|  | /* | 
|  | *  Copyright (c) 2010 The WebM project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "./vpx_dsp_rtcd.h" | 
|  | #include "./vpx_scale_rtcd.h" | 
|  |  | 
|  | #include "vpx_dsp/vpx_dsp_common.h" | 
|  | #include "vpx_mem/vpx_mem.h" | 
|  | #include "vpx_ports/mem.h" | 
|  | #include "vpx_ports/system_state.h" | 
|  | #include "vpx_scale/vpx_scale.h" | 
|  | #include "vpx_scale/yv12config.h" | 
|  |  | 
|  | #include "vp9/common/vp9_entropymv.h" | 
|  | #include "vp9/common/vp9_quant_common.h" | 
|  | #include "vp9/common/vp9_reconinter.h"  // vp9_setup_dst_planes() | 
|  | #include "vp9/encoder/vp9_aq_variance.h" | 
|  | #include "vp9/encoder/vp9_block.h" | 
|  | #include "vp9/encoder/vp9_encodeframe.h" | 
|  | #include "vp9/encoder/vp9_encodemb.h" | 
|  | #include "vp9/encoder/vp9_encodemv.h" | 
|  | #include "vp9/encoder/vp9_encoder.h" | 
|  | #include "vp9/encoder/vp9_ethread.h" | 
|  | #include "vp9/encoder/vp9_extend.h" | 
|  | #include "vp9/encoder/vp9_firstpass.h" | 
|  | #include "vp9/encoder/vp9_mcomp.h" | 
|  | #include "vp9/encoder/vp9_quantize.h" | 
|  | #include "vp9/encoder/vp9_rd.h" | 
|  | #include "vpx_dsp/variance.h" | 
|  |  | 
|  | #define OUTPUT_FPF 0 | 
|  | #define ARF_STATS_OUTPUT 0 | 
|  | #define COMPLEXITY_STATS_OUTPUT 0 | 
|  |  | 
|  | #define FIRST_PASS_Q 10.0 | 
|  | #define NORMAL_BOOST 100 | 
|  | #define MIN_ARF_GF_BOOST 250 | 
|  | #define MIN_DECAY_FACTOR 0.01 | 
|  | #define NEW_MV_MODE_PENALTY 32 | 
|  | #define DARK_THRESH 64 | 
|  | #define LOW_I_THRESH 24000 | 
|  |  | 
|  | #define NCOUNT_INTRA_THRESH 8192 | 
|  | #define NCOUNT_INTRA_FACTOR 3 | 
|  |  | 
|  | #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) | 
|  |  | 
|  | #if ARF_STATS_OUTPUT | 
|  | unsigned int arf_count = 0; | 
|  | #endif | 
|  |  | 
|  | // Resets the first pass file to the given position using a relative seek from | 
|  | // the current position. | 
|  | static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { | 
|  | p->stats_in = position; | 
|  | } | 
|  |  | 
|  | // Read frame stats at an offset from the current position. | 
|  | static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { | 
|  | if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || | 
|  | (offset < 0 && p->stats_in + offset < p->stats_in_start)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return &p->stats_in[offset]; | 
|  | } | 
|  |  | 
|  | static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { | 
|  | if (p->stats_in >= p->stats_in_end) return EOF; | 
|  |  | 
|  | *fps = *p->stats_in; | 
|  | ++p->stats_in; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void output_stats(FIRSTPASS_STATS *stats) { | 
|  | (void)stats; | 
|  | // TEMP debug code | 
|  | #if OUTPUT_FPF | 
|  | { | 
|  | FILE *fpfile; | 
|  | fpfile = fopen("firstpass.stt", "a"); | 
|  |  | 
|  | fprintf(fpfile, | 
|  | "%12.0lf %12.4lf %12.2lf %12.2lf %12.2lf %12.0lf %12.4lf %12.4lf" | 
|  | "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" | 
|  | "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.4lf %12.0lf" | 
|  | "%12.4lf" | 
|  | "\n", | 
|  | stats->frame, stats->weight, stats->intra_error, stats->coded_error, | 
|  | stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter, | 
|  | stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, | 
|  | stats->pcnt_intra_low, stats->pcnt_intra_high, | 
|  | stats->intra_skip_pct, stats->intra_smooth_pct, | 
|  | stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, | 
|  | stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, | 
|  | stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration); | 
|  | fclose(fpfile); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm, | 
|  | struct vpx_codec_pkt_list *pktlist) { | 
|  | struct vpx_codec_cx_pkt pkt; | 
|  | pkt.kind = VPX_CODEC_FPMB_STATS_PKT; | 
|  | pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; | 
|  | pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t); | 
|  | vpx_codec_pkt_list_add(pktlist, &pkt); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void zero_stats(FIRSTPASS_STATS *section) { | 
|  | section->frame = 0.0; | 
|  | section->weight = 0.0; | 
|  | section->intra_error = 0.0; | 
|  | section->coded_error = 0.0; | 
|  | section->sr_coded_error = 0.0; | 
|  | section->frame_noise_energy = 0.0; | 
|  | section->pcnt_inter = 0.0; | 
|  | section->pcnt_motion = 0.0; | 
|  | section->pcnt_second_ref = 0.0; | 
|  | section->pcnt_neutral = 0.0; | 
|  | section->intra_skip_pct = 0.0; | 
|  | section->intra_smooth_pct = 0.0; | 
|  | section->pcnt_intra_low = 0.0; | 
|  | section->pcnt_intra_high = 0.0; | 
|  | section->inactive_zone_rows = 0.0; | 
|  | section->inactive_zone_cols = 0.0; | 
|  | section->MVr = 0.0; | 
|  | section->mvr_abs = 0.0; | 
|  | section->MVc = 0.0; | 
|  | section->mvc_abs = 0.0; | 
|  | section->MVrv = 0.0; | 
|  | section->MVcv = 0.0; | 
|  | section->mv_in_out_count = 0.0; | 
|  | section->count = 0.0; | 
|  | section->duration = 1.0; | 
|  | section->spatial_layer_id = 0; | 
|  | } | 
|  |  | 
|  | static void accumulate_stats(FIRSTPASS_STATS *section, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | section->frame += frame->frame; | 
|  | section->weight += frame->weight; | 
|  | section->spatial_layer_id = frame->spatial_layer_id; | 
|  | section->intra_error += frame->intra_error; | 
|  | section->coded_error += frame->coded_error; | 
|  | section->sr_coded_error += frame->sr_coded_error; | 
|  | section->frame_noise_energy += frame->frame_noise_energy; | 
|  | section->pcnt_inter += frame->pcnt_inter; | 
|  | section->pcnt_motion += frame->pcnt_motion; | 
|  | section->pcnt_second_ref += frame->pcnt_second_ref; | 
|  | section->pcnt_neutral += frame->pcnt_neutral; | 
|  | section->intra_skip_pct += frame->intra_skip_pct; | 
|  | section->intra_smooth_pct += frame->intra_smooth_pct; | 
|  | section->pcnt_intra_low += frame->pcnt_intra_low; | 
|  | section->pcnt_intra_high += frame->pcnt_intra_high; | 
|  | section->inactive_zone_rows += frame->inactive_zone_rows; | 
|  | section->inactive_zone_cols += frame->inactive_zone_cols; | 
|  | section->MVr += frame->MVr; | 
|  | section->mvr_abs += frame->mvr_abs; | 
|  | section->MVc += frame->MVc; | 
|  | section->mvc_abs += frame->mvc_abs; | 
|  | section->MVrv += frame->MVrv; | 
|  | section->MVcv += frame->MVcv; | 
|  | section->mv_in_out_count += frame->mv_in_out_count; | 
|  | section->count += frame->count; | 
|  | section->duration += frame->duration; | 
|  | } | 
|  |  | 
|  | static void subtract_stats(FIRSTPASS_STATS *section, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | section->frame -= frame->frame; | 
|  | section->weight -= frame->weight; | 
|  | section->intra_error -= frame->intra_error; | 
|  | section->coded_error -= frame->coded_error; | 
|  | section->sr_coded_error -= frame->sr_coded_error; | 
|  | section->frame_noise_energy -= frame->frame_noise_energy; | 
|  | section->pcnt_inter -= frame->pcnt_inter; | 
|  | section->pcnt_motion -= frame->pcnt_motion; | 
|  | section->pcnt_second_ref -= frame->pcnt_second_ref; | 
|  | section->pcnt_neutral -= frame->pcnt_neutral; | 
|  | section->intra_skip_pct -= frame->intra_skip_pct; | 
|  | section->intra_smooth_pct -= frame->intra_smooth_pct; | 
|  | section->pcnt_intra_low -= frame->pcnt_intra_low; | 
|  | section->pcnt_intra_high -= frame->pcnt_intra_high; | 
|  | section->inactive_zone_rows -= frame->inactive_zone_rows; | 
|  | section->inactive_zone_cols -= frame->inactive_zone_cols; | 
|  | section->MVr -= frame->MVr; | 
|  | section->mvr_abs -= frame->mvr_abs; | 
|  | section->MVc -= frame->MVc; | 
|  | section->mvc_abs -= frame->mvc_abs; | 
|  | section->MVrv -= frame->MVrv; | 
|  | section->MVcv -= frame->MVcv; | 
|  | section->mv_in_out_count -= frame->mv_in_out_count; | 
|  | section->count -= frame->count; | 
|  | section->duration -= frame->duration; | 
|  | } | 
|  |  | 
|  | // Calculate an active area of the image that discounts formatting | 
|  | // bars and partially discounts other 0 energy areas. | 
|  | #define MIN_ACTIVE_AREA 0.5 | 
|  | #define MAX_ACTIVE_AREA 1.0 | 
|  | static double calculate_active_area(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame) { | 
|  | double active_pct; | 
|  |  | 
|  | active_pct = | 
|  | 1.0 - | 
|  | ((this_frame->intra_skip_pct / 2) + | 
|  | ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows)); | 
|  | return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); | 
|  | } | 
|  |  | 
|  | // Get the average weighted error for the clip (or corpus) | 
|  | static double get_distribution_av_err(VP9_COMP *cpi, TWO_PASS *const twopass) { | 
|  | const double av_weight = | 
|  | twopass->total_stats.weight / twopass->total_stats.count; | 
|  |  | 
|  | if (cpi->oxcf.vbr_corpus_complexity) | 
|  | return av_weight * twopass->mean_mod_score; | 
|  | else | 
|  | return (twopass->total_stats.coded_error * av_weight) / | 
|  | twopass->total_stats.count; | 
|  | } | 
|  |  | 
|  | #define ACT_AREA_CORRECTION 0.5 | 
|  | // Calculate a modified Error used in distributing bits between easier and | 
|  | // harder frames. | 
|  | static double calculate_mod_frame_score(const VP9_COMP *cpi, | 
|  | const VP9EncoderConfig *oxcf, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | const double av_err) { | 
|  | double modified_score = | 
|  | av_err * pow(this_frame->coded_error * this_frame->weight / | 
|  | DOUBLE_DIVIDE_CHECK(av_err), | 
|  | oxcf->two_pass_vbrbias / 100.0); | 
|  |  | 
|  | // Correction for active area. Frames with a reduced active area | 
|  | // (eg due to formatting bars) have a higher error per mb for the | 
|  | // remaining active MBs. The correction here assumes that coding | 
|  | // 0.5N blocks of complexity 2X is a little easier than coding N | 
|  | // blocks of complexity X. | 
|  | modified_score *= pow(calculate_active_area(&cpi->frame_info, this_frame), | 
|  | ACT_AREA_CORRECTION); | 
|  |  | 
|  | return modified_score; | 
|  | } | 
|  |  | 
|  | static double calc_norm_frame_score(const VP9EncoderConfig *oxcf, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | double mean_mod_score, double av_err) { | 
|  | double modified_score = | 
|  | av_err * pow(this_frame->coded_error * this_frame->weight / | 
|  | DOUBLE_DIVIDE_CHECK(av_err), | 
|  | oxcf->two_pass_vbrbias / 100.0); | 
|  |  | 
|  | const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0; | 
|  | const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0; | 
|  |  | 
|  | // Correction for active area. Frames with a reduced active area | 
|  | // (eg due to formatting bars) have a higher error per mb for the | 
|  | // remaining active MBs. The correction here assumes that coding | 
|  | // 0.5N blocks of complexity 2X is a little easier than coding N | 
|  | // blocks of complexity X. | 
|  | modified_score *= | 
|  | pow(calculate_active_area(frame_info, this_frame), ACT_AREA_CORRECTION); | 
|  |  | 
|  | // Normalize to a midpoint score. | 
|  | modified_score /= DOUBLE_DIVIDE_CHECK(mean_mod_score); | 
|  | return fclamp(modified_score, min_score, max_score); | 
|  | } | 
|  |  | 
|  | static double calculate_norm_frame_score(const VP9_COMP *cpi, | 
|  | const TWO_PASS *twopass, | 
|  | const VP9EncoderConfig *oxcf, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | const double av_err) { | 
|  | return calc_norm_frame_score(oxcf, &cpi->frame_info, this_frame, | 
|  | twopass->mean_mod_score, av_err); | 
|  | } | 
|  |  | 
|  | // This function returns the maximum target rate per frame. | 
|  | static int frame_max_bits(const RATE_CONTROL *rc, | 
|  | const VP9EncoderConfig *oxcf) { | 
|  | int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * | 
|  | (int64_t)oxcf->two_pass_vbrmax_section) / | 
|  | 100; | 
|  | if (max_bits < 0) | 
|  | max_bits = 0; | 
|  | else if (max_bits > rc->max_frame_bandwidth) | 
|  | max_bits = rc->max_frame_bandwidth; | 
|  |  | 
|  | return (int)max_bits; | 
|  | } | 
|  |  | 
|  | void vp9_init_first_pass(VP9_COMP *cpi) { | 
|  | zero_stats(&cpi->twopass.total_stats); | 
|  | } | 
|  |  | 
|  | void vp9_end_first_pass(VP9_COMP *cpi) { | 
|  | output_stats(&cpi->twopass.total_stats); | 
|  | cpi->twopass.first_pass_done = 1; | 
|  | vpx_free(cpi->twopass.fp_mb_float_stats); | 
|  | cpi->twopass.fp_mb_float_stats = NULL; | 
|  | } | 
|  |  | 
|  | static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return vpx_mse8x8; | 
|  | case BLOCK_16X8: return vpx_mse16x8; | 
|  | case BLOCK_8X16: return vpx_mse8x16; | 
|  | default: return vpx_mse16x16; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int get_prediction_error(BLOCK_SIZE bsize, | 
|  | const struct buf_2d *src, | 
|  | const struct buf_2d *ref) { | 
|  | unsigned int sse; | 
|  | const vpx_variance_fn_t fn = get_block_variance_fn(bsize); | 
|  | fn(src->buf, src->stride, ref->buf, ref->stride, &sse); | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, | 
|  | int bd) { | 
|  | switch (bd) { | 
|  | default: | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return vpx_highbd_8_mse8x8; | 
|  | case BLOCK_16X8: return vpx_highbd_8_mse16x8; | 
|  | case BLOCK_8X16: return vpx_highbd_8_mse8x16; | 
|  | default: return vpx_highbd_8_mse16x16; | 
|  | } | 
|  | break; | 
|  | case 10: | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return vpx_highbd_10_mse8x8; | 
|  | case BLOCK_16X8: return vpx_highbd_10_mse16x8; | 
|  | case BLOCK_8X16: return vpx_highbd_10_mse8x16; | 
|  | default: return vpx_highbd_10_mse16x16; | 
|  | } | 
|  | break; | 
|  | case 12: | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return vpx_highbd_12_mse8x8; | 
|  | case BLOCK_16X8: return vpx_highbd_12_mse16x8; | 
|  | case BLOCK_8X16: return vpx_highbd_12_mse8x16; | 
|  | default: return vpx_highbd_12_mse16x16; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, | 
|  | const struct buf_2d *src, | 
|  | const struct buf_2d *ref, | 
|  | int bd) { | 
|  | unsigned int sse; | 
|  | const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); | 
|  | fn(src->buf, src->stride, ref->buf, ref->stride, &sse); | 
|  | return sse; | 
|  | } | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  |  | 
|  | // Refine the motion search range according to the frame dimension | 
|  | // for first pass test. | 
|  | static int get_search_range(const VP9_COMP *cpi) { | 
|  | int sr = 0; | 
|  | const int dim = VPXMIN(cpi->initial_width, cpi->initial_height); | 
|  |  | 
|  | while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; | 
|  | return sr; | 
|  | } | 
|  |  | 
|  | // Reduce limits to keep the motion search within MV_MAX of ref_mv. Not doing | 
|  | // this can be problematic for big videos (8K) and may cause assert failure | 
|  | // (or memory violation) in mv_cost. Limits are only modified if they would | 
|  | // be non-empty. Returns 1 if limits are non-empty. | 
|  | static int intersect_limits_with_mv_max(MvLimits *mv_limits, const MV *ref_mv) { | 
|  | const int row_min = | 
|  | VPXMAX(mv_limits->row_min, (ref_mv->row + 7 - MV_MAX) >> 3); | 
|  | const int row_max = | 
|  | VPXMIN(mv_limits->row_max, (ref_mv->row - 1 + MV_MAX) >> 3); | 
|  | const int col_min = | 
|  | VPXMAX(mv_limits->col_min, (ref_mv->col + 7 - MV_MAX) >> 3); | 
|  | const int col_max = | 
|  | VPXMIN(mv_limits->col_max, (ref_mv->col - 1 + MV_MAX) >> 3); | 
|  | if (row_min > row_max || col_min > col_max) { | 
|  | return 0; | 
|  | } | 
|  | mv_limits->row_min = row_min; | 
|  | mv_limits->row_max = row_max; | 
|  | mv_limits->col_min = col_min; | 
|  | mv_limits->col_max = col_max; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, | 
|  | const MV *ref_mv, MV *best_mv, | 
|  | int *best_motion_err) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MV tmp_mv = { 0, 0 }; | 
|  | MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; | 
|  | int num00, tmp_err, n; | 
|  | const BLOCK_SIZE bsize = xd->mi[0]->sb_type; | 
|  | vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; | 
|  | const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; | 
|  |  | 
|  | int step_param = 3; | 
|  | int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; | 
|  | const int sr = get_search_range(cpi); | 
|  | const MvLimits tmp_mv_limits = x->mv_limits; | 
|  | step_param += sr; | 
|  | further_steps -= sr; | 
|  |  | 
|  | if (!intersect_limits_with_mv_max(&x->mv_limits, ref_mv)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Override the default variance function to use MSE. | 
|  | v_fn_ptr.vf = get_block_variance_fn(bsize); | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); | 
|  | } | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  |  | 
|  | // Center the initial step/diamond search on best mv. | 
|  | tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, | 
|  | step_param, x->sadperbit16, &num00, | 
|  | &v_fn_ptr, ref_mv); | 
|  | if (tmp_err < INT_MAX) | 
|  | tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); | 
|  | if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; | 
|  |  | 
|  | if (tmp_err < *best_motion_err) { | 
|  | *best_motion_err = tmp_err; | 
|  | *best_mv = tmp_mv; | 
|  | } | 
|  |  | 
|  | // Carry out further step/diamond searches as necessary. | 
|  | n = num00; | 
|  | num00 = 0; | 
|  |  | 
|  | while (n < further_steps) { | 
|  | ++n; | 
|  |  | 
|  | if (num00) { | 
|  | --num00; | 
|  | } else { | 
|  | tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, | 
|  | step_param + n, x->sadperbit16, &num00, | 
|  | &v_fn_ptr, ref_mv); | 
|  | if (tmp_err < INT_MAX) | 
|  | tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); | 
|  | if (tmp_err < INT_MAX - new_mv_mode_penalty) | 
|  | tmp_err += new_mv_mode_penalty; | 
|  |  | 
|  | if (tmp_err < *best_motion_err) { | 
|  | *best_motion_err = tmp_err; | 
|  | *best_mv = tmp_mv; | 
|  | } | 
|  | } | 
|  | } | 
|  | x->mv_limits = tmp_mv_limits; | 
|  | } | 
|  |  | 
|  | static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) { | 
|  | if (2 * mb_col + 1 < cm->mi_cols) { | 
|  | return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8; | 
|  | } else { | 
|  | return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int find_fp_qindex(vpx_bit_depth_t bit_depth) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < QINDEX_RANGE; ++i) | 
|  | if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; | 
|  |  | 
|  | if (i == QINDEX_RANGE) i--; | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void set_first_pass_params(VP9_COMP *cpi) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | if (!cpi->refresh_alt_ref_frame && | 
|  | (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { | 
|  | cm->frame_type = KEY_FRAME; | 
|  | } else { | 
|  | cm->frame_type = INTER_FRAME; | 
|  | } | 
|  | // Do not use periodic key frames. | 
|  | cpi->rc.frames_to_key = INT_MAX; | 
|  | } | 
|  |  | 
|  | // Scale an sse threshold to account for 8/10/12 bit. | 
|  | static int scale_sse_threshold(VP9_COMMON *cm, int thresh) { | 
