blob: 8f4b8a8da0ac68ea1a7fe5c36e0318fa3dcabc49 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/deserializer.h"
#include "src/base/logging.h"
#include "src/base/platform/wrappers.h"
#include "src/codegen/assembler-inl.h"
#include "src/common/assert-scope.h"
#include "src/common/external-pointer.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/heap-write-barrier.h"
#include "src/heap/read-only-heap.h"
#include "src/interpreter/interpreter.h"
#include "src/logging/log.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/cell-inl.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/hash-table.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/maybe-object.h"
#include "src/objects/objects-body-descriptors-inl.h"
#include "src/objects/objects.h"
#include "src/objects/slots.h"
#include "src/objects/smi.h"
#include "src/objects/string.h"
#include "src/roots/roots.h"
#include "src/snapshot/embedded/embedded-data.h"
#include "src/snapshot/references.h"
#include "src/snapshot/serializer-deserializer.h"
#include "src/snapshot/snapshot-data.h"
#include "src/snapshot/snapshot.h"
#include "src/tracing/trace-event.h"
#include "src/tracing/traced-value.h"
#include "src/utils/memcopy.h"
namespace v8 {
namespace internal {
// A SlotAccessor for a slot in a HeapObject, which abstracts the slot
// operations done by the deserializer in a way which is GC-safe. In particular,
// rather than an absolute slot address, this accessor holds a Handle to the
// HeapObject, which is updated if the HeapObject moves.
class SlotAccessorForHeapObject {
public:
static SlotAccessorForHeapObject ForSlotIndex(Handle<HeapObject> object,
int index) {
return SlotAccessorForHeapObject(object, index * kTaggedSize);
}
static SlotAccessorForHeapObject ForSlotOffset(Handle<HeapObject> object,
int offset) {
return SlotAccessorForHeapObject(object, offset);
}
MaybeObjectSlot slot() const { return object_->RawMaybeWeakField(offset_); }
Handle<HeapObject> object() const { return object_; }
int offset() const { return offset_; }
// Writes the given value to this slot, optionally with an offset (e.g. for
// repeat writes). Returns the number of slots written (which is one).
int Write(MaybeObject value, int slot_offset = 0) {
MaybeObjectSlot current_slot = slot() + slot_offset;
current_slot.Relaxed_Store(value);
WriteBarrier::Marking(*object_, current_slot, value);
// No need for a generational write barrier.
DCHECK(!Heap::InYoungGeneration(value));
return 1;
}
int Write(HeapObject value, HeapObjectReferenceType ref_type,
int slot_offset = 0) {
return Write(HeapObjectReference::From(value, ref_type), slot_offset);
}
int Write(Handle<HeapObject> value, HeapObjectReferenceType ref_type,
int slot_offset = 0) {
return Write(*value, ref_type, slot_offset);
}
// Same as Write, but additionally with a generational barrier.
int WriteWithGenerationalBarrier(MaybeObject value) {
MaybeObjectSlot current_slot = slot();
current_slot.Relaxed_Store(value);
WriteBarrier::Marking(*object_, current_slot, value);
if (Heap::InYoungGeneration(value)) {
GenerationalBarrier(*object_, current_slot, value);
}
return 1;
}
int WriteWithGenerationalBarrier(HeapObject value,
HeapObjectReferenceType ref_type) {
return WriteWithGenerationalBarrier(
HeapObjectReference::From(value, ref_type));
}
int WriteWithGenerationalBarrier(Handle<HeapObject> value,
HeapObjectReferenceType ref_type) {
return WriteWithGenerationalBarrier(*value, ref_type);
}
private:
SlotAccessorForHeapObject(Handle<HeapObject> object, int offset)
: object_(object), offset_(offset) {}
const Handle<HeapObject> object_;
const int offset_;
};
// A SlotAccessor for absolute full slot addresses.
class SlotAccessorForRootSlots {
public:
explicit SlotAccessorForRootSlots(FullMaybeObjectSlot slot) : slot_(slot) {}
FullMaybeObjectSlot slot() const { return slot_; }
Handle<HeapObject> object() const { UNREACHABLE(); }
int offset() const { UNREACHABLE(); }
// Writes the given value to this slot, optionally with an offset (e.g. for
// repeat writes). Returns the number of slots written (which is one).
int Write(MaybeObject value, int slot_offset = 0) {
FullMaybeObjectSlot current_slot = slot() + slot_offset;
current_slot.Relaxed_Store(value);
return 1;
}
int Write(HeapObject value, HeapObjectReferenceType ref_type,
int slot_offset = 0) {
return Write(HeapObjectReference::From(value, ref_type), slot_offset);
}
int Write(Handle<HeapObject> value, HeapObjectReferenceType ref_type,
int slot_offset = 0) {
return Write(*value, ref_type, slot_offset);
}
int WriteWithGenerationalBarrier(MaybeObject value) { return Write(value); }
int WriteWithGenerationalBarrier(HeapObject value,
HeapObjectReferenceType ref_type) {
return WriteWithGenerationalBarrier(
HeapObjectReference::From(value, ref_type));
}
int WriteWithGenerationalBarrier(Handle<HeapObject> value,
HeapObjectReferenceType ref_type) {
return WriteWithGenerationalBarrier(*value, ref_type);
}
private:
const FullMaybeObjectSlot slot_;
};
// A SlotAccessor for creating a Handle, which saves a Handle allocation when
// a Handle already exists.
