| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vp9_rtcd.h" |
| |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/bitops.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/system_state.h" |
| |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_seg_common.h" |
| |
| #include "vp9/encoder/vp9_cost.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_encoder.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/encoder/vp9_rd.h" |
| #include "vp9/encoder/vp9_tokenize.h" |
| |
| #define RD_THRESH_POW 1.25 |
| |
| // Factor to weigh the rate for switchable interp filters. |
| #define SWITCHABLE_INTERP_RATE_FACTOR 1 |
| |
| void vp9_rd_cost_reset(RD_COST *rd_cost) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->dist = INT64_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| } |
| |
| void vp9_rd_cost_init(RD_COST *rd_cost) { |
| rd_cost->rate = 0; |
| rd_cost->dist = 0; |
| rd_cost->rdcost = 0; |
| } |
| |
| int64_t vp9_calculate_rd_cost(int mult, int div, int rate, int64_t dist) { |
| assert(mult >= 0); |
| assert(div > 0); |
| if (rate >= 0 && dist >= 0) { |
| return RDCOST(mult, div, rate, dist); |
| } |
| if (rate >= 0 && dist < 0) { |
| return RDCOST_NEG_D(mult, div, rate, -dist); |
| } |
| if (rate < 0 && dist >= 0) { |
| return RDCOST_NEG_R(mult, div, -rate, dist); |
| } |
| return -RDCOST(mult, div, -rate, -dist); |
| } |
| |
| void vp9_rd_cost_update(int mult, int div, RD_COST *rd_cost) { |
| if (rd_cost->rate < INT_MAX && rd_cost->dist < INT64_MAX) { |
| rd_cost->rdcost = |
| vp9_calculate_rd_cost(mult, div, rd_cost->rate, rd_cost->dist); |
| } else { |
| vp9_rd_cost_reset(rd_cost); |
| } |
| } |
| |
| // The baseline rd thresholds for breaking out of the rd loop for |
| // certain modes are assumed to be based on 8x8 blocks. |
| // This table is used to correct for block size. |
| // The factors here are << 2 (2 = x0.5, 32 = x8 etc). |
| static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = { |
| 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32 |
| }; |
| |
| static void fill_mode_costs(VP9_COMP *cpi) { |
| const FRAME_CONTEXT *const fc = cpi->common.fc; |
| int i, j; |
| |
| for (i = 0; i < INTRA_MODES; ++i) { |
| for (j = 0; j < INTRA_MODES; ++j) { |
| vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j], |
| vp9_intra_mode_tree); |
| } |
| } |
| |
| vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree); |
| for (i = 0; i < INTRA_MODES; ++i) { |
| vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME][i], |
| vp9_kf_uv_mode_prob[i], vp9_intra_mode_tree); |
| vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME][i], |
| fc->uv_mode_prob[i], vp9_intra_mode_tree); |
| } |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) { |
| vp9_cost_tokens(cpi->switchable_interp_costs[i], |
| fc->switchable_interp_prob[i], vp9_switchable_interp_tree); |
| } |
| |
| for (i = TX_8X8; i < TX_SIZES; ++i) { |
| for (j = 0; j < TX_SIZE_CONTEXTS; ++j) { |
| const vpx_prob *tx_probs = get_tx_probs(i, j, &fc->tx_probs); |
| int k; |
| for (k = 0; k <= i; ++k) { |
| int cost = 0; |
| int m; |
| for (m = 0; m <= k - (k == i); ++m) { |
| if (m == k) |
| cost += vp9_cost_zero(tx_probs[m]); |
| else |
| cost += vp9_cost_one(tx_probs[m]); |
| } |
| cpi->tx_size_cost[i - 1][j][k] = cost; |
| } |
| } |
| } |
| } |
| |
| static void fill_token_costs(vp9_coeff_cost *c, |
| vp9_coeff_probs_model (*p)[PLANE_TYPES]) { |
| int i, j, k, l; |
| TX_SIZE t; |
| for (t = TX_4X4; t <= TX_32X32; ++t) |
| for (i = 0; i < PLANE_TYPES; ++i) |
| for (j = 0; j < REF_TYPES; ++j) |
| for (k = 0; k < COEF_BANDS; ++k) |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { |
| vpx_prob probs[ENTROPY_NODES]; |
| vp9_model_to_full_probs(p[t][i][j][k][l], probs); |
| vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp9_coef_tree); |
| vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs, |
| vp9_coef_tree); |
| assert(c[t][i][j][k][0][l][EOB_TOKEN] == |
| c[t][i][j][k][1][l][EOB_TOKEN]); |
| } |
| } |
| |
| // Values are now correlated to quantizer. |
| static int sad_per_bit16lut_8[QINDEX_RANGE]; |
| static int sad_per_bit4lut_8[QINDEX_RANGE]; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static int sad_per_bit16lut_10[QINDEX_RANGE]; |
| static int sad_per_bit4lut_10[QINDEX_RANGE]; |
| static int sad_per_bit16lut_12[QINDEX_RANGE]; |
| static int sad_per_bit4lut_12[QINDEX_RANGE]; |
| #endif |
| |
| static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range, |
| vpx_bit_depth_t bit_depth) { |
| int i; |
| // Initialize the sad lut tables using a formulaic calculation for now. |
| // This is to make it easier to resolve the impact of experimental changes |
| // to the quantizer tables. |
| for (i = 0; i < range; i++) { |
| const double q = vp9_convert_qindex_to_q(i, bit_depth); |
| bit16lut[i] = (int)(0.0418 * q + 2.4107); |
| bit4lut[i] = (int)(0.063 * q + 2.742); |
| } |
| } |
| |
| void vp9_init_me_luts(void) { |
| init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE, |
| VPX_BITS_8); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE, |
| VPX_BITS_10); |
| init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE, |
| VPX_BITS_12); |
| #endif |
| } |
| |
| static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, |
| 8, 8, 4, 4, 2, 2, 1, 0 }; |
| |
| // Note that the element below for frame type "USE_BUF_FRAME", which indicates |
| // that the show frame flag is set, should not be used as no real frame |
| // is encoded so we should not reach here. However, a dummy value |
| // is inserted here to make sure the data structure has the right number |
| // of values assigned. |
| static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { 128, 144, 128, |
| 128, 144, 144 }; |
| |
| int vp9_compute_rd_mult_based_on_qindex(const VP9_COMP *cpi, int qindex) { |
| // largest dc_quant is 21387, therefore rdmult should always fit in int32_t |
| const int q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth); |
| uint32_t rdmult = q * q; |
| |
| if (cpi->common.frame_type != KEY_FRAME) { |
| if (qindex < 128) |
| rdmult = rdmult * 4; |
| else if (qindex < 190) |
| rdmult = rdmult * 4 + rdmult / 2; |
| else |
| rdmult = rdmult * 3; |
| } else { |
| if (qindex < 64) |
| rdmult = rdmult * 4; |
| else if (qindex <= 128) |
| rdmult = rdmult * 3 + rdmult / 2; |
| else if (qindex < 190) |
| rdmult = rdmult * 4 + rdmult / 2; |
| else |
| rdmult = rdmult * 7 + rdmult / 2; |
| } |
| #if CONFIG_VP9_HIGHBITDEPTH |
| switch (cpi->common.bit_depth) { |
| case VPX_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break; |
| case VPX_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break; |
| default: break; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| return rdmult > 0 ? rdmult : 1; |
| } |
| |
| static int modulate_rdmult(const VP9_COMP *cpi, int rdmult) { |
| int64_t rdmult_64 = rdmult; |
| if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { |
| const GF_GROUP *const gf_group = &cpi->twopass.gf_group; |
| const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index]; |
| const int gfu_boost = cpi->multi_layer_arf |
| ? gf_group->gfu_boost[gf_group->index] |
| : cpi->rc.gfu_boost; |
| const int boost_index = VPXMIN(15, (gfu_boost / 100)); |
| |
| rdmult_64 = (rdmult_64 * rd_frame_type_factor[frame_type]) >> 7; |
| rdmult_64 += ((rdmult_64 * rd_boost_factor[boost_index]) >> 7); |
| } |
| return (int)rdmult_64; |
| } |
| |
| int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) { |
| int rdmult = vp9_compute_rd_mult_based_on_qindex(cpi, qindex); |
| return modulate_rdmult(cpi, rdmult); |
