| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Scopers help you manage ownership of a pointer, helping you easily manage the |
| // a pointer within a scope, and automatically destroying the pointer at the |
| // end of a scope. There are two main classes you will use, which correspond |
| // to the operators new/delete and new[]/delete[]. |
| // |
| // Example usage (scoped_ptr): |
| // { |
| // scoped_ptr<Foo> foo(new Foo("wee")); |
| // } // foo goes out of scope, releasing the pointer with it. |
| // |
| // { |
| // scoped_ptr<Foo> foo; // No pointer managed. |
| // foo.reset(new Foo("wee")); // Now a pointer is managed. |
| // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. |
| // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. |
| // foo->Method(); // Foo::Method() called. |
| // foo.get()->Method(); // Foo::Method() called. |
| // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer |
| // // manages a pointer. |
| // foo.reset(new Foo("wee4")); // foo manages a pointer again. |
| // foo.reset(); // Foo("wee4") destroyed, foo no longer |
| // // manages a pointer. |
| // } // foo wasn't managing a pointer, so nothing was destroyed. |
| // |
| // Example usage (scoped_array): |
| // { |
| // scoped_array<Foo> foo(new Foo[100]); |
| // foo.get()->Method(); // Foo::Method on the 0th element. |
| // foo[10].Method(); // Foo::Method on the 10th element. |
| // } |
| // |
| // These scopers also implement part of the functionality of C++11 unique_ptr |
| // in that they are "movable but not copyable." You can use the scopers in |
| // the parameter and return types of functions to signify ownership transfer |
| // in to and out of a function. When calling a function that has a scoper |
| // as the argument type, it must be called with the result of an analogous |
| // scoper's Pass() function or another function that generates a temporary; |
| // passing by copy will NOT work. Here is an example using scoped_ptr: |
| // |
| // void TakesOwnership(scoped_ptr<Foo> arg) { |
| // // Do something with arg |
| // } |
| // scoped_ptr<Foo> CreateFoo() { |
| // // No need for calling Pass() because we are constructing a temporary |
| // // for the return value. |
| // return scoped_ptr<Foo>(new Foo("new")); |
| // } |
| // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { |
| // return arg.Pass(); |
| // } |
| // |
| // { |
| // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay"). |
| // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay"). |
| // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo. |
| // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2. |
| // PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL. |
| // } |
| // |
| // Notice that if you do not call Pass() when returning from PassThru(), or |
| // when invoking TakesOwnership(), the code will not compile because scopers |
| // are not copyable; they only implement move semantics which require calling |
| // the Pass() function to signify a destructive transfer of state. CreateFoo() |
| // is different though because we are constructing a temporary on the return |
| // line and thus can avoid needing to call Pass(). |
| // |
| // Pass() properly handles upcast in assignment, i.e. you can assign |
| // scoped_ptr<Child> to scoped_ptr<Parent>: |
| // |
| // scoped_ptr<Foo> foo(new Foo()); |
| // scoped_ptr<FooParent> parent = foo.Pass(); |
| // |
| // PassAs<>() should be used to upcast return value in return statement: |
| // |
| // scoped_ptr<Foo> CreateFoo() { |
| // scoped_ptr<FooChild> result(new FooChild()); |
| // return result.PassAs<Foo>(); |
| // } |
| // |
| // Note that PassAs<>() is implemented only for scoped_ptr, but not for |
| // scoped_array. This is because casting array pointers may not be safe. |
| |
| #ifndef BASE_MEMORY_SCOPED_PTR_H_ |
| #define BASE_MEMORY_SCOPED_PTR_H_ |
| |
| // This is an implementation designed to match the anticipated future TR2 |
| // implementation of the scoped_ptr class, and its closely-related brethren, |
| // scoped_array, scoped_ptr_malloc. |
| |
| #include <assert.h> |
| #include <stddef.h> |
| #include <stdlib.h> |
| |
| #include "base/basictypes.h" |
| #include "base/compiler_specific.h" |
| #include "base/move.h" |
| #include "base/template_util.h" |
| #include "build/build_config.h" |
| |
| #if defined(OS_STARBOARD) |
| #include "starboard/memory.h" |
| #endif |
| |
| namespace base { |
| |
| namespace subtle { |
| class RefCountedBase; |
| class RefCountedThreadSafeBase; |
| } // namespace subtle |
| |
| namespace internal { |
| |
| template <typename T> struct IsNotRefCounted { |
| enum { |
| value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && |
| !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>:: |
| value |
| }; |
| }; |
| |
| } // namespace internal |
| } // namespace base |
| |
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
| // automatically deletes the pointer it holds (if any). |
| // That is, scoped_ptr<T> owns the T object that it points to. |
| // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
| // Also like T*, scoped_ptr<T> is thread-compatible, and once you |
| // dereference it, you get the thread safety guarantees of T. |
| // |
| // The size of a scoped_ptr is small: |
| // sizeof(scoped_ptr<C>) == sizeof(C*) |
| template <class C> |