class SlotAccessorForHandle {
public:
SlotAccessorForHandle(Handle<HeapObject>* handle, Isolate* isolate)
: handle_(handle), isolate_(isolate) {}
MaybeObjectSlot slot() const { UNREACHABLE(); }
Handle<HeapObject> object() const { UNREACHABLE(); }
int offset() const { UNREACHABLE(); }
int Write(MaybeObject value, int slot_offset = 0) { UNREACHABLE(); }
int Write(HeapObject value, HeapObjectReferenceType ref_type,
int slot_offset = 0) {
DCHECK_EQ(slot_offset, 0);
DCHECK_EQ(ref_type, HeapObjectReferenceType::STRONG);
*handle_ = handle(value, isolate_);
return 1;
}
int Write(Handle<HeapObject> value, HeapObjectReferenceType ref_type,
int slot_offset = 0) {
DCHECK_EQ(slot_offset, 0);
DCHECK_EQ(ref_type, HeapObjectReferenceType::STRONG);
*handle_ = value;
return 1;
}
int WriteWithGenerationalBarrier(HeapObject value,
HeapObjectReferenceType ref_type) {
return Write(value, ref_type);
}
int WriteWithGenerationalBarrier(Handle<HeapObject> value,
HeapObjectReferenceType ref_type) {
return Write(value, ref_type);
}
private:
Handle<HeapObject>* handle_;
Isolate* isolate_;
};
template <typename TSlot>
int Deserializer::WriteAddress(TSlot dest, Address value) {
DCHECK(!next_reference_is_weak_);
memcpy(dest.ToVoidPtr(), &value, kSystemPointerSize);
STATIC_ASSERT(IsAligned(kSystemPointerSize, TSlot::kSlotDataSize));
return (kSystemPointerSize / TSlot::kSlotDataSize);
}
template <typename TSlot>
int Deserializer::WriteExternalPointer(TSlot dest, Address value,
ExternalPointerTag tag) {
DCHECK(!next_reference_is_weak_);
InitExternalPointerField(dest.address(), isolate(), value, tag);
STATIC_ASSERT(IsAligned(kExternalPointerSize, TSlot::kSlotDataSize));
return (kExternalPointerSize / TSlot::kSlotDataSize);
}
Deserializer::Deserializer(Isolate* isolate, Vector<const byte> payload,
uint32_t magic_number, bool deserializing_user_code,
bool can_rehash)
: isolate_(isolate),
source_(payload),
magic_number_(magic_number),
deserializing_user_code_(deserializing_user_code),
can_rehash_(can_rehash) {
DCHECK_NOT_NULL(isolate);
isolate_->RegisterDeserializerStarted();
// We start the indices here at 1, so that we can distinguish between an
// actual index and a nullptr (serialized as kNullRefSentinel) in a
// deserialized object requiring fix-up.
STATIC_ASSERT(kNullRefSentinel == 0);
backing_stores_.push_back({});
#ifdef DEBUG
num_api_references_ = 0;
// The read-only deserializer is run by read-only heap set-up before the
// heap is fully set up. External reference table relies on a few parts of
// this set-up (like old-space), so it may be uninitialized at this point.
if (isolate->isolate_data()->external_reference_table()->is_initialized()) {
// Count the number of external references registered through the API.
if (isolate->api_external_references() != nullptr) {
while (isolate->api_external_references()[num_api_references_] != 0) {
num_api_references_++;
}
}
}
#endif // DEBUG
CHECK_EQ(magic_number_, SerializedData::kMagicNumber);
}
void Deserializer::Rehash() {
DCHECK(can_rehash() || deserializing_user_code());
for (Handle<HeapObject> item : to_rehash_) {
item->RehashBasedOnMap(isolate());
}
}
Deserializer::~Deserializer() {
#ifdef DEBUG
// Do not perform checks if we aborted deserialization.
if (source_.position() == 0) return;
// Check that we only have padding bytes remaining.
while (source_.HasMore()) DCHECK_EQ(kNop, source_.Get());
// Check that there are no remaining forward refs.
DCHECK_EQ(num_unresolved_forward_refs_, 0);
DCHECK(unresolved_forward_refs_.empty());
#endif // DEBUG
isolate_->RegisterDeserializerFinished();
}
// This is called on the roots. It is the driver of the deserialization
// process. It is also called on the body of each function.
void Deserializer::VisitRootPointers(Root root, const char* description,
FullObjectSlot start, FullObjectSlot end) {
ReadData(FullMaybeObjectSlot(start), FullMaybeObjectSlot(end));
}
void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) {
static const byte expected = kSynchronize;
CHECK_EQ(expected, source_.Get());
}
void Deserializer::DeserializeDeferredObjects() {
for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
SnapshotSpace space = NewObject::Decode(code);
ReadObject(space);
}
}
void Deserializer::LogNewMapEvents() {
DisallowGarbageCollection no_gc;
for (Handle<Map> map : new_maps_) {
DCHECK(FLAG_trace_maps);
LOG(isolate(), MapCreate(*map));
LOG(isolate(), MapDetails(*map));
}
}
void Deserializer::WeakenDescriptorArrays() {
DisallowHeapAllocation no_gc;
for (Handle<DescriptorArray> descriptor_array : new_descriptor_arrays_) {
DCHECK(descriptor_array->IsStrongDescriptorArray());
descriptor_array->set_map(ReadOnlyRoots(isolate()).descriptor_array_map());
WriteBarrier::Marking(*descriptor_array,
descriptor_array->number_of_descriptors());
}
}
void Deserializer::LogScriptEvents(Script script) {
DisallowGarbageCollection no_gc;
LOG(isolate(),
ScriptEvent(Logger::ScriptEventType::kDeserialize, script.id()));
LOG(isolate(), ScriptDetails(script));
}
StringTableInsertionKey::StringTableInsertionKey(Handle<String> string)
: StringTableKey(ComputeHashField(*string), string->length()),
string_(string) {
DCHECK(string->IsInternalizedString());
}
bool StringTableInsertionKey::IsMatch(String string) {
// We want to compare the content of two strings here.