| } |
| |
| int vp9_get_adaptive_rdmult(const VP9_COMP *cpi, double beta) { |
| int rdmult = |
| vp9_compute_rd_mult_based_on_qindex(cpi, cpi->common.base_qindex); |
| rdmult = (int)((double)rdmult / beta); |
| rdmult = rdmult > 0 ? rdmult : 1; |
| return modulate_rdmult(cpi, rdmult); |
| } |
| |
| static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) { |
| double q; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| switch (bit_depth) { |
| case VPX_BITS_8: q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; break; |
| case VPX_BITS_10: q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0; break; |
| default: |
| assert(bit_depth == VPX_BITS_12); |
| q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0; |
| break; |
| } |
| #else |
| (void)bit_depth; |
| q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| // TODO(debargha): Adjust the function below. |
| return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); |
| } |
| |
| void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) { |
| #if CONFIG_VP9_HIGHBITDEPTH |
| switch (cpi->common.bit_depth) { |
| case VPX_BITS_8: |
| x->sadperbit16 = sad_per_bit16lut_8[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_8[qindex]; |
| break; |
| case VPX_BITS_10: |
| x->sadperbit16 = sad_per_bit16lut_10[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_10[qindex]; |
| break; |
| default: |
| assert(cpi->common.bit_depth == VPX_BITS_12); |
| x->sadperbit16 = sad_per_bit16lut_12[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_12[qindex]; |
| break; |
| } |
| #else |
| (void)cpi; |
| x->sadperbit16 = sad_per_bit16lut_8[qindex]; |
| x->sadperbit4 = sad_per_bit4lut_8[qindex]; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) { |
| int i, bsize, segment_id; |
| |
| for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { |
| const int qindex = |
| clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) + |
| cm->y_dc_delta_q, |
| 0, MAXQ); |
| const int q = compute_rd_thresh_factor(qindex, cm->bit_depth); |
| |
| for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { |
| // Threshold here seems unnecessarily harsh but fine given actual |
| // range of values used for cpi->sf.thresh_mult[]. |
| const int t = q * rd_thresh_block_size_factor[bsize]; |
| const int thresh_max = INT_MAX / t; |
| |
| if (bsize >= BLOCK_8X8) { |
| for (i = 0; i < MAX_MODES; ++i) |
| rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max |
| ? rd->thresh_mult[i] * t / 4 |
| : INT_MAX; |
| } else { |
| for (i = 0; i < MAX_REFS; ++i) |
| rd->threshes[segment_id][bsize][i] = |
| rd->thresh_mult_sub8x8[i] < thresh_max |
| ? rd->thresh_mult_sub8x8[i] * t / 4 |
| : INT_MAX; |
| } |
| } |
| } |
| } |
| |
| void vp9_build_inter_mode_cost(VP9_COMP *cpi) { |
| const VP9_COMMON *const cm = &cpi->common; |
| int i; |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
| vp9_cost_tokens((int *)cpi->inter_mode_cost[i], cm->fc->inter_mode_probs[i], |
| vp9_inter_mode_tree); |
| } |
| } |
| |
| void vp9_initialize_rd_consts(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| RD_OPT *const rd = &cpi->rd; |
| int i; |
| |
| vpx_clear_system_state(); |
| |
| rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128). |
| rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q); |
| |
| set_error_per_bit(x, rd->RDMULT); |
| |
| x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL && |
| cm->frame_type != KEY_FRAME) |
| ? 0 |
| : 1; |
| |
| set_block_thresholds(cm, rd); |
| set_partition_probs(cm, xd); |
| |
| if (cpi->oxcf.pass == 1) { |
| if (!frame_is_intra_only(cm)) |
| vp9_build_nmv_cost_table( |
| x->nmvjointcost, |
| cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost, |
| &cm->fc->nmvc, cm->allow_high_precision_mv); |
| } else { |