|  | int ret_val = thresh; | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (cm->use_highbitdepth) { | 
|  | switch (cm->bit_depth) { | 
|  | case VPX_BITS_8: ret_val = thresh; break; | 
|  | case VPX_BITS_10: ret_val = thresh << 4; break; | 
|  | default: | 
|  | assert(cm->bit_depth == VPX_BITS_12); | 
|  | ret_val = thresh << 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)cm; | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | // This threshold is used to track blocks where to all intents and purposes | 
|  | // the intra prediction error 0. Though the metric we test against | 
|  | // is technically a sse we are mainly interested in blocks where all the pixels | 
|  | // in the 8 bit domain have an error of <= 1 (where error = sse) so a | 
|  | // linear scaling for 10 and 12 bit gives similar results. | 
|  | #define UL_INTRA_THRESH 50 | 
|  | static int get_ul_intra_threshold(VP9_COMMON *cm) { | 
|  | int ret_val = UL_INTRA_THRESH; | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (cm->use_highbitdepth) { | 
|  | switch (cm->bit_depth) { | 
|  | case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break; | 
|  | case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break; | 
|  | default: | 
|  | assert(cm->bit_depth == VPX_BITS_12); | 
|  | ret_val = UL_INTRA_THRESH << 4; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)cm; | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | #define SMOOTH_INTRA_THRESH 4000 | 
|  | static int get_smooth_intra_threshold(VP9_COMMON *cm) { | 
|  | int ret_val = SMOOTH_INTRA_THRESH; | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (cm->use_highbitdepth) { | 
|  | switch (cm->bit_depth) { | 
|  | case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break; | 
|  | case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break; | 
|  | default: | 
|  | assert(cm->bit_depth == VPX_BITS_12); | 
|  | ret_val = SMOOTH_INTRA_THRESH << 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)cm; | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | #define FP_DN_THRESH 8 | 
|  | #define FP_MAX_DN_THRESH 24 | 
|  | #define KERNEL_SIZE 3 | 
|  |  | 
|  | // Baseline Kernal weights for first pass noise metric | 
|  | static uint8_t fp_dn_kernal_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4, | 
|  | 2, 1, 2, 1 }; | 
|  |  | 
|  | // Estimate noise at a single point based on the impace of a spatial kernal | 
|  | // on the point value | 
|  | static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) { | 
|  | int sum_weight = 0; | 
|  | int sum_val = 0; | 
|  | int i, j; | 
|  | int max_diff = 0; | 
|  | int diff; | 
|  | int dn_diff; | 
|  | uint8_t *tmp_ptr; | 
|  | uint8_t *kernal_ptr; | 
|  | uint8_t dn_val; | 
|  | uint8_t centre_val = *src_ptr; | 
|  |  | 
|  | kernal_ptr = fp_dn_kernal_3; | 
|  |  | 
|  | // Apply the kernal | 
|  | tmp_ptr = src_ptr - stride - 1; | 
|  | for (i = 0; i < KERNEL_SIZE; ++i) { | 
|  | for (j = 0; j < KERNEL_SIZE; ++j) { | 
|  | diff = abs((int)centre_val - (int)tmp_ptr[j]); | 
|  | max_diff = VPXMAX(max_diff, diff); | 
|  | if (diff <= FP_DN_THRESH) { | 
|  | sum_weight += *kernal_ptr; | 
|  | sum_val += (int)tmp_ptr[j] * (int)*kernal_ptr; | 
|  | } | 
|  | ++kernal_ptr; | 
|  | } | 
|  | tmp_ptr += stride; | 
|  | } | 
|  |  | 
|  | if (max_diff < FP_MAX_DN_THRESH) | 
|  | // Update the source value with the new filtered value | 
|  | dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; | 
|  | else | 
|  | dn_val = *src_ptr; | 
|  |  | 
|  | // return the noise energy as the square of the difference between the | 
|  | // denoised and raw value. | 
|  | dn_diff = (int)*src_ptr - (int)dn_val; | 
|  | return dn_diff * dn_diff; | 
|  | } | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) { | 
|  | int sum_weight = 0; | 
|  | int sum_val = 0; | 
|  | int i, j; | 
|  | int max_diff = 0; | 
|  | int diff; | 
|  | int dn_diff; | 
|  | uint8_t *tmp_ptr; | 
|  | uint16_t *tmp_ptr16; | 
|  | uint8_t *kernal_ptr; | 
|  | uint16_t dn_val; | 
|  | uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr); | 
|  |  | 
|  | kernal_ptr = fp_dn_kernal_3; | 
|  |  | 
|  | // Apply the kernal | 
|  | tmp_ptr = src_ptr - stride - 1; | 
|  | for (i = 0; i < KERNEL_SIZE; ++i) { | 
|  | tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr); | 
|  | for (j = 0; j < KERNEL_SIZE; ++j) { | 
|  | diff = abs((int)centre_val - (int)tmp_ptr16[j]); | 
|  | max_diff = VPXMAX(max_diff, diff); | 
|  | if (diff <= FP_DN_THRESH) { | 
|  | sum_weight += *kernal_ptr; | 
|  | sum_val += (int)tmp_ptr16[j] * (int)*kernal_ptr; | 
|  | } | 
|  | ++kernal_ptr; | 
|  | } | 
|  | tmp_ptr += stride; | 
|  | } | 
|  |  | 
|  | if (max_diff < FP_MAX_DN_THRESH) | 
|  | // Update the source value with the new filtered value | 
|  | dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; | 
|  | else | 
|  | dn_val = *CONVERT_TO_SHORTPTR(src_ptr); | 
|  |  | 
|  | // return the noise energy as the square of the difference between the | 
|  | // denoised and raw value. | 
|  | dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val; | 
|  | return dn_diff * dn_diff; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Estimate noise for a block. | 
|  | static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) { | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | #endif | 
|  | uint8_t *src_ptr = &x->plane[0].src.buf[0]; | 
|  | const int width = num_4x4_blocks_wide_lookup[bsize] * 4; | 
|  | const int height = num_4x4_blocks_high_lookup[bsize] * 4; | 
|  | int w, h; | 
|  | int stride = x->plane[0].src.stride; | 
|  | int block_noise = 0; | 
|  |  | 
|  | // Sampled points to reduce cost overhead. | 
|  | for (h = 0; h < height; h += 2) { | 
|  | for (w = 0; w < width; w += 2) { | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
|  | block_noise += fp_highbd_estimate_point_noise(src_ptr, stride); | 
|  | else | 
|  | block_noise += fp_estimate_point_noise(src_ptr, stride); | 
|  | #else | 
|  | block_noise += fp_estimate_point_noise(src_ptr, stride); | 
|  | #endif | 
|  | ++src_ptr; | 
|  | } | 
|  | src_ptr += (stride - width); | 
|  | } | 
|  | return block_noise << 2;  // Scale << 2 to account for sampling. | 
|  | } | 
|  |  | 
|  | // This function is called to test the functionality of row based | 
|  | // multi-threading in unit tests for bit-exactness | 
|  | static void accumulate_floating_point_stats(VP9_COMP *cpi, | 
|  | TileDataEnc *first_tile_col) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | int mb_row, mb_col; | 
|  | first_tile_col->fp_data.intra_factor = 0; | 
|  | first_tile_col->fp_data.brightness_factor = 0; | 
|  | first_tile_col->fp_data.neutral_count = 0; | 
|  | for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { | 
|  | for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { | 
|  | const int mb_index = mb_row * cm->mb_cols + mb_col; | 
|  | first_tile_col->fp_data.intra_factor += | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor; | 
|  | first_tile_col->fp_data.brightness_factor += | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor; | 
|  | first_tile_col->fp_data.neutral_count += | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps, | 
|  | FIRSTPASS_DATA *fp_acc_data) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | // The minimum error here insures some bit allocation to frames even | 
|  | // in static regions. The allocation per MB declines for larger formats | 
|  | // where the typical "real" energy per MB also falls. | 
|  | // Initial estimate here uses sqrt(mbs) to define the min_err, where the | 
|  | // number of mbs is proportional to the image area. | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | const double min_err = 200 * sqrt(num_mbs); | 
|  |  | 
|  | // Clamp the image start to rows/2. This number of rows is discarded top | 
|  | // and bottom as dead data so rows / 2 means the frame is blank. | 
|  | if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) || | 
|  | (fp_acc_data->image_data_start_row == INVALID_ROW)) { | 
|  | fp_acc_data->image_data_start_row = cm->mb_rows / 2; | 
|  | } | 
|  | // Exclude any image dead zone | 
|  | if (fp_acc_data->image_data_start_row > 0) { | 
|  | fp_acc_data->intra_skip_count = | 
|  | VPXMAX(0, fp_acc_data->intra_skip_count - | 
|  | (fp_acc_data->image_data_start_row * cm->mb_cols * 2)); | 
|  | } | 
|  |  | 
|  | fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs; | 
|  | fp_acc_data->brightness_factor = | 
|  | fp_acc_data->brightness_factor / (double)num_mbs; | 
|  | fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor; | 
|  |  | 
|  | fps->frame = cm->current_video_frame; | 
|  | fps->spatial_layer_id = cpi->svc.spatial_layer_id; | 
|  |  | 
|  | fps->coded_error = | 
|  | ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs; | 
|  | fps->sr_coded_error = | 
|  | ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs; | 
|  | fps->intra_error = | 
|  | ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs; | 
|  |  | 
|  | fps->frame_noise_energy = | 
|  | (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs; | 
|  | fps->count = 1.0; | 
|  | fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs; | 
|  | fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs; | 
|  | fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs; | 
|  | fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs; | 
|  | fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs; | 
|  | fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs; | 
|  | fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs; | 
|  | fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row); | 
|  | // Currently set to 0 as most issues relate to letter boxing. | 
|  | fps->inactive_zone_cols = (double)0; | 
|  |  | 
|  | if (fp_acc_data->mvcount > 0) { | 
|  | fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount; | 
|  | fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount; | 
|  | fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount; | 
|  | fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount; | 
|  | fps->MVrv = ((double)(fp_acc_data->sum_mvrs) - | 
|  | ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) / | 
|  | fp_acc_data->mvcount)) / | 
|  | fp_acc_data->mvcount; | 
|  | fps->MVcv = ((double)(fp_acc_data->sum_mvcs) - | 
|  | ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) / | 
|  | fp_acc_data->mvcount)) / | 
|  | fp_acc_data->mvcount; | 
|  | fps->mv_in_out_count = | 
|  | (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2); | 
|  | fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs; | 
|  | } else { | 
|  | fps->MVr = 0.0; | 
|  | fps->mvr_abs = 0.0; | 
|  | fps->MVc = 0.0; | 
|  | fps->mvc_abs = 0.0; | 
|  | fps->MVrv = 0.0; | 
|  | fps->MVcv = 0.0; | 
|  | fps->mv_in_out_count = 0.0; | 
|  | fps->pcnt_motion = 0.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile, | 
|  | FIRSTPASS_DATA *fp_acc_data) { | 
|  | this_tile->fp_data.intra_factor += fp_acc_data->intra_factor; | 
|  | this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor; | 
|  | this_tile->fp_data.coded_error += fp_acc_data->coded_error; | 
|  | this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error; | 
|  | this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy; | 
|  | this_tile->fp_data.intra_error += fp_acc_data->intra_error; | 
|  | this_tile->fp_data.intercount += fp_acc_data->intercount; | 
|  | this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count; | 
|  | this_tile->fp_data.neutral_count += fp_acc_data->neutral_count; | 
|  | this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low; | 
|  | this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high; | 
|  | this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count; | 
|  | this_tile->fp_data.mvcount += fp_acc_data->mvcount; | 
|  | this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr; | 
|  | this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs; | 
|  | this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc; | 
|  | this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs; | 
|  | this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs; | 
|  | this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs; | 
|  | this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors; | 
|  | this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count; | 
|  | this_tile->fp_data.image_data_start_row = | 
|  | VPXMIN(this_tile->fp_data.image_data_start_row, | 
|  | fp_acc_data->image_data_start_row) == INVALID_ROW | 
|  | ? VPXMAX(this_tile->fp_data.image_data_start_row, | 
|  | fp_acc_data->image_data_start_row) | 
|  | : VPXMIN(this_tile->fp_data.image_data_start_row, | 
|  | fp_acc_data->image_data_start_row); | 
|  | } | 
|  |  | 
|  | #if CONFIG_RATE_CTRL | 
|  | static void store_fp_motion_vector(VP9_COMP *cpi, const MV *mv, | 
|  | const int mb_row, const int mb_col, | 
|  | const int is_second_mv) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | const int mb_index = mb_row * cm->mb_cols + mb_col; | 
|  | MOTION_VECTOR_INFO *this_motion_vector_info = | 
|  | &cpi->fp_motion_vector_info[mb_index]; | 
|  | if (!is_second_mv) { | 
|  | this_motion_vector_info->ref_frame[0] = LAST_FRAME; | 
|  | this_motion_vector_info->mv[0].as_mv.row = mv->row; | 
|  | this_motion_vector_info->mv[0].as_mv.col = mv->col; | 
|  | return; | 
|  | } | 
|  | this_motion_vector_info->ref_frame[1] = GOLDEN_FRAME; | 
|  | this_motion_vector_info->mv[1].as_mv.row = mv->row; | 
|  | this_motion_vector_info->mv[1].as_mv.col = mv->col; | 
|  | } | 
|  | #endif  // CONFIG_RATE_CTRL | 
|  |  | 
|  | #define NZ_MOTION_PENALTY 128 | 
|  | #define INTRA_MODE_PENALTY 1024 | 
|  | void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td, | 
|  | FIRSTPASS_DATA *fp_acc_data, | 
|  | TileDataEnc *tile_data, MV *best_ref_mv, | 
|  | int mb_row) { | 
|  | int mb_col; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TileInfo tile = tile_data->tile_info; | 
|  | const int mb_col_start = ROUND_POWER_OF_TWO(tile.mi_col_start, 1); | 
|  | const int mb_col_end = ROUND_POWER_OF_TWO(tile.mi_col_end, 1); | 
|  | struct macroblock_plane *const p = x->plane; | 
|  | struct macroblockd_plane *const pd = xd->plane; | 
|  | const PICK_MODE_CONTEXT *ctx = &td->pc_root->none; | 
|  | int i, c; | 
|  | int num_mb_cols = get_num_cols(tile_data->tile_info, 1); | 
|  |  | 
|  | int recon_yoffset, recon_uvoffset; | 
|  | const int intrapenalty = INTRA_MODE_PENALTY; | 
|  | const MV zero_mv = { 0, 0 }; | 
|  | int recon_y_stride, recon_uv_stride, uv_mb_height; | 
|  |  | 
|  | YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); | 
|  | YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); | 
|  | YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); | 
|  | const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; | 
|  |  | 
|  | MODE_INFO mi_above, mi_left; | 
|  |  | 
|  | double mb_intra_factor; | 
|  | double mb_brightness_factor; | 
|  | double mb_neutral_count; | 
|  | int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH); | 
|  |  | 
|  | // First pass code requires valid last and new frame buffers. | 
|  | assert(new_yv12 != NULL); | 
|  | assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) + mb_col_start; | 
|  | xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + mb_col_start; | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; ++i) { | 
|  | p[i].coeff = ctx->coeff_pbuf[i][1]; | 
|  | p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; | 
|  | pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; | 
|  | p[i].eobs = ctx->eobs_pbuf[i][1]; | 
|  | } | 
|  |  | 
|  | recon_y_stride = new_yv12->y_stride; | 
|  | recon_uv_stride = new_yv12->uv_stride; | 
|  | uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); | 
|  |  | 
|  | // Reset above block coeffs. | 
|  | recon_yoffset = (mb_row * recon_y_stride * 16) + mb_col_start * 16; | 
|  | recon_uvoffset = | 
|  | (mb_row * recon_uv_stride * uv_mb_height) + mb_col_start * uv_mb_height; | 
|  |  | 
|  | // Set up limit values for motion vectors to prevent them extending | 
|  | // outside the UMV borders. | 
|  | x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); | 
|  | x->mv_limits.row_max = | 
|  | ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; | 
|  |  | 
|  | for (mb_col = mb_col_start, c = 0; mb_col < mb_col_end; ++mb_col, c++) { | 
|  | int this_error; | 
|  | int this_intra_error; | 
|  | const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); | 
|  | const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); | 
|  | double log_intra; | 
|  | int level_sample; | 
|  | const int mb_index = mb_row * cm->mb_cols + mb_col; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | const int mb_index = mb_row * cm->mb_cols + mb_col; | 
|  | #endif | 
|  |  | 
|  | (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c); | 
|  |  | 
|  | // Adjust to the next column of MBs. | 
|  | x->plane[0].src.buf = cpi->Source->y_buffer + | 
|  | mb_row * 16 * x->plane[0].src.stride + mb_col * 16; | 
|  | x->plane[1].src.buf = cpi->Source->u_buffer + | 
|  | mb_row * uv_mb_height * x->plane[1].src.stride + | 
|  | mb_col * uv_mb_height; | 
|  | x->plane[2].src.buf = cpi->Source->v_buffer + | 
|  | mb_row * uv_mb_height * x->plane[1].src.stride + | 
|  | mb_col * uv_mb_height; | 
|  |  | 
|  | vpx_clear_system_state(); | 
|  |  | 
|  | xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; | 
|  | xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; | 
|  | xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; | 
|  | xd->mi[0]->sb_type = bsize; | 
|  | xd->mi[0]->ref_frame[0] = INTRA_FRAME; | 
|  | set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize], | 
|  | mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, | 
|  | cm->mi_cols); | 
|  | // Are edges available for intra prediction? | 
|  | // Since the firstpass does not populate the mi_grid_visible, | 
|  | // above_mi/left_mi must be overwritten with a nonzero value when edges | 
|  | // are available.  Required by vp9_predict_intra_block(). | 
|  | xd->above_mi = (mb_row != 0) ? &mi_above : NULL; | 
|  | xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL; | 
|  |  | 
|  | // Do intra 16x16 prediction. | 
|  | x->skip_encode = 0; | 
|  | x->fp_src_pred = 0; | 
|  | // Do intra prediction based on source pixels for tile boundaries | 
|  | if (mb_col == mb_col_start && mb_col != 0) { | 
|  | xd->left_mi = &mi_left; | 
|  | x->fp_src_pred = 1; | 
|  | } | 
|  | xd->mi[0]->mode = DC_PRED; | 
|  | xd->mi[0]->tx_size = | 
|  | use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; | 
|  | // Fix - zero the 16x16 block first. This ensures correct this_error for | 
|  | // block sizes smaller than 16x16. | 
|  | vp9_zero_array(x->plane[0].src_diff, 256); | 
|  | vp9_encode_intra_block_plane(x, bsize, 0, 0); | 
|  | this_error = vpx_get_mb_ss(x->plane[0].src_diff); | 
|  | this_intra_error = this_error; | 
|  |  | 
|  | // Keep a record of blocks that have very low intra error residual | 
|  | // (i.e. are in effect completely flat and untextured in the intra | 
