cpi, GF_PICTURE *gf_picture, |
| int frame_idx, BLOCK_SIZE bsize) { |
| TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx]; |
| YV12_BUFFER_CONFIG *this_frame = gf_picture[frame_idx].frame; |
| YV12_BUFFER_CONFIG *ref_frame[MAX_INTER_REF_FRAMES] = { NULL, NULL, NULL }; |
| |
| VP9_COMMON *cm = &cpi->common; |
| struct scale_factors sf; |
| int rdmult, idx; |
| ThreadData *td = &cpi->td; |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int mi_row, mi_col; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, predictor16[32 * 32 * 3]); |
| DECLARE_ALIGNED(16, uint8_t, predictor8[32 * 32 * 3]); |
| uint8_t *predictor; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, predictor[32 * 32 * 3]); |
| #endif |
| DECLARE_ALIGNED(16, int16_t, src_diff[32 * 32]); |
| DECLARE_ALIGNED(16, tran_low_t, coeff[32 * 32]); |
| DECLARE_ALIGNED(16, tran_low_t, qcoeff[32 * 32]); |
| DECLARE_ALIGNED(16, tran_low_t, dqcoeff[32 * 32]); |
| |
| const TX_SIZE tx_size = max_txsize_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int64_t recon_error, sse; |
| #if CONFIG_NON_GREEDY_MV |
| int square_block_idx; |
| int rf_idx; |
| #endif |
| |
| // Setup scaling factor |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_setup_scale_factors_for_frame( |
| &sf, this_frame->y_crop_width, this_frame->y_crop_height, |
| this_frame->y_crop_width, this_frame->y_crop_height, |
| cpi->common.use_highbitdepth); |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| predictor = CONVERT_TO_BYTEPTR(predictor16); |
| else |
| predictor = predictor8; |
| #else |
| vp9_setup_scale_factors_for_frame( |
| &sf, this_frame->y_crop_width, this_frame->y_crop_height, |
| this_frame->y_crop_width, this_frame->y_crop_height); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Prepare reference frame pointers. If any reference frame slot is |
| // unavailable, the pointer will be set to Null. |
| for (idx = 0; idx < MAX_INTER_REF_FRAMES; ++idx) { |
| int rf_idx = gf_picture[frame_idx].ref_frame[idx]; |
| if (rf_idx != -1) ref_frame[idx] = gf_picture[rf_idx].frame; |
| } |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| xd->cur_buf = this_frame; |
| |
| // Get rd multiplier set up. |
| rdmult = vp9_compute_rd_mult_based_on_qindex(cpi, tpl_frame->base_qindex); |
| set_error_per_bit(&cpi->td.mb, rdmult); |
| vp9_initialize_me_consts(cpi, &cpi->td.mb, tpl_frame->base_qindex); |
| |
| tpl_frame->is_valid = 1; |
| |
| cm->base_qindex = tpl_frame->base_qindex; |
| vp9_frame_init_quantizer(cpi); |
| |
| #if CONFIG_NON_GREEDY_MV |
| for (square_block_idx = 0; square_block_idx < SQUARE_BLOCK_SIZES; |
| ++square_block_idx) { |
| BLOCK_SIZE square_bsize = square_block_idx_to_bsize(square_block_idx); |
| build_motion_field(cpi, frame_idx, ref_frame, square_bsize); |
| } |
| for (rf_idx = 0; rf_idx < MAX_INTER_REF_FRAMES; ++rf_idx) { |
| int ref_frame_idx = gf_picture[frame_idx].ref_frame[rf_idx]; |
| if (ref_frame_idx != -1) { |
| MotionField *motion_field = vp9_motion_field_info_get_motion_field( |
| &cpi->motion_field_info, frame_idx, rf_idx, bsize); |
| predict_mv_mode_arr(cpi, x, gf_picture, motion_field, frame_idx, |
| tpl_frame, rf_idx, bsize); |
| } |
| } |
| #endif |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; mi_row += mi_height) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += mi_width) { |
| mode_estimation(cpi, x, xd, &sf, gf_picture, frame_idx, tpl_frame, |
| src_diff, coeff, qcoeff, dqcoeff, mi_row, mi_col, bsize, |
| tx_size, ref_frame, predictor, &recon_error, &sse); |
| // Motion flow dependency dispenser. |
| tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, bsize, |
| tpl_frame->stride); |
| |
| tpl_model_update(cpi->tpl_stats, tpl_frame->tpl_stats_ptr, mi_row, mi_col, |
| bsize); |
| } |
| } |
| } |
| |
| #if CONFIG_NON_GREEDY_MV |
| #define DUMP_TPL_STATS 0 |
| #if DUMP_TPL_STATS |
| static void dump_buf(uint8_t *buf, int stride, int row, int col, int h, int w) { |
| int i, j; |
| printf("%d %d\n", h, w); |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| printf("%d ", buf[(row + i) * stride + col + j]); |
| } |
| } |
| printf("\n"); |
| } |
| |
| static void dump_frame_buf(const YV12_BUFFER_CONFIG *frame_buf) { |
| dump_buf(frame_buf->y_buffer, frame_buf->y_stride, 0, 0, frame_buf->y_height, |
| frame_buf->y_width); |
| dump_buf(frame_buf->u_buffer, frame_buf->uv_stride, 0, 0, |
| frame_buf->uv_height, frame_buf->uv_width); |
| dump_buf(frame_buf->v_buffer, frame_buf->uv_stride, 0, 0, |
| frame_buf->uv_height, frame_buf->uv_width); |
| } |
| |
| static void dump_tpl_stats(const VP9_COMP *cpi, int tpl_group_frames, |
| const GF_GROUP *gf_group, |
| const GF_PICTURE *gf_picture, BLOCK_SIZE bsize) { |
| int frame_idx; |
| const VP9_COMMON *cm = &cpi->common; |
| int rf_idx; |
