| //===- InputFiles.cpp -----------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "InputSection.h" |
| #include "LinkerScript.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/LTO/LTO.h" |
| #include "llvm/MC/StringTableBuilder.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Support/ARMAttributeParser.h" |
| #include "llvm/Support/ARMBuildAttributes.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/TarWriter.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::sys; |
| using namespace llvm::sys::fs; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| bool InputFile::IsInGroup; |
| uint32_t InputFile::NextGroupId; |
| std::vector<BinaryFile *> elf::BinaryFiles; |
| std::vector<BitcodeFile *> elf::BitcodeFiles; |
| std::vector<LazyObjFile *> elf::LazyObjFiles; |
| std::vector<InputFile *> elf::ObjectFiles; |
| std::vector<InputFile *> elf::SharedFiles; |
| |
| TarWriter *elf::Tar; |
| |
| InputFile::InputFile(Kind K, MemoryBufferRef M) |
| : MB(M), GroupId(NextGroupId), FileKind(K) { |
| // All files within the same --{start,end}-group get the same group ID. |
| // Otherwise, a new file will get a new group ID. |
| if (!IsInGroup) |
| ++NextGroupId; |
| } |
| |
| Optional<MemoryBufferRef> elf::readFile(StringRef Path) { |
| // The --chroot option changes our virtual root directory. |
| // This is useful when you are dealing with files created by --reproduce. |
| if (!Config->Chroot.empty() && Path.startswith("/")) |
| Path = Saver.save(Config->Chroot + Path); |
| |
| log(Path); |
| |
| auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); |
| if (auto EC = MBOrErr.getError()) { |
| error("cannot open " + Path + ": " + EC.message()); |
| return None; |
| } |
| |
| std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; |
| MemoryBufferRef MBRef = MB->getMemBufferRef(); |
| make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership |
| |
| if (Tar) |
| Tar->append(relativeToRoot(Path), MBRef.getBuffer()); |
| return MBRef; |
| } |
| |
| // Concatenates arguments to construct a string representing an error location. |
| static std::string createFileLineMsg(StringRef Path, unsigned Line) { |
| std::string Filename = path::filename(Path); |
| std::string Lineno = ":" + std::to_string(Line); |
| if (Filename == Path) |
| return Filename + Lineno; |
| return Filename + Lineno + " (" + Path.str() + Lineno + ")"; |
| } |
| |
| template <class ELFT> |
| static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, |
| InputSectionBase &Sec, uint64_t Offset) { |
| // In DWARF, functions and variables are stored to different places. |
| // First, lookup a function for a given offset. |
| if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) |
| return createFileLineMsg(Info->FileName, Info->Line); |
| |
| // If it failed, lookup again as a variable. |
| if (Optional<std::pair<std::string, unsigned>> FileLine = |
| File.getVariableLoc(Sym.getName())) |
| return createFileLineMsg(FileLine->first, FileLine->second); |
| |
| // File.SourceFile contains STT_FILE symbol, and that is a last resort. |
| return File.SourceFile; |
| } |
| |
| std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, |
| uint64_t Offset) { |
| if (kind() != ObjKind) |
| return ""; |
| switch (Config->EKind) { |
| default: |
| llvm_unreachable("Invalid kind"); |
| case ELF32LEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); |
| case ELF32BEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); |
| case ELF64LEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); |
| case ELF64BEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); |
| } |
| } |
| |
| template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { |
| Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); |
| const DWARFObject &Obj = Dwarf->getDWARFObj(); |
| DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, |
| Config->Wordsize); |
| |
| for (std::unique_ptr<DWARFCompileUnit> &CU : Dwarf->compile_units()) { |
| auto Report = [](Error Err) { |
| handleAllErrors(std::move(Err), |
| [](ErrorInfoBase &Info) { warn(Info.message()); }); |
| }; |
| Expected<const DWARFDebugLine::LineTable *> ExpectedLT = |
| Dwarf->getLineTableForUnit(CU.get(), Report); |
| const DWARFDebugLine::LineTable *LT = nullptr; |
| if (ExpectedLT) |
| LT = *ExpectedLT; |
| else |
| Report(ExpectedLT.takeError()); |
| if (!LT) |
| continue; |
| LineTables.push_back(LT); |
| |
| // Loop over variable records and insert them to VariableLoc. |