return string_->SlowEquals(string);
}
Handle<String> StringTableInsertionKey::AsHandle(Isolate* isolate) {
return string_;
}
uint32_t StringTableInsertionKey::ComputeHashField(String string) {
// Make sure hash_field() is computed.
string.Hash();
return string.hash_field();
}
void Deserializer::PostProcessNewObject(Handle<Map> map, Handle<HeapObject> obj,
SnapshotSpace space) {
DCHECK_EQ(*map, obj->map());
DisallowGarbageCollection no_gc;
InstanceType instance_type = map->instance_type();
if ((FLAG_rehash_snapshot && can_rehash_) || deserializing_user_code()) {
if (InstanceTypeChecker::IsString(instance_type)) {
// Uninitialize hash field as we need to recompute the hash.
Handle<String> string = Handle<String>::cast(obj);
string->set_hash_field(String::kEmptyHashField);
// Rehash strings before read-only space is sealed. Strings outside
// read-only space are rehashed lazily. (e.g. when rehashing dictionaries)
if (space == SnapshotSpace::kReadOnlyHeap) {
to_rehash_.push_back(obj);
}
} else if (obj->NeedsRehashing(instance_type)) {
to_rehash_.push_back(obj);
}
}
if (deserializing_user_code()) {
if (InstanceTypeChecker::IsInternalizedString(instance_type)) {
// Canonicalize the internalized string. If it already exists in the
// string table, set it to forward to the existing one.
Handle<String> string = Handle<String>::cast(obj);
StringTableInsertionKey key(string);
Handle<String> result =
isolate()->string_table()->LookupKey(isolate(), &key);
if (FLAG_thin_strings && *result != *string) {
string->MakeThin(isolate(), *result);
// Mutate the given object handle so that the backreference entry is
// also updated.
obj.PatchValue(*result);
}
return;
} else if (InstanceTypeChecker::IsScript(instance_type)) {
new_scripts_.push_back(Handle<Script>::cast(obj));
} else if (InstanceTypeChecker::IsAllocationSite(instance_type)) {
// We should link new allocation sites, but we can't do this immediately
// because |AllocationSite::HasWeakNext()| internally accesses
// |Heap::roots_| that may not have been initialized yet. So defer this to
// |ObjectDeserializer::CommitPostProcessedObjects()|.
new_allocation_sites_.push_back(Handle<AllocationSite>::cast(obj));
} else {
DCHECK(CanBeDeferred(*obj));
}
}
if (InstanceTypeChecker::IsScript(instance_type)) {
LogScriptEvents(Script::cast(*obj));
} else if (InstanceTypeChecker::IsCode(instance_type)) {
// We flush all code pages after deserializing the startup snapshot.
// Hence we only remember each individual code object when deserializing
// user code.
if (deserializing_user_code()) {
new_code_objects_.push_back(Handle<Code>::cast(obj));
}
} else if (InstanceTypeChecker::IsMap(instance_type)) {
if (FLAG_trace_maps) {
// Keep track of all seen Maps to log them later since they might be only
// partially initialized at this point.
new_maps_.push_back(Handle<Map>::cast(obj));
}
} else if (InstanceTypeChecker::IsAccessorInfo(instance_type)) {
#ifdef USE_SIMULATOR
accessor_infos_.push_back(Handle<AccessorInfo>::cast(obj));
#endif
} else if (InstanceTypeChecker::IsCallHandlerInfo(instance_type)) {
#ifdef USE_SIMULATOR
call_handler_infos_.push_back(Handle<CallHandlerInfo>::cast(obj));
#endif
} else if (InstanceTypeChecker::IsExternalString(instance_type)) {
Handle<ExternalString> string = Handle<ExternalString>::cast(obj);
uint32_t index = string->GetResourceRefForDeserialization();
Address address =
static_cast<Address>(isolate()->api_external_references()[index]);
string->AllocateExternalPointerEntries(isolate());
string->set_address_as_resource(isolate(), address);
isolate()->heap()->UpdateExternalString(*string, 0,
string->ExternalPayloadSize());
isolate()->heap()->RegisterExternalString(*string);
} else if (InstanceTypeChecker::IsJSDataView(instance_type)) {
Handle<JSDataView> data_view = Handle<JSDataView>::cast(obj);
JSArrayBuffer buffer = JSArrayBuffer::cast(data_view->buffer());
void* backing_store = nullptr;
uint32_t store_index = buffer.GetBackingStoreRefForDeserialization();
if (store_index != kNullRefSentinel) {
// The backing store of the JSArrayBuffer has not been correctly restored
// yet, as that may trigger GC. The backing_store field currently contains
// a numbered reference to an already deserialized backing store.
backing_store = backing_stores_[store_index]->buffer_start();
}
data_view->AllocateExternalPointerEntries(isolate());
data_view->set_data_pointer(
isolate(),
reinterpret_cast<uint8_t*>(backing_store) + data_view->byte_offset());
} else if (InstanceTypeChecker::IsJSTypedArray(instance_type)) {
Handle<JSTypedArray> typed_array = Handle<JSTypedArray>::cast(obj);
// Fixup typed array pointers.