| for (frame_idx = 1; frame_idx < tpl_group_frames; ++frame_idx) { |
| for (rf_idx = 0; rf_idx < MAX_INTER_REF_FRAMES; ++rf_idx) { |
| const TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx]; |
| int mi_row, mi_col; |
| int ref_frame_idx; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| ref_frame_idx = gf_picture[frame_idx].ref_frame[rf_idx]; |
| if (ref_frame_idx != -1) { |
| YV12_BUFFER_CONFIG *ref_frame_buf = gf_picture[ref_frame_idx].frame; |
| const int gf_frame_offset = gf_group->frame_gop_index[frame_idx]; |
| const int ref_gf_frame_offset = |
| gf_group->frame_gop_index[ref_frame_idx]; |
| printf("=\n"); |
| printf( |
| "frame_idx %d mi_rows %d mi_cols %d bsize %d ref_frame_idx %d " |
| "rf_idx %d gf_frame_offset %d ref_gf_frame_offset %d\n", |
| frame_idx, cm->mi_rows, cm->mi_cols, mi_width * MI_SIZE, |
| ref_frame_idx, rf_idx, gf_frame_offset, ref_gf_frame_offset); |
| for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row) { |
| for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { |
| if ((mi_row % mi_height) == 0 && (mi_col % mi_width) == 0) { |
| int_mv mv = vp9_motion_field_info_get_mv(&cpi->motion_field_info, |
| frame_idx, rf_idx, bsize, |
| mi_row, mi_col); |
| printf("%d %d %d %d\n", mi_row, mi_col, mv.as_mv.row, |
| mv.as_mv.col); |
| } |
| } |
| } |
| for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row) { |
| for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { |
| if ((mi_row % mi_height) == 0 && (mi_col % mi_width) == 0) { |
| const TplDepStats *tpl_ptr = |
| &tpl_frame |
| ->tpl_stats_ptr[mi_row * tpl_frame->stride + mi_col]; |
| printf("%f ", tpl_ptr->feature_score); |
| } |
| } |
| } |
| printf("\n"); |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; mi_row += mi_height) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += mi_width) { |
| const int mv_mode = |
| tpl_frame |
| ->mv_mode_arr[rf_idx][mi_row * tpl_frame->stride + mi_col]; |
| printf("%d ", mv_mode); |
| } |
| } |
| printf("\n"); |
| |
| dump_frame_buf(gf_picture[frame_idx].frame); |
| dump_frame_buf(ref_frame_buf); |
| } |
| } |
| } |
| } |
| #endif // DUMP_TPL_STATS |
| #endif // CONFIG_NON_GREEDY_MV |
| |
| static void init_tpl_buffer(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| int frame; |
| |
| const int mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); |
| const int mi_rows = mi_cols_aligned_to_sb(cm->mi_rows); |
| #if CONFIG_NON_GREEDY_MV |
| int rf_idx; |
| |
| vpx_free(cpi->select_mv_arr); |
| CHECK_MEM_ERROR( |
| cm, cpi->select_mv_arr, |
| vpx_calloc(mi_rows * mi_cols * 4, sizeof(*cpi->select_mv_arr))); |
| #endif |
| |
| // TODO(jingning): Reduce the actual memory use for tpl model build up. |
| for (frame = 0; frame < MAX_ARF_GOP_SIZE; ++frame) { |
| if (cpi->tpl_stats[frame].width >= mi_cols && |
| cpi->tpl_stats[frame].height >= mi_rows && |
| cpi->tpl_stats[frame].tpl_stats_ptr) |
| continue; |
| |
| #if CONFIG_NON_GREEDY_MV |
| for (rf_idx = 0; rf_idx < MAX_INTER_REF_FRAMES; ++rf_idx) { |
| vpx_free(cpi->tpl_stats[frame].mv_mode_arr[rf_idx]); |
| CHECK_MEM_ERROR( |
| cm, cpi->tpl_stats[frame].mv_mode_arr[rf_idx], |
| vpx_calloc(mi_rows * mi_cols * 4, |
| sizeof(*cpi->tpl_stats[frame].mv_mode_arr[rf_idx]))); |
| vpx_free(cpi->tpl_stats[frame].rd_diff_arr[rf_idx]); |
| CHECK_MEM_ERROR( |
| cm, cpi->tpl_stats[frame].rd_diff_arr[rf_idx], |
| vpx_calloc(mi_rows * mi_cols * 4, |
| sizeof(*cpi->tpl_stats[frame].rd_diff_arr[rf_idx]))); |
| } |
| #endif |
| vpx_free(cpi->tpl_stats[frame].tpl_stats_ptr); |
| CHECK_MEM_ERROR(cm, cpi->tpl_stats[frame].tpl_stats_ptr, |
| vpx_calloc(mi_rows * mi_cols, |
| sizeof(*cpi->tpl_stats[frame].tpl_stats_ptr))); |
| cpi->tpl_stats[frame].is_valid = 0; |
| cpi->tpl_stats[frame].width = mi_cols; |
| cpi->tpl_stats[frame].height = mi_rows; |
| cpi->tpl_stats[frame].stride = mi_cols; |
| cpi->tpl_stats[frame].mi_rows = cm->mi_rows; |
| cpi->tpl_stats[frame].mi_cols = cm->mi_cols; |
| } |
| |
| for (frame = 0; frame < REF_FRAMES; ++frame) { |
| cpi->enc_frame_buf[frame].mem_valid = 0; |
| cpi->enc_frame_buf[frame].released = 1; |
| } |
| } |
| |
| static void free_tpl_buffer(VP9_COMP *cpi) { |
| int frame; |
| #if CONFIG_NON_GREEDY_MV |
| vp9_free_motion_field_info(&cpi->motion_field_info); |
| vpx_free(cpi->select_mv_arr); |
| #endif |
| for (frame = 0; frame < MAX_ARF_GOP_SIZE; ++frame) { |
| #if CONFIG_NON_GREEDY_MV |
| int rf_idx; |
| for (rf_idx = 0; rf_idx < MAX_INTER_REF_FRAMES; ++rf_idx) { |
| vpx_free(cpi->tpl_stats[frame].mv_mode_arr[rf_idx]); |
| vpx_free(cpi->tpl_stats[frame].rd_diff_arr[rf_idx]); |
| } |
| #endif |
| vpx_free(cpi->tpl_stats[frame].tpl_stats_ptr); |
| cpi->tpl_stats[frame].is_valid = 0; |
| } |
| } |
| |
| static void setup_tpl_stats(VP9_COMP *cpi) { |
| GF_PICTURE gf_picture[MAX_ARF_GOP_SIZE]; |