| for (const auto &Entry : CU->dies()) { |
| DWARFDie Die(CU.get(), &Entry); |
| // Skip all tags that are not variables. |
| if (Die.getTag() != dwarf::DW_TAG_variable) |
| continue; |
| |
| // Skip if a local variable because we don't need them for generating |
| // error messages. In general, only non-local symbols can fail to be |
| // linked. |
| if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) |
| continue; |
| |
| // Get the source filename index for the variable. |
| unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); |
| if (!LT->hasFileAtIndex(File)) |
| continue; |
| |
| // Get the line number on which the variable is declared. |
| unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); |
| |
| // Here we want to take the variable name to add it into VariableLoc. |
| // Variable can have regular and linkage name associated. At first, we try |
| // to get linkage name as it can be different, for example when we have |
| // two variables in different namespaces of the same object. Use common |
| // name otherwise, but handle the case when it also absent in case if the |
| // input object file lacks some debug info. |
| StringRef Name = |
| dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), |
| dwarf::toString(Die.find(dwarf::DW_AT_name), "")); |
| if (!Name.empty()) |
| VariableLoc.insert({Name, {LT, File, Line}}); |
| } |
| } |
| } |
| |
| // Returns the pair of file name and line number describing location of data |
| // object (variable, array, etc) definition. |
| template <class ELFT> |
| Optional<std::pair<std::string, unsigned>> |
| ObjFile<ELFT>::getVariableLoc(StringRef Name) { |
| llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); |
| |
| // Return if we have no debug information about data object. |
| auto It = VariableLoc.find(Name); |
| if (It == VariableLoc.end()) |
| return None; |
| |
| // Take file name string from line table. |
| std::string FileName; |
| if (!It->second.LT->getFileNameByIndex( |
| It->second.File, nullptr, |
| DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) |
| return None; |
| |
| return std::make_pair(FileName, It->second.Line); |
| } |
| |
| // Returns source line information for a given offset |
| // using DWARF debug info. |
| template <class ELFT> |
| Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, |
| uint64_t Offset) { |
| llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); |
| |
| // Use fake address calcuated by adding section file offset and offset in |
| // section. See comments for ObjectInfo class. |
| DILineInfo Info; |
| for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) |
| if (LT->getFileLineInfoForAddress( |
| S->getOffsetInFile() + Offset, nullptr, |
| DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) |
| return Info; |
| return None; |
| } |
| |
| // Returns "<internal>", "foo.a(bar.o)" or "baz.o". |
| std::string lld::toString(const InputFile *F) { |
| if (!F) |
| return "<internal>"; |
| |
| if (F->ToStringCache.empty()) { |
| if (F->ArchiveName.empty()) |
| F->ToStringCache = F->getName(); |
| else |
| F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); |
| } |
| return F->ToStringCache; |
| } |
| |
| template <class ELFT> |
| ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { |
| if (ELFT::TargetEndianness == support::little) |
| EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; |
| else |
| EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; |
| |
| EMachine = getObj().getHeader()->e_machine; |
| OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; |
| } |
| |
| template <class ELFT> |
| typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { |
| return makeArrayRef(ELFSyms.begin() + FirstGlobal, ELFSyms.end()); |
| } |
| |
| template <class ELFT> |
| uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { |
| return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this); |
| } |
| |
| template <class ELFT> |
| void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, |
| const Elf_Shdr *Symtab) { |
| FirstGlobal = Symtab->sh_info; |
| ELFSyms = CHECK(getObj().symbols(Symtab), this); |
| if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size()) |
| fatal(toString(this) + ": invalid sh_info in symbol table"); |
| |
| StringTable = |
| CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this); |
| } |
| |
| template <class ELFT> |
| ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) |