if (typed_array->is_on_heap()) {
Address raw_external_pointer = typed_array->external_pointer_raw();
typed_array->AllocateExternalPointerEntries(isolate());
typed_array->SetOnHeapDataPtr(
isolate(), HeapObject::cast(typed_array->base_pointer()),
raw_external_pointer);
} else {
// Serializer writes backing store ref as a DataPtr() value.
uint32_t store_index =
typed_array->GetExternalBackingStoreRefForDeserialization();
auto backing_store = backing_stores_[store_index];
auto start = backing_store
? reinterpret_cast<byte*>(backing_store->buffer_start())
: nullptr;
typed_array->AllocateExternalPointerEntries(isolate());
typed_array->SetOffHeapDataPtr(isolate(), start,
typed_array->byte_offset());
}
} else if (InstanceTypeChecker::IsJSArrayBuffer(instance_type)) {
Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(obj);
// Postpone allocation of backing store to avoid triggering the GC.
if (buffer->GetBackingStoreRefForDeserialization() != kNullRefSentinel) {
new_off_heap_array_buffers_.push_back(buffer);
} else {
buffer->AllocateExternalPointerEntries(isolate());
buffer->set_backing_store(isolate(), nullptr);
}
} else if (InstanceTypeChecker::IsBytecodeArray(instance_type)) {
// TODO(mythria): Remove these once we store the default values for these
// fields in the serializer.
Handle<BytecodeArray> bytecode_array = Handle<BytecodeArray>::cast(obj);
bytecode_array->set_osr_loop_nesting_level(0);
} else if (InstanceTypeChecker::IsDescriptorArray(instance_type)) {
DCHECK(InstanceTypeChecker::IsStrongDescriptorArray(instance_type));
Handle<DescriptorArray> descriptors = Handle<DescriptorArray>::cast(obj);
new_descriptor_arrays_.push_back(descriptors);
}
// Check alignment.
DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(),
HeapObject::RequiredAlignment(*map)));
}
HeapObjectReferenceType Deserializer::GetAndResetNextReferenceType() {
HeapObjectReferenceType type = next_reference_is_weak_
? HeapObjectReferenceType::WEAK
: HeapObjectReferenceType::STRONG;
next_reference_is_weak_ = false;
return type;
}
Handle<HeapObject> Deserializer::GetBackReferencedObject() {
Handle<HeapObject> obj = back_refs_[source_.GetInt()];
// We don't allow ThinStrings in backreferences -- if internalization produces
// a thin string, then it should also update the backref handle.
DCHECK(!obj->IsThinString());
hot_objects_.Add(obj);
DCHECK(!HasWeakHeapObjectTag(*obj));
return obj;
}
Handle<HeapObject> Deserializer::ReadObject() {
Handle<HeapObject> ret;
CHECK_EQ(ReadSingleBytecodeData(source_.Get(),
SlotAccessorForHandle(&ret, isolate())),
1);
return ret;
}
Handle<HeapObject> Deserializer::ReadObject(SnapshotSpace space) {
const int size_in_tagged = source_.GetInt();
const int size_in_bytes = size_in_tagged * kTaggedSize;
// The map can't be a forward ref. If you want the map to be a forward ref,
// then you're probably serializing the meta-map, in which case you want to
// use the kNewMetaMap bytecode.
DCHECK_NE(source()->Peek(), kRegisterPendingForwardRef);
Handle<Map> map = Handle<Map>::cast(ReadObject());
// Filling an object's fields can cause GCs and heap walks, so this object has
// to be in a 'sufficiently initialised' state by the time the next allocation
// can happen. For this to be the case, the object is carefully deserialized
// as follows:
// * The space for the object is allocated.
// * The map is set on the object so that the GC knows what type the object
// has.
// * The rest of the object is filled with a fixed Smi value
// - This is a Smi so that tagged fields become initialized to a valid
// tagged value.
// - It's a fixed value, "uninitialized_field_value", so that we can
// DCHECK for it when reading objects that are assumed to be partially
// initialized objects.
// * The fields of the object are deserialized in order, under the
// assumption that objects are laid out in such a way that any fields
// required for object iteration (e.g. length fields) are deserialized
// before fields with objects.
// - We ensure this is the case by DCHECKing on object allocation that the
// previously allocated object has a valid size (see `Allocate`).
HeapObject raw_obj =
Allocate(space, size_in_bytes, HeapObject::RequiredAlignment(*map));
raw_obj.set_map_after_allocation(*map);
MemsetTagged(raw_obj.RawField(kTaggedSize), uninitialized_field_value(),
size_in_tagged - 1);
// Make sure BytecodeArrays have a valid age, so that the marker doesn't
// break when making them older.
if (raw_obj.IsBytecodeArray(isolate())) {
BytecodeArray::cast(raw_obj).set_bytecode_age(
BytecodeArray::kFirstBytecodeAge);
}
#ifdef DEBUG
// We want to make sure that all embedder pointers are initialized to null.