| const GF_GROUP *gf_group = &cpi->twopass.gf_group; |
| int tpl_group_frames = 0; |
| int frame_idx; |
| cpi->tpl_bsize = BLOCK_32X32; |
| |
| init_gop_frames(cpi, gf_picture, gf_group, &tpl_group_frames); |
| |
| init_tpl_stats(cpi); |
| |
| // Backward propagation from tpl_group_frames to 1. |
| for (frame_idx = tpl_group_frames - 1; frame_idx > 0; --frame_idx) { |
| if (gf_picture[frame_idx].update_type == USE_BUF_FRAME) continue; |
| mc_flow_dispenser(cpi, gf_picture, frame_idx, cpi->tpl_bsize); |
| } |
| #if CONFIG_NON_GREEDY_MV |
| cpi->tpl_ready = 1; |
| #if DUMP_TPL_STATS |
| dump_tpl_stats(cpi, tpl_group_frames, gf_group, gf_picture, cpi->tpl_bsize); |
| #endif // DUMP_TPL_STATS |
| #endif // CONFIG_NON_GREEDY_MV |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| #if CONFIG_RATE_CTRL |
| static void copy_frame_counts(const FRAME_COUNTS *input_counts, |
| FRAME_COUNTS *output_counts) { |
| int i, j, k, l, m, n; |
| for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { |
| for (j = 0; j < INTRA_MODES; ++j) { |
| output_counts->y_mode[i][j] = input_counts->y_mode[i][j]; |
| } |
| } |
| for (i = 0; i < INTRA_MODES; ++i) { |
| for (j = 0; j < INTRA_MODES; ++j) { |
| output_counts->uv_mode[i][j] = input_counts->uv_mode[i][j]; |
| } |
| } |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) { |
| for (j = 0; j < PARTITION_TYPES; ++j) { |
| output_counts->partition[i][j] = input_counts->partition[i][j]; |
| } |
| } |
| for (i = 0; i < TX_SIZES; ++i) { |
| for (j = 0; j < PLANE_TYPES; ++j) { |
| for (k = 0; k < REF_TYPES; ++k) { |
| for (l = 0; l < COEF_BANDS; ++l) { |
| for (m = 0; m < COEFF_CONTEXTS; ++m) { |
| output_counts->eob_branch[i][j][k][l][m] = |
| input_counts->eob_branch[i][j][k][l][m]; |
| for (n = 0; n < UNCONSTRAINED_NODES + 1; ++n) { |
| output_counts->coef[i][j][k][l][m][n] = |
| input_counts->coef[i][j][k][l][m][n]; |
| } |
| } |
| } |
| } |
| } |
| } |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) { |
| for (j = 0; j < SWITCHABLE_FILTERS; ++j) { |
| output_counts->switchable_interp[i][j] = |
| input_counts->switchable_interp[i][j]; |
| } |
| } |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
| for (j = 0; j < INTER_MODES; ++j) { |
| output_counts->inter_mode[i][j] = input_counts->inter_mode[i][j]; |
| } |
| } |
| for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { |
| for (j = 0; j < 2; ++j) { |
| output_counts->intra_inter[i][j] = input_counts->intra_inter[i][j]; |
| } |
| } |
| for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { |
| for (j = 0; j < 2; ++j) { |
| output_counts->comp_inter[i][j] = input_counts->comp_inter[i][j]; |
| } |
| } |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| for (j = 0; j < 2; ++j) { |
| for (k = 0; k < 2; ++k) { |
| output_counts->single_ref[i][j][k] = input_counts->single_ref[i][j][k]; |
| } |
| } |
| } |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| for (j = 0; j < 2; ++j) { |
| output_counts->comp_ref[i][j] = input_counts->comp_ref[i][j]; |
| } |
| } |
| for (i = 0; i < SKIP_CONTEXTS; ++i) { |
| for (j = 0; j < 2; ++j) { |
| output_counts->skip[i][j] = input_counts->skip[i][j]; |
| } |
| } |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| for (j = 0; j < TX_SIZES; j++) { |
| output_counts->tx.p32x32[i][j] = input_counts->tx.p32x32[i][j]; |
| } |
| for (j = 0; j < TX_SIZES - 1; j++) { |
| output_counts->tx.p16x16[i][j] = input_counts->tx.p16x16[i][j]; |
| } |
| for (j = 0; j < TX_SIZES - 2; j++) { |
| output_counts->tx.p8x8[i][j] = input_counts->tx.p8x8[i][j]; |
| } |
| } |
| for (i = 0; i < TX_SIZES; i++) { |
| output_counts->tx.tx_totals[i] = input_counts->tx.tx_totals[i]; |
| } |
| for (i = 0; i < MV_JOINTS; i++) { |
| output_counts->mv.joints[i] = input_counts->mv.joints[i]; |
| } |
| for (k = 0; k < 2; k++) { |
| nmv_component_counts *const comps = &output_counts->mv.comps[k]; |
| const nmv_component_counts *const comps_t = &input_counts->mv.comps[k]; |
| for (i = 0; i < 2; i++) { |
| comps->sign[i] = comps_t->sign[i]; |
| comps->class0_hp[i] = comps_t->class0_hp[i]; |
| comps->hp[i] = comps_t->hp[i]; |
| } |
| for (i = 0; i < MV_CLASSES; i++) { |
| comps->classes[i] = comps_t->classes[i]; |
| } |
| for (i = 0; i < CLASS0_SIZE; i++) { |
| comps->class0[i] = comps_t->class0[i]; |
| for (j = 0; j < MV_FP_SIZE; j++) { |
| comps->class0_fp[i][j] = comps_t->class0_fp[i][j]; |
| } |
| } |
| for (i = 0; i < MV_OFFSET_BITS; i++) { |
| for (j = 0; j < 2; j++) { |
| comps->bits[i][j] = comps_t->bits[i][j]; |
| } |
| } |
| for (i = 0; i < MV_FP_SIZE; i++) { |
| comps->fp[i] = comps_t->fp[i]; |
| } |
| } |
| } |
| |
| static void yv12_buffer_to_image_buffer(const YV12_BUFFER_CONFIG *yv12_buffer, |
| IMAGE_BUFFER *image_buffer) { |
| const uint8_t *src_buf_ls[3] = { yv12_buffer->y_buffer, yv12_buffer->u_buffer, |