| : ELFFileBase<ELFT>(Base::ObjKind, M) { |
| this->ArchiveName = ArchiveName; |
| } |
| |
| template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { |
| if (this->Symbols.empty()) |
| return {}; |
| return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); |
| } |
| |
| template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { |
| return makeArrayRef(this->Symbols).slice(this->FirstGlobal); |
| } |
| |
| template <class ELFT> |
| void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { |
| // Read a section table. JustSymbols is usually false. |
| if (this->JustSymbols) |
| initializeJustSymbols(); |
| else |
| initializeSections(ComdatGroups); |
| |
| // Read a symbol table. |
| initializeSymbols(); |
| } |
| |
| // Sections with SHT_GROUP and comdat bits define comdat section groups. |
| // They are identified and deduplicated by group name. This function |
| // returns a group name. |
| template <class ELFT> |
| StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, |
| const Elf_Shdr &Sec) { |
| // Group signatures are stored as symbol names in object files. |
| // sh_info contains a symbol index, so we fetch a symbol and read its name. |
| if (this->ELFSyms.empty()) |
| this->initSymtab( |
| Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); |
| |
| const Elf_Sym *Sym = |
| CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this); |
| StringRef Signature = CHECK(Sym->getName(this->StringTable), this); |
| |
| // As a special case, if a symbol is a section symbol and has no name, |
| // we use a section name as a signature. |
| // |
| // Such SHT_GROUP sections are invalid from the perspective of the ELF |
| // standard, but GNU gold 1.14 (the newest version as of July 2017) or |
| // older produce such sections as outputs for the -r option, so we need |
| // a bug-compatibility. |
| if (Signature.empty() && Sym->getType() == STT_SECTION) |
| return getSectionName(Sec); |
| return Signature; |
| } |
| |
| template <class ELFT> |
| ArrayRef<typename ObjFile<ELFT>::Elf_Word> |
| ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { |
| const ELFFile<ELFT> &Obj = this->getObj(); |
| ArrayRef<Elf_Word> Entries = |
| CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); |
| if (Entries.empty() || Entries[0] != GRP_COMDAT) |
| fatal(toString(this) + ": unsupported SHT_GROUP format"); |
| return Entries.slice(1); |
| } |
| |
| template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { |
| // On a regular link we don't merge sections if -O0 (default is -O1). This |
| // sometimes makes the linker significantly faster, although the output will |
| // be bigger. |
| // |
| // Doing the same for -r would create a problem as it would combine sections |
| // with different sh_entsize. One option would be to just copy every SHF_MERGE |
| // section as is to the output. While this would produce a valid ELF file with |
| // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when |
| // they see two .debug_str. We could have separate logic for combining |
| // SHF_MERGE sections based both on their name and sh_entsize, but that seems |
| // to be more trouble than it is worth. Instead, we just use the regular (-O1) |
| // logic for -r. |
| if (Config->Optimize == 0 && !Config->Relocatable) |
| return false; |
| |
| // A mergeable section with size 0 is useless because they don't have |
| // any data to merge. A mergeable string section with size 0 can be |
| // argued as invalid because it doesn't end with a null character. |
| // We'll avoid a mess by handling them as if they were non-mergeable. |
| if (Sec.sh_size == 0) |
| return false; |
| |
| // Check for sh_entsize. The ELF spec is not clear about the zero |
| // sh_entsize. It says that "the member [sh_entsize] contains 0 if |
| // the section does not hold a table of fixed-size entries". We know |
| // that Rust 1.13 produces a string mergeable section with a zero |
| // sh_entsize. Here we just accept it rather than being picky about it. |
| uint64_t EntSize = Sec.sh_entsize; |
| if (EntSize == 0) |
| return false; |
| if (Sec.sh_size % EntSize) |
| fatal(toString(this) + |
| ": SHF_MERGE section size must be a multiple of sh_entsize"); |
| |
| uint64_t Flags = Sec.sh_flags; |
| if (!(Flags & SHF_MERGE)) |
| return false; |
| if (Flags & SHF_WRITE) |
| fatal(toString(this) + ": writable SHF_MERGE section is not supported"); |
| |
| return true; |
| } |
| |
| // This is for --just-symbols. |
| // |