| if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME) |
| fill_token_costs(x->token_costs, cm->fc->coef_probs); |
| |
| if (cpi->sf.partition_search_type != VAR_BASED_PARTITION || |
| cm->frame_type == KEY_FRAME) { |
| for (i = 0; i < PARTITION_CONTEXTS; ++i) |
| vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(xd, i), |
| vp9_partition_tree); |
| } |
| |
| if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 || |
| cm->frame_type == KEY_FRAME) { |
| fill_mode_costs(cpi); |
| |
| if (!frame_is_intra_only(cm)) { |
| vp9_build_nmv_cost_table( |
| x->nmvjointcost, |
| cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost, |
| &cm->fc->nmvc, cm->allow_high_precision_mv); |
| vp9_build_inter_mode_cost(cpi); |
| } |
| } |
| } |
| } |
| |
| // NOTE: The tables below must be of the same size. |
| |
| // The functions described below are sampled at the four most significant |
| // bits of x^2 + 8 / 256. |
| |
| // Normalized rate: |
| // This table models the rate for a Laplacian source with given variance |
| // when quantized with a uniform quantizer with given stepsize. The |
| // closed form expression is: |
| // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], |
| // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), |
| // and H(x) is the binary entropy function. |
| static const int rate_tab_q10[] = { |
| 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, 4044, |
| 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, 3133, 3037, |
| 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, 2290, 2232, 2179, |
| 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, 1608, 1530, 1460, 1398, |
| 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, 911, 864, 821, 781, 745, |
| 680, 623, 574, 530, 490, 455, 424, 395, 345, 304, 269, 239, 213, |
| 190, 171, 154, 126, 104, 87, 73, 61, 52, 44, 38, 28, 21, |
| 16, 12, 10, 8, 6, 5, 3, 2, 1, 1, 1, 0, 0, |
| }; |
| |
| // Normalized distortion: |
| // This table models the normalized distortion for a Laplacian source |
| // with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expression is: |
| // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) |
| // where x = qpstep / sqrt(variance). |
| // Note the actual distortion is Dn * variance. |
| static const int dist_tab_q10[] = { |
| 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, |
| 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 21, |
| 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, 59, 64, 69, |
| 73, 78, 88, 97, 106, 115, 124, 133, 142, 151, 167, 184, 200, |
| 215, 231, 245, 260, 274, 301, 327, 351, 375, 397, 418, 439, 458, |
| 495, 528, 559, 587, 613, 637, 659, 680, 717, 749, 777, 801, 823, |
| 842, 859, 874, 899, 919, 936, 949, 960, 969, 977, 983, 994, 1001, |
| 1006, 1010, 1013, 1015, 1017, 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, |
| }; |
| static const int xsq_iq_q10[] = { |
| 0, 4, 8, 12, 16, 20, 24, 28, 32, |
| 40, 48, 56, 64, 72, 80, 88, 96, 112, |
| 128, 144, 160, 176, 192, 208, 224, 256, 288, |
| 320, 352, 384, 416, 448, 480, 544, 608, 672, |
| 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, |
| 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, |
| 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, |
| 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, |
| 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, |
| 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, |
| 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, |
| 180192, 196576, 212960, 229344, 245728, |
| }; |
| |
| static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { |
| const int tmp = (xsq_q10 >> 2) + 8; |
| const int k = get_msb(tmp) - 3; |
| const int xq = (k << 3) + ((tmp >> k) & 0x7); |
| const int one_q10 = 1 << 10; |