| yv12_buffer->v_buffer }; |
| const int src_stride_ls[3] = { yv12_buffer->y_stride, yv12_buffer->uv_stride, |
| yv12_buffer->uv_stride }; |
| const int w_ls[3] = { yv12_buffer->y_crop_width, yv12_buffer->uv_crop_width, |
| yv12_buffer->uv_crop_width }; |
| const int h_ls[3] = { yv12_buffer->y_crop_height, yv12_buffer->uv_crop_height, |
| yv12_buffer->uv_crop_height }; |
| int plane; |
| for (plane = 0; plane < 3; ++plane) { |
| const int src_stride = src_stride_ls[plane]; |
| const int w = w_ls[plane]; |
| const int h = h_ls[plane]; |
| const uint8_t *src_buf = src_buf_ls[plane]; |
| uint8_t *dst_buf = image_buffer->plane_buffer[plane]; |
| int r; |
| assert(image_buffer->plane_width[plane] == w); |
| assert(image_buffer->plane_height[plane] == h); |
| for (r = 0; r < h; ++r) { |
| memcpy(dst_buf, src_buf, sizeof(*src_buf) * w); |
| src_buf += src_stride; |
| dst_buf += w; |
| } |
| } |
| } |
| #endif // CONFIG_RATE_CTRL |
| static void update_encode_frame_result( |
| int ref_frame_flags, FRAME_UPDATE_TYPE update_type, |
| const YV12_BUFFER_CONFIG *source_frame, const RefCntBuffer *coded_frame_buf, |
| RefCntBuffer *ref_frame_bufs[MAX_INTER_REF_FRAMES], int quantize_index, |
| uint32_t bit_depth, uint32_t input_bit_depth, const FRAME_COUNTS *counts, |
| #if CONFIG_RATE_CTRL |
| const PARTITION_INFO *partition_info, |
| const MOTION_VECTOR_INFO *motion_vector_info, |
| #endif // CONFIG_RATE_CTRL |
| ENCODE_FRAME_RESULT *encode_frame_result) { |
| #if CONFIG_RATE_CTRL |
| PSNR_STATS psnr; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vpx_calc_highbd_psnr(source_frame, coded_frame_buf->buf, &psnr, bit_depth, |
| input_bit_depth); |
| #else // CONFIG_VP9_HIGHBITDEPTH |
| (void)bit_depth; |
| (void)input_bit_depth; |
| vpx_calc_psnr(source_frame, &coded_frame_buf->buf, &psnr); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| encode_frame_result->frame_coding_index = coded_frame_buf->frame_coding_index; |
| |
| if (update_type != KF_UPDATE) { |
| const VP9_REFFRAME inter_ref_flags[MAX_INTER_REF_FRAMES] = { VP9_LAST_FLAG, |
| VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int i; |
| for (i = 0; i < MAX_INTER_REF_FRAMES; ++i) { |
| assert(ref_frame_bufs[i] != NULL); |
| encode_frame_result->ref_frame_coding_indexes[i] = |
| ref_frame_bufs[i]->frame_coding_index; |
| encode_frame_result->ref_frame_valid_list[i] = |
| (ref_frame_flags & inter_ref_flags[i]) != 0; |
| } |
| } else { |
| // No reference frame is available when this is a key frame. |
| int i; |
| for (i = 0; i < MAX_INTER_REF_FRAMES; ++i) { |
| encode_frame_result->ref_frame_coding_indexes[i] = -1; |
| encode_frame_result->ref_frame_valid_list[i] = 0; |
| } |
| } |
| encode_frame_result->psnr = psnr.psnr[0]; |
| encode_frame_result->sse = psnr.sse[0]; |
| copy_frame_counts(counts, &encode_frame_result->frame_counts); |
| encode_frame_result->partition_info = partition_info; |
| encode_frame_result->motion_vector_info = motion_vector_info; |
| if (encode_frame_result->coded_frame.allocated) { |
| yv12_buffer_to_image_buffer(&coded_frame_buf->buf, |
| &encode_frame_result->coded_frame); |
| } |
| #else // CONFIG_RATE_CTRL |
| (void)ref_frame_flags; |
| (void)bit_depth; |
| (void)input_bit_depth; |
| (void)source_frame; |
| (void)coded_frame_buf; |
| (void)ref_frame_bufs; |
| (void)counts; |
| #endif // CONFIG_RATE_CTRL |
| encode_frame_result->show_idx = coded_frame_buf->frame_index; |
| encode_frame_result->update_type = update_type; |
| encode_frame_result->quantize_index = quantize_index; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| void vp9_init_encode_frame_result(ENCODE_FRAME_RESULT *encode_frame_result) { |
| encode_frame_result->show_idx = -1; // Actual encoding doesn't happen. |
| #if CONFIG_RATE_CTRL |
| encode_frame_result->frame_coding_index = -1; |
| vp9_zero(encode_frame_result->coded_frame); |
| encode_frame_result->coded_frame.allocated = 0; |
| #endif // CONFIG_RATE_CTRL |
| } |
| |
| int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags, |
| size_t *size, uint8_t *dest, int64_t *time_stamp, |
| int64_t *time_end, int flush, |
| ENCODE_FRAME_RESULT *encode_frame_result) { |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| VP9_COMMON *const cm = &cpi->common; |
| BufferPool *const pool = cm->buffer_pool; |
| RATE_CONTROL *const rc = &cpi->rc; |
| struct vpx_usec_timer cmptimer; |
| YV12_BUFFER_CONFIG *force_src_buffer = NULL; |
| struct lookahead_entry *last_source = NULL; |
| struct lookahead_entry *source = NULL; |
| int arf_src_index; |
| const int gf_group_index = cpi->twopass.gf_group.index; |
| int i; |
| |
| if (is_one_pass_cbr_svc(cpi)) { |
| vp9_one_pass_cbr_svc_start_layer(cpi); |
| } |
| |
| vpx_usec_timer_start(&cmptimer); |
| |
| vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV); |
| |
| // Is multi-arf enabled. |
| // Note that at the moment multi_arf is only configured for 2 pass VBR and |
| // will not work properly with svc. |
| // Enable the Jingning's new "multi_layer_arf" code if "enable_auto_arf" |
| // is greater than or equal to 2. |
| if ((oxcf->pass == 2) && !cpi->use_svc && (cpi->oxcf.enable_auto_arf >= 2)) |
| cpi->multi_layer_arf = 1; |
| else |
| cpi->multi_layer_arf = 0; |
| |
| // Normal defaults |
| cm->reset_frame_context = 0; |
| cm->refresh_frame_context = 1; |
| if (!is_one_pass_cbr_svc(cpi)) { |
| cpi->refresh_last_frame = 1; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_alt_ref_frame = 0; |
| } |
| |
| // Should we encode an arf frame. |
| arf_src_index = get_arf_src_index(cpi); |
| |
| if (arf_src_index) { |
| for (i = 0; i <= arf_src_index; ++i) { |
| struct lookahead_entry *e = vp9_lookahead_peek(cpi->lookahead, i); |
| // Avoid creating an alt-ref if there's a forced keyframe pending. |
| if (e == NULL) { |
| break; |
| } else if (e->flags == VPX_EFLAG_FORCE_KF) { |
| arf_src_index = 0; |
| flush = 1; |
| break; |
| } |
| } |
| } |
| |
| // Clear arf index stack before group of pictures processing starts. |
| if (gf_group_index == 1) { |
| stack_init(cpi->twopass.gf_group.arf_index_stack, MAX_LAG_BUFFERS * 2); |
| cpi->twopass.gf_group.stack_size = 0; |
| } |
| |
| if (arf_src_index) { |
| assert(arf_src_index <= rc->frames_to_key); |
| if ((source = vp9_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) { |
| cpi->alt_ref_source = source; |
| |
| #if !CONFIG_REALTIME_ONLY |
| if ((oxcf->mode != REALTIME) && (oxcf->arnr_max_frames > 0) && |
| (oxcf->arnr_strength > 0)) { |
| int bitrate = cpi->rc.avg_frame_bandwidth / 40; |
| int not_low_bitrate = bitrate > ALT_REF_AQ_LOW_BITRATE_BOUNDARY; |
| |
| int not_last_frame = (cpi->lookahead->sz - arf_src_index > 1); |
| not_last_frame |= ALT_REF_AQ_APPLY_TO_LAST_FRAME; |
| |
| // Produce the filtered ARF frame. |
| vp9_temporal_filter(cpi, arf_src_index); |
| vpx_extend_frame_borders(&cpi->alt_ref_buffer); |
| |
| // for small bitrates segmentation overhead usually |
| // eats all bitrate gain from enabling delta quantizers |
| if (cpi->oxcf.alt_ref_aq != 0 && not_low_bitrate && not_last_frame) |
| vp9_alt_ref_aq_setup_mode(cpi->alt_ref_aq, cpi); |
| |
| force_src_buffer = &cpi->alt_ref_buffer; |
| } |
| #endif |
| cm->show_frame = 0; |
| cm->intra_only = 0; |
| cpi->refresh_alt_ref_frame = 1; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_last_frame = 0; |
| rc->is_src_frame_alt_ref = 0; |
| rc->source_alt_ref_pending = 0; |
| } else { |
| rc->source_alt_ref_pending = 0; |
| } |
| } |
| |
| if (!source) { |
| // Get last frame source. |
| if (cm->current_video_frame > 0) { |
| if ((last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL) |
| return -1; |
| } |
| |
| // Read in the source frame. |
| if (cpi->use_svc || cpi->svc.set_intra_only_frame) |
| source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush); |
| else |
| source = vp9_lookahead_pop(cpi->lookahead, flush); |
| |
| if (source != NULL) { |
| cm->show_frame = 1; |
| cm->intra_only = 0; |
| // If the flags indicate intra frame, but if the current picture is for |
| // spatial layer above first_spatial_layer_to_encode, it should not be an |
| // intra picture. |
| if ((source->flags & VPX_EFLAG_FORCE_KF) && cpi->use_svc && |
| cpi->svc.spatial_layer_id > cpi->svc.first_spatial_layer_to_encode) { |
| source->flags &= ~(unsigned int)(VPX_EFLAG_FORCE_KF); |
| } |
| |
| // Check to see if the frame should be encoded as an arf overlay. |
| check_src_altref(cpi, source); |
| } |
| } |
| |
| if (source) { |
| cpi->un_scaled_source = cpi->Source = |
| force_src_buffer ? force_src_buffer : &source->img; |
| |
| #ifdef ENABLE_KF_DENOISE |
| // Copy of raw source for metrics calculation. |
| if (is_psnr_calc_enabled(cpi)) |
| vp9_copy_and_extend_frame(cpi->Source, &cpi->raw_unscaled_source); |
| #endif |
| |
| cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL; |
| |
| *time_stamp = source->ts_start; |
| *time_end = source->ts_end; |
| *frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; |
| } else { |
| *size = 0; |
| return -1; |
| } |
| |
| if (source->ts_start < cpi->first_time_stamp_ever) { |
| cpi->first_time_stamp_ever = source->ts_start; |
| cpi->last_end_time_stamp_seen = source->ts_start; |
| } |
| |
| // Clear down mmx registers |
| vpx_clear_system_state(); |
| |
| // adjust frame rates based on timestamps given |
| if (cm->show_frame) { |
| if (cpi->use_svc && cpi->svc.use_set_ref_frame_config && |
| cpi->svc.duration[cpi->svc.spatial_layer_id] > 0) |
| vp9_svc_adjust_frame_rate(cpi); |
| else |
| adjust_frame_rate(cpi, source); |
| } |
| |