|  | // domain). In natural videos this is uncommon, but it is much more | 
|  | // common in animations, graphics and screen content, so may be used | 
|  | // as a signal to detect these types of content. | 
|  | if (this_error < get_ul_intra_threshold(cm)) { | 
|  | ++(fp_acc_data->intra_skip_count); | 
|  | } else if ((mb_col > 0) && | 
|  | (fp_acc_data->image_data_start_row == INVALID_ROW)) { | 
|  | fp_acc_data->image_data_start_row = mb_row; | 
|  | } | 
|  |  | 
|  | // Blocks that are mainly smooth in the intra domain. | 
|  | // Some special accounting for CQ but also these are better for testing | 
|  | // noise levels. | 
|  | if (this_error < get_smooth_intra_threshold(cm)) { | 
|  | ++(fp_acc_data->intra_smooth_count); | 
|  | } | 
|  |  | 
|  | // Special case noise measurement for first frame. | 
|  | if (cm->current_video_frame == 0) { | 
|  | if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) { | 
|  | fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); | 
|  | } else { | 
|  | fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (cm->use_highbitdepth) { | 
|  | switch (cm->bit_depth) { | 
|  | case VPX_BITS_8: break; | 
|  | case VPX_BITS_10: this_error >>= 4; break; | 
|  | default: | 
|  | assert(cm->bit_depth == VPX_BITS_12); | 
|  | this_error >>= 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  |  | 
|  | vpx_clear_system_state(); | 
|  | log_intra = log(this_error + 1.0); | 
|  | if (log_intra < 10.0) { | 
|  | mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05); | 
|  | fp_acc_data->intra_factor += mb_intra_factor; | 
|  | if (cpi->row_mt_bit_exact) | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = | 
|  | mb_intra_factor; | 
|  | } else { | 
|  | fp_acc_data->intra_factor += 1.0; | 
|  | if (cpi->row_mt_bit_exact) | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0; | 
|  | } | 
|  |  | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (cm->use_highbitdepth) | 
|  | level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; | 
|  | else | 
|  | level_sample = x->plane[0].src.buf[0]; | 
|  | #else | 
|  | level_sample = x->plane[0].src.buf[0]; | 
|  | #endif | 
|  | if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) { | 
|  | mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample)); | 
|  | fp_acc_data->brightness_factor += mb_brightness_factor; | 
|  | if (cpi->row_mt_bit_exact) | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = | 
|  | mb_brightness_factor; | 
|  | } else { | 
|  | fp_acc_data->brightness_factor += 1.0; | 
|  | if (cpi->row_mt_bit_exact) | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = | 
|  | 1.0; | 
|  | } | 
|  |  | 
|  | // Intrapenalty below deals with situations where the intra and inter | 
|  | // error scores are very low (e.g. a plain black frame). | 
|  | // We do not have special cases in first pass for 0,0 and nearest etc so | 
|  | // all inter modes carry an overhead cost estimate for the mv. | 
|  | // When the error score is very low this causes us to pick all or lots of | 
|  | // INTRA modes and throw lots of key frames. | 
|  | // This penalty adds a cost matching that of a 0,0 mv to the intra case. | 
|  | this_error += intrapenalty; | 
|  |  | 
|  | // Accumulate the intra error. | 
|  | fp_acc_data->intra_error += (int64_t)this_error; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | // initialization | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Set up limit values for motion vectors to prevent them extending | 
|  | // outside the UMV borders. | 
|  | x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); | 
|  | x->mv_limits.col_max = | 
|  | ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; | 
|  |  | 
|  | // Other than for the first frame do a motion search. | 
|  | if (cm->current_video_frame > 0) { | 
|  | int tmp_err, motion_error, this_motion_error, raw_motion_error; | 
|  | // Assume 0,0 motion with no mv overhead. | 
|  | MV mv = { 0, 0 }, tmp_mv = { 0, 0 }; | 
|  | struct buf_2d unscaled_last_source_buf_2d; | 
|  | vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; | 
|  |  | 
|  | xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | motion_error = highbd_get_prediction_error( | 
|  | bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); | 
|  | this_motion_error = highbd_get_prediction_error( | 
|  | bsize, &x->plane[0].src, &xd->plane[0].pre[0], 8); | 
|  | } else { | 
|  | motion_error = | 
|  | get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); | 
|  | this_motion_error = motion_error; | 
|  | } | 
|  | #else | 
|  | motion_error = | 
|  | get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); | 
|  | this_motion_error = motion_error; | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  |  | 
|  | // Compute the motion error of the 0,0 motion using the last source | 
|  | // frame as the reference. Skip the further motion search on | 
|  | // reconstructed frame if this error is very small. | 
|  | unscaled_last_source_buf_2d.buf = | 
|  | cpi->unscaled_last_source->y_buffer + recon_yoffset; | 
|  | unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride; | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | raw_motion_error = highbd_get_prediction_error( | 
|  | bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); | 
|  | } else { | 
|  | raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
|  | &unscaled_last_source_buf_2d); | 
|  | } | 
|  | #else | 
|  | raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
|  | &unscaled_last_source_buf_2d); | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  |  | 
|  | if (raw_motion_error > NZ_MOTION_PENALTY) { | 
|  | // Test last reference frame using the previous best mv as the | 
|  | // starting point (best reference) for the search. | 
|  | first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error); | 
|  |  | 
|  | v_fn_ptr.vf = get_block_variance_fn(bsize); | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, 8); | 
|  | } | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  | this_motion_error = | 
|  | vp9_get_mvpred_var(x, &mv, best_ref_mv, &v_fn_ptr, 0); | 
|  |  | 
|  | // If the current best reference mv is not centered on 0,0 then do a | 
|  | // 0,0 based search as well. | 
|  | if (!is_zero_mv(best_ref_mv)) { | 
|  | tmp_err = INT_MAX; | 
|  | first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err); | 
|  |  | 
|  | if (tmp_err < motion_error) { | 
|  | motion_error = tmp_err; | 
|  | mv = tmp_mv; | 
|  | this_motion_error = | 
|  | vp9_get_mvpred_var(x, &tmp_mv, &zero_mv, &v_fn_ptr, 0); | 
|  | } | 
|  | } | 
|  | #if CONFIG_RATE_CTRL | 
|  | store_fp_motion_vector(cpi, &mv, mb_row, mb_col, /*is_second_mv=*/0); | 
|  | #endif  // CONFIG_RAGE_CTRL | 
|  |  | 
|  | // Search in an older reference frame. | 
|  | if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { | 
|  | // Assume 0,0 motion with no mv overhead. | 
|  | int gf_motion_error; | 
|  |  | 
|  | xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; | 
|  | #if CONFIG_VP9_HIGHBITDEPTH | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | gf_motion_error = highbd_get_prediction_error( | 
|  | bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); | 
|  | } else { | 
|  | gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
|  | &xd->plane[0].pre[0]); | 
|  | } | 
|  | #else | 
|  | gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
|  | &xd->plane[0].pre[0]); | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  |  | 
|  | first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error); | 
|  | #if CONFIG_RATE_CTRL | 
|  | store_fp_motion_vector(cpi, &tmp_mv, mb_row, mb_col, | 
|  | /*is_second_mv=*/1); | 
|  | #endif  // CONFIG_RAGE_CTRL | 
|  |  | 
|  | if (gf_motion_error < motion_error && gf_motion_error < this_error) | 
|  | ++(fp_acc_data->second_ref_count); | 
|  |  | 
|  | // Reset to last frame as reference buffer. | 
|  | xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; | 
|  | xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; | 
|  | xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; | 
|  |  | 
|  | // In accumulating a score for the older reference frame take the | 
|  | // best of the motion predicted score and the intra coded error | 
|  | // (just as will be done for) accumulation of "coded_error" for | 
|  | // the last frame. | 
|  | if (gf_motion_error < this_error) | 
|  | fp_acc_data->sr_coded_error += gf_motion_error; | 
|  | else | 
|  | fp_acc_data->sr_coded_error += this_error; | 
|  | } else { | 
|  | fp_acc_data->sr_coded_error += motion_error; | 
|  | } | 
|  | } else { | 
|  | fp_acc_data->sr_coded_error += motion_error; | 
|  | } | 
|  |  | 
|  | // Start by assuming that intra mode is best. | 
|  | best_ref_mv->row = 0; | 
|  | best_ref_mv->col = 0; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | // intra prediction statistics | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; | 
|  | if (this_error > FPMB_ERROR_LARGE_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; | 
|  | } else if (this_error < FPMB_ERROR_SMALL_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (motion_error <= this_error) { | 
|  | vpx_clear_system_state(); | 
|  |  | 
|  | // Keep a count of cases where the inter and intra were very close | 
|  | // and very low. This helps with scene cut detection for example in | 
|  | // cropped clips with black bars at the sides or top and bottom. | 
|  | if (((this_error - intrapenalty) * 9 <= motion_error * 10) && | 
|  | (this_error < (2 * intrapenalty))) { | 
|  | fp_acc_data->neutral_count += 1.0; | 
|  | if (cpi->row_mt_bit_exact) | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = | 
|  | 1.0; | 
|  | // Also track cases where the intra is not much worse than the inter | 
|  | // and use this in limiting the GF/arf group length. | 
|  | } else if ((this_error > NCOUNT_INTRA_THRESH) && | 
|  | (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { | 
|  | mb_neutral_count = | 
|  | (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); | 
|  | fp_acc_data->neutral_count += mb_neutral_count; | 
|  | if (cpi->row_mt_bit_exact) | 
|  | cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = | 
|  | mb_neutral_count; | 
|  | } | 
|  |  | 
|  | mv.row *= 8; | 
|  | mv.col *= 8; | 
|  | this_error = motion_error; | 
|  | xd->mi[0]->mode = NEWMV; | 
|  | xd->mi[0]->mv[0].as_mv = mv; | 
|  | xd->mi[0]->tx_size = TX_4X4; | 
|  | xd->mi[0]->ref_frame[0] = LAST_FRAME; | 
|  | xd->mi[0]->ref_frame[1] = NONE; | 
|  | vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize); | 
|  | vp9_encode_sby_pass1(x, bsize); | 
|  | fp_acc_data->sum_mvr += mv.row; | 
|  | fp_acc_data->sum_mvr_abs += abs(mv.row); | 
|  | fp_acc_data->sum_mvc += mv.col; | 
|  | fp_acc_data->sum_mvc_abs += abs(mv.col); | 
|  | fp_acc_data->sum_mvrs += mv.row * mv.row; | 
|  | fp_acc_data->sum_mvcs += mv.col * mv.col; | 
|  | ++(fp_acc_data->intercount); | 
|  |  | 
|  | *best_ref_mv = mv; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | // inter prediction statistics | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; | 
|  | if (this_error > FPMB_ERROR_LARGE_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; | 
|  | } else if (this_error < FPMB_ERROR_SMALL_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!is_zero_mv(&mv)) { | 
|  | ++(fp_acc_data->mvcount); | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_MOTION_ZERO_MASK; | 
|  | // check estimated motion direction | 
|  | if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) { | 
|  | // right direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_MOTION_RIGHT_MASK; | 
|  | } else if (mv.as_mv.row < 0 && | 
|  | abs(mv.as_mv.row) >= abs(mv.as_mv.col)) { | 
|  | // up direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_UP_MASK; | 
|  | } else if (mv.as_mv.col < 0 && | 
|  | abs(mv.as_mv.col) >= abs(mv.as_mv.row)) { | 
|  | // left direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_MOTION_LEFT_MASK; | 
|  | } else { | 
|  | // down direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_MOTION_DOWN_MASK; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | // Does the row vector point inwards or outwards? | 
|  | if (mb_row < cm->mb_rows / 2) { | 
|  | if (mv.row > 0) | 
|  | --(fp_acc_data->sum_in_vectors); | 
|  | else if (mv.row < 0) | 
|  | ++(fp_acc_data->sum_in_vectors); | 
|  | } else if (mb_row > cm->mb_rows / 2) { | 
|  | if (mv.row > 0) | 
|  | ++(fp_acc_data->sum_in_vectors); | 
|  | else if (mv.row < 0) | 
|  | --(fp_acc_data->sum_in_vectors); | 
|  | } | 
|  |  | 
|  | // Does the col vector point inwards or outwards? | 
|  | if (mb_col < cm->mb_cols / 2) { | 
|  | if (mv.col > 0) | 
|  | --(fp_acc_data->sum_in_vectors); | 
|  | else if (mv.col < 0) | 
|  | ++(fp_acc_data->sum_in_vectors); | 
|  | } else if (mb_col > cm->mb_cols / 2) { | 
|  | if (mv.col > 0) | 
|  | ++(fp_acc_data->sum_in_vectors); | 
|  | else if (mv.col < 0) | 
|  | --(fp_acc_data->sum_in_vectors); | 
|  | } | 
|  | } | 
|  | if (this_intra_error < scaled_low_intra_thresh) { | 
|  | fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); | 
|  | } else { | 
|  | fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; | 
|  | } | 
|  | } else {  // Intra < inter error | 
|  | if (this_intra_error < scaled_low_intra_thresh) { | 
|  | fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); | 
|  | if (this_motion_error < scaled_low_intra_thresh) { | 
|  | fp_acc_data->intra_count_low += 1.0; | 
|  | } else { | 
|  | fp_acc_data->intra_count_high += 1.0; | 
|  | } | 
|  | } else { | 
|  | fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; | 
|  | fp_acc_data->intra_count_high += 1.0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | fp_acc_data->sr_coded_error += (int64_t)this_error; | 
|  | } | 
|  | fp_acc_data->coded_error += (int64_t)this_error; | 
|  |  | 
|  | recon_yoffset += 16; | 
|  | recon_uvoffset += uv_mb_height; | 
|  |  | 
|  | // Accumulate row level stats to the corresponding tile stats | 
|  | if (cpi->row_mt && mb_col == mb_col_end - 1) | 
|  | accumulate_fp_mb_row_stat(tile_data, fp_acc_data); | 
|  |  | 
|  | (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c, | 
|  | num_mb_cols); | 
|  | } | 
|  | vpx_clear_system_state(); | 
|  | } | 
|  |  | 
|  | static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | int mb_row; | 
|  | TileDataEnc tile_data; | 
|  | TileInfo *tile = &tile_data.tile_info; | 
|  | MV zero_mv = { 0, 0 }; | 
|  | MV best_ref_mv; | 
|  | // Tiling is ignored in the first pass. | 
|  | vp9_tile_init(tile, cm, 0, 0); | 
|  |  | 
|  | for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { | 
|  | best_ref_mv = zero_mv; | 
|  | vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data, | 
|  | &best_ref_mv, mb_row); | 
|  | } | 
|  | } | 
|  |  | 
|  | void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) { | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TWO_PASS *twopass = &cpi->twopass; | 
|  |  | 
|  | YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); | 
|  | YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); | 
|  | YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); | 
|  | const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; | 
|  |  | 
|  | BufferPool *const pool = cm->buffer_pool; | 
|  |  | 
|  | FIRSTPASS_DATA fp_temp_data; | 
|  | FIRSTPASS_DATA *fp_acc_data = &fp_temp_data; | 
|  |  | 
|  | vpx_clear_system_state(); | 
|  | vp9_zero(fp_temp_data); | 
|  | fp_acc_data->image_data_start_row = INVALID_ROW; | 
|  |  | 
|  | // First pass code requires valid last and new frame buffers. | 
|  | assert(new_yv12 != NULL); | 
|  | assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | set_first_pass_params(cpi); | 
|  | vp9_set_quantizer(cpi, find_fp_qindex(cm->bit_depth)); | 
|  |  | 
|  | vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); | 
|  |  | 
|  | vp9_setup_src_planes(x, cpi->Source, 0, 0); | 
|  | vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0); | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) { | 
|  | vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL); | 
|  | } | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible; | 
|  | xd->mi[0] = cm->mi; | 
|  |  | 
|  | vp9_frame_init_quantizer(cpi); | 
|  |  | 
|  | x->skip_recode = 0; | 
|  |  | 
|  | vp9_init_mv_probs(cm); | 
|  | vp9_initialize_rd_consts(cpi); | 
|  |  | 
|  | cm->log2_tile_rows = 0; | 
|  |  | 
|  | if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL) | 
|  | CHECK_MEM_ERROR( | 
|  | cm, cpi->twopass.fp_mb_float_stats, | 
|  | vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1)); | 
|  |  | 
|  | { | 
|  | FIRSTPASS_STATS fps; | 
|  | TileDataEnc *first_tile_col; | 
|  | if (!cpi->row_mt) { | 
|  | cm->log2_tile_cols = 0; | 
|  | cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy; | 
|  | cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy; | 
|  | first_pass_encode(cpi, fp_acc_data); | 
|  | first_pass_stat_calc(cpi, &fps, fp_acc_data); | 
|  | } else { | 
|  | cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read; | 
|  | cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write; | 
|  | if (cpi->row_mt_bit_exact) { | 
|  | cm->log2_tile_cols = 0; | 
|  | vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs); | 
|  | } | 
|  | vp9_encode_fp_row_mt(cpi); | 
|  | first_tile_col = &cpi->tile_data[0]; | 
|  | if (cpi->row_mt_bit_exact) | 
|  | accumulate_floating_point_stats(cpi, first_tile_col); | 
|  | first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data)); | 
|  | } | 
|  |  | 
|  | // Dont allow a value of 0 for duration. | 
|  | // (Section duration is also defaulted to minimum of 1.0). | 
|  | fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start)); | 
|  |  | 
|  | // Don't want to do output stats with a stack variable! | 
|  | twopass->this_frame_stats = fps; | 
|  | output_stats(&twopass->this_frame_stats); | 
|  | accumulate_stats(&twopass->total_stats, &fps); | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Copy the previous Last Frame back into gf and and arf buffers if | 
|  | // the prediction is good enough... but also don't allow it to lag too far. | 
|  | if ((twopass->sr_update_lag > 3) || | 
|  | ((cm->current_video_frame > 0) && | 
|  | (twopass->this_frame_stats.pcnt_inter > 0.20) && | 
|  | ((twopass->this_frame_stats.intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { | 
|  | if (gld_yv12 != NULL) { | 
|  | ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
|  | cm->ref_frame_map[cpi->lst_fb_idx]); | 
|  | } | 
|  | twopass->sr_update_lag = 1; | 
|  | } else { | 
|  | ++twopass->sr_update_lag; | 
|  | } | 
|  |  | 
|  | vpx_extend_frame_borders(new_yv12); | 
|  |  | 
|  | // The frame we just compressed now becomes the last frame. | 
|  | ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], | 
|  | cm->new_fb_idx); | 
|  |  | 
|  | // Special case for the first frame. Copy into the GF buffer as a second | 
|  | // reference. | 