if (raw_obj.IsJSObject() && JSObject::cast(raw_obj).IsApiWrapper()) {
JSObject js_obj = JSObject::cast(raw_obj);
for (int i = 0; i < js_obj.GetEmbedderFieldCount(); ++i) {
void* pointer;
CHECK(EmbedderDataSlot(js_obj, i).ToAlignedPointerSafe(isolate(),
&pointer));
CHECK_NULL(pointer);
}
} else if (raw_obj.IsEmbedderDataArray()) {
EmbedderDataArray array = EmbedderDataArray::cast(raw_obj);
EmbedderDataSlot start(array, 0);
EmbedderDataSlot end(array, array.length());
for (EmbedderDataSlot slot = start; slot < end; ++slot) {
void* pointer;
CHECK(slot.ToAlignedPointerSafe(isolate(), &pointer));
CHECK_NULL(pointer);
}
}
#endif
Handle<HeapObject> obj = handle(raw_obj, isolate());
back_refs_.push_back(obj);
ReadData(obj, 1, size_in_tagged);
PostProcessNewObject(map, obj, space);
DCHECK(!obj->IsThinString(isolate()));
#ifdef DEBUG
if (obj->IsCode()) {
DCHECK(space == SnapshotSpace::kCode ||
space == SnapshotSpace::kReadOnlyHeap);
} else {
DCHECK_NE(space, SnapshotSpace::kCode);
}
#endif // DEBUG
return obj;
}
Handle<HeapObject> Deserializer::ReadMetaMap() {
const SnapshotSpace space = SnapshotSpace::kReadOnlyHeap;
const int size_in_bytes = Map::kSize;
const int size_in_tagged = size_in_bytes / kTaggedSize;
HeapObject raw_obj = Allocate(space, size_in_bytes, kWordAligned);
raw_obj.set_map_after_allocation(Map::unchecked_cast(raw_obj));
MemsetTagged(raw_obj.RawField(kTaggedSize), uninitialized_field_value(),
size_in_tagged - 1);
Handle<HeapObject> obj = handle(raw_obj, isolate());
back_refs_.push_back(obj);
// Set the instance-type manually, to allow backrefs to read it.
Map::unchecked_cast(*obj).set_instance_type(MAP_TYPE);
ReadData(obj, 1, size_in_tagged);
PostProcessNewObject(Handle<Map>::cast(obj), obj, space);
return obj;
}
class Deserializer::RelocInfoVisitor {
public:
RelocInfoVisitor(Deserializer* deserializer,
const std::vector<Handle<HeapObject>>* objects)
: deserializer_(deserializer), objects_(objects), current_object_(0) {}
~RelocInfoVisitor() { DCHECK_EQ(current_object_, objects_->size()); }
void VisitCodeTarget(Code host, RelocInfo* rinfo);
void VisitEmbeddedPointer(Code host, RelocInfo* rinfo);
void VisitRuntimeEntry(Code host, RelocInfo* rinfo);
void VisitExternalReference(Code host, RelocInfo* rinfo);
void VisitInternalReference(Code host, RelocInfo* rinfo);
void VisitOffHeapTarget(Code host, RelocInfo* rinfo);
private:
Isolate* isolate() { return deserializer_->isolate(); }
SnapshotByteSource& source() { return deserializer_->source_; }
Deserializer* deserializer_;
const std::vector<Handle<HeapObject>>* objects_;
int current_object_;
};
void Deserializer::RelocInfoVisitor::VisitCodeTarget(Code host,
RelocInfo* rinfo) {
HeapObject object = *objects_->at(current_object_++);
rinfo->set_target_address(Code::cast(object).raw_instruction_start());
}
void Deserializer::RelocInfoVisitor::VisitEmbeddedPointer(Code host,
RelocInfo* rinfo) {
HeapObject object = *objects_->at(current_object_++);
// Embedded object reference must be a strong one.
rinfo->set_target_object(isolate()->heap(), object);
}
void Deserializer::RelocInfoVisitor::VisitRuntimeEntry(Code host,
RelocInfo* rinfo) {
// We no longer serialize code that contains runtime entries.
UNREACHABLE();
}
void Deserializer::RelocInfoVisitor::VisitExternalReference(Code host,
RelocInfo* rinfo) {
byte data = source().Get();
CHECK_EQ(data, kExternalReference);
Address address = deserializer_->ReadExternalReferenceCase();
if (rinfo->IsCodedSpecially()) {
Address location_of_branch_data = rinfo->pc();
Assembler::deserialization_set_special_target_at(location_of_branch_data,
host, address);
} else {
WriteUnalignedValue(rinfo->target_address_address(), address);
}
}
void Deserializer::RelocInfoVisitor::VisitInternalReference(Code host,
RelocInfo* rinfo) {
byte data = source().Get();
CHECK_EQ(data, kInternalReference);
// Internal reference target is encoded as an offset from code entry.
int target_offset = source().GetInt();
// TODO(jgruber,v8:11036): We are being permissive for this DCHECK, but
// consider using raw_instruction_size() instead of raw_body_size() in the
// future.
STATIC_ASSERT(Code::kOnHeapBodyIsContiguous);
DCHECK_LT(static_cast<unsigned>(target_offset),
static_cast<unsigned>(host.raw_body_size()));
Address target = host.entry() + target_offset;
Assembler::deserialization_set_target_internal_reference_at(
rinfo->pc(), target, rinfo->rmode());
}
void Deserializer::RelocInfoVisitor::VisitOffHeapTarget(Code host,
RelocInfo* rinfo) {
byte data = source().Get();
CHECK_EQ(data, kOffHeapTarget);
int builtin_index = source().GetInt();
DCHECK(Builtins::IsBuiltinId(builtin_index));
CHECK_NOT_NULL(isolate()->embedded_blob_code());
EmbeddedData d = EmbeddedData::FromBlob();
Address address = d.InstructionStartOfBuiltin(builtin_index);
CHECK_NE(kNullAddress, address);
// TODO(ishell): implement RelocInfo::set_target_off_heap_target()
if (RelocInfo::OffHeapTargetIsCodedSpecially()) {
Address location_of_branch_data = rinfo->pc();
Assembler::deserialization_set_special_target_at(location_of_branch_data,
host, address);
} else {
WriteUnalignedValue(rinfo->target_address_address(), address);
}
}
template <typename SlotAccessor>
int Deserializer::ReadRepeatedObject(SlotAccessor slot_accessor,
int repeat_count) {
CHECK_LE(2, repeat_count);
Handle<HeapObject> heap_object = ReadObject();
DCHECK(!Heap::InYoungGeneration(*heap_object));
for (int i = 0; i < repeat_count; i++) {
// TODO(leszeks): Use a ranged barrier here.
slot_accessor.Write(heap_object, HeapObjectReferenceType::STRONG, i);
}
return repeat_count;
}
namespace {
void NoExternalReferencesCallback() {
// The following check will trigger if a function or object template
// with references to native functions have been deserialized from
// snapshot, but no actual external references were provided when the
// isolate was created.