| if (is_one_pass_cbr_svc(cpi)) { |
| vp9_update_temporal_layer_framerate(cpi); |
| vp9_restore_layer_context(cpi); |
| } |
| |
| // Find a free buffer for the new frame, releasing the reference previously |
| // held. |
| if (cm->new_fb_idx != INVALID_IDX) { |
| --pool->frame_bufs[cm->new_fb_idx].ref_count; |
| } |
| cm->new_fb_idx = get_free_fb(cm); |
| |
| if (cm->new_fb_idx == INVALID_IDX) return -1; |
| |
| cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx]; |
| |
| // Start with a 0 size frame. |
| *size = 0; |
| |
| cpi->frame_flags = *frame_flags; |
| |
| #if !CONFIG_REALTIME_ONLY |
| if ((oxcf->pass == 2) && !cpi->use_svc) { |
| vp9_rc_get_second_pass_params(cpi); |
| } else if (oxcf->pass == 1) { |
| set_frame_size(cpi); |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| if (oxcf->pass != 1 && cpi->level_constraint.level_index >= 0 && |
| cpi->level_constraint.fail_flag == 0) |
| level_rc_framerate(cpi, arf_src_index); |
| |
| if (cpi->oxcf.pass != 0 || cpi->use_svc || frame_is_intra_only(cm) == 1) { |
| for (i = 0; i < REFS_PER_FRAME; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX; |
| } |
| |
| if (cpi->kmeans_data_arr_alloc == 0) { |
| const int mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); |
| const int mi_rows = mi_cols_aligned_to_sb(cm->mi_rows); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_init(&cpi->kmeans_mutex, NULL); |
| #endif |
| CHECK_MEM_ERROR( |
| cm, cpi->kmeans_data_arr, |
| vpx_calloc(mi_rows * mi_cols, sizeof(*cpi->kmeans_data_arr))); |
| cpi->kmeans_data_stride = mi_cols; |
| cpi->kmeans_data_arr_alloc = 1; |
| } |
| |
| #if CONFIG_NON_GREEDY_MV |
| { |
| const int mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); |
| const int mi_rows = mi_cols_aligned_to_sb(cm->mi_rows); |
| Status status = vp9_alloc_motion_field_info( |
| &cpi->motion_field_info, MAX_ARF_GOP_SIZE, mi_rows, mi_cols); |
| if (status == STATUS_FAILED) { |
| vpx_internal_error(&(cm)->error, VPX_CODEC_MEM_ERROR, |
| "vp9_alloc_motion_field_info failed"); |
| } |
| } |
| #endif // CONFIG_NON_GREEDY_MV |
| |
| if (gf_group_index == 1 && |
| cpi->twopass.gf_group.update_type[gf_group_index] == ARF_UPDATE && |
| cpi->sf.enable_tpl_model) { |
| init_tpl_buffer(cpi); |
| vp9_estimate_qp_gop(cpi); |
| setup_tpl_stats(cpi); |
| } |
| |
| #if CONFIG_BITSTREAM_DEBUG |
| assert(cpi->oxcf.max_threads == 0 && |
| "bitstream debug tool does not support multithreading"); |
| bitstream_queue_record_write(); |
| #endif |
| #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| bitstream_queue_set_frame_write(cm->current_video_frame * 2 + cm->show_frame); |
| #endif |
| |
| cpi->td.mb.fp_src_pred = 0; |
| #if CONFIG_REALTIME_ONLY |
| (void)encode_frame_result; |
| if (cpi->use_svc) { |
| SvcEncode(cpi, size, dest, frame_flags); |
| } else { |
| // One pass encode |
| Pass0Encode(cpi, size, dest, frame_flags); |
| } |
| #else // !CONFIG_REALTIME_ONLY |
| if (oxcf->pass == 1 && !cpi->use_svc) { |
| const int lossless = is_lossless_requested(oxcf); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cpi->oxcf.use_highbitdepth) |
| cpi->td.mb.fwd_txfm4x4 = |
| lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4; |
| else |
| cpi->td.mb.fwd_txfm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4; |
| cpi->td.mb.highbd_inv_txfm_add = |
| lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add; |
| #else |
| cpi->td.mb.fwd_txfm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| cpi->td.mb.inv_txfm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; |
| vp9_first_pass(cpi, source); |
| } else if (oxcf->pass == 2 && !cpi->use_svc) { |
| Pass2Encode(cpi, size, dest, frame_flags, encode_frame_result); |
| vp9_twopass_postencode_update(cpi); |
| } else if (cpi->use_svc) { |
| SvcEncode(cpi, size, dest, frame_flags); |
| } else { |
| // One pass encode |
| Pass0Encode(cpi, size, dest, frame_flags); |
| } |
| #endif // CONFIG_REALTIME_ONLY |
| |
| if (cm->show_frame) cm->cur_show_frame_fb_idx = cm->new_fb_idx; |
| |
| if (cm->refresh_frame_context) |
| cm->frame_contexts[cm->frame_context_idx] = *cm->fc; |
| |
| // No frame encoded, or frame was dropped, release scaled references. |
| if ((*size == 0) && (frame_is_intra_only(cm) == 0)) { |
| release_scaled_references(cpi); |
| } |
| |
| if (*size > 0) { |
| cpi->droppable = !frame_is_reference(cpi); |
| } |
| |
| // Save layer specific state. |
| if (is_one_pass_cbr_svc(cpi) || ((cpi->svc.number_temporal_layers > 1 || |
| cpi->svc.number_spatial_layers > 1) && |
| oxcf->pass == 2)) { |
| vp9_save_layer_context(cpi); |
| } |
| |
| vpx_usec_timer_mark(&cmptimer); |
| cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); |
| |
| if (cpi->keep_level_stats && oxcf->pass != 1) |
| update_level_info(cpi, size, arf_src_index); |
| |