|  | if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) { | 
|  | ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
|  | cm->ref_frame_map[cpi->lst_fb_idx]); | 
|  | } | 
|  |  | 
|  | // Use this to see what the first pass reconstruction looks like. | 
|  | if (0) { | 
|  | char filename[512]; | 
|  | FILE *recon_file; | 
|  | snprintf(filename, sizeof(filename), "enc%04d.yuv", | 
|  | (int)cm->current_video_frame); | 
|  |  | 
|  | if (cm->current_video_frame == 0) | 
|  | recon_file = fopen(filename, "wb"); | 
|  | else | 
|  | recon_file = fopen(filename, "ab"); | 
|  |  | 
|  | (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); | 
|  | fclose(recon_file); | 
|  | } | 
|  |  | 
|  | // In the first pass, every frame is considered as a show frame. | 
|  | update_frame_indexes(cm, /*show_frame=*/1); | 
|  | if (cpi->use_svc) vp9_inc_frame_in_layer(cpi); | 
|  | } | 
|  |  | 
|  | static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { 0.65, 0.70, 0.75, | 
|  | 0.85, 0.90, 0.90, | 
|  | 0.90, 1.00, 1.25 }; | 
|  |  | 
|  | static double calc_correction_factor(double err_per_mb, double err_divisor, | 
|  | int q) { | 
|  | const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor); | 
|  | const int index = q >> 5; | 
|  | double power_term; | 
|  |  | 
|  | assert((index >= 0) && (index < (QINDEX_RANGE >> 5))); | 
|  |  | 
|  | // Adjustment based on quantizer to the power term. | 
|  | power_term = | 
|  | q_pow_term[index] + | 
|  | (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0); | 
|  |  | 
|  | // Calculate correction factor. | 
|  | if (power_term < 1.0) assert(error_term >= 0.0); | 
|  |  | 
|  | return fclamp(pow(error_term, power_term), 0.05, 5.0); | 
|  | } | 
|  |  | 
|  | static double wq_err_divisor(VP9_COMP *cpi) { | 
|  | const VP9_COMMON *const cm = &cpi->common; | 
|  | unsigned int screen_area = (cm->width * cm->height); | 
|  |  | 
|  | // Use a different error per mb factor for calculating boost for | 
|  | //  different formats. | 
|  | if (screen_area <= 640 * 360) { | 
|  | return 115.0; | 
|  | } else if (screen_area < 1280 * 720) { | 
|  | return 125.0; | 
|  | } else if (screen_area <= 1920 * 1080) { | 
|  | return 130.0; | 
|  | } else if (screen_area < 3840 * 2160) { | 
|  | return 150.0; | 
|  | } | 
|  |  | 
|  | // Fall through to here only for 4K and above. | 
|  | return 200.0; | 
|  | } | 
|  |  | 
|  | #define NOISE_FACTOR_MIN 0.9 | 
|  | #define NOISE_FACTOR_MAX 1.1 | 
|  | static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err, | 
|  | double inactive_zone, double section_noise, | 
|  | int section_target_bandwidth) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const VP9EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | double last_group_rate_err; | 
|  |  | 
|  | // Clamp the target rate to VBR min / max limts. | 
|  | const int target_rate = | 
|  | vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth); | 
|  | double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5); | 
|  | noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX); | 
|  | inactive_zone = fclamp(inactive_zone, 0.0, 1.0); | 
|  |  | 
|  | // TODO(jimbankoski): remove #if here or below when this has been | 
|  | // well tested. | 
|  | #if CONFIG_ALWAYS_ADJUST_BPM | 
|  | // based on recent history adjust expectations of bits per macroblock. | 
|  | last_group_rate_err = | 
|  | (double)twopass->rolling_arf_group_actual_bits / | 
|  | DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); | 
|  | last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); | 
|  | twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; | 
|  | twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); | 
|  | #endif | 
|  |  | 
|  | if (target_rate <= 0) { | 
|  | return rc->worst_quality;  // Highest value allowed | 
|  | } else { | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone); | 
|  | const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct); | 
|  | const double av_err_per_mb = section_err / active_pct; | 
|  | const double speed_term = 1.0 + 0.04 * oxcf->speed; | 
|  | const int target_norm_bits_per_mb = | 
|  | (int)(((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs); | 
|  | int q; | 
|  |  | 
|  | // TODO(jimbankoski): remove #if here or above when this has been | 
|  | // well tested. | 
|  | #if !CONFIG_ALWAYS_ADJUST_BPM | 
|  | // based on recent history adjust expectations of bits per macroblock. | 
|  | last_group_rate_err = | 
|  | (double)twopass->rolling_arf_group_actual_bits / | 
|  | DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); | 
|  | last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); | 
|  | twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; | 
|  | twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); | 
|  | #endif | 
|  |  | 
|  | // Try and pick a max Q that will be high enough to encode the | 
|  | // content at the given rate. | 
|  | for (q = rc->best_quality; q < rc->worst_quality; ++q) { | 
|  | const double factor = | 
|  | calc_correction_factor(av_err_per_mb, wq_err_divisor(cpi), q); | 
|  | const int bits_per_mb = vp9_rc_bits_per_mb( | 
|  | INTER_FRAME, q, | 
|  | factor * speed_term * cpi->twopass.bpm_factor * noise_factor, | 
|  | cpi->common.bit_depth); | 
|  | if (bits_per_mb <= target_norm_bits_per_mb) break; | 
|  | } | 
|  |  | 
|  | // Restriction on active max q for constrained quality mode. | 
|  | if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level); | 
|  | return q; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setup_rf_level_maxq(VP9_COMP *cpi) { | 
|  | int i; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { | 
|  | int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality); | 
|  | rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_subsampling(VP9_COMP *cpi) { | 
|  | const VP9_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const int w = cm->width; | 
|  | const int h = cm->height; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FRAME_SCALE_STEPS; ++i) { | 
|  | // Note: Frames with odd-sized dimensions may result from this scaling. | 
|  | rc->frame_width[i] = (w * 16) / frame_scale_factor[i]; | 
|  | rc->frame_height[i] = (h * 16) / frame_scale_factor[i]; | 
|  | } | 
|  |  | 
|  | setup_rf_level_maxq(cpi); | 
|  | } | 
|  |  | 
|  | void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width, | 
|  | int *scaled_frame_height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | *scaled_frame_width = rc->frame_width[rc->frame_size_selector]; | 
|  | *scaled_frame_height = rc->frame_height[rc->frame_size_selector]; | 
|  | } | 
|  |  | 
|  | void vp9_init_second_pass(VP9_COMP *cpi) { | 
|  | VP9EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | double frame_rate; | 
|  | FIRSTPASS_STATS *stats; | 
|  |  | 
|  | zero_stats(&twopass->total_stats); | 
|  | zero_stats(&twopass->total_left_stats); | 
|  |  | 
|  | if (!twopass->stats_in_end) return; | 
|  |  | 
|  | stats = &twopass->total_stats; | 
|  |  | 
|  | *stats = *twopass->stats_in_end; | 
|  | twopass->total_left_stats = *stats; | 
|  |  | 
|  | // Scan the first pass file and calculate a modified score for each | 
|  | // frame that is used to distribute bits. The modified score is assumed | 
|  | // to provide a linear basis for bit allocation. I.e a frame A with a score | 
|  | // that is double that of frame B will be allocated 2x as many bits. | 
|  | { | 
|  | double modified_score_total = 0.0; | 
|  | const FIRSTPASS_STATS *s = twopass->stats_in; | 
|  | double av_err; | 
|  |  | 
|  | if (oxcf->vbr_corpus_complexity) { | 
|  | twopass->mean_mod_score = (double)oxcf->vbr_corpus_complexity / 10.0; | 
|  | av_err = get_distribution_av_err(cpi, twopass); | 
|  | } else { | 
|  | av_err = get_distribution_av_err(cpi, twopass); | 
|  | // The first scan is unclamped and gives a raw average. | 
|  | while (s < twopass->stats_in_end) { | 
|  | modified_score_total += calculate_mod_frame_score(cpi, oxcf, s, av_err); | 
|  | ++s; | 
|  | } | 
|  |  | 
|  | // The average error from this first scan is used to define the midpoint | 
|  | // error for the rate distribution function. | 
|  | twopass->mean_mod_score = | 
|  | modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count); | 
|  | } | 
|  |  | 
|  | // Second scan using clamps based on the previous cycle average. | 
|  | // This may modify the total and average somewhat but we dont bother with | 
|  | // further itterations. | 
|  | modified_score_total = 0.0; | 
|  | s = twopass->stats_in; | 
|  | while (s < twopass->stats_in_end) { | 
|  | modified_score_total += | 
|  | calculate_norm_frame_score(cpi, twopass, oxcf, s, av_err); | 
|  | ++s; | 
|  | } | 
|  | twopass->normalized_score_left = modified_score_total; | 
|  |  | 
|  | // If using Corpus wide VBR mode then update the clip target bandwidth to | 
|  | // reflect how the clip compares to the rest of the corpus. | 
|  | if (oxcf->vbr_corpus_complexity) { | 
|  | oxcf->target_bandwidth = | 
|  | (int64_t)((double)oxcf->target_bandwidth * | 
|  | (twopass->normalized_score_left / stats->count)); | 
|  | } | 
|  |  | 
|  | #if COMPLEXITY_STATS_OUTPUT | 
|  | { | 
|  | FILE *compstats; | 
|  | compstats = fopen("complexity_stats.stt", "a"); | 
|  | fprintf(compstats, "%10.3lf\n", | 
|  | twopass->normalized_score_left / stats->count); | 
|  | fclose(compstats); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | frame_rate = 10000000.0 * stats->count / stats->duration; | 
|  | // Each frame can have a different duration, as the frame rate in the source | 
|  | // isn't guaranteed to be constant. The frame rate prior to the first frame | 
|  | // encoded in the second pass is a guess. However, the sum duration is not. | 
|  | // It is calculated based on the actual durations of all frames from the | 
|  | // first pass. | 
|  | vp9_new_framerate(cpi, frame_rate); | 
|  | twopass->bits_left = | 
|  | (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); | 
|  |  | 
|  | // This variable monitors how far behind the second ref update is lagging. | 
|  | twopass->sr_update_lag = 1; | 
|  |  | 
|  | // Reset the vbr bits off target counters | 
|  | rc->vbr_bits_off_target = 0; | 
|  | rc->vbr_bits_off_target_fast = 0; | 
|  | rc->rate_error_estimate = 0; | 
|  |  | 
|  | // Static sequence monitor variables. | 
|  | twopass->kf_zeromotion_pct = 100; | 
|  | twopass->last_kfgroup_zeromotion_pct = 100; | 
|  |  | 
|  | // Initialize bits per macro_block estimate correction factor. | 
|  | twopass->bpm_factor = 1.0; | 
|  | // Initialize actual and target bits counters for ARF groups so that | 
|  | // at the start we have a neutral bpm adjustment. | 
|  | twopass->rolling_arf_group_target_bits = 1; | 
|  | twopass->rolling_arf_group_actual_bits = 1; | 
|  |  | 
|  | if (oxcf->resize_mode != RESIZE_NONE) { | 
|  | init_subsampling(cpi); | 
|  | } | 
|  |  | 
|  | // Initialize the arnr strangth adjustment to 0 | 
|  | twopass->arnr_strength_adjustment = 0; | 
|  | } | 
|  |  | 
|  | #define SR_DIFF_PART 0.0015 | 
|  | #define INTRA_PART 0.005 | 
|  | #define DEFAULT_DECAY_LIMIT 0.75 | 
|  | #define LOW_SR_DIFF_TRHESH 0.1 | 
|  | #define SR_DIFF_MAX 128.0 | 
|  | #define LOW_CODED_ERR_PER_MB 10.0 | 
|  | #define NCOUNT_FRAME_II_THRESH 6.0 | 
|  |  | 
|  | static double get_sr_decay_rate(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | double sr_diff = (frame->sr_coded_error - frame->coded_error); | 
|  | double sr_decay = 1.0; | 
|  | double modified_pct_inter; | 
|  | double modified_pcnt_intra; | 
|  | const double motion_amplitude_part = | 
|  | frame->pcnt_motion * | 
|  | ((frame->mvc_abs + frame->mvr_abs) / | 
|  | (frame_info->frame_height + frame_info->frame_width)); | 
|  |  | 
|  | modified_pct_inter = frame->pcnt_inter; | 
|  | if ((frame->coded_error > LOW_CODED_ERR_PER_MB) && | 
|  | ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < | 
|  | (double)NCOUNT_FRAME_II_THRESH)) { | 
|  | modified_pct_inter = | 
|  | frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral; | 
|  | } | 
|  | modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); | 
|  |  | 
|  | if ((sr_diff > LOW_SR_DIFF_TRHESH)) { | 
|  | sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX); | 
|  | sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - motion_amplitude_part - | 
|  | (INTRA_PART * modified_pcnt_intra); | 
|  | } | 
|  | return VPXMAX(sr_decay, DEFAULT_DECAY_LIMIT); | 
|  | } | 
|  |  | 
|  | // This function gives an estimate of how badly we believe the prediction | 
|  | // quality is decaying from frame to frame. | 
|  | static double get_zero_motion_factor(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *frame_stats) { | 
|  | const double zero_motion_pct = | 
|  | frame_stats->pcnt_inter - frame_stats->pcnt_motion; | 
|  | double sr_decay = get_sr_decay_rate(frame_info, frame_stats); | 
|  | return VPXMIN(sr_decay, zero_motion_pct); | 
|  | } | 
|  |  | 
|  | #define ZM_POWER_FACTOR 0.75 | 
|  |  | 
|  | static double get_prediction_decay_rate(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *frame_stats) { | 
|  | const double sr_decay_rate = get_sr_decay_rate(frame_info, frame_stats); | 
|  | const double zero_motion_factor = | 
|  | (0.95 * pow((frame_stats->pcnt_inter - frame_stats->pcnt_motion), | 
|  | ZM_POWER_FACTOR)); | 
|  |  | 
|  | return VPXMAX(zero_motion_factor, | 
|  | (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); | 
|  | } | 
|  |  | 
|  | static int get_show_idx(const TWO_PASS *twopass) { | 
|  | return (int)(twopass->stats_in - twopass->stats_in_start); | 
|  | } | 
|  | // Function to test for a condition where a complex transition is followed | 
|  | // by a static section. For example in slide shows where there is a fade | 
|  | // between slides. This is to help with more optimal kf and gf positioning. | 
|  | static int check_transition_to_still(const FIRST_PASS_INFO *first_pass_info, | 
|  | int show_idx, int still_interval) { | 
|  | int j; | 
|  | int num_frames = fps_get_num_frames(first_pass_info); | 
|  | if (show_idx + still_interval > num_frames) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Look ahead a few frames to see if static condition persists... | 
|  | for (j = 0; j < still_interval; ++j) { | 
|  | const FIRSTPASS_STATS *stats = | 
|  | fps_get_frame_stats(first_pass_info, show_idx + j); | 
|  | if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; | 
|  | } | 
|  |  | 
|  | // Only if it does do we signal a transition to still. | 
|  | return j == still_interval; | 
|  | } | 
|  |  | 
|  | // This function detects a flash through the high relative pcnt_second_ref | 
|  | // score in the frame following a flash frame. The offset passed in should | 
|  | // reflect this. | 
|  | static int detect_flash_from_frame_stats(const FIRSTPASS_STATS *frame_stats) { | 
|  | // What we are looking for here is a situation where there is a | 
|  | // brief break in prediction (such as a flash) but subsequent frames | 
|  | // are reasonably well predicted by an earlier (pre flash) frame. | 
|  | // The recovery after a flash is indicated by a high pcnt_second_ref | 
|  | // useage or a second ref coded error notabley lower than the last | 
|  | // frame coded error. | 
|  | if (frame_stats == NULL) { | 
|  | return 0; | 
|  | } | 
|  | return (frame_stats->sr_coded_error < frame_stats->coded_error) || | 
|  | ((frame_stats->pcnt_second_ref > frame_stats->pcnt_inter) && | 
|  | (frame_stats->pcnt_second_ref >= 0.5)); | 
|  | } | 
|  |  | 
|  | static int detect_flash(const TWO_PASS *twopass, int offset) { | 
|  | const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); | 
|  | return detect_flash_from_frame_stats(next_frame); | 
|  | } | 
|  |  | 
|  | // Update the motion related elements to the GF arf boost calculation. | 
|  | static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, | 
|  | double *mv_in_out, | 
|  | double *mv_in_out_accumulator, | 
|  | double *abs_mv_in_out_accumulator, | 
|  | double *mv_ratio_accumulator) { | 
|  | const double pct = stats->pcnt_motion; | 
|  |  | 
|  | // Accumulate Motion In/Out of frame stats. | 
|  | *mv_in_out = stats->mv_in_out_count * pct; | 
|  | *mv_in_out_accumulator += *mv_in_out; | 
|  | *abs_mv_in_out_accumulator += fabs(*mv_in_out); | 
|  |  | 
|  | // Accumulate a measure of how uniform (or conversely how random) the motion | 
|  | // field is (a ratio of abs(mv) / mv). | 
|  | if (pct > 0.05) { | 
|  | const double mvr_ratio = | 
|  | fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); | 
|  | const double mvc_ratio = | 
|  | fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); | 
|  |  | 
|  | *mv_ratio_accumulator += | 
|  | pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); | 
|  | *mv_ratio_accumulator += | 
|  | pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define BASELINE_ERR_PER_MB 12500.0 | 
|  | #define GF_MAX_BOOST 96.0 | 
|  | static double calc_frame_boost(const FRAME_INFO *frame_info, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | int avg_frame_qindex, | 
|  | double this_frame_mv_in_out) { | 
|  | double frame_boost; | 
|  | const double lq = | 
|  | vp9_convert_qindex_to_q(avg_frame_qindex, frame_info->bit_depth); | 
|  | const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5); | 
|  | const double active_area = calculate_active_area(frame_info, this_frame); | 
|  |  | 
|  | // Underlying boost factor is based on inter error ratio. | 
|  | frame_boost = (BASELINE_ERR_PER_MB * active_area) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error); | 
|  |  | 
|  | // Small adjustment for cases where there is a zoom out | 
|  | if (this_frame_mv_in_out > 0.0) | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); | 
|  |  | 
|  | // Q correction and scalling | 
|  | frame_boost = frame_boost * boost_q_correction; | 
|  |  | 
|  | return VPXMIN(frame_boost, GF_MAX_BOOST * boost_q_correction); | 
|  | } | 
|  |  | 
|  | static double kf_err_per_mb(VP9_COMP *cpi) { | 
|  | const VP9_COMMON *const cm = &cpi->common; | 
|  | unsigned int screen_area = (cm->width * cm->height); | 
|  |  | 
|  | // Use a different error per mb factor for calculating boost for | 
|  | //  different formats. | 
|  | if (screen_area < 1280 * 720) { | 
|  | return 2000.0; | 
|  | } else if (screen_area < 1920 * 1080) { | 
|  | return 500.0; | 
|  | } | 
|  | return 250.0; | 
|  | } | 
|  |  | 
|  | static double calc_kf_frame_boost(VP9_COMP *cpi, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | double *sr_accumulator, | 
|  | double this_frame_mv_in_out, | 
|  | double max_boost) { | 
|  | double frame_boost; | 
|  | const double lq = vp9_convert_qindex_to_q( | 
|  | cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); | 
|  | const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00); | 
|  | const double active_area = | 
|  | calculate_active_area(&cpi->frame_info, this_frame); | 
|  |  | 
|  | // Underlying boost factor is based on inter error ratio. | 
|  | frame_boost = (kf_err_per_mb(cpi) * active_area) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator); | 