| const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); |
| const int b_q10 = one_q10 - a_q10; |
| *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; |
| *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; |
| } |
| |
| static void model_rd_norm_vec(int xsq_q10[MAX_MB_PLANE], |
| int r_q10[MAX_MB_PLANE], |
| int d_q10[MAX_MB_PLANE]) { |
| int i; |
| const int one_q10 = 1 << 10; |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| const int tmp = (xsq_q10[i] >> 2) + 8; |
| const int k = get_msb(tmp) - 3; |
| const int xq = (k << 3) + ((tmp >> k) & 0x7); |
| const int a_q10 = ((xsq_q10[i] - xsq_iq_q10[xq]) << 10) >> (2 + k); |
| const int b_q10 = one_q10 - a_q10; |
| r_q10[i] = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; |
| d_q10[i] = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; |
| } |
| } |
| |
| static const uint32_t MAX_XSQ_Q10 = 245727; |
| |
| void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2, |
| unsigned int qstep, int *rate, |
| int64_t *dist) { |
| // This function models the rate and distortion for a Laplacian |
| // source with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expressions are in: |
| // Hang and Chen, "Source Model for transform video coder and its |
| // application - Part I: Fundamental Theory", IEEE Trans. Circ. |
| // Sys. for Video Tech., April 1997. |
| if (var == 0) { |
| *rate = 0; |
| *dist = 0; |
| } else { |
| int d_q10, r_q10; |
| const uint64_t xsq_q10_64 = |
| (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; |
| const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10); |
| model_rd_norm(xsq_q10, &r_q10, &d_q10); |
| *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - VP9_PROB_COST_SHIFT); |
| *dist = (var * (int64_t)d_q10 + 512) >> 10; |
| } |
| } |
| |
| // Implements a fixed length vector form of vp9_model_rd_from_var_lapndz where |
| // vectors are of length MAX_MB_PLANE and all elements of var are non-zero. |
| void vp9_model_rd_from_var_lapndz_vec(unsigned int var[MAX_MB_PLANE], |
| unsigned int n_log2[MAX_MB_PLANE], |
| unsigned int qstep[MAX_MB_PLANE], |
| int64_t *rate_sum, int64_t *dist_sum) { |
| int i; |
| int xsq_q10[MAX_MB_PLANE], d_q10[MAX_MB_PLANE], r_q10[MAX_MB_PLANE]; |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| const uint64_t xsq_q10_64 = |
| (((uint64_t)qstep[i] * qstep[i] << (n_log2[i] + 10)) + (var[i] >> 1)) / |
| var[i]; |
| xsq_q10[i] = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10); |
| } |
| model_rd_norm_vec(xsq_q10, r_q10, d_q10); |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| int rate = |
| ROUND_POWER_OF_TWO(r_q10[i] << n_log2[i], 10 - VP9_PROB_COST_SHIFT); |
| int64_t dist = (var[i] * (int64_t)d_q10[i] + 512) >> 10; |
| *rate_sum += rate; |
| *dist_sum += dist; |
| } |
| } |
| |
| void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size, |
| const struct macroblockd_plane *pd, |
| ENTROPY_CONTEXT t_above[16], |
| ENTROPY_CONTEXT t_left[16]) { |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| const ENTROPY_CONTEXT *const above = pd->above_context; |
| const ENTROPY_CONTEXT *const left = pd->left_context; |
| |
| int i; |
| switch (tx_size) { |
| case TX_4X4: |
| memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); |
| memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); |
| break; |
| case TX_8X8: |
| for (i = 0; i < num_4x4_w; i += 2) |
| t_above[i] = !!*(const uint16_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 2) |
| t_left[i] = !!*(const uint16_t *)&left[i]; |
| break; |
| case TX_16X16: |
| for (i = 0; i < num_4x4_w; i += 4) |
| t_above[i] = !!*(const uint32_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 4) |
| t_left[i] = !!*(const uint32_t *)&left[i]; |
| break; |
| default: |
| assert(tx_size == TX_32X32); |
| for (i = 0; i < num_4x4_w; i += 8) |