| class scoped_ptr { |
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
| |
| COMPILE_ASSERT(base::internal::IsNotRefCounted<C>::value, |
| C_is_refcounted_type_and_needs_scoped_refptr); |
| |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to initializing with NULL. |
| // There is no way to create an uninitialized scoped_ptr. |
| // The input parameter must be allocated with new. |
| explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
| |
| // The GHS compiler always chooses this copy constructor over the next one, |
| // so disable this to promote the more important and frequently used constr. |
| #if !defined(COMPILER_GHS) |
| // Constructor. Allows construction from a scoped_ptr rvalue for a |
| // convertible type. |
| template <typename U> |
| scoped_ptr(scoped_ptr<U> other) : ptr_(other.release()) { } |
| #endif |
| |
| // Constructor. Move constructor for C++03 move emulation of this type. |
| scoped_ptr(RValue rvalue) |
| : ptr_(rvalue.object->release()) { |
| } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_ptr() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| } |
| |
| // operator=. Allows assignment from a scoped_ptr rvalue for a convertible |
| // type. |
| template <typename U> |
| scoped_ptr& operator=(scoped_ptr<U> rhs) { |
| reset(rhs.release()); |
| return *this; |
| } |
| |
| // operator=. Move operator= for C++03 move emulation of this type. |
| scoped_ptr& operator=(RValue rhs) { |
| swap(*rhs->object); |
| return *this; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != ptr_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| ptr_ = p; |
| } |
| } |
| |
| // Accessors to get the owned object. |
| // operator* and operator-> will assert() if there is no current object. |
| C& operator*() const { |
| assert(ptr_ != NULL); |
| return *ptr_; |
| } |
| C* operator->() const { |
| assert(ptr_ != NULL); |
| return ptr_; |
| } |
| C* get() const { return ptr_; } |
| |
| // Allow scoped_ptr<C> to be used in boolean expressions, but not |
| // implicitly convertible to a real bool (which is dangerous). |
| typedef C* scoped_ptr::*Testable; |
| operator Testable() const { return ptr_ ? &scoped_ptr::ptr_ : NULL; } |
| |
| // Comparison operators. |
| // These return whether two scoped_ptr refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return ptr_ == p; } |
| bool operator!=(C* p) const { return ptr_ != p; } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr& p2) { |
| C* tmp = ptr_; |
| ptr_ = p2.ptr_; |
| p2.ptr_ = tmp; |
| } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() WARN_UNUSED_RESULT { |
| C* retVal = ptr_; |
| ptr_ = NULL; |
| return retVal; |
| } |
| |
| template <typename PassAsType> |
| scoped_ptr<PassAsType> PassAs() { |
| return scoped_ptr<PassAsType>(release()); |
| } |
| |
| private: |
| C* ptr_; |
| |
| // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
| // make sense, and if C2 == C, it still doesn't make sense because you should |
| // never have the same object owned by two different scoped_ptrs. |
| template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
| |
| }; |
| |
| // Free functions |
| template <class C> |
| void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { |
| p1.swap(p2); |
| } |
| |
| template <class C> |
| bool operator==(C* p1, const scoped_ptr<C>& p2) { |
| return p1 == p2.get(); |
| } |
| |
| template <class C> |
| bool operator!=(C* p1, const scoped_ptr<C>& p2) { |
| return p1 != p2.get(); |
| } |
| |
| // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate |
| // with new [] and the destructor deletes objects with delete []. |
| // |
| // As with scoped_ptr<C>, a scoped_array<C> either points to an object |
| // or is NULL. A scoped_array<C> owns the object that it points to. |
| // scoped_array<T> is thread-compatible, and once you index into it, |
| // the returned objects have only the thread safety guarantees of T. |
| // |
| // Size: sizeof(scoped_array<C>) == sizeof(C*) |
| template <class C> |
| class scoped_array { |
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_array, RValue) |
| |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to initializing with NULL. |
| // There is no way to create an uninitialized scoped_array. |
| // The input parameter must be allocated with new []. |
| explicit scoped_array(C* p = NULL) : array_(p) { } |
| |
| // Constructor. Move constructor for C++03 move emulation of this type. |
| scoped_array(RValue rvalue) |
| : array_(rvalue.object->release()) { |
| } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_array() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| } |
| |
| // operator=. Move operator= for C++03 move emulation of this type. |
| scoped_array& operator=(RValue rhs) { |
| swap(*rhs.object); |
| return *this; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != array_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| array_ = p; |
| } |
| } |
| |
| // Get one element of the current object. |
| // Will assert() if there is no current object, or index i is negative. |
| C& operator[](ptrdiff_t i) const { |
| assert(i >= 0); |
| assert(array_ != NULL); |
| return array_[i]; |
| } |
| |
| // Get a pointer to the zeroth element of the current object. |
| // If there is no current object, return NULL. |
| C* get() const { |
| return array_; |
| } |
| |