| // --just-symbols is a very minor feature that allows you to link your |
| // output against other existing program, so that if you load both your |
| // program and the other program into memory, your output can refer the |
| // other program's symbols. |
| // |
| // When the option is given, we link "just symbols". The section table is |
| // initialized with null pointers. |
| template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { |
| ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); |
| this->Sections.resize(ObjSections.size()); |
| |
| for (const Elf_Shdr &Sec : ObjSections) { |
| if (Sec.sh_type != SHT_SYMTAB) |
| continue; |
| this->initSymtab(ObjSections, &Sec); |
| return; |
| } |
| } |
| |
| template <class ELFT> |
| void ObjFile<ELFT>::initializeSections( |
| DenseSet<CachedHashStringRef> &ComdatGroups) { |
| const ELFFile<ELFT> &Obj = this->getObj(); |
| |
| ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); |
| uint64_t Size = ObjSections.size(); |
| this->Sections.resize(Size); |
| this->SectionStringTable = |
| CHECK(Obj.getSectionStringTable(ObjSections), this); |
| |
| for (size_t I = 0, E = ObjSections.size(); I < E; I++) { |
| if (this->Sections[I] == &InputSection::Discarded) |
| continue; |
| const Elf_Shdr &Sec = ObjSections[I]; |
| |
| // SHF_EXCLUDE'ed sections are discarded by the linker. However, |
| // if -r is given, we'll let the final link discard such sections. |
| // This is compatible with GNU. |
| if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { |
| if (Sec.sh_type == SHT_LLVM_ADDRSIG) { |
| // We ignore the address-significance table if we know that the object |
| // file was created by objcopy or ld -r. This is because these tools |
| // will reorder the symbols in the symbol table, invalidating the data |
| // in the address-significance table, which refers to symbols by index. |
| if (Sec.sh_link != 0) |
| this->AddrsigSec = &Sec; |
| else if (Config->ICF == ICFLevel::Safe) |
| warn(toString(this) + ": --icf=safe is incompatible with object " |
| "files created using objcopy or ld -r"); |
| } |
| this->Sections[I] = &InputSection::Discarded; |
| continue; |
| } |
| |
| switch (Sec.sh_type) { |
| case SHT_GROUP: { |
| // De-duplicate section groups by their signatures. |
| StringRef Signature = getShtGroupSignature(ObjSections, Sec); |
| bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; |
| this->Sections[I] = &InputSection::Discarded; |
| |
| // If it is a new section group, we want to keep group members. |
| // Group leader sections, which contain indices of group members, are |
| // discarded because they are useless beyond this point. The only |
| // exception is the -r option because in order to produce re-linkable |
| // object files, we want to pass through basically everything. |
| if (IsNew) { |
| if (Config->Relocatable) |
| this->Sections[I] = createInputSection(Sec); |
| continue; |
| } |
| |
| // Otherwise, discard group members. |
| for (uint32_t SecIndex : getShtGroupEntries(Sec)) { |
| if (SecIndex >= Size) |
| fatal(toString(this) + |
| ": invalid section index in group: " + Twine(SecIndex)); |
| this->Sections[SecIndex] = &InputSection::Discarded; |
| } |
| break; |
| } |
| case SHT_SYMTAB: |
| this->initSymtab(ObjSections, &Sec); |
| break; |
| case SHT_SYMTAB_SHNDX: |
| this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); |
| break; |
| case SHT_STRTAB: |
| case SHT_NULL: |
| break; |
| default: |
| this->Sections[I] = createInputSection(Sec); |
| } |
| |
| // .ARM.exidx sections have a reverse dependency on the InputSection they |
| // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. |
| if (Sec.sh_flags & SHF_LINK_ORDER) { |
| if (Sec.sh_link >= this->Sections.size()) |
| fatal(toString(this) + |
| ": invalid sh_link index: " + Twine(Sec.sh_link)); |
| |
| InputSectionBase *LinkSec = this->Sections[Sec.sh_link]; |
| InputSection *IS = cast<InputSection>(this->Sections[I]); |
| LinkSec->DependentSections.push_back(IS); |
| if (!isa<InputSection>(LinkSec)) |
| error("a section " + IS->Name + |
| " with SHF_LINK_ORDER should not refer a non-regular " |
| "section: " + |
| toString(LinkSec)); |
| } |
| } |
| } |
| |
| // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD |
| // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how |
| // the input objects have been compiled. |
| static void updateARMVFPArgs(const ARMAttributeParser &Attributes, |
| const InputFile *F) { |