| t_above[i] = !!*(const uint64_t *)&above[i]; |
| for (i = 0; i < num_4x4_h; i += 8) |
| t_left[i] = !!*(const uint64_t *)&left[i]; |
| break; |
| } |
| } |
| |
| void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, |
| int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { |
| int i; |
| int zero_seen = 0; |
| int best_index = 0; |
| int best_sad = INT_MAX; |
| int this_sad = INT_MAX; |
| int max_mv = 0; |
| int near_same_nearest; |
| uint8_t *src_y_ptr = x->plane[0].src.buf; |
| uint8_t *ref_y_ptr; |
| const int num_mv_refs = |
| MAX_MV_REF_CANDIDATES + (block_size < x->max_partition_size); |
| |
| MV pred_mv[3]; |
| pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv; |
| pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv; |
| pred_mv[2] = x->pred_mv[ref_frame]; |
| assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); |
| |
| near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int == |
| x->mbmi_ext->ref_mvs[ref_frame][1].as_int; |
| |
| // Get the sad for each candidate reference mv. |
| for (i = 0; i < num_mv_refs; ++i) { |
| const MV *this_mv = &pred_mv[i]; |
| int fp_row, fp_col; |
| if (this_mv->row == INT16_MAX || this_mv->col == INT16_MAX) continue; |
| if (i == 1 && near_same_nearest) continue; |
| fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; |
| fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; |
| max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); |
| |
| if (fp_row == 0 && fp_col == 0 && zero_seen) continue; |
| zero_seen |= (fp_row == 0 && fp_col == 0); |
| |
| ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col]; |
| // Find sad for current vector. |
| this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, |
| ref_y_ptr, ref_y_stride); |
| // Note if it is the best so far. |
| if (this_sad < best_sad) { |
| best_sad = this_sad; |
| best_index = i; |
| } |
| } |
| |
| // Note the index of the mv that worked best in the reference list. |
| x->mv_best_ref_index[ref_frame] = best_index; |
| x->max_mv_context[ref_frame] = max_mv; |
| x->pred_mv_sad[ref_frame] = best_sad; |
| } |
| |
| void vp9_setup_pred_block(const MACROBLOCKD *xd, |
| struct buf_2d dst[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *scale, |
| const struct scale_factors *scale_uv) { |
| int i; |
| |
| dst[0].buf = src->y_buffer; |
| dst[0].stride = src->y_stride; |
| dst[1].buf = src->u_buffer; |
| dst[2].buf = src->v_buffer; |
| dst[1].stride = dst[2].stride = src->uv_stride; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col, |
| i ? scale_uv : scale, xd->plane[i].subsampling_x, |
| xd->plane[i].subsampling_y); |
| } |
| } |
| |
| int vp9_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, |
| int stride) { |
| const int bw = b_width_log2_lookup[plane_bsize]; |
| const int y = 4 * (raster_block >> bw); |
| const int x = 4 * (raster_block & ((1 << bw) - 1)); |
| return y * stride + x; |
| } |
| |
| int16_t *vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, |
| int16_t *base) { |
| const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; |
| return base + vp9_raster_block_offset(plane_bsize, raster_block, stride); |
| } |
| |
| YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi, |
| int ref_frame) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1]; |
| const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame); |
| assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME); |
| return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) |
| ? &cm->buffer_pool->frame_bufs[scaled_idx].buf |
| : NULL; |
| } |
| |
| int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) { |
| const MODE_INFO *const mi = xd->mi[0]; |
| const int ctx = get_pred_context_switchable_interp(xd); |
| return SWITCHABLE_INTERP_RATE_FACTOR * |