| // Allow scoped_array<C> to be used in boolean expressions, but not |
| // implicitly convertible to a real bool (which is dangerous). |
| typedef C* scoped_array::*Testable; |
| operator Testable() const { return array_ ? &scoped_array::array_ : NULL; } |
| |
| // Comparison operators. |
| // These return whether two scoped_array refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return array_ == p; } |
| bool operator!=(C* p) const { return array_ != p; } |
| |
| // Swap two scoped arrays. |
| void swap(scoped_array& p2) { |
| C* tmp = array_; |
| array_ = p2.array_; |
| p2.array_ = tmp; |
| } |
| |
| // Release an array. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() WARN_UNUSED_RESULT { |
| C* retVal = array_; |
| array_ = NULL; |
| return retVal; |
| } |
| |
| private: |
| C* array_; |
| |
| // Forbid comparison of different scoped_array types. |
| template <class C2> bool operator==(scoped_array<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_array<C2> const& p2) const; |
| }; |
| |
| // Free functions |
| template <class C> |
| void swap(scoped_array<C>& p1, scoped_array<C>& p2) { |
| p1.swap(p2); |
| } |
| |
| template <class C> |
| bool operator==(C* p1, const scoped_array<C>& p2) { |
| return p1 == p2.get(); |
| } |
| |
| template <class C> |
| bool operator!=(C* p1, const scoped_array<C>& p2) { |
| return p1 != p2.get(); |
| } |
| |
| // This class wraps the c library function free() in a class that can be |
| // passed as a template argument to scoped_ptr_malloc below. |
| class ScopedPtrMallocFree { |
| public: |
| inline void operator()(void* x) const { |
| #if defined(OS_STARBOARD) |
| SbMemoryDeallocate(x); |
| #else |
| free(x); |
| #endif |
| } |
| }; |
| |
| // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a |
| // second template argument, the functor used to free the object. |
| |
| template<class C, class FreeProc = ScopedPtrMallocFree> |
| class scoped_ptr_malloc { |
| MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue) |
| |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to initializing with NULL. |
| // There is no way to create an uninitialized scoped_ptr. |
| // The input parameter must be allocated with an allocator that matches the |
| // Free functor. For the default Free functor, this is malloc, calloc, or |
| // realloc. |
| explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} |
| |
| // Constructor. Move constructor for C++03 move emulation of this type. |
| scoped_ptr_malloc(RValue rvalue) |
| : ptr_(rvalue.object->release()) { |
| } |
| |
| // Destructor. If there is a C object, call the Free functor. |
| ~scoped_ptr_malloc() { |
| reset(); |
| } |
| |
| // operator=. Move operator= for C++03 move emulation of this type. |
| scoped_ptr_malloc& operator=(RValue rhs) { |
| swap(*rhs.object); |
| return *this; |
| } |
| |
| // Reset. Calls the Free functor on the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (ptr_ != p) { |
| FreeProc free_proc; |
| free_proc(ptr_); |
| ptr_ = p; |
| } |
| } |
| |
| // Get the current object. |
| // operator* and operator-> will cause an assert() failure if there is |
| // no current object. |
| C& operator*() const { |
| assert(ptr_ != NULL); |
| return *ptr_; |
| } |
| |
| C* operator->() const { |
| assert(ptr_ != NULL); |
| return ptr_; |
| } |
| |
| C* get() const { |
| return ptr_; |
| } |
| |
| // Allow scoped_ptr_malloc<C> to be used in boolean expressions, but not |
| // implicitly convertible to a real bool (which is dangerous). |
| typedef C* scoped_ptr_malloc::*Testable; |
| operator Testable() const { return ptr_ ? &scoped_ptr_malloc::ptr_ : NULL; } |
| |
| // Comparison operators. |
| // These return whether a scoped_ptr_malloc and a plain pointer refer |
| // to the same object, not just to two different but equal objects. |
| // For compatibility with the boost-derived implementation, these |
| // take non-const arguments. |
| bool operator==(C* p) const { |
| return ptr_ == p; |
| } |
| |
| bool operator!=(C* p) const { |
| return ptr_ != p; |
| } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr_malloc & b) { |
| C* tmp = b.ptr_; |
| b.ptr_ = ptr_; |
| ptr_ = tmp; |
| } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() WARN_UNUSED_RESULT { |
| C* tmp = ptr_; |
| ptr_ = NULL; |
| return tmp; |
| } |
| |
| private: |
| C* ptr_; |
| |
| // no reason to use these: each scoped_ptr_malloc should have its own object |
| template <class C2, class GP> |
| bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; |
| template <class C2, class GP> |
| bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; |
| }; |
| |
| template<class C, class FP> inline |
| void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { |
| a.swap(b); |
| } |
| |
| template<class C, class FP> inline |
| bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { |
| return p == b.get(); |
| } |
| |
| template<class C, class FP> inline |
| bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { |
| return p != b.get(); |
| } |
| |
| // A function to convert T* into scoped_ptr<T> |
| // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation |
| // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) |
| template <typename T> |
| scoped_ptr<T> make_scoped_ptr(T* ptr) { |
| return scoped_ptr<T>(ptr); |
| } |
| |
| #endif // BASE_MEMORY_SCOPED_PTR_H_ |