FATAL("No external references provided via API");
}
// Template used by the below CASE_RANGE macro to statically verify that the
// given number of cases matches the number of expected cases for that bytecode.
template <int byte_code_count, int expected>
constexpr byte VerifyBytecodeCount(byte bytecode) {
STATIC_ASSERT(byte_code_count == expected);
return bytecode;
}
} // namespace
// Helper macro (and its implementation detail) for specifying a range of cases.
// Use as "case CASE_RANGE(byte_code, num_bytecodes):"
#define CASE_RANGE(byte_code, num_bytecodes) \
CASE_R##num_bytecodes( \
(VerifyBytecodeCount<byte_code##Count, num_bytecodes>(byte_code)))
#define CASE_R1(byte_code) byte_code
#define CASE_R2(byte_code) CASE_R1(byte_code) : case CASE_R1(byte_code + 1)
#define CASE_R3(byte_code) CASE_R2(byte_code) : case CASE_R1(byte_code + 2)
#define CASE_R4(byte_code) CASE_R2(byte_code) : case CASE_R2(byte_code + 2)
#define CASE_R8(byte_code) CASE_R4(byte_code) : case CASE_R4(byte_code + 4)
#define CASE_R16(byte_code) CASE_R8(byte_code) : case CASE_R8(byte_code + 8)
#define CASE_R32(byte_code) CASE_R16(byte_code) : case CASE_R16(byte_code + 16)
// This generates a case range for all the spaces.
#define CASE_RANGE_ALL_SPACES(bytecode) \
SpaceEncoder<bytecode>::Encode(SnapshotSpace::kOld) \
: case SpaceEncoder<bytecode>::Encode(SnapshotSpace::kCode) \
: case SpaceEncoder<bytecode>::Encode(SnapshotSpace::kMap) \
: case SpaceEncoder<bytecode>::Encode(SnapshotSpace::kReadOnlyHeap)
void Deserializer::ReadData(Handle<HeapObject> object, int start_slot_index,
int end_slot_index) {
int current = start_slot_index;
while (current < end_slot_index) {
byte data = source_.Get();
current += ReadSingleBytecodeData(
data, SlotAccessorForHeapObject::ForSlotIndex(object, current));
}
CHECK_EQ(current, end_slot_index);
}
void Deserializer::ReadData(FullMaybeObjectSlot start,
FullMaybeObjectSlot end) {
FullMaybeObjectSlot current = start;
while (current < end) {
byte data = source_.Get();
current += ReadSingleBytecodeData(data, SlotAccessorForRootSlots(current));
}
CHECK_EQ(current, end);
}
template <typename SlotAccessor>
int Deserializer::ReadSingleBytecodeData(byte data,
SlotAccessor slot_accessor) {
using TSlot = decltype(slot_accessor.slot());
switch (data) {
// Deserialize a new object and write a pointer to it to the current
// object.
case CASE_RANGE_ALL_SPACES(kNewObject): {
SnapshotSpace space = NewObject::Decode(data);
// Save the reference type before recursing down into reading the object.
HeapObjectReferenceType ref_type = GetAndResetNextReferenceType();
Handle<HeapObject> heap_object = ReadObject(space);
return slot_accessor.Write(heap_object, ref_type);
}
// Find a recently deserialized object using its offset from the current
// allocation point and write a pointer to it to the current object.
case kBackref: {
Handle<HeapObject> heap_object = GetBackReferencedObject();
return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
}
// Reference an object in the read-only heap. This should be used when an
// object is read-only, but is not a root.
case kReadOnlyHeapRef: {
DCHECK(isolate()->heap()->deserialization_complete());
uint32_t chunk_index = source_.GetInt();
uint32_t chunk_offset = source_.GetInt();
ReadOnlySpace* read_only_space = isolate()->heap()->read_only_space();
ReadOnlyPage* page = read_only_space->pages()[chunk_index];
Address address = page->OffsetToAddress(chunk_offset);
HeapObject heap_object = HeapObject::FromAddress(address);
return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
}
// Find an object in the roots array and write a pointer to it to the
// current object.
case kRootArray: {
int id = source_.GetInt();
RootIndex root_index = static_cast<RootIndex>(id);
Handle<HeapObject> heap_object =
Handle<HeapObject>::cast(isolate()->root_handle(root_index));
hot_objects_.Add(heap_object);
return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
}
// Find an object in the startup object cache and write a pointer to it to
// the current object.
case kStartupObjectCache: {
int cache_index = source_.GetInt();
// TODO(leszeks): Could we use the address of the startup_object_cache
// entry as a Handle backing?
HeapObject heap_object =
HeapObject::cast(isolate()->startup_object_cache()->at(cache_index));
return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
}
// Find an object in the read-only object cache and write a pointer to it
// to the current object.
case kReadOnlyObjectCache: {
int cache_index = source_.GetInt();
// TODO(leszeks): Could we use the address of the cached_read_only_object
// entry as a Handle backing?