| #if CONFIG_INTERNAL_STATS |
| |
| if (oxcf->pass != 1) { |
| double samples = 0.0; |
| cpi->bytes += (int)(*size); |
| |
| if (cm->show_frame) { |
| uint32_t bit_depth = 8; |
| uint32_t in_bit_depth = 8; |
| cpi->count++; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| in_bit_depth = cpi->oxcf.input_bit_depth; |
| bit_depth = cm->bit_depth; |
| } |
| #endif |
| |
| if (cpi->b_calculate_psnr) { |
| YV12_BUFFER_CONFIG *orig = cpi->raw_source_frame; |
| YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; |
| YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; |
| PSNR_STATS psnr; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vpx_calc_highbd_psnr(orig, recon, &psnr, cpi->td.mb.e_mbd.bd, |
| in_bit_depth); |
| #else |
| vpx_calc_psnr(orig, recon, &psnr); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], |
| psnr.psnr[0], &cpi->psnr); |
| cpi->total_sq_error += psnr.sse[0]; |
| cpi->total_samples += psnr.samples[0]; |
| samples = psnr.samples[0]; |
| |
| { |
| PSNR_STATS psnr2; |
| double frame_ssim2 = 0, weight = 0; |
| #if CONFIG_VP9_POSTPROC |
| if (vpx_alloc_frame_buffer( |
| pp, recon->y_crop_width, recon->y_crop_height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment) < 0) { |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate post processing buffer"); |
| } |
| { |
| vp9_ppflags_t ppflags; |
| ppflags.post_proc_flag = VP9D_DEBLOCK; |
| ppflags.deblocking_level = 0; // not used in vp9_post_proc_frame() |
| ppflags.noise_level = 0; // not used in vp9_post_proc_frame() |
| vp9_post_proc_frame(cm, pp, &ppflags, |
| cpi->un_scaled_source->y_width); |
| } |
| #endif |
| vpx_clear_system_state(); |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vpx_calc_highbd_psnr(orig, pp, &psnr2, cpi->td.mb.e_mbd.bd, |
| cpi->oxcf.input_bit_depth); |
| #else |
| vpx_calc_psnr(orig, pp, &psnr2); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| cpi->totalp_sq_error += psnr2.sse[0]; |
| cpi->totalp_samples += psnr2.samples[0]; |
| adjust_image_stat(psnr2.psnr[1], psnr2.psnr[2], psnr2.psnr[3], |
| psnr2.psnr[0], &cpi->psnrp); |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| frame_ssim2 = vpx_highbd_calc_ssim(orig, recon, &weight, bit_depth, |
| in_bit_depth); |
| } else { |
| frame_ssim2 = vpx_calc_ssim(orig, recon, &weight); |
| } |
| #else |
| frame_ssim2 = vpx_calc_ssim(orig, recon, &weight); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| cpi->worst_ssim = VPXMIN(cpi->worst_ssim, frame_ssim2); |
| cpi->summed_quality += frame_ssim2 * weight; |
| cpi->summed_weights += weight; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| frame_ssim2 = vpx_highbd_calc_ssim(orig, pp, &weight, bit_depth, |
| in_bit_depth); |
| } else { |
| frame_ssim2 = vpx_calc_ssim(orig, pp, &weight); |
| } |
| #else |
| frame_ssim2 = vpx_calc_ssim(orig, pp, &weight); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| cpi->summedp_quality += frame_ssim2 * weight; |
| cpi->summedp_weights += weight; |
| #if 0 |
| if (cm->show_frame) { |
| FILE *f = fopen("q_used.stt", "a"); |
| fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", |
| cpi->common.current_video_frame, psnr2.psnr[1], |
| psnr2.psnr[2], psnr2.psnr[3], psnr2.psnr[0], frame_ssim2); |
| fclose(f); |
| } |
| #endif |
| } |
| } |
| if (cpi->b_calculate_blockiness) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (!cm->use_highbitdepth) |
| #endif |
| { |
| double frame_blockiness = vp9_get_blockiness( |
| cpi->Source->y_buffer, cpi->Source->y_stride, |
| cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride, |
| cpi->Source->y_width, cpi->Source->y_height); |
| cpi->worst_blockiness = |
| VPXMAX(cpi->worst_blockiness, frame_blockiness); |
| cpi->total_blockiness += frame_blockiness; |
| } |
| } |
| |
| if (cpi->b_calculate_consistency) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (!cm->use_highbitdepth) |
| #endif |
| { |
| double this_inconsistency = vpx_get_ssim_metrics( |
| cpi->Source->y_buffer, cpi->Source->y_stride, |
| cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride, |
| cpi->Source->y_width, cpi->Source->y_height, cpi->ssim_vars, |
| &cpi->metrics, 1); |
| |
| const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1); |
| double consistency = |
| vpx_sse_to_psnr(samples, peak, (double)cpi->total_inconsistency); |
| if (consistency > 0.0) |
| cpi->worst_consistency = |
| VPXMIN(cpi->worst_consistency, consistency); |
| cpi->total_inconsistency += this_inconsistency; |
| } |
| } |
| |
| { |
| double y, u, v, frame_all; |
| frame_all = vpx_calc_fastssim(cpi->Source, cm->frame_to_show, &y, &u, |
| &v, bit_depth, in_bit_depth); |
| adjust_image_stat(y, u, v, frame_all, &cpi->fastssim); |
| } |
| { |
| double y, u, v, frame_all; |
| frame_all = vpx_psnrhvs(cpi->Source, cm->frame_to_show, &y, &u, &v, |