|  |  | 
|  | // Update the accumulator for second ref error difference. | 
|  | // This is intended to give an indication of how much the coded error is | 
|  | // increasing over time. | 
|  | *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); | 
|  | *sr_accumulator = VPXMAX(0.0, *sr_accumulator); | 
|  |  | 
|  | // Small adjustment for cases where there is a zoom out | 
|  | if (this_frame_mv_in_out > 0.0) | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); | 
|  |  | 
|  | // Q correction and scaling | 
|  | // The 40.0 value here is an experimentally derived baseline minimum. | 
|  | // This value is in line with the minimum per frame boost in the alt_ref | 
|  | // boost calculation. | 
|  | frame_boost = ((frame_boost + 40.0) * boost_q_correction); | 
|  |  | 
|  | return VPXMIN(frame_boost, max_boost * boost_q_correction); | 
|  | } | 
|  |  | 
|  | static int compute_arf_boost(const FRAME_INFO *frame_info, | 
|  | const FIRST_PASS_INFO *first_pass_info, | 
|  | int arf_show_idx, int f_frames, int b_frames, | 
|  | int avg_frame_qindex) { | 
|  | int i; | 
|  | double boost_score = 0.0; | 
|  | double mv_ratio_accumulator = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  | double this_frame_mv_in_out = 0.0; | 
|  | double mv_in_out_accumulator = 0.0; | 
|  | double abs_mv_in_out_accumulator = 0.0; | 
|  | int arf_boost; | 
|  | int flash_detected = 0; | 
|  |  | 
|  | // Search forward from the proposed arf/next gf position. | 
|  | for (i = 0; i < f_frames; ++i) { | 
|  | const FIRSTPASS_STATS *this_frame = | 
|  | fps_get_frame_stats(first_pass_info, arf_show_idx + i); | 
|  | const FIRSTPASS_STATS *next_frame = | 
|  | fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  |  | 
|  | // We want to discount the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash_from_frame_stats(this_frame) || | 
|  | detect_flash_from_frame_stats(next_frame); | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | decay_accumulator *= get_prediction_decay_rate(frame_info, this_frame); | 
|  | decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : decay_accumulator; | 
|  | } | 
|  | boost_score += decay_accumulator * calc_frame_boost(frame_info, this_frame, | 
|  | avg_frame_qindex, | 
|  | this_frame_mv_in_out); | 
|  | } | 
|  |  | 
|  | arf_boost = (int)boost_score; | 
|  |  | 
|  | // Reset for backward looking loop. | 
|  | boost_score = 0.0; | 
|  | mv_ratio_accumulator = 0.0; | 
|  | decay_accumulator = 1.0; | 
|  | this_frame_mv_in_out = 0.0; | 
|  | mv_in_out_accumulator = 0.0; | 
|  | abs_mv_in_out_accumulator = 0.0; | 
|  |  | 
|  | // Search backward towards last gf position. | 
|  | for (i = -1; i >= -b_frames; --i) { | 
|  | const FIRSTPASS_STATS *this_frame = | 
|  | fps_get_frame_stats(first_pass_info, arf_show_idx + i); | 
|  | const FIRSTPASS_STATS *next_frame = | 
|  | fps_get_frame_stats(first_pass_info, arf_show_idx + i + 1); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  |  | 
|  | // We want to discount the the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash_from_frame_stats(this_frame) || | 
|  | detect_flash_from_frame_stats(next_frame); | 
|  |  | 
|  | // Cumulative effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | decay_accumulator *= get_prediction_decay_rate(frame_info, this_frame); | 
|  | decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : decay_accumulator; | 
|  | } | 
|  | boost_score += decay_accumulator * calc_frame_boost(frame_info, this_frame, | 
|  | avg_frame_qindex, | 
|  | this_frame_mv_in_out); | 
|  | } | 
|  | arf_boost += (int)boost_score; | 
|  |  | 
|  | if (arf_boost < ((b_frames + f_frames) * 40)) | 
|  | arf_boost = ((b_frames + f_frames) * 40); | 
|  | arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST); | 
|  |  | 
|  | return arf_boost; | 
|  | } | 
|  |  | 
|  | static int calc_arf_boost(VP9_COMP *cpi, int f_frames, int b_frames) { | 
|  | const FRAME_INFO *frame_info = &cpi->frame_info; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | const int avg_inter_frame_qindex = cpi->rc.avg_frame_qindex[INTER_FRAME]; | 
|  | int arf_show_idx = get_show_idx(twopass); | 
|  | return compute_arf_boost(frame_info, &twopass->first_pass_info, arf_show_idx, | 
|  | f_frames, b_frames, avg_inter_frame_qindex); | 
|  | } | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, | 
|  | const FIRSTPASS_STATS *end, | 
|  | int section_length) { | 
|  | const FIRSTPASS_STATS *s = begin; | 
|  | double intra_error = 0.0; | 
|  | double coded_error = 0.0; | 
|  | int i = 0; | 
|  |  | 
|  | while (s < end && i < section_length) { | 
|  | intra_error += s->intra_error; | 
|  | coded_error += s->coded_error; | 
|  | ++s; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); | 
|  | } | 
|  |  | 
|  | // Calculate the total bits to allocate in this GF/ARF group. | 
|  | static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi, | 
|  | double gf_group_err) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  | const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
|  | int64_t total_group_bits; | 
|  | const int is_key_frame = frame_is_intra_only(cm); | 
|  | const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; | 
|  | int gop_frames = | 
|  | rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf; | 
|  |  | 
|  | // Calculate the bits to be allocated to the group as a whole. | 
|  | if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) { | 
|  | int key_frame_interval = rc->frames_since_key + rc->frames_to_key; | 
|  | int distance_from_next_key_frame = | 
|  | rc->frames_to_key - | 
|  | (rc->baseline_gf_interval + rc->source_alt_ref_pending); | 
|  | int max_gf_bits_bias = rc->avg_frame_bandwidth; | 
|  | double gf_interval_bias_bits_normalize_factor = | 
|  | (double)rc->baseline_gf_interval / 16; | 
|  | total_group_bits = (int64_t)(twopass->kf_group_bits * | 
|  | (gf_group_err / twopass->kf_group_error_left)); | 
|  | // TODO(ravi): Experiment with different values of max_gf_bits_bias | 
|  | total_group_bits += | 
|  | (int64_t)((double)distance_from_next_key_frame / key_frame_interval * | 
|  | max_gf_bits_bias * gf_interval_bias_bits_normalize_factor); | 
|  | } else { | 
|  | total_group_bits = 0; | 
|  | } | 
|  |  | 
|  | // Clamp odd edge cases. | 
|  | total_group_bits = (total_group_bits < 0) | 
|  | ? 0 | 
|  | : (total_group_bits > twopass->kf_group_bits) | 
|  | ? twopass->kf_group_bits | 
|  | : total_group_bits; | 
|  |  | 
|  | // Clip based on user supplied data rate variability limit. | 
|  | if (total_group_bits > (int64_t)max_bits * gop_frames) | 
|  | total_group_bits = (int64_t)max_bits * gop_frames; | 
|  |  | 
|  | return total_group_bits; | 
|  | } | 
|  |  | 
|  | // Calculate the number bits extra to assign to boosted frames in a group. | 
|  | static int calculate_boost_bits(int frame_count, int boost, | 
|  | int64_t total_group_bits) { | 
|  | int allocation_chunks; | 
|  |  | 
|  | // return 0 for invalid inputs (could arise e.g. through rounding errors) | 
|  | if (!boost || (total_group_bits <= 0) || (frame_count < 0)) return 0; | 
|  |  | 
|  | allocation_chunks = (frame_count * NORMAL_BOOST) + boost; | 
|  |  | 
|  | // Prevent overflow. | 
|  | if (boost > 1023) { | 
|  | int divisor = boost >> 10; | 
|  | boost /= divisor; | 
|  | allocation_chunks /= divisor; | 
|  | } | 
|  |  | 
|  | // Calculate the number of extra bits for use in the boosted frame or frames. | 
|  | return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // Used in corpus vbr: Calculates the total normalized group complexity score | 
|  | // for a given number of frames starting at the current position in the stats | 
|  | // file. | 
|  | static double calculate_group_score(VP9_COMP *cpi, double av_score, | 
|  | int frame_count) { | 
|  | VP9EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | const FIRSTPASS_STATS *s = twopass->stats_in; | 
|  | double score_total = 0.0; | 
|  | int i = 0; | 
|  |  | 
|  | // We dont ever want to return a 0 score here. | 
|  | if (frame_count == 0) return 1.0; | 
|  |  | 
|  | while ((i < frame_count) && (s < twopass->stats_in_end)) { | 
|  | score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s, av_score); | 
|  | ++s; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return score_total; | 
|  | } | 
|  |  | 
|  | static void find_arf_order(VP9_COMP *cpi, GF_GROUP *gf_group, | 
|  | int *index_counter, int depth, int start, int end) { | 
|  | TWO_PASS *twopass = &cpi->twopass; | 
|  | const FIRSTPASS_STATS *const start_pos = twopass->stats_in; | 
|  | FIRSTPASS_STATS fpf_frame; | 
|  | const int mid = (start + end + 1) >> 1; | 
|  | const int min_frame_interval = 2; | 
|  | int idx; | 
|  |  | 
|  | // Process regular P frames | 
|  | if ((end - start < min_frame_interval) || | 
|  | (depth > gf_group->allowed_max_layer_depth)) { | 
|  | for (idx = start; idx <= end; ++idx) { | 
|  | gf_group->update_type[*index_counter] = LF_UPDATE; | 
|  | gf_group->arf_src_offset[*index_counter] = 0; | 
|  | gf_group->frame_gop_index[*index_counter] = idx; | 
|  | gf_group->rf_level[*index_counter] = INTER_NORMAL; | 
|  | gf_group->layer_depth[*index_counter] = depth; | 
|  | gf_group->gfu_boost[*index_counter] = NORMAL_BOOST; | 
|  | ++(*index_counter); | 
|  | } | 
|  | gf_group->max_layer_depth = VPXMAX(gf_group->max_layer_depth, depth); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(abs(mid - start) >= 1 && abs(mid - end) >= 1); | 
|  |  | 
|  | // Process ARF frame | 
|  | gf_group->layer_depth[*index_counter] = depth; | 
|  | gf_group->update_type[*index_counter] = ARF_UPDATE; | 
|  | gf_group->arf_src_offset[*index_counter] = mid - start; | 
|  | gf_group->frame_gop_index[*index_counter] = mid; | 
|  | gf_group->rf_level[*index_counter] = GF_ARF_LOW; | 
|  |  | 
|  | for (idx = 0; idx <= mid; ++idx) | 
|  | if (EOF == input_stats(twopass, &fpf_frame)) break; | 
|  |  | 
|  | gf_group->gfu_boost[*index_counter] = | 
|  | VPXMAX(MIN_ARF_GF_BOOST, | 
|  | calc_arf_boost(cpi, end - mid + 1, mid - start) >> depth); | 
|  |  | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | ++(*index_counter); | 
|  |  | 
|  | find_arf_order(cpi, gf_group, index_counter, depth + 1, start, mid - 1); | 
|  |  | 
|  | gf_group->update_type[*index_counter] = USE_BUF_FRAME; | 
|  | gf_group->arf_src_offset[*index_counter] = 0; | 
|  | gf_group->frame_gop_index[*index_counter] = mid; | 
|  | gf_group->rf_level[*index_counter] = INTER_NORMAL; | 
|  | gf_group->layer_depth[*index_counter] = depth; | 
|  | ++(*index_counter); | 
|  |  | 
|  | find_arf_order(cpi, gf_group, index_counter, depth + 1, mid + 1, end); | 
|  | } | 
|  |  | 
|  | static INLINE void set_gf_overlay_frame_type(GF_GROUP *gf_group, | 
|  | int frame_index, | 
|  | int source_alt_ref_active) { | 
|  | if (source_alt_ref_active) { | 
|  | gf_group->update_type[frame_index] = OVERLAY_UPDATE; | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS - 1; | 
|  | gf_group->gfu_boost[frame_index] = NORMAL_BOOST; | 
|  | } else { | 
|  | gf_group->update_type[frame_index] = GF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_STD; | 
|  | gf_group->layer_depth[frame_index] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void define_gf_group_structure(VP9_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | int frame_index = 0; | 
|  | int key_frame = cpi->common.frame_type == KEY_FRAME; | 
|  | int layer_depth = 1; | 
|  | int gop_frames = | 
|  | rc->baseline_gf_interval - (key_frame || rc->source_alt_ref_pending); | 
|  |  | 
|  | gf_group->frame_start = cpi->common.current_video_frame; | 
|  | gf_group->frame_end = gf_group->frame_start + rc->baseline_gf_interval; | 
|  | gf_group->max_layer_depth = 0; | 
|  | gf_group->allowed_max_layer_depth = 0; | 
|  |  | 
|  | // For key frames the frame target rate is already set and it | 
|  | // is also the golden frame. | 
|  | // === [frame_index == 0] === | 
|  | if (!key_frame) | 
|  | set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_active); | 
|  |  | 
|  | ++frame_index; | 
|  |  | 
|  | // === [frame_index == 1] === | 
|  | if (rc->source_alt_ref_pending) { | 
|  | gf_group->update_type[frame_index] = ARF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_STD; | 
|  | gf_group->layer_depth[frame_index] = layer_depth; | 
|  | gf_group->arf_src_offset[frame_index] = | 
|  | (unsigned char)(rc->baseline_gf_interval - 1); | 
|  | gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval; | 
|  | gf_group->max_layer_depth = 1; | 
|  | ++frame_index; | 
|  | ++layer_depth; | 
|  | gf_group->allowed_max_layer_depth = cpi->oxcf.enable_auto_arf; | 
|  | } | 
|  |  | 
|  | find_arf_order(cpi, gf_group, &frame_index, layer_depth, 1, gop_frames); | 
|  |  | 
|  | set_gf_overlay_frame_type(gf_group, frame_index, rc->source_alt_ref_pending); | 
|  | gf_group->arf_src_offset[frame_index] = 0; | 
|  | gf_group->frame_gop_index[frame_index] = rc->baseline_gf_interval; | 
|  |  | 
|  | // Set the frame ops number. | 
|  | gf_group->gf_group_size = frame_index; | 
|  | } | 
|  |  | 
|  | static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits, | 
|  | int gf_arf_bits) { | 
|  | VP9EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | FIRSTPASS_STATS frame_stats; | 
|  | int i; | 
|  | int frame_index = 0; | 
|  | int target_frame_size; | 
|  | int key_frame; | 
|  | const int max_bits = frame_max_bits(&cpi->rc, oxcf); | 
|  | int64_t total_group_bits = gf_group_bits; | 
|  | int mid_frame_idx; | 
|  | int normal_frames; | 
|  | int normal_frame_bits; | 
|  | int last_frame_reduction = 0; | 
|  | double av_score = 1.0; | 
|  | double tot_norm_frame_score = 1.0; | 
|  | double this_frame_score = 1.0; | 
|  |  | 
|  | // Define the GF structure and specify | 
|  | int gop_frames = gf_group->gf_group_size; | 
|  |  | 
|  | key_frame = cpi->common.frame_type == KEY_FRAME; | 
|  |  | 
|  | // For key frames the frame target rate is already set and it | 
|  | // is also the golden frame. | 
|  | // === [frame_index == 0] === | 
|  | if (!key_frame) { | 
|  | gf_group->bit_allocation[frame_index] = | 
|  | rc->source_alt_ref_active ? 0 : gf_arf_bits; | 
|  | } | 
|  |  | 
|  | // Deduct the boost bits for arf (or gf if it is not a key frame) | 
|  | // from the group total. | 
|  | if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; | 
|  |  | 
|  | ++frame_index; | 
|  |  | 
|  | // === [frame_index == 1] === | 
|  | // Store the bits to spend on the ARF if there is one. | 
|  | if (rc->source_alt_ref_pending) { | 
|  | gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
|  |  | 
|  | ++frame_index; | 
|  | } | 
|  |  | 
|  | // Define middle frame | 
|  | mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1; | 
|  |  | 
|  | normal_frames = (rc->baseline_gf_interval - 1); | 
|  | if (normal_frames > 1) | 
|  | normal_frame_bits = (int)(total_group_bits / normal_frames); | 
|  | else | 
|  | normal_frame_bits = (int)total_group_bits; | 
|  |  | 
|  | gf_group->gfu_boost[1] = rc->gfu_boost; | 
|  |  | 
|  | if (cpi->multi_layer_arf) { | 
|  | int idx; | 
|  | int arf_depth_bits[MAX_ARF_LAYERS] = { 0 }; | 
|  | int arf_depth_count[MAX_ARF_LAYERS] = { 0 }; | 
|  | int arf_depth_boost[MAX_ARF_LAYERS] = { 0 }; | 
|  | int total_arfs = 1;  // Account for the base layer ARF. | 
|  |  | 
|  | for (idx = 0; idx < gop_frames; ++idx) { | 
|  | if (gf_group->update_type[idx] == ARF_UPDATE) { | 
|  | arf_depth_boost[gf_group->layer_depth[idx]] += gf_group->gfu_boost[idx]; | 
|  | ++arf_depth_count[gf_group->layer_depth[idx]]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (idx = 2; idx < MAX_ARF_LAYERS; ++idx) { | 
|  | if (arf_depth_boost[idx] == 0) break; | 
|  | arf_depth_bits[idx] = calculate_boost_bits( | 
|  | rc->baseline_gf_interval - total_arfs - arf_depth_count[idx], | 
|  | arf_depth_boost[idx], total_group_bits); | 
|  |  | 
|  | total_group_bits -= arf_depth_bits[idx]; | 
|  | total_arfs += arf_depth_count[idx]; | 
|  | } | 
|  |  | 
|  | // offset the base layer arf | 
|  | normal_frames -= (total_arfs - 1); | 
|  | if (normal_frames > 1) | 
|  | normal_frame_bits = (int)(total_group_bits / normal_frames); | 
|  | else | 
|  | normal_frame_bits = (int)total_group_bits; | 
|  |  | 
|  | target_frame_size = normal_frame_bits; | 
|  | target_frame_size = | 
|  | clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); | 
|  |  | 
|  | // The first layer ARF has its bit allocation assigned. | 
|  | for (idx = frame_index; idx < gop_frames; ++idx) { | 
|  | switch (gf_group->update_type[idx]) { | 
|  | case ARF_UPDATE: | 
|  | gf_group->bit_allocation[idx] = | 
|  | (int)(((int64_t)arf_depth_bits[gf_group->layer_depth[idx]] * | 
|  | gf_group->gfu_boost[idx]) / | 
|  | arf_depth_boost[gf_group->layer_depth[idx]]); | 
|  | break; | 
|  | case USE_BUF_FRAME: gf_group->bit_allocation[idx] = 0; break; | 
|  | default: gf_group->bit_allocation[idx] = target_frame_size; break; | 
|  | } | 
|  | } | 
|  | gf_group->bit_allocation[idx] = 0; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (oxcf->vbr_corpus_complexity) { | 
|  | av_score = get_distribution_av_err(cpi, twopass); | 
|  | tot_norm_frame_score = calculate_group_score(cpi, av_score, normal_frames); | 
|  | } | 
|  |  | 
|  | // Allocate bits to the other frames in the group. | 
|  | for (i = 0; i < normal_frames; ++i) { | 
|  | if (EOF == input_stats(twopass, &frame_stats)) break; | 
|  | if (oxcf->vbr_corpus_complexity) { | 
|  | this_frame_score = calculate_norm_frame_score(cpi, twopass, oxcf, | 
|  | &frame_stats, av_score); | 
|  | normal_frame_bits = (int)((double)total_group_bits * | 
|  | (this_frame_score / tot_norm_frame_score)); | 
|  | } | 
|  |  | 
|  | target_frame_size = normal_frame_bits; | 
|  | if ((i == (normal_frames - 1)) && (i >= 1)) { | 
|  | last_frame_reduction = normal_frame_bits / 16; | 
|  | target_frame_size -= last_frame_reduction; | 
|  | } | 
|  |  | 
|  | target_frame_size = | 
|  | clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); | 
|  |  | 
|  | gf_group->bit_allocation[frame_index] = target_frame_size; | 
|  | ++frame_index; | 
|  | } | 
|  |  | 
|  | // Add in some extra bits for the middle frame in the group. | 
|  | gf_group->bit_allocation[mid_frame_idx] += last_frame_reduction; | 
|  |  | 
|  | // Note: | 
|  | // We need to configure the frame at the end of the sequence + 1 that will be | 
|  | // the start frame for the next group. Otherwise prior to the call to | 
|  | // vp9_rc_get_second_pass_params() the data will be undefined. | 
|  | } | 
|  |  | 
|  | // Adjusts the ARNF filter for a GF group. | 
|  | static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise, | 
|  | double section_inter, | 
|  | double section_motion) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | double section_zeromv = section_inter - section_motion; | 
|  |  | 
|  | twopass->arnr_strength_adjustment = 0; | 
|  |  | 
|  | if (section_noise < 150) { | 
|  | twopass->arnr_strength_adjustment -= 1; | 