HeapObject heap_object = HeapObject::cast(
isolate()->read_only_heap()->cached_read_only_object(cache_index));
return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
}
// Deserialize a new meta-map and write a pointer to it to the current
// object.
case kNewMetaMap: {
Handle<HeapObject> heap_object = ReadMetaMap();
return slot_accessor.Write(heap_object, HeapObjectReferenceType::STRONG);
}
// Find an external reference and write a pointer to it to the current
// object.
case kSandboxedExternalReference:
case kExternalReference: {
Address address = ReadExternalReferenceCase();
if (V8_HEAP_SANDBOX_BOOL && data == kSandboxedExternalReference) {
return WriteExternalPointer(slot_accessor.slot(), address,
kForeignForeignAddressTag);
} else {
DCHECK(!V8_HEAP_SANDBOX_BOOL);
return WriteAddress(slot_accessor.slot(), address);
}
}
case kInternalReference:
case kOffHeapTarget:
// These bytecodes are expected only during RelocInfo iteration.
UNREACHABLE();
// Find an object in the attached references and write a pointer to it to
// the current object.
case kAttachedReference: {
int index = source_.GetInt();
Handle<HeapObject> heap_object = attached_objects_[index];
// This is the only case where we might encounter new space objects, so
// maybe emit a generational write barrier.
return slot_accessor.WriteWithGenerationalBarrier(
heap_object, GetAndResetNextReferenceType());
}
case kNop:
return 0;
case kRegisterPendingForwardRef: {
HeapObjectReferenceType ref_type = GetAndResetNextReferenceType();
unresolved_forward_refs_.emplace_back(slot_accessor.object(),
slot_accessor.offset(), ref_type);
num_unresolved_forward_refs_++;
return 1;
}
case kResolvePendingForwardRef: {
// Pending forward refs can only be resolved after the heap object's map
// field is deserialized; currently they only appear immediately after
// the map field.
DCHECK_EQ(slot_accessor.offset(), HeapObject::kHeaderSize);
Handle<HeapObject> obj = slot_accessor.object();
int index = source_.GetInt();
auto& forward_ref = unresolved_forward_refs_[index];
SlotAccessorForHeapObject::ForSlotOffset(forward_ref.object,
forward_ref.offset)
.Write(*obj, forward_ref.ref_type);
num_unresolved_forward_refs_--;
if (num_unresolved_forward_refs_ == 0) {
// If there's no more pending fields, clear the entire pending field
// vector.
unresolved_forward_refs_.clear();
} else {
// Otherwise, at least clear the pending field.
forward_ref.object = Handle<HeapObject>();
}
return 0;
}
case kSynchronize:
// If we get here then that indicates that you have a mismatch between
// the number of GC roots when serializing and deserializing.
UNREACHABLE();
// Deserialize raw data of variable length.
case kVariableRawData: {
// This operation is only supported for tagged-size slots, else we might
// become misaligned.
DCHECK_EQ(TSlot::kSlotDataSize, kTaggedSize);
int size_in_tagged = source_.GetInt();
// TODO(leszeks): Only copy slots when there are Smis in the serialized
// data.
source_.CopySlots(slot_accessor.slot().location(), size_in_tagged);
return size_in_tagged;
}
// Deserialize raw code directly into the body of the code object.
case kCodeBody: {
// This operation is only supported for tagged-size slots, else we might
// become misaligned.
DCHECK_EQ(TSlot::kSlotDataSize, kTaggedSize);
// CodeBody can only occur right after the heap object header.
DCHECK_EQ(slot_accessor.offset(), HeapObject::kHeaderSize);
int size_in_tagged = source_.GetInt();
int size_in_bytes = size_in_tagged * kTaggedSize;
{
DisallowGarbageCollection no_gc;
Code code = Code::cast(*slot_accessor.object());
// First deserialize the code itself.
source_.CopyRaw(
reinterpret_cast<void*>(code.address() + Code::kDataStart),
size_in_bytes);
}
// Then deserialize the code header
ReadData(slot_accessor.object(), HeapObject::kHeaderSize / kTaggedSize,
Code::kDataStart / kTaggedSize);
// Then deserialize the pre-serialized RelocInfo objects.
std::vector<Handle<HeapObject>> preserialized_objects;
while (source_.Peek() != kSynchronize) {
Handle<HeapObject> obj = ReadObject();
preserialized_objects.push_back(obj);
}
// Skip the synchronize bytecode.
source_.Advance(1);
// Finally iterate RelocInfos (the same way it was done by the serializer)
// and deserialize respective data into RelocInfos. The RelocIterator
// holds a raw pointer to the code, so we have to disable garbage
// collection here. It's ok though, any objects it would have needed are
// in the preserialized_objects vector.
{
DisallowGarbageCollection no_gc;
Code code = Code::cast(*slot_accessor.object());
RelocInfoVisitor visitor(this, &preserialized_objects);
for (RelocIterator it(code, Code::BodyDescriptor::kRelocModeMask);
!it.done(); it.next()) {
it.rinfo()->Visit(&visitor);
}
}
// Advance to the end of the code object.