| bit_depth, in_bit_depth); |
| adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs); |
| } |
| } |
| } |
| |
| #endif |
| |
| if (is_one_pass_cbr_svc(cpi)) { |
| if (cm->show_frame) { |
| ++cpi->svc.spatial_layer_to_encode; |
| if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers) |
| cpi->svc.spatial_layer_to_encode = 0; |
| } |
| } |
| |
| vpx_clear_system_state(); |
| return 0; |
| } |
| |
| int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest, |
| vp9_ppflags_t *flags) { |
| VP9_COMMON *cm = &cpi->common; |
| #if !CONFIG_VP9_POSTPROC |
| (void)flags; |
| #endif |
| |
| if (!cm->show_frame) { |
| return -1; |
| } else { |
| int ret; |
| #if CONFIG_VP9_POSTPROC |
| ret = vp9_post_proc_frame(cm, dest, flags, cpi->un_scaled_source->y_width); |
| #else |
| if (cm->frame_to_show) { |
| *dest = *cm->frame_to_show; |
| dest->y_width = cm->width; |
| dest->y_height = cm->height; |
| dest->uv_width = cm->width >> cm->subsampling_x; |
| dest->uv_height = cm->height >> cm->subsampling_y; |
| ret = 0; |
| } else { |
| ret = -1; |
| } |
| #endif // !CONFIG_VP9_POSTPROC |
| vpx_clear_system_state(); |
| return ret; |
| } |
| } |
| |
| int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING horiz_mode, |
| VPX_SCALING vert_mode) { |
| VP9_COMMON *cm = &cpi->common; |
| int hr = 0, hs = 0, vr = 0, vs = 0; |
| |
| if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1; |
| |
| Scale2Ratio(horiz_mode, &hr, &hs); |
| Scale2Ratio(vert_mode, &vr, &vs); |
| |
| // always go to the next whole number |
| cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs; |
| cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs; |
| if (cm->current_video_frame) { |
| assert(cm->width <= cpi->initial_width); |
| assert(cm->height <= cpi->initial_height); |
| } |
| |
| update_frame_size(cpi); |
| |
| return 0; |
| } |
| |
| int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width, |
| unsigned int height) { |
| VP9_COMMON *cm = &cpi->common; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| update_initial_width(cpi, cm->use_highbitdepth, 1, 1); |
| #else |
| update_initial_width(cpi, 0, 1, 1); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| #if CONFIG_VP9_TEMPORAL_DENOISING |
| setup_denoiser_buffer(cpi); |
| #endif |
| alloc_raw_frame_buffers(cpi); |
| if (width) { |
| cm->width = width; |
| if (cm->width > cpi->initial_width) { |
| cm->width = cpi->initial_width; |
| printf("Warning: Desired width too large, changed to %d\n", cm->width); |
| } |
| } |
| |
| if (height) { |
| cm->height = height; |
| if (cm->height > cpi->initial_height) { |
| cm->height = cpi->initial_height; |
| printf("Warning: Desired height too large, changed to %d\n", cm->height); |
| } |
| } |
| assert(cm->width <= cpi->initial_width); |
| assert(cm->height <= cpi->initial_height); |
| |
| update_frame_size(cpi); |
| |
| return 0; |
| } |
| |
| void vp9_set_svc(VP9_COMP *cpi, int use_svc) { |
| cpi->use_svc = use_svc; |
| return; |
| } |
| |
| int vp9_get_quantizer(const VP9_COMP *cpi) { return cpi->common.base_qindex; } |
| |
| void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) { |
| if (flags & |
| (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF)) { |
| int ref = 7; |
| |
| if (flags & VP8_EFLAG_NO_REF_LAST) ref ^= VP9_LAST_FLAG; |
| |
| if (flags & VP8_EFLAG_NO_REF_GF) ref ^= VP9_GOLD_FLAG; |
| |
| if (flags & VP8_EFLAG_NO_REF_ARF) ref ^= VP9_ALT_FLAG; |
| |
| vp9_use_as_reference(cpi, ref); |
| } |
| |
| if (flags & |
| (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | |
| VP8_EFLAG_FORCE_GF | VP8_EFLAG_FORCE_ARF)) { |
| int upd = 7; |
| |
| if (flags & VP8_EFLAG_NO_UPD_LAST) upd ^= VP9_LAST_FLAG; |
| |
| if (flags & VP8_EFLAG_NO_UPD_GF) upd ^= VP9_GOLD_FLAG; |
| |
| if (flags & VP8_EFLAG_NO_UPD_ARF) upd ^= VP9_ALT_FLAG; |
| |
| vp9_update_reference(cpi, upd); |
| } |
| |
| if (flags & VP8_EFLAG_NO_UPD_ENTROPY) { |
| vp9_update_entropy(cpi, 0); |
| } |
| } |
| |
| void vp9_set_row_mt(VP9_COMP *cpi) { |
| // Enable row based multi-threading for supported modes of encoding |
| cpi->row_mt = 0; |
| if (((cpi->oxcf.mode == GOOD || cpi->oxcf.mode == BEST) && |
| cpi->oxcf.speed < 5 && cpi->oxcf.pass == 1) && |
| cpi->oxcf.row_mt && !cpi->use_svc) |
| cpi->row_mt = 1; |
| |
| if (cpi->oxcf.mode == GOOD && cpi->oxcf.speed < 5 && |
| (cpi->oxcf.pass == 0 || cpi->oxcf.pass == 2) && cpi->oxcf.row_mt && |
| !cpi->use_svc) |
| cpi->row_mt = 1; |
| |
| // In realtime mode, enable row based multi-threading for all the speed levels |
| // where non-rd path is used. |
| if (cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 5 && cpi->oxcf.row_mt) { |
| cpi->row_mt = 1; |
| } |
| |
| if (cpi->row_mt) |
| cpi->row_mt_bit_exact = 1; |
| else |
| cpi->row_mt_bit_exact = 0; |
| } |