| cpi->switchable_interp_costs[ctx][mi->interp_filter]; |
| } |
| |
| void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) { |
| int i; |
| RD_OPT *const rd = &cpi->rd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| |
| // Set baseline threshold values. |
| for (i = 0; i < MAX_MODES; ++i) |
| rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0; |
| |
| if (sf->adaptive_rd_thresh) { |
| rd->thresh_mult[THR_NEARESTMV] = 300; |
| rd->thresh_mult[THR_NEARESTG] = 300; |
| rd->thresh_mult[THR_NEARESTA] = 300; |
| } else { |
| rd->thresh_mult[THR_NEARESTMV] = 0; |
| rd->thresh_mult[THR_NEARESTG] = 0; |
| rd->thresh_mult[THR_NEARESTA] = 0; |
| } |
| |
| rd->thresh_mult[THR_DC] += 1000; |
| |
| rd->thresh_mult[THR_NEWMV] += 1000; |
| rd->thresh_mult[THR_NEWA] += 1000; |
| rd->thresh_mult[THR_NEWG] += 1000; |
| |
| rd->thresh_mult[THR_NEARMV] += 1000; |
| rd->thresh_mult[THR_NEARA] += 1000; |
| rd->thresh_mult[THR_COMP_NEARESTLA] += 1000; |
| rd->thresh_mult[THR_COMP_NEARESTGA] += 1000; |
| |
| rd->thresh_mult[THR_TM] += 1000; |
| |
| rd->thresh_mult[THR_COMP_NEARLA] += 1500; |
| rd->thresh_mult[THR_COMP_NEWLA] += 2000; |
| rd->thresh_mult[THR_NEARG] += 1000; |
| rd->thresh_mult[THR_COMP_NEARGA] += 1500; |
| rd->thresh_mult[THR_COMP_NEWGA] += 2000; |
| |
| rd->thresh_mult[THR_ZEROMV] += 2000; |
| rd->thresh_mult[THR_ZEROG] += 2000; |
| rd->thresh_mult[THR_ZEROA] += 2000; |
| rd->thresh_mult[THR_COMP_ZEROLA] += 2500; |
| rd->thresh_mult[THR_COMP_ZEROGA] += 2500; |
| |
| rd->thresh_mult[THR_H_PRED] += 2000; |
| rd->thresh_mult[THR_V_PRED] += 2000; |
| rd->thresh_mult[THR_D45_PRED] += 2500; |
| rd->thresh_mult[THR_D135_PRED] += 2500; |
| rd->thresh_mult[THR_D117_PRED] += 2500; |
| rd->thresh_mult[THR_D153_PRED] += 2500; |
| rd->thresh_mult[THR_D207_PRED] += 2500; |
| rd->thresh_mult[THR_D63_PRED] += 2500; |
| } |
| |
| void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) { |
| static const int thresh_mult[2][MAX_REFS] = { |
| { 2500, 2500, 2500, 4500, 4500, 2500 }, |
| { 2000, 2000, 2000, 4000, 4000, 2000 } |
| }; |
| RD_OPT *const rd = &cpi->rd; |
| const int idx = cpi->oxcf.mode == BEST; |
| memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx])); |
| } |
| |
| void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh, |
| int bsize, int best_mode_index) { |
| if (rd_thresh > 0) { |
| const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES; |
| int mode; |
| for (mode = 0; mode < top_mode; ++mode) { |
| const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4); |
| const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64); |
| BLOCK_SIZE bs; |
| for (bs = min_size; bs <= max_size; ++bs) { |
| int *const fact = &factor_buf[bs][mode]; |
| if (mode == best_mode_index) { |
| *fact -= (*fact >> 4); |
| } else { |
| *fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT); |
| } |
| } |
| } |
| } |
| } |
| |
| int vp9_get_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize, |
| int qindex, int qdelta) { |
| // Reduce the intra cost penalty for small blocks (<=16x16). |
| int reduction_fac = |
| (bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0; |
| |
| if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh) |
| // Don't reduce intra cost penalty if estimated noise level is high. |
| reduction_fac = 0; |
| |
| // Always use VPX_BITS_8 as input here because the penalty is applied |
| // to rate not distortion so we want a consistent penalty for all bit |
| // depths. If the actual bit depth were passed in here then the value |
| // retured by vp9_dc_quant() would scale with the bit depth and we would |
| // then need to apply inverse scaling to correct back to a bit depth |
| // independent rate penalty. |
| return (20 * vp9_dc_quant(qindex, qdelta, VPX_BITS_8)) >> reduction_fac; |
| } |