return (Code::kDataStart - HeapObject::kHeaderSize) / kTaggedSize +
size_in_tagged;
}
case kVariableRepeat: {
int repeats = VariableRepeatCount::Decode(source_.GetInt());
return ReadRepeatedObject(slot_accessor, repeats);
}
case kOffHeapBackingStore: {
AlwaysAllocateScope scope(isolate()->heap());
int byte_length = source_.GetInt();
std::unique_ptr<BackingStore> backing_store =
BackingStore::Allocate(isolate(), byte_length, SharedFlag::kNotShared,
InitializedFlag::kUninitialized);
CHECK_NOT_NULL(backing_store);
source_.CopyRaw(backing_store->buffer_start(), byte_length);
backing_stores_.push_back(std::move(backing_store));
return 0;
}
case kSandboxedApiReference:
case kApiReference: {
uint32_t reference_id = static_cast<uint32_t>(source_.GetInt());
Address address;
if (isolate()->api_external_references()) {
DCHECK_WITH_MSG(reference_id < num_api_references_,
"too few external references provided through the API");
address = static_cast<Address>(
isolate()->api_external_references()[reference_id]);
} else {
address = reinterpret_cast<Address>(NoExternalReferencesCallback);
}
if (V8_HEAP_SANDBOX_BOOL && data == kSandboxedApiReference) {
return WriteExternalPointer(slot_accessor.slot(), address,
kForeignForeignAddressTag);
} else {
DCHECK(!V8_HEAP_SANDBOX_BOOL);
return WriteAddress(slot_accessor.slot(), address);
}
}
case kClearedWeakReference:
return slot_accessor.Write(HeapObjectReference::ClearedValue(isolate()));
case kWeakPrefix: {
// We shouldn't have two weak prefixes in a row.
DCHECK(!next_reference_is_weak_);
// We shouldn't have weak refs without a current object.
DCHECK_NE(slot_accessor.object()->address(), kNullAddress);
next_reference_is_weak_ = true;
return 0;
}
case CASE_RANGE(kRootArrayConstants, 32): {
// First kRootArrayConstantsCount roots are guaranteed to be in
// the old space.
STATIC_ASSERT(static_cast<int>(RootIndex::kFirstImmortalImmovableRoot) ==
0);
STATIC_ASSERT(kRootArrayConstantsCount <=
static_cast<int>(RootIndex::kLastImmortalImmovableRoot));
RootIndex root_index = RootArrayConstant::Decode(data);
Handle<HeapObject> heap_object =
Handle<HeapObject>::cast(isolate()->root_handle(root_index));
return slot_accessor.Write(heap_object, HeapObjectReferenceType::STRONG);
}
case CASE_RANGE(kHotObject, 8): {
int index = HotObject::Decode(data);
Handle<HeapObject> hot_object = hot_objects_.Get(index);
return slot_accessor.Write(hot_object, GetAndResetNextReferenceType());
}
case CASE_RANGE(kFixedRawData, 32): {
// Deserialize raw data of fixed length from 1 to 32 times kTaggedSize.
int size_in_tagged = FixedRawDataWithSize::Decode(data);
STATIC_ASSERT(TSlot::kSlotDataSize == kTaggedSize ||
TSlot::kSlotDataSize == 2 * kTaggedSize);
int size_in_slots = size_in_tagged / (TSlot::kSlotDataSize / kTaggedSize);
// kFixedRawData can have kTaggedSize != TSlot::kSlotDataSize when
// serializing Smi roots in pointer-compressed builds. In this case, the
// size in bytes is unconditionally the (full) slot size.
DCHECK_IMPLIES(kTaggedSize != TSlot::kSlotDataSize, size_in_slots == 1);
// TODO(leszeks): Only copy slots when there are Smis in the serialized
// data.
source_.CopySlots(slot_accessor.slot().location(), size_in_slots);
return size_in_slots;
}
case CASE_RANGE(kFixedRepeat, 16): {
int repeats = FixedRepeatWithCount::Decode(data);
return ReadRepeatedObject(slot_accessor, repeats);
}
#ifdef DEBUG
#define UNUSED_CASE(byte_code) \
case byte_code: \
UNREACHABLE();
UNUSED_SERIALIZER_BYTE_CODES(UNUSED_CASE)
#endif
#undef UNUSED_CASE
}
// The above switch, including UNUSED_SERIALIZER_BYTE_CODES, covers all
// possible bytecodes; but, clang doesn't realize this, so we have an explicit
// UNREACHABLE here too.
UNREACHABLE();
}
#undef CASE_RANGE_ALL_SPACES
#undef CASE_RANGE
#undef CASE_R32
#undef CASE_R16
#undef CASE_R8
#undef CASE_R4
#undef CASE_R3
#undef CASE_R2
#undef CASE_R1
Address Deserializer::ReadExternalReferenceCase() {
uint32_t reference_id = static_cast<uint32_t>(source_.GetInt());
return isolate()->external_reference_table()->address(reference_id);
}
namespace {
AllocationType SpaceToType(SnapshotSpace space) {
switch (space) {
case SnapshotSpace::kCode:
return AllocationType::kCode;
case SnapshotSpace::kMap:
return AllocationType::kMap;
case SnapshotSpace::kOld:
return AllocationType::kOld;
case SnapshotSpace::kReadOnlyHeap:
return AllocationType::kReadOnly;
}
}
} // namespace
HeapObject Deserializer::Allocate(SnapshotSpace space, int size,
AllocationAlignment alignment) {
#ifdef DEBUG
if (!previous_allocation_obj_.is_null()) {
// Make sure that the previous object is initialized sufficiently to
// be iterated over by the GC.
int object_size = previous_allocation_obj_->Size();
DCHECK_LE(object_size, previous_allocation_size_);
}
#endif
HeapObject obj = isolate()->heap()->AllocateRawWith<Heap::kRetryOrFail>(
size, SpaceToType(space), AllocationOrigin::kRuntime, alignment);
#ifdef DEBUG
previous_allocation_obj_ = handle(obj, isolate());
previous_allocation_size_ = size;
#endif
return obj;
}
} // namespace internal
} // namespace v8