|  | if (section_noise < 75) twopass->arnr_strength_adjustment -= 1; | 
|  | } else if (section_noise > 250) | 
|  | twopass->arnr_strength_adjustment += 1; | 
|  |  | 
|  | if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1; | 
|  | } | 
|  |  | 
|  | // Analyse and define a gf/arf group. | 
|  | #define ARF_ABS_ZOOM_THRESH 4.0 | 
|  |  | 
|  | #define MAX_GF_BOOST 5400 | 
|  |  | 
|  | typedef struct RANGE { | 
|  | int min; | 
|  | int max; | 
|  | } RANGE; | 
|  |  | 
|  | /* get_gop_coding_frame_num() depends on several fields in RATE_CONTROL *rc as | 
|  | * follows. | 
|  | * Static fields: | 
|  | * (The following fields will remain unchanged after initialization of encoder.) | 
|  | *   rc->static_scene_max_gf_interval | 
|  | *   rc->min_gf_interval | 
|  | * | 
|  | * Dynamic fields: | 
|  | * (The following fields will be updated before or after coding each frame.) | 
|  | *   rc->frames_to_key | 
|  | *   rc->frames_since_key | 
|  | *   rc->source_alt_ref_active | 
|  | * | 
|  | * Special case: if CONFIG_RATE_CTRL is true, the external arf indexes will | 
|  | * determine the arf position. | 
|  | * | 
|  | * TODO(angiebird): Separate the dynamic fields and static fields into two | 
|  | * structs. | 
|  | */ | 
|  | static int get_gop_coding_frame_num( | 
|  | int *use_alt_ref, const FRAME_INFO *frame_info, | 
|  | const FIRST_PASS_INFO *first_pass_info, const RATE_CONTROL *rc, | 
|  | int gf_start_show_idx, const RANGE *active_gf_interval, | 
|  | double gop_intra_factor, int lag_in_frames) { | 
|  | double loop_decay_rate = 1.00; | 
|  | double mv_ratio_accumulator = 0.0; | 
|  | double this_frame_mv_in_out = 0.0; | 
|  | double mv_in_out_accumulator = 0.0; | 
|  | double abs_mv_in_out_accumulator = 0.0; | 
|  | double sr_accumulator = 0.0; | 
|  | // Motion breakout threshold for loop below depends on image size. | 
|  | double mv_ratio_accumulator_thresh = | 
|  | (frame_info->frame_height + frame_info->frame_width) / 4.0; | 
|  | double zero_motion_accumulator = 1.0; | 
|  | int gop_coding_frames; | 
|  |  | 
|  | *use_alt_ref = 1; | 
|  | gop_coding_frames = 0; | 
|  | while (gop_coding_frames < rc->static_scene_max_gf_interval && | 
|  | gop_coding_frames < rc->frames_to_key) { | 
|  | const FIRSTPASS_STATS *next_next_frame; | 
|  | const FIRSTPASS_STATS *next_frame; | 
|  | int flash_detected; | 
|  | ++gop_coding_frames; | 
|  |  | 
|  | next_frame = fps_get_frame_stats(first_pass_info, | 
|  | gf_start_show_idx + gop_coding_frames); | 
|  | if (next_frame == NULL) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Test for the case where there is a brief flash but the prediction | 
|  | // quality back to an earlier frame is then restored. | 
|  | next_next_frame = fps_get_frame_stats( | 
|  | first_pass_info, gf_start_show_idx + gop_coding_frames + 1); | 
|  | flash_detected = detect_flash_from_frame_stats(next_next_frame); | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  |  | 
|  | // Monitor for static sections. | 
|  | if ((rc->frames_since_key + gop_coding_frames - 1) > 1) { | 
|  | zero_motion_accumulator = | 
|  | VPXMIN(zero_motion_accumulator, | 
|  | get_zero_motion_factor(frame_info, next_frame)); | 
|  | } | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | double last_loop_decay_rate = loop_decay_rate; | 
|  | loop_decay_rate = get_prediction_decay_rate(frame_info, next_frame); | 
|  |  | 
|  | // Break clause to detect very still sections after motion. For example, | 
|  | // a static image after a fade or other transition. | 
|  | if (gop_coding_frames > rc->min_gf_interval && loop_decay_rate >= 0.999 && | 
|  | last_loop_decay_rate < 0.9) { | 
|  | int still_interval = 5; | 
|  | if (check_transition_to_still(first_pass_info, | 
|  | gf_start_show_idx + gop_coding_frames, | 
|  | still_interval)) { | 
|  | *use_alt_ref = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the accumulator for second ref error difference. | 
|  | // This is intended to give an indication of how much the coded error is | 
|  | // increasing over time. | 
|  | if (gop_coding_frames == 1) { | 
|  | sr_accumulator += next_frame->coded_error; | 
|  | } else { | 
|  | sr_accumulator += | 
|  | (next_frame->sr_coded_error - next_frame->coded_error); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Break out conditions. | 
|  | // Break at maximum of active_gf_interval->max unless almost totally | 
|  | // static. | 
|  | // | 
|  | // Note that the addition of a test of rc->source_alt_ref_active is | 
|  | // deliberate. The effect of this is that after a normal altref group even | 
|  | // if the material is static there will be one normal length GF group | 
|  | // before allowing longer GF groups. The reason for this is that in cases | 
|  | // such as slide shows where slides are separated by a complex transition | 
|  | // such as a fade, the arf group spanning the transition may not be coded | 
|  | // at a very high quality and hence this frame (with its overlay) is a | 
|  | // poor golden frame to use for an extended group. | 
|  | if ((gop_coding_frames >= active_gf_interval->max) && | 
|  | ((zero_motion_accumulator < 0.995) || (rc->source_alt_ref_active))) { | 
|  | break; | 
|  | } | 
|  | if ( | 
|  | // Don't break out with a very short interval. | 
|  | (gop_coding_frames >= active_gf_interval->min) && | 
|  | // If possible dont break very close to a kf | 
|  | ((rc->frames_to_key - gop_coding_frames) >= rc->min_gf_interval) && | 
|  | (gop_coding_frames & 0x01) && (!flash_detected) && | 
|  | ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || | 
|  | (abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH) || | 
|  | (sr_accumulator > gop_intra_factor * next_frame->intra_error))) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | *use_alt_ref &= zero_motion_accumulator < 0.995; | 
|  | *use_alt_ref &= gop_coding_frames < lag_in_frames; | 
|  | *use_alt_ref &= gop_coding_frames >= rc->min_gf_interval; | 
|  | return gop_coding_frames; | 
|  | } | 
|  |  | 
|  | static RANGE get_active_gf_inverval_range( | 
|  | const FRAME_INFO *frame_info, const RATE_CONTROL *rc, int arf_active_or_kf, | 
|  | int gf_start_show_idx, int active_worst_quality, int last_boosted_qindex) { | 
|  | RANGE active_gf_interval; | 
|  | #if CONFIG_RATE_CTRL | 
|  | (void)frame_info; | 
|  | (void)gf_start_show_idx; | 
|  | (void)active_worst_quality; | 
|  | (void)last_boosted_qindex; | 
|  | active_gf_interval.min = rc->min_gf_interval + arf_active_or_kf + 2; | 
|  |  | 
|  | active_gf_interval.max = 16 + arf_active_or_kf; | 
|  |  | 
|  | if ((active_gf_interval.max <= rc->frames_to_key) && | 
|  | (active_gf_interval.max >= (rc->frames_to_key - rc->min_gf_interval))) { | 
|  | active_gf_interval.min = rc->frames_to_key / 2; | 
|  | active_gf_interval.max = rc->frames_to_key / 2; | 
|  | } | 
|  | #else | 
|  | int int_max_q = (int)(vp9_convert_qindex_to_q(active_worst_quality, | 
|  | frame_info->bit_depth)); | 
|  | int q_term = (gf_start_show_idx == 0) | 
|  | ? int_max_q / 32 | 
|  | : (int)(vp9_convert_qindex_to_q(last_boosted_qindex, | 
|  | frame_info->bit_depth) / | 
|  | 6); | 
|  | active_gf_interval.min = | 
|  | rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200); | 
|  | active_gf_interval.min = | 
|  | VPXMIN(active_gf_interval.min, rc->max_gf_interval + arf_active_or_kf); | 
|  |  | 
|  | // The value chosen depends on the active Q range. At low Q we have | 
|  | // bits to spare and are better with a smaller interval and smaller boost. | 
|  | // At high Q when there are few bits to spare we are better with a longer | 
|  | // interval to spread the cost of the GF. | 
|  | active_gf_interval.max = 11 + arf_active_or_kf + VPXMIN(5, q_term); | 
|  |  | 
|  | // Force max GF interval to be odd. | 
|  | active_gf_interval.max = active_gf_interval.max | 0x01; | 
|  |  | 
|  | // We have: active_gf_interval.min <= | 
|  | // rc->max_gf_interval + arf_active_or_kf. | 
|  | if (active_gf_interval.max < active_gf_interval.min) { | 
|  | active_gf_interval.max = active_gf_interval.min; | 
|  | } else { | 
|  | active_gf_interval.max = | 
|  | VPXMIN(active_gf_interval.max, rc->max_gf_interval + arf_active_or_kf); | 
|  | } | 
|  |  | 
|  | // Would the active max drop us out just before the near the next kf? | 
|  | if ((active_gf_interval.max <= rc->frames_to_key) && | 
|  | (active_gf_interval.max >= (rc->frames_to_key - rc->min_gf_interval))) { | 
|  | active_gf_interval.max = rc->frames_to_key / 2; | 
|  | } | 
|  | active_gf_interval.max = | 
|  | VPXMAX(active_gf_interval.max, active_gf_interval.min); | 
|  | #endif | 
|  | return active_gf_interval; | 
|  | } | 
|  |  | 
|  | static int get_arf_layers(int multi_layer_arf, int max_layers, | 
|  | int coding_frame_num) { | 
|  | assert(max_layers <= MAX_ARF_LAYERS); | 
|  | if (multi_layer_arf) { | 
|  | int layers = 0; | 
|  | int i; | 
|  | for (i = coding_frame_num; i > 0; i >>= 1) { | 
|  | ++layers; | 
|  | } | 
|  | layers = VPXMIN(max_layers, layers); | 
|  | return layers; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void define_gf_group(VP9_COMP *cpi, int gf_start_show_idx) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | VP9EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | const FRAME_INFO *frame_info = &cpi->frame_info; | 
|  | const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info; | 
|  | const FIRSTPASS_STATS *const start_pos = twopass->stats_in; | 
|  | int gop_coding_frames; | 
|  |  | 
|  | double gf_group_err = 0.0; | 
|  | double gf_group_raw_error = 0.0; | 
|  | double gf_group_noise = 0.0; | 
|  | double gf_group_skip_pct = 0.0; | 
|  | double gf_group_inactive_zone_rows = 0.0; | 
|  | double gf_group_inter = 0.0; | 
|  | double gf_group_motion = 0.0; | 
|  |  | 
|  | int allow_alt_ref = is_altref_enabled(cpi); | 
|  | int use_alt_ref; | 
|  |  | 
|  | int64_t gf_group_bits; | 
|  | int gf_arf_bits; | 
|  | const int is_key_frame = frame_is_intra_only(cm); | 
|  | // If this is a key frame or the overlay from a previous arf then | 
|  | // the error score / cost of this frame has already been accounted for. | 
|  | const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; | 
|  | int is_alt_ref_flash = 0; | 
|  |  | 
|  | double gop_intra_factor; | 
|  | int gop_frames; | 
|  | RANGE active_gf_interval; | 
|  |  | 
|  | // Reset the GF group data structures unless this is a key | 
|  | // frame in which case it will already have been done. | 
|  | if (is_key_frame == 0) { | 
|  | vp9_zero(twopass->gf_group); | 
|  | } | 
|  |  | 
|  | vpx_clear_system_state(); | 
|  |  | 
|  | active_gf_interval = get_active_gf_inverval_range( | 
|  | frame_info, rc, arf_active_or_kf, gf_start_show_idx, | 
|  | twopass->active_worst_quality, rc->last_boosted_qindex); | 
|  |  | 
|  | if (cpi->multi_layer_arf) { | 
|  | int arf_layers = get_arf_layers(cpi->multi_layer_arf, oxcf->enable_auto_arf, | 
|  | active_gf_interval.max); | 
|  | gop_intra_factor = 1.0 + 0.25 * arf_layers; | 
|  | } else { | 
|  | gop_intra_factor = 1.0; | 
|  | } | 
|  |  | 
|  | #if CONFIG_RATE_CTRL | 
|  | { | 
|  | const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command; | 
|  | assert(allow_alt_ref == 1); | 
|  | if (gop_command->use) { | 
|  | gop_coding_frames = gop_command_coding_frame_count(gop_command); | 
|  | use_alt_ref = gop_command->use_alt_ref; | 
|  | } else { | 
|  | gop_coding_frames = get_gop_coding_frame_num( | 
|  | &use_alt_ref, frame_info, first_pass_info, rc, gf_start_show_idx, | 
|  | &active_gf_interval, gop_intra_factor, cpi->oxcf.lag_in_frames); | 
|  | use_alt_ref &= allow_alt_ref; | 
|  | } | 
|  | } | 
|  | #else | 
|  | gop_coding_frames = get_gop_coding_frame_num( | 
|  | &use_alt_ref, frame_info, first_pass_info, rc, gf_start_show_idx, | 
|  | &active_gf_interval, gop_intra_factor, cpi->oxcf.lag_in_frames); | 
|  | use_alt_ref &= allow_alt_ref; | 
|  | #endif | 
|  |  | 
|  | // Was the group length constrained by the requirement for a new KF? | 
|  | rc->constrained_gf_group = (gop_coding_frames >= rc->frames_to_key) ? 1 : 0; | 
|  |  | 
|  | // Should we use the alternate reference frame. | 
|  | if (use_alt_ref) { | 
|  | const int f_frames = | 
|  | (rc->frames_to_key - gop_coding_frames >= gop_coding_frames - 1) | 
|  | ? gop_coding_frames - 1 | 
|  | : VPXMAX(0, rc->frames_to_key - gop_coding_frames); | 
|  | const int b_frames = gop_coding_frames - 1; | 
|  | const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME]; | 
|  | // TODO(angiebird): figure out why arf's location is assigned this way | 
|  | const int arf_show_idx = VPXMIN(gf_start_show_idx + gop_coding_frames + 1, | 
|  | fps_get_num_frames(first_pass_info)); | 
|  |  | 
|  | // Calculate the boost for alt ref. | 
|  | rc->gfu_boost = | 
|  | compute_arf_boost(frame_info, first_pass_info, arf_show_idx, f_frames, | 
|  | b_frames, avg_inter_frame_qindex); | 
|  | rc->source_alt_ref_pending = 1; | 
|  | } else { | 
|  | const int f_frames = gop_coding_frames - 1; | 
|  | const int b_frames = 0; | 
|  | const int avg_inter_frame_qindex = rc->avg_frame_qindex[INTER_FRAME]; | 
|  | // TODO(angiebird): figure out why arf's location is assigned this way | 
|  | const int gld_show_idx = | 
|  | VPXMIN(gf_start_show_idx + 1, fps_get_num_frames(first_pass_info)); | 
|  | const int arf_boost = | 
|  | compute_arf_boost(frame_info, first_pass_info, gld_show_idx, f_frames, | 
|  | b_frames, avg_inter_frame_qindex); | 
|  | rc->gfu_boost = VPXMIN(MAX_GF_BOOST, arf_boost); | 
|  | rc->source_alt_ref_pending = 0; | 
|  | } | 
|  |  | 
|  | #define LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR 0.2 | 
|  | rc->arf_active_best_quality_adjustment_factor = 1.0; | 
|  | rc->arf_increase_active_best_quality = 0; | 
|  |  | 
|  | if (!is_lossless_requested(&cpi->oxcf)) { | 
|  | if (rc->frames_since_key >= rc->frames_to_key) { | 
|  | // Increase the active best quality in the second half of key frame | 
|  | // interval. | 
|  | rc->arf_active_best_quality_adjustment_factor = | 
|  | LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR + | 
|  | (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) * | 
|  | (rc->frames_to_key - gop_coding_frames) / | 
|  | (VPXMAX(1, ((rc->frames_to_key + rc->frames_since_key) / 2 - | 
|  | gop_coding_frames))); | 
|  | rc->arf_increase_active_best_quality = 1; | 
|  | } else if ((rc->frames_to_key - gop_coding_frames) > 0) { | 
|  | // Reduce the active best quality in the first half of key frame interval. | 
|  | rc->arf_active_best_quality_adjustment_factor = | 
|  | LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR + | 
|  | (1.0 - LAST_ALR_ACTIVE_BEST_QUALITY_ADJUSTMENT_FACTOR) * | 
|  | (rc->frames_since_key + gop_coding_frames) / | 
|  | (VPXMAX(1, (rc->frames_to_key + rc->frames_since_key) / 2 + | 
|  | gop_coding_frames)); | 
|  | rc->arf_increase_active_best_quality = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef AGGRESSIVE_VBR | 
|  | // Limit maximum boost based on interval length. | 
|  | rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 140); | 
|  | #else | 
|  | rc->gfu_boost = VPXMIN((int)rc->gfu_boost, gop_coding_frames * 200); | 
|  | #endif | 
|  |  | 
|  | // Cap the ARF boost when perceptual quality AQ mode is enabled. This is | 
|  | // designed to improve the perceptual quality of high value content and to | 
|  | // make consistent quality across consecutive frames. It will hurt objective | 
|  | // quality. | 
|  | if (oxcf->aq_mode == PERCEPTUAL_AQ) | 
|  | rc->gfu_boost = VPXMIN(rc->gfu_boost, MIN_ARF_GF_BOOST); | 
|  |  | 
|  | rc->baseline_gf_interval = gop_coding_frames - rc->source_alt_ref_pending; | 
|  |  | 
|  | if (rc->source_alt_ref_pending) | 
|  | is_alt_ref_flash = detect_flash(twopass, rc->baseline_gf_interval); | 
|  |  | 
|  | { | 
|  | const double av_err = get_distribution_av_err(cpi, twopass); | 
|  | const double mean_mod_score = twopass->mean_mod_score; | 
|  | // If the first frame is a key frame or the overlay from a previous arf then | 
|  | // the error score / cost of this frame has already been accounted for. | 
|  | int start_idx = arf_active_or_kf ? 1 : 0; | 
|  | int j; | 
|  | for (j = start_idx; j < gop_coding_frames; ++j) { | 
|  | int show_idx = gf_start_show_idx + j; | 
|  | const FIRSTPASS_STATS *frame_stats = | 
|  | fps_get_frame_stats(first_pass_info, show_idx); | 
|  | // Accumulate error score of frames in this gf group. | 
|  | gf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats, | 
|  | mean_mod_score, av_err); | 
|  | gf_group_raw_error += frame_stats->coded_error; | 
|  | gf_group_noise += frame_stats->frame_noise_energy; | 
|  | gf_group_skip_pct += frame_stats->intra_skip_pct; | 
|  | gf_group_inactive_zone_rows += frame_stats->inactive_zone_rows; | 
|  | gf_group_inter += frame_stats->pcnt_inter; | 
|  | gf_group_motion += frame_stats->pcnt_motion; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the bits to be allocated to the gf/arf group as a whole | 
|  | gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); | 
|  |  | 
|  | gop_frames = | 
|  | rc->baseline_gf_interval + rc->source_alt_ref_pending - arf_active_or_kf; | 
|  |  | 
|  | // Store the average moise level measured for the group | 
|  | // TODO(any): Experiment with removal of else condition (gop_frames = 0) so | 
|  | // that consumption of group noise energy is based on previous gf group | 
|  | if (gop_frames > 0) | 
|  | twopass->gf_group.group_noise_energy = (int)(gf_group_noise / gop_frames); | 
|  | else | 
|  | twopass->gf_group.group_noise_energy = 0; | 
|  |  | 
|  | // Calculate an estimate of the maxq needed for the group. | 
|  | // We are more aggressive about correcting for sections | 
|  | // where there could be significant overshoot than for easier | 
|  | // sections where we do not wish to risk creating an overshoot | 
|  | // of the allocated bit budget. | 
|  | if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) { | 
|  | const int vbr_group_bits_per_frame = (int)(gf_group_bits / gop_frames); | 
|  | const double group_av_err = gf_group_raw_error / gop_frames; | 
|  | const double group_av_noise = gf_group_noise / gop_frames; | 
|  | const double group_av_skip_pct = gf_group_skip_pct / gop_frames; | 
|  | const double group_av_inactive_zone = ((gf_group_inactive_zone_rows * 2) / | 
|  | (gop_frames * (double)cm->mb_rows)); | 
|  | int tmp_q = get_twopass_worst_quality( | 
|  | cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), | 
|  | group_av_noise, vbr_group_bits_per_frame); | 
|  | twopass->active_worst_quality = | 
|  | (tmp_q + (twopass->active_worst_quality * 3)) >> 2; | 
|  |  | 
|  | #if CONFIG_ALWAYS_ADJUST_BPM | 
|  | // Reset rolling actual and target bits counters for ARF groups. | 
|  | twopass->rolling_arf_group_target_bits = 0; | 
|  | twopass->rolling_arf_group_actual_bits = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Context Adjustment of ARNR filter strength | 
|  | if (rc->baseline_gf_interval > 1) { | 
|  | adjust_group_arnr_filter(cpi, (gf_group_noise / gop_frames), | 