| if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) |
| // If an ABI tag isn't present then it is implicitly given the value of 0 |
| // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, |
| // including some in glibc that don't use FP args (and should have value 3) |
| // don't have the attribute so we do not consider an implicit value of 0 |
| // as a clash. |
| return; |
| |
| unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); |
| ARMVFPArgKind Arg; |
| switch (VFPArgs) { |
| case ARMBuildAttrs::BaseAAPCS: |
| Arg = ARMVFPArgKind::Base; |
| break; |
| case ARMBuildAttrs::HardFPAAPCS: |
| Arg = ARMVFPArgKind::VFP; |
| break; |
| case ARMBuildAttrs::ToolChainFPPCS: |
| // Tool chain specific convention that conforms to neither AAPCS variant. |
| Arg = ARMVFPArgKind::ToolChain; |
| break; |
| case ARMBuildAttrs::CompatibleFPAAPCS: |
| // Object compatible with all conventions. |
| return; |
| default: |
| error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); |
| return; |
| } |
| // Follow ld.bfd and error if there is a mix of calling conventions. |
| if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) |
| error(toString(F) + ": incompatible Tag_ABI_VFP_args"); |
| else |
| Config->ARMVFPArgs = Arg; |
| } |
| |
| // The ARM support in lld makes some use of instructions that are not available |
| // on all ARM architectures. Namely: |
| // - Use of BLX instruction for interworking between ARM and Thumb state. |
| // - Use of the extended Thumb branch encoding in relocation. |
| // - Use of the MOVT/MOVW instructions in Thumb Thunks. |
| // The ARM Attributes section contains information about the architecture chosen |
| // at compile time. We follow the convention that if at least one input object |
| // is compiled with an architecture that supports these features then lld is |
| // permitted to use them. |
| static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { |
| if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) |
| return; |
| auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); |
| switch (Arch) { |
| case ARMBuildAttrs::Pre_v4: |
| case ARMBuildAttrs::v4: |
| case ARMBuildAttrs::v4T: |
| // Architectures prior to v5 do not support BLX instruction |
| break; |
| case ARMBuildAttrs::v5T: |
| case ARMBuildAttrs::v5TE: |
| case ARMBuildAttrs::v5TEJ: |
| case ARMBuildAttrs::v6: |
| case ARMBuildAttrs::v6KZ: |
| case ARMBuildAttrs::v6K: |
| Config->ARMHasBlx = true; |
| // Architectures used in pre-Cortex processors do not support |
| // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception |
| // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. |
| break; |
| default: |
| // All other Architectures have BLX and extended branch encoding |
| Config->ARMHasBlx = true; |
| Config->ARMJ1J2BranchEncoding = true; |
| if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) |
| // All Architectures used in Cortex processors with the exception |
| // of v6-M and v6S-M have the MOVT and MOVW instructions. |
| Config->ARMHasMovtMovw = true; |
| break; |
| } |
| } |
| |
| template <class ELFT> |
| InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { |
| uint32_t Idx = Sec.sh_info; |
| if (Idx >= this->Sections.size()) |
| fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); |
| InputSectionBase *Target = this->Sections[Idx]; |
| |
| // Strictly speaking, a relocation section must be included in the |
| // group of the section it relocates. However, LLVM 3.3 and earlier |
| // would fail to do so, so we gracefully handle that case. |
| if (Target == &InputSection::Discarded) |
| return nullptr; |
| |
| if (!Target) |
| fatal(toString(this) + ": unsupported relocation reference"); |
| return Target; |
| } |
| |
| // Create a regular InputSection class that has the same contents |
| // as a given section. |
| static InputSection *toRegularSection(MergeInputSection *Sec) { |
| return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, |
| Sec->Data, Sec->Name); |
| } |
| |
| template <class ELFT> |
| InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { |
| StringRef Name = getSectionName(Sec); |
| |
| switch (Sec.sh_type) { |
| case SHT_ARM_ATTRIBUTES: { |
| if (Config->EMachine != EM_ARM) |
| break; |
| ARMAttributeParser Attributes; |
| ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); |
| Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); |
| updateSupportedARMFeatures(Attributes); |
| updateARMVFPArgs(Attributes, this); |
| |
| // FIXME: Retain the first attribute section we see. The eglibc ARM |
| // dynamic loaders require the presence of an attribute section for dlopen |
| // to work. In a full implementation we would merge all attribute sections. |
| if (InX::ARMAttributes == nullptr) { |
| InX::ARMAttributes = make<InputSection>(*this, Sec, Name); |
| return InX::ARMAttributes; |
| } |
| return &InputSection::Discarded; |
| } |
| case SHT_RELA: |
| case SHT_REL: { |
| // Find a relocation target section and associate this section with that. |
| // Target may have been discarded if it is in a different section group |
| // and the group is discarded, even though it's a violation of the |
| // spec. We handle that situation gracefully by discarding dangling |
| // relocation sections. |
| InputSectionBase *Target = getRelocTarget(Sec); |
| if (!Target) |
| return nullptr; |
| |
| // This section contains relocation information. |
| // If -r is given, we do not interpret or apply relocation |
| // but just copy relocation sections to output. |
| if (Config->Relocatable) |
| return make<InputSection>(*this, Sec, Name); |
| |
| if (Target->FirstRelocation) |
| fatal(toString(this) + |
| ": multiple relocation sections to one section are not supported"); |
| |
| // ELF spec allows mergeable sections with relocations, but they are |
| // rare, and it is in practice hard to merge such sections by contents, |
| // because applying relocations at end of linking changes section |
| // contents. So, we simply handle such sections as non-mergeable ones. |
| // Degrading like this is acceptable because section merging is optional. |
| if (auto *MS = dyn_cast<MergeInputSection>(Target)) { |
| Target = toRegularSection(MS); |
| this->Sections[Sec.sh_info] = Target; |
| } |
| |
| if (Sec.sh_type == SHT_RELA) { |
| ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this); |
| Target->FirstRelocation = Rels.begin(); |
| Target->NumRelocations = Rels.size(); |
| Target->AreRelocsRela = true; |
| } else { |
| ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this); |
| Target->FirstRelocation = Rels.begin(); |
| Target->NumRelocations = Rels.size(); |
| Target->AreRelocsRela = false; |
| } |
| assert(isUInt<31>(Target->NumRelocations)); |
| |
| // Relocation sections processed by the linker are usually removed |
| // from the output, so returning `nullptr` for the normal case. |
| // However, if -emit-relocs is given, we need to leave them in the output. |
| // (Some post link analysis tools need this information.) |
| if (Config->EmitRelocs) { |
| InputSection *RelocSec = make<InputSection>(*this, Sec, Name); |
| // We will not emit relocation section if target was discarded. |
| Target->DependentSections.push_back(RelocSec); |
| return RelocSec; |
| } |
| return nullptr; |
| } |
| } |
| |
| // The GNU linker uses .note.GNU-stack section as a marker indicating |
| // that the code in the object file does not expect that the stack is |
| // executable (in terms of NX bit). If all input files have the marker, |
| // the GNU linker adds a PT_GNU_STACK segment to tells the loader to |
| // make the stack non-executable. Most object files have this section as |
| // of 2017. |
| // |
| // But making the stack non-executable is a norm today for security |
| // reasons. Failure to do so may result in a serious security issue. |
| // Therefore, we make LLD always add PT_GNU_STACK unless it is |
| // explicitly told to do otherwise (by -z execstack). Because the stack |
| // executable-ness is controlled solely by command line options, |
| // .note.GNU-stack sections are simply ignored. |
| if (Name == ".note.GNU-stack") |
| return &InputSection::Discarded; |
| |
| // Split stacks is a feature to support a discontiguous stack, |
| // commonly used in the programming language Go. For the details, |
| // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled |
| // for split stack will include a .note.GNU-split-stack section. |
| if (Name == ".note.GNU-split-stack") { |
| if (Config->Relocatable) { |
| error("Cannot mix split-stack and non-split-stack in a relocatable link"); |
| return &InputSection::Discarded; |
| } |
| this->SplitStack = true; |
| return &InputSection::Discarded; |
| } |
| |
| // An object file cmpiled for split stack, but where some of the |
| // functions were compiled with the no_split_stack_attribute will |
| // include a .note.GNU-no-split-stack section. |
| if (