|  | (gf_group_inter / gop_frames), | 
|  | (gf_group_motion / gop_frames)); | 
|  | } else { | 
|  | twopass->arnr_strength_adjustment = 0; | 
|  | } | 
|  |  | 
|  | // Calculate the extra bits to be used for boosted frame(s) | 
|  | gf_arf_bits = calculate_boost_bits((rc->baseline_gf_interval - 1), | 
|  | rc->gfu_boost, gf_group_bits); | 
|  |  | 
|  | // Adjust KF group bits and error remaining. | 
|  | twopass->kf_group_error_left -= gf_group_err; | 
|  |  | 
|  | // Decide GOP structure. | 
|  | define_gf_group_structure(cpi); | 
|  |  | 
|  | // Allocate bits to each of the frames in the GF group. | 
|  | allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits); | 
|  |  | 
|  | // Reset the file position. | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | twopass->section_intra_rating = calculate_section_intra_ratio( | 
|  | start_pos, twopass->stats_in_end, rc->baseline_gf_interval); | 
|  |  | 
|  | if (oxcf->resize_mode == RESIZE_DYNAMIC) { | 
|  | // Default to starting GF groups at normal frame size. | 
|  | cpi->rc.next_frame_size_selector = UNSCALED; | 
|  | } | 
|  | #if !CONFIG_ALWAYS_ADJUST_BPM | 
|  | // Reset rolling actual and target bits counters for ARF groups. | 
|  | twopass->rolling_arf_group_target_bits = 0; | 
|  | twopass->rolling_arf_group_actual_bits = 0; | 
|  | #endif | 
|  | rc->preserve_arf_as_gld = rc->preserve_next_arf_as_gld; | 
|  | rc->preserve_next_arf_as_gld = 0; | 
|  | // If alt ref frame is flash do not set preserve_arf_as_gld | 
|  | if (!is_lossless_requested(&cpi->oxcf) && !cpi->use_svc && | 
|  | cpi->oxcf.aq_mode == NO_AQ && cpi->multi_layer_arf && !is_alt_ref_flash) | 
|  | rc->preserve_next_arf_as_gld = 1; | 
|  | } | 
|  |  | 
|  | // Intra / Inter threshold very low | 
|  | #define VERY_LOW_II 1.5 | 
|  | // Clean slide transitions we expect a sharp single frame spike in error. | 
|  | #define ERROR_SPIKE 5.0 | 
|  |  | 
|  | // Slide show transition detection. | 
|  | // Tests for case where there is very low error either side of the current frame | 
|  | // but much higher just for this frame. This can help detect key frames in | 
|  | // slide shows even where the slides are pictures of different sizes. | 
|  | // Also requires that intra and inter errors are very similar to help eliminate | 
|  | // harmful false positives. | 
|  | // It will not help if the transition is a fade or other multi-frame effect. | 
|  | static int slide_transition(const FIRSTPASS_STATS *this_frame, | 
|  | const FIRSTPASS_STATS *last_frame, | 
|  | const FIRSTPASS_STATS *next_frame) { | 
|  | return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) && | 
|  | (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) && | 
|  | (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE)); | 
|  | } | 
|  |  | 
|  | // This test looks for anomalous changes in the nature of the intra signal | 
|  | // related to the previous and next frame as an indicator for coding a key | 
|  | // frame. This test serves to detect some additional scene cuts, | 
|  | // especially in lowish motion and low contrast sections, that are missed | 
|  | // by the other tests. | 
|  | static int intra_step_transition(const FIRSTPASS_STATS *this_frame, | 
|  | const FIRSTPASS_STATS *last_frame, | 
|  | const FIRSTPASS_STATS *next_frame) { | 
|  | double last_ii_ratio; | 
|  | double this_ii_ratio; | 
|  | double next_ii_ratio; | 
|  | double last_pcnt_intra = 1.0 - last_frame->pcnt_inter; | 
|  | double this_pcnt_intra = 1.0 - this_frame->pcnt_inter; | 
|  | double next_pcnt_intra = 1.0 - next_frame->pcnt_inter; | 
|  | double mod_this_intra = this_pcnt_intra + this_frame->pcnt_neutral; | 
|  |  | 
|  | // Calculate ii ratio for this frame last frame and next frame. | 
|  | last_ii_ratio = | 
|  | last_frame->intra_error / DOUBLE_DIVIDE_CHECK(last_frame->coded_error); | 
|  | this_ii_ratio = | 
|  | this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error); | 
|  | next_ii_ratio = | 
|  | next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error); | 
|  |  | 
|  | // Return true the intra/inter ratio for the current frame is | 
|  | // low but better in the next and previous frame and the relative useage of | 
|  | // intra in the current frame is markedly higher than the last and next frame. | 
|  | if ((this_ii_ratio < 2.0) && (last_ii_ratio > 2.25) && | 
|  | (next_ii_ratio > 2.25) && (this_pcnt_intra > (3 * last_pcnt_intra)) && | 
|  | (this_pcnt_intra > (3 * next_pcnt_intra)) && | 
|  | ((this_pcnt_intra > 0.075) || (mod_this_intra > 0.85))) { | 
|  | return 1; | 
|  | // Very low inter intra ratio (i.e. not much gain from inter coding), most | 
|  | // blocks neutral on coding method and better inter prediction either side | 
|  | } else if ((this_ii_ratio < 1.25) && (mod_this_intra > 0.85) && | 
|  | (this_ii_ratio < last_ii_ratio * 0.9) && | 
|  | (this_ii_ratio < next_ii_ratio * 0.9)) { | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Minimum % intra coding observed in first pass (1.0 = 100%) | 
|  | #define MIN_INTRA_LEVEL 0.25 | 
|  | // Threshold for use of the lagging second reference frame. Scene cuts do not | 
|  | // usually have a high second ref useage. | 
|  | #define SECOND_REF_USEAGE_THRESH 0.2 | 
|  | // Hard threshold where the first pass chooses intra for almost all blocks. | 
|  | // In such a case even if the frame is not a scene cut coding a key frame | 
|  | // may be a good option. | 
|  | #define VERY_LOW_INTER_THRESH 0.05 | 
|  | // Maximum threshold for the relative ratio of intra error score vs best | 
|  | // inter error score. | 
|  | #define KF_II_ERR_THRESHOLD 2.5 | 
|  | #define KF_II_MAX 128.0 | 
|  | #define II_FACTOR 12.5 | 
|  | // Test for very low intra complexity which could cause false key frames | 
|  | #define V_LOW_INTRA 0.5 | 
|  |  | 
|  | static int test_candidate_kf(const FIRST_PASS_INFO *first_pass_info, | 
|  | int show_idx) { | 
|  | const FIRSTPASS_STATS *last_frame = | 
|  | fps_get_frame_stats(first_pass_info, show_idx - 1); | 
|  | const FIRSTPASS_STATS *this_frame = | 
|  | fps_get_frame_stats(first_pass_info, show_idx); | 
|  | const FIRSTPASS_STATS *next_frame = | 
|  | fps_get_frame_stats(first_pass_info, show_idx + 1); | 
|  | int is_viable_kf = 0; | 
|  | double pcnt_intra = 1.0 - this_frame->pcnt_inter; | 
|  |  | 
|  | // Does the frame satisfy the primary criteria of a key frame? | 
|  | // See above for an explanation of the test criteria. | 
|  | // If so, then examine how well it predicts subsequent frames. | 
|  | detect_flash_from_frame_stats(next_frame); | 
|  | if (!detect_flash_from_frame_stats(this_frame) && | 
|  | !detect_flash_from_frame_stats(next_frame) && | 
|  | (this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && | 
|  | ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || | 
|  | (slide_transition(this_frame, last_frame, next_frame)) || | 
|  | (intra_step_transition(this_frame, last_frame, next_frame)) || | 
|  | (((this_frame->coded_error > (next_frame->coded_error * 1.2)) && | 
|  | (this_frame->coded_error > (last_frame->coded_error * 1.2))) && | 
|  | (pcnt_intra > MIN_INTRA_LEVEL) && | 
|  | ((pcnt_intra + this_frame->pcnt_neutral) > 0.5) && | 
|  | ((this_frame->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < | 
|  | KF_II_ERR_THRESHOLD)))) { | 
|  | int i; | 
|  | double boost_score = 0.0; | 
|  | double old_boost_score = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  |  | 
|  | // Examine how well the key frame predicts subsequent frames. | 
|  | for (i = 0; i < 16; ++i) { | 
|  | const FIRSTPASS_STATS *frame_stats = | 
|  | fps_get_frame_stats(first_pass_info, show_idx + 1 + i); | 
|  | double next_iiratio = (II_FACTOR * frame_stats->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(frame_stats->coded_error)); | 
|  |  | 
|  | if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; | 
|  |  | 
|  | // Cumulative effect of decay in prediction quality. | 
|  | if (frame_stats->pcnt_inter > 0.85) | 
|  | decay_accumulator *= frame_stats->pcnt_inter; | 
|  | else | 
|  | decay_accumulator *= (0.85 + frame_stats->pcnt_inter) / 2.0; | 
|  |  | 
|  | // Keep a running total. | 
|  | boost_score += (decay_accumulator * next_iiratio); | 
|  |  | 
|  | // Test various breakout clauses. | 
|  | if ((frame_stats->pcnt_inter < 0.05) || (next_iiratio < 1.5) || | 
|  | (((frame_stats->pcnt_inter - frame_stats->pcnt_neutral) < 0.20) && | 
|  | (next_iiratio < 3.0)) || | 
|  | ((boost_score - old_boost_score) < 3.0) || | 
|  | (frame_stats->intra_error < V_LOW_INTRA)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | old_boost_score = boost_score; | 
|  |  | 
|  | // Get the next frame details | 
|  | if (show_idx + 1 + i == fps_get_num_frames(first_pass_info) - 1) break; | 
|  | } | 
|  |  | 
|  | // If there is tolerable prediction for at least the next 3 frames then | 
|  | // break out else discard this potential key frame and move on | 
|  | if (boost_score > 30.0 && (i > 3)) { | 
|  | is_viable_kf = 1; | 
|  | } else { | 
|  | is_viable_kf = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return is_viable_kf; | 
|  | } | 
|  |  | 
|  | #define FRAMES_TO_CHECK_DECAY 8 | 
|  | #define MIN_KF_TOT_BOOST 300 | 
|  | #define DEFAULT_SCAN_FRAMES_FOR_KF_BOOST 32 | 
|  | #define MAX_SCAN_FRAMES_FOR_KF_BOOST 48 | 
|  | #define MIN_SCAN_FRAMES_FOR_KF_BOOST 32 | 
|  | #define KF_ABS_ZOOM_THRESH 6.0 | 
|  |  | 
|  | #ifdef AGGRESSIVE_VBR | 
|  | #define KF_MAX_FRAME_BOOST 80.0 | 
|  | #define MAX_KF_TOT_BOOST 4800 | 
|  | #else | 
|  | #define KF_MAX_FRAME_BOOST 96.0 | 
|  | #define MAX_KF_TOT_BOOST 5400 | 
|  | #endif | 
|  |  | 
|  | int vp9_get_frames_to_next_key(const VP9EncoderConfig *oxcf, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRST_PASS_INFO *first_pass_info, | 
|  | int kf_show_idx, int min_gf_interval) { | 
|  | double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; | 
|  | int j; | 
|  | int frames_to_key; | 
|  | int max_frames_to_key = first_pass_info->num_frames - kf_show_idx; | 
|  | max_frames_to_key = VPXMIN(max_frames_to_key, oxcf->key_freq); | 
|  |  | 
|  | // Initialize the decay rates for the recent frames to check | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; | 
|  | // Find the next keyframe. | 
|  | if (!oxcf->auto_key) { | 
|  | frames_to_key = max_frames_to_key; | 
|  | } else { | 
|  | frames_to_key = 1; | 
|  | while (frames_to_key < max_frames_to_key) { | 
|  | // Provided that we are not at the end of the file... | 
|  | if (kf_show_idx + frames_to_key + 1 < first_pass_info->num_frames) { | 
|  | double loop_decay_rate; | 
|  | double decay_accumulator; | 
|  | const FIRSTPASS_STATS *next_frame = fps_get_frame_stats( | 
|  | first_pass_info, kf_show_idx + frames_to_key + 1); | 
|  |  | 
|  | // Check for a scene cut. | 
|  | if (test_candidate_kf(first_pass_info, kf_show_idx + frames_to_key)) | 
|  | break; | 
|  |  | 
|  | // How fast is the prediction quality decaying? | 
|  | loop_decay_rate = get_prediction_decay_rate(frame_info, next_frame); | 
|  |  | 
|  | // We want to know something about the recent past... rather than | 
|  | // as used elsewhere where we are concerned with decay in prediction | 
|  | // quality since the last GF or KF. | 
|  | recent_loop_decay[(frames_to_key - 1) % FRAMES_TO_CHECK_DECAY] = | 
|  | loop_decay_rate; | 
|  | decay_accumulator = 1.0; | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) | 
|  | decay_accumulator *= recent_loop_decay[j]; | 
|  |  | 
|  | // Special check for transition or high motion followed by a | 
|  | // static scene. | 
|  | if ((frames_to_key - 1) > min_gf_interval && loop_decay_rate >= 0.999 && | 
|  | decay_accumulator < 0.9) { | 
|  | int still_interval = oxcf->key_freq - (frames_to_key - 1); | 
|  | // TODO(angiebird): Figure out why we use "+1" here | 
|  | int show_idx = kf_show_idx + frames_to_key; | 
|  | if (check_transition_to_still(first_pass_info, show_idx, | 
|  | still_interval)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | ++frames_to_key; | 
|  | } | 
|  | } | 
|  | return frames_to_key; | 
|  | } | 
|  |  | 
|  | static void find_next_key_frame(VP9_COMP *cpi, int kf_show_idx) { | 
|  | int i; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | const VP9EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const FIRST_PASS_INFO *first_pass_info = &twopass->first_pass_info; | 
|  | const FRAME_INFO *frame_info = &cpi->frame_info; | 
|  | const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
|  | const FIRSTPASS_STATS *keyframe_stats = | 
|  | fps_get_frame_stats(first_pass_info, kf_show_idx); | 
|  | FIRSTPASS_STATS next_frame; | 
|  | int kf_bits = 0; | 
|  | int64_t max_kf_bits; | 
|  | double zero_motion_accumulator = 1.0; | 
|  | double zero_motion_sum = 0.0; | 
|  | double zero_motion_avg; | 
|  | double motion_compensable_sum = 0.0; | 
|  | double motion_compensable_avg; | 
|  | int num_frames = 0; | 
|  | int kf_boost_scan_frames = DEFAULT_SCAN_FRAMES_FOR_KF_BOOST; | 
|  | double boost_score = 0.0; | 
|  | double kf_mod_err = 0.0; | 
|  | double kf_raw_err = 0.0; | 
|  | double kf_group_err = 0.0; | 
|  | double sr_accumulator = 0.0; | 
|  | double abs_mv_in_out_accumulator = 0.0; | 
|  | const double av_err = get_distribution_av_err(cpi, twopass); | 
|  | const double mean_mod_score = twopass->mean_mod_score; | 
|  | vp9_zero(next_frame); | 
|  |  | 
|  | cpi->common.frame_type = KEY_FRAME; | 
|  | rc->frames_since_key = 0; | 
|  |  | 
|  | // Reset the GF group data structures. | 
|  | vp9_zero(*gf_group); | 
|  |  | 
|  | // Is this a forced key frame by interval. | 
|  | rc->this_key_frame_forced = rc->next_key_frame_forced; | 
|  |  | 
|  | // Clear the alt ref active flag and last group multi arf flags as they | 
|  | // can never be set for a key frame. | 
|  | rc->source_alt_ref_active = 0; | 
|  |  | 
|  | // KF is always a GF so clear frames till next gf counter. | 
|  | rc->frames_till_gf_update_due = 0; | 
|  |  | 
|  | rc->frames_to_key = 1; | 
|  |  | 
|  | twopass->kf_group_bits = 0;          // Total bits available to kf group | 
|  | twopass->kf_group_error_left = 0.0;  // Group modified error score. | 
|  |  | 
|  | kf_raw_err = keyframe_stats->intra_error; | 
|  | kf_mod_err = calc_norm_frame_score(oxcf, frame_info, keyframe_stats, | 
|  | mean_mod_score, av_err); | 
|  |  | 
|  | rc->frames_to_key = vp9_get_frames_to_next_key( | 
|  | oxcf, frame_info, first_pass_info, kf_show_idx, rc->min_gf_interval); | 
|  |  | 
|  | // If there is a max kf interval set by the user we must obey it. | 
|  | // We already breakout of the loop above at 2x max. | 
|  | // This code centers the extra kf if the actual natural interval | 
|  | // is between 1x and 2x. | 
|  | if (rc->frames_to_key >= cpi->oxcf.key_freq) { | 
|  | rc->next_key_frame_forced = 1; | 
|  | } else { | 
|  | rc->next_key_frame_forced = 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < rc->frames_to_key; ++i) { | 
|  | const FIRSTPASS_STATS *frame_stats = | 
|  | fps_get_frame_stats(first_pass_info, kf_show_idx + i); | 
|  | // Accumulate kf group error. | 
|  | kf_group_err += calc_norm_frame_score(oxcf, frame_info, frame_stats, | 
|  | mean_mod_score, av_err); | 
|  | } | 
|  |  | 
|  | // Calculate the number of bits that should be assigned to the kf group. | 
|  | if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) { | 
|  | // Maximum number of bits for a single normal frame (not key frame). | 
|  | const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
|  |  | 
|  | // Maximum number of bits allocated to the key frame group. | 
|  | int64_t max_grp_bits; | 
|  |  | 
|  | // Default allocation based on bits left and relative | 
|  | // complexity of the section. | 
|  | twopass->kf_group_bits = (int64_t)( | 
|  | twopass->bits_left * (kf_group_err / twopass->normalized_score_left)); | 
|  |  | 
|  | // Clip based on maximum per frame rate defined by the user. | 
|  | max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; | 
|  | if (twopass->kf_group_bits > max_grp_bits) | 
|  | twopass->kf_group_bits = max_grp_bits; | 
|  | } else { | 
|  | twopass->kf_group_bits = 0; | 
|  | } | 
|  | twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits); | 
|  |  | 
|  | // Scan through the kf group collating various stats used to determine | 
|  | // how many bits to spend on it. | 
|  | boost_score = 0.0; | 
|  |  | 
|  | for (i = 0; i < VPXMIN(MAX_SCAN_FRAMES_FOR_KF_BOOST, (rc->frames_to_key - 1)); | 
|  | ++i) { | 
|  | if (EOF == input_stats(twopass, &next_frame)) break; | 
|  |  | 
|  | zero_motion_sum += next_frame.pcnt_inter - next_frame.pcnt_motion; | 
|  | motion_compensable_sum += | 
|  | 1 - (double)next_frame.coded_error / next_frame.intra_error; | 
|  | num_frames++; | 
|  | } | 
|  |  | 
|  | if (num_frames >= MIN_SCAN_FRAMES_FOR_KF_BOOST) { | 
|  | zero_motion_avg = zero_motion_sum / num_frames; | 
|  | motion_compensable_avg = motion_compensable_sum / num_frames; | 
|  | kf_boost_scan_frames = (int)(VPXMAX(64 * zero_motion_avg - 16, | 
|  | 160 * motion_compensable_avg - 112)); | 
|  | kf_boost_scan_frames = | 
|  | VPXMAX(VPXMIN(kf_boost_scan_frames, MAX_SCAN_FRAMES_FOR_KF_BOOST), | 
|  | MIN_SCAN_FRAMES_FOR_KF_BOOST); | 
|  | } | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | for (i = 0; i < (rc->frames_to_key - 1); ++i) { | 
|  | if (EOF == input_stats(twopass, &next_frame)) break; | 
|  |  | 
|  | // The zero motion test here insures that if we mark a kf group as static | 
|  | // it is static throughout not just the first KF_BOOST_SCAN_MAX_FRAMES. | 
|  | // It also allows for a larger boost on long static groups. | 
|  | if ((i <= kf_boost_scan_frames) || (zero_motion_accumulator >= 0.99)) { | 
|  | double frame_boost; | 
|  | double zm_factor; | 
|  |  | 
|  | // Monitor for static sections. | 
|  | // First frame in kf group the second ref indicator is invalid. | 
|  | if (i > 0) { | 
|  | zero_motion_accumulator = | 
|  | VPXMIN(zero_motion_accumulator, | 
|  | get_zero_motion_factor(&cpi->frame_info, &next_frame)); | 
|  | } else { | 
|  | zero_motion_accumulator = | 
|  | next_frame.pcnt_inter - next_frame.pcnt_motion; | 
|  | } | 
|  |  | 
|  | // Factor 0.75-1.25 based on how much of frame is static. | 
|  | zm_factor = (0.75 + (zero_motion_accumulator / 2.0)); | 
|  |  | 
|  | // The second (lagging) ref error is not valid immediately after | 
|  | // a key frame because either the lag has not built up (in the case of | 
|  | // the first key frame or it points to a refernce before the new key | 
|  | // frame. | 
|  | if (i < 2) sr_accumulator = 0.0; | 
|  | frame_boost = calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0, | 
|  | KF_MAX_FRAME_BOOST * zm_factor); | 
|  |  | 
|  | boost_score += frame_boost; | 
|  |  | 
|  | // Measure of zoom. Large zoom tends to indicate reduced boost. | 
|  | abs_mv_in_out_accumulator += | 
|  | fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion); | 
|  |  | 
|  | if ((frame_boost < 25.00) || | 
|  | (abs_mv_in_out_accumulator > KF_ABS_ZOOM_THRESH) || | 
|  | (sr_accumulator > (kf_raw_err * 1.50))) | 
|  | break; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | // Store the zero motion percentage | 
|  | twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | twopass->key_frame_section_intra_rating = calculate_section_intra_ratio( | 
|  | start_position, twopass->stats_in_end, rc->frames_to_key); | 
|  |  | 
|  | // Special case for static / slide show content but dont apply | 
|  | // if the kf group is very short. | 
|  | if ((zero_motion_accumulator > 0.99) && (rc->frames_to_key > 8)) { | 
|  | rc->kf_boost = MAX_KF_TOT_BOOST; | 
|  | } else { | 
|  | // Apply various clamps for min and max boost | 
|  | rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3)); | 
|  | rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST); | 
|  | rc->kf_boost = VPXMIN(rc->kf_boost, MAX_KF_TOT_BOOST); | 
|  | } | 
|  |  | 
|  | // Work out how many bits to allocate for the key frame itself. | 
|  | kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, | 
|  | twopass->kf_group_bits); | 
|  | // Based on the spatial complexity, increase the bits allocated to key frame. | 
|  | kf_bits += | 
|  | (int)((twopass->kf_group_bits - kf_bits) * (kf_mod_err / kf_group_err)); | 
|  | max_kf_bits = | 
|  | twopass->kf_group_bits - (rc->frames_to_key - 1) * FRAME_OVERHEAD_BITS; | 
|  | max_kf_bits = lclamp(max_kf_bits, 0, INT_MAX); | 
|  | kf_bits = VPXMIN(kf_bits, (int)max_kf_bits); | 
|  |  | 
|  | twopass->kf_group_bits -= kf_bits; | 
|  |  | 
|  | // Save the bits to spend on the key frame. | 
|  | gf_group->bit_allocation[0] = kf_bits; | 
|  | gf_group->update_type[0] = KF_UPDATE; | 
|  | gf_group->rf_level[0] = KF_STD; | 
|  | gf_group->layer_depth[0] = 0; | 
|  |  | 
|  | // Note the total error score of the kf group minus the key frame itself. | 
|  | twopass->kf_group_error_left = (kf_group_err - kf_mod_err); | 
|  |  | 
|  | // Adjust the count of total modified error left. | 
|  | // The count of bits left is adjusted elsewhere based on real coded frame | 
|  | // sizes. | 
|  | twopass->normalized_score_left -= kf_group_err; | 
|  |  | 
|  | if (oxcf->resize_mode == RESIZE_DYNAMIC) { | 
|  | // Default to normal-sized frame on keyframes. | 
|  | cpi->rc.next_frame_size_selector = UNSCALED; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int is_skippable_frame(const VP9_COMP *cpi) { | 
|  | // If the current frame does not have non-zero motion vector detected in the | 
|  | // first  pass, and so do its previous and forward frames, then this frame | 
|  | // can be skipped for partition check, and the partition size is assigned | 
|  | // according to the variance | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | return (!frame_is_intra_only(&cpi->common) && | 
|  | twopass->stats_in - 2 > twopass->stats_in_start && | 
|  | twopass->stats_in < twopass->stats_in_end && | 
|  | (twopass->stats_in - 1)->pcnt_inter - | 
|  | (twopass->stats_in - 1)->pcnt_motion == | 
|  | 1 && | 
|  | (twopass->stats_in - 2)->pcnt_inter - | 
|  | (twopass->stats_in - 2)->pcnt_motion == | 
|  | 1 && | 
|  | twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); | 
|  | } | 
|  |  | 
|  | void vp9_rc_get_second_pass_params(VP9_COMP *cpi) { | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | FIRSTPASS_STATS this_frame; | 
|  | const int show_idx = cm->current_video_frame; | 
|  |  | 
|  | if (!twopass->stats_in) return; | 
|  |  | 
|  | // If this is an arf frame then we dont want to read the stats file or | 
|  | // advance the input pointer as we already have what we need. | 
|  | if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { | 
|  | int target_rate; | 
|  |  | 
|  | vp9_zero(this_frame); | 
|  | this_frame = | 
|  | cpi->twopass.stats_in_start[cm->current_video_frame + | 
|  | gf_group->arf_src_offset[gf_group->index]]; | 
|  |  | 
|  | vp9_configure_buffer_updates(cpi, gf_group->index); | 
|  |  | 
|  | target_rate = gf_group->bit_allocation[gf_group->index]; | 
|  | target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); | 
|  | rc->base_frame_target = target_rate; | 
|  |  | 
|  | cm->frame_type = INTER_FRAME; | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && | 
|  | !cpi->use_svc) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | // The multiplication by 256 reverses a scaling factor of (>> 8) | 
|  | // applied when combining MB error values for the frame. | 
|  | twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0); | 
|  | twopass->mb_smooth_pct = this_frame.intra_smooth_pct; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | vpx_clear_system_state(); | 
|  |  | 
|  | if (cpi->oxcf.rc_mode == VPX_Q) { | 
|  | twopass->active_worst_quality = cpi->oxcf.cq_level; | 
|  | } else if (cm->current_video_frame == 0) { | 
|  | const int frames_left = | 
|  | (int)(twopass->total_stats.count - cm->current_video_frame); | 
|  | // Special case code for first frame. | 
|  | const int section_target_bandwidth = | 
|  | (int)(twopass->bits_left / frames_left); | 
|  | const double section_length = twopass->total_left_stats.count; | 
|  | const double section_error = | 
|  | twopass->total_left_stats.coded_error / section_length; | 
|  | const double section_intra_skip = | 
|  | twopass->total_left_stats.intra_skip_pct / section_length; | 
|  | const double section_inactive_zone = | 
|  | (twopass->total_left_stats.inactive_zone_rows * 2) / | 
|  | ((double)cm->mb_rows * section_length); | 
|  | const double section_noise = | 
|  | twopass->total_left_stats.frame_noise_energy / section_length; | 
|  | int tmp_q; | 
|  |  | 
|  | tmp_q = get_twopass_worst_quality( | 
|  | cpi, section_error, section_intra_skip + section_inactive_zone, | 
|  | section_noise, section_target_bandwidth); | 
|  |  | 
|  | twopass->active_worst_quality = tmp_q; | 
|  | twopass->baseline_active_worst_quality = tmp_q; | 
|  | rc->ni_av_qi = tmp_q; | 
|  | rc->last_q[INTER_FRAME] = tmp_q; | 
|  | rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth); | 
|  | rc->avg_frame_qindex[INTER_FRAME] = tmp_q; | 
|  | rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; | 
|  | rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; | 
|  | } | 
|  | vp9_zero(this_frame); | 
|  | if (EOF == input_stats(twopass, &this_frame)) return; | 
|  |  | 
|  | // Set the frame content type flag. | 
|  | if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) | 
|  | twopass->fr_content_type = FC_GRAPHICS_ANIMATION; | 
|  | else | 
|  | twopass->fr_content_type = FC_NORMAL; | 
|  |  | 
|  | // Keyframe and section processing. | 
|  | if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { | 
|  | // Define next KF group and assign bits to it. | 
|  | find_next_key_frame(cpi, show_idx); | 
|  | } else { | 
|  | cm->frame_type = INTER_FRAME; | 
|  | } | 
|  |  | 
|  | // Define a new GF/ARF group. (Should always enter here for key frames). | 
|  | if (rc->frames_till_gf_update_due == 0) { | 
|  | define_gf_group(cpi, show_idx); | 
|  |  | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  |  | 
|  | #if ARF_STATS_OUTPUT | 
|  | { | 
|  | FILE *fpfile; | 
|  | fpfile = fopen("arf.stt", "a"); | 
|  | ++arf_count; | 
|  | fprintf(fpfile, "%10d %10ld %10d %10d %10ld %10ld\n", | 
|  | cm->current_video_frame, rc->frames_till_gf_update_due, | 
|  | rc->kf_boost, arf_count, rc->gfu_boost, cm->frame_type); | 
|  |  | 
|  | fclose(fpfile); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | vp9_configure_buffer_updates(cpi, gf_group->index); | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && | 
|  | !cpi->use_svc) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | rc->base_frame_target = gf_group->bit_allocation[gf_group->index]; | 
|  |  | 
|  | // The multiplication by 256 reverses a scaling factor of (>> 8) | 
|  | // applied when combining MB error values for the frame. | 
|  | twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0); | 
|  | twopass->mb_smooth_pct = this_frame.intra_smooth_pct; | 
|  |  | 
|  | // Update the total stats remaining structure. | 
|  | subtract_stats(&twopass->total_left_stats, &this_frame); | 
|  | } | 
|  |  | 
|  | #define MINQ_ADJ_LIMIT 48 | 
|  | #define MINQ_ADJ_LIMIT_CQ 20 | 
|  | #define HIGH_UNDERSHOOT_RATIO 2 | 
|  | void vp9_twopass_postencode_update(VP9_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | VP9_COMMON *const cm = &cpi->common; | 
|  | const int bits_used = rc->base_frame_target; | 
|  |  | 
|  | // VBR correction is done through rc->vbr_bits_off_target. Based on the | 
|  | // sign of this value, a limited % adjustment is made to the target rate | 
|  | // of subsequent frames, to try and push it back towards 0. This method | 
|  | // is designed to prevent extreme behaviour at the end of a clip | 
|  | // or group of frames. | 
|  | rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; | 
|  | twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0); | 
|  |  | 
|  | // Target vs actual bits for this arf group. | 
|  | twopass->rolling_arf_group_target_bits += rc->this_frame_target; | 
|  | twopass->rolling_arf_group_actual_bits += rc->projected_frame_size; | 
|  |  | 
|  | // Calculate the pct rc error. | 
|  | if (rc->total_actual_bits) { | 
|  | rc->rate_error_estimate = | 
|  | (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); | 
|  | rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); | 
|  | } else { | 
|  | rc->rate_error_estimate = 0; | 
|  | } | 
|  |  | 
|  | if (cpi->common.frame_type != KEY_FRAME) { | 
|  | twopass->kf_group_bits -= bits_used; | 
|  | twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; | 
|  | } | 
|  | twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0); | 
|  |  | 
|  | // Increment the gf group index ready for the next frame. | 
|  | ++twopass->gf_group.index; | 
|  |  | 
|  | // If the rate control is drifting consider adjustment to min or maxq. | 
|  | if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) { | 
|  | const int maxq_adj_limit = | 
|  | rc->worst_quality - twopass->active_worst_quality; | 
|  | const int minq_adj_limit = | 
|  | (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); | 
|  | int aq_extend_min = 0; | 
|  | int aq_extend_max = 0; | 
|  |  | 
|  | // Extend min or Max Q range to account for imbalance from the base | 
|  | // value when using AQ. | 
|  | if (cpi->oxcf.aq_mode != NO_AQ && cpi->oxcf.aq_mode != PSNR_AQ && | 
|  | cpi->oxcf.aq_mode != PERCEPTUAL_AQ) { | 
|  | if (cm->seg.aq_av_offset < 0) { | 
|  | // The balance of the AQ map tends towarda lowering the average Q. | 
|  | aq_extend_min = 0; | 
|  | aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset); | 
|  | } else { | 
|  | // The balance of the AQ map tends towards raising the average Q. | 
|  | aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset); | 
|  | aq_extend_max = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Undershoot. | 
|  | if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { | 
|  | --twopass->extend_maxq; | 
|  | if (rc->rolling_target_bits >= rc->rolling_actual_bits) | 
|  | ++twopass->extend_minq; | 
|  | // Overshoot. | 
|  | } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { | 
|  | --twopass->extend_minq; | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | ++twopass->extend_maxq; | 
|  | } else { | 
|  | // Adjustment for extreme local overshoot. | 
|  | if (rc->projected_frame_size > (2 * rc->base_frame_target) && | 
|  | rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) | 
|  | ++twopass->extend_maxq; | 
|  |  | 
|  | // Unwind undershoot or overshoot adjustment. | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | --twopass->extend_minq; | 
|  | else if (rc->rolling_target_bits > rc->rolling_actual_bits) | 
|  | --twopass->extend_maxq; | 
|  | } | 
|  |  | 
|  | twopass->extend_minq = | 
|  | clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit); | 
|  | twopass->extend_maxq = | 
|  | clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit); | 
|  |  | 
|  | // If there is a big and undexpected undershoot then feed the extra | 
|  | // bits back in quickly. One situation where this may happen is if a | 
|  | // frame is unexpectedly almost perfectly predicted by the ARF or GF | 
|  | // but not very well predcited by the previous frame. | 
|  | if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { | 
|  | int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; | 
|  | if (rc->projected_frame_size < fast_extra_thresh) { | 
|  | rc->vbr_bits_off_target_fast += | 
|  | fast_extra_thresh - rc->projected_frame_size; | 
|  | rc->vbr_bits_off_target_fast = | 
|  | VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); | 
|  |  | 
|  | // Fast adaptation of minQ if necessary to use up the extra bits. | 
|  | if (rc->avg_frame_bandwidth) { | 
|  | twopass->extend_minq_fast = | 
|  | (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); | 
|  | } | 
|  | twopass->extend_minq_fast = VPXMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else if (rc->vbr_bits_off_target_fast) { | 
|  | twopass->extend_minq_fast = VPXMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else { | 
|  | twopass->extend_minq_fast = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_RATE_CTRL | 
|  | void vp9_get_next_group_of_picture(const VP9_COMP *cpi, int *first_is_key_frame, | 
|  | int *use_alt_ref, int *coding_frame_count, | 
|  | int *first_show_idx, | 
|  | int *last_gop_use_alt_ref) { | 
|  | const GOP_COMMAND *gop_command = &cpi->encode_command.gop_command; | 
|  | // We make a copy of rc here because we want to get information from the | 
|  | // encoder without changing its state. | 
|  | // TODO(angiebird): Avoid copying rc here. | 
|  | RATE_CONTROL rc = cpi->rc; | 
|  | const int multi_layer_arf = 0; | 
|  | const int allow_alt_ref = 1; | 
|  | // We assume that current_video_frame is updated to the show index of the | 
|  | // frame we are about to called. Note that current_video_frame is updated at | 
|  | // the end of encode_frame_to_data_rate(). | 
|  | // TODO(angiebird): Avoid this kind of fragile style. | 
|  | *first_show_idx = cpi->common.current_video_frame; | 
|  | *last_gop_use_alt_ref = rc.source_alt_ref_active; | 
|  |  | 
|  | *first_is_key_frame = 0; | 
|  | if (rc.frames_to_key == 0) { | 
|  | rc.frames_to_key = vp9_get_frames_to_next_key( | 
|  | &cpi->oxcf, &cpi->frame_info, &cpi->twopass.first_pass_info, | 
|  | *first_show_idx, rc.min_gf_interval); | 
|  | rc.frames_since_key = 0; | 
|  | *first_is_key_frame = 1; | 
|  | } | 
|  |  | 
|  | if (gop_command->use) { | 
|  | *coding_frame_count = gop_command_coding_frame_count(gop_command); | 
|  | *use_alt_ref = gop_command->use_alt_ref; | 
|  | assert(*coding_frame_count < rc.frames_to_key); | 
|  | } else { | 
|  | *coding_frame_count = vp9_get_gop_coding_frame_count( | 
|  | &cpi->oxcf, &cpi->frame_info, &cpi->twopass.first_pass_info, &rc, | 
|  | *first_show_idx, multi_layer_arf, allow_alt_ref, *first_is_key_frame, | 
|  | *last_gop_use_alt_ref, use_alt_ref); | 
|  | } | 
|  | } | 
|  |  | 
|  | int vp9_get_gop_coding_frame_count(const VP9EncoderConfig *oxcf, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRST_PASS_INFO *first_pass_info, | 
|  | const RATE_CONTROL *rc, int show_idx, | 
|  | int multi_layer_arf, int allow_alt_ref, | 
|  | int first_is_key_frame, | 
|  | int last_gop_use_alt_ref, int *use_alt_ref) { | 
|  | int frame_count; | 
|  | double gop_intra_factor; | 
|  | const int arf_active_or_kf = last_gop_use_alt_ref || first_is_key_frame; | 
|  | RANGE active_gf_interval = get_active_gf_inverval_range( | 
|  | frame_info, rc, arf_active_or_kf, show_idx, /*active_worst_quality=*/0, | 
|  | /*last_boosted_qindex=*/0); | 
|  |  | 
|  | const int arf_layers = get_arf_layers(multi_layer_arf, oxcf->enable_auto_arf, | 
|  | active_gf_interval.max); | 
|  | if (multi_layer_arf) { | 
|  | gop_intra_factor = 1.0 + 0.25 * arf_layers; | 
|  | } else { | 
|  | gop_intra_factor = 1.0; | 
|  | } | 
|  |  | 
|  | frame_count = get_gop_coding_frame_num( | 
|  | use_alt_ref, frame_info, first_pass_info, rc, show_idx, | 
|  | &active_gf_interval, gop_intra_factor, oxcf->lag_in_frames); | 
|  | *use_alt_ref &= allow_alt_ref; | 
|  | return frame_count; | 
|  | } | 
|  |  | 
|  | // Under CONFIG_RATE_CTRL, once the first_pass_info is ready, the number of | 
|  | // coding frames (including show frame and alt ref) can be determined. | 
|  | int vp9_get_coding_frame_num(const VP9EncoderConfig *oxcf, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRST_PASS_INFO *first_pass_info, | 
|  | int multi_layer_arf, int allow_alt_ref) { | 
|  | int coding_frame_num = 0; | 
|  | RATE_CONTROL rc; | 
|  | int gop_coding_frame_count; | 
|  | int gop_show_frames; | 
|  | int show_idx = 0; | 
|  | int last_gop_use_alt_ref = 0; | 
|  | vp9_rc_init(oxcf, 1, &rc); | 
|  |  | 
|  | while (show_idx < first_pass_info->num_frames) { | 
|  | int use_alt_ref; | 
|  | int first_is_key_frame = 0; | 
|  | if (rc.frames_to_key == 0) { | 
|  | rc.frames_to_key = vp9_get_frames_to_next_key( | 
|  | oxcf, frame_info, first_pass_info, show_idx, rc.min_gf_interval); | 
|  | rc.frames_since_key = 0; | 
|  | first_is_key_frame = 1; | 
|  | } | 
|  |  | 
|  | gop_coding_frame_count = vp9_get_gop_coding_frame_count( | 
|  | oxcf, frame_info, first_pass_info, &rc, show_idx, multi_layer_arf, | 
|  | allow_alt_ref, first_is_key_frame, last_gop_use_alt_ref, &use_alt_ref); | 
|  |  | 
|  | rc.source_alt_ref_active = use_alt_ref; | 
|  | last_gop_use_alt_ref = use_alt_ref; | 
|  | gop_show_frames = gop_coding_frame_count - use_alt_ref; | 
|  | rc.frames_to_key -= gop_show_frames; | 
|  | rc.frames_since_key += gop_show_frames; | 
|  | show_idx += gop_show_frames; | 
|  | coding_frame_num += gop_show_frames + use_alt_ref; | 
|  | } | 
|  | return coding_frame_num; | 
|  | } | 
|  |  | 
|  | void vp9_get_key_frame_map(const VP9EncoderConfig *oxcf, | 
|  | const FRAME_INFO *frame_info, | 
|  | const FIRST_PASS_INFO *first_pass_info, | 
|  | int *key_frame_map) { | 
|  | int show_idx = 0; | 
|  | RATE_CONTROL rc; | 
|  | vp9_rc_init(oxcf, 1, &rc); | 
|  |  | 
|  | // key_frame_map points to an int array with size equal to | 
|  | // first_pass_info->num_frames, which is also the number of show frames in the | 
|  | // video. | 
|  | memset(key_frame_map, 0, | 
|  | sizeof(*key_frame_map) * first_pass_info->num_frames); | 
|  | while (show_idx < first_pass_info->num_frames) { | 
|  | int key_frame_group_size; | 
|  | key_frame_map[show_idx] = 1; | 
|  | key_frame_group_size = vp9_get_frames_to_next_key( | 
|  | oxcf, frame_info, first_pass_info, show_idx, rc.min_gf_interval); | 
|  | assert(key_frame_group_size > 0); | 
|  | show_idx += key_frame_group_size; | 
|  | } | 
|  | assert(show_idx == first_pass_info->num_frames); | 
|  | } | 
|  | #endif  // CONFIG_RATE_CTRL | 
|  |  | 
|  | FIRSTPASS_STATS vp9_get_frame_stats(const TWO_PASS *twopass) { | 
|  | return twopass->this_frame_stats; | 
|  | } | 
|  | FIRSTPASS_STATS vp9_get_total_stats(const TWO_PASS *twopass) { | 
|  | return twopass->total_stats; | 
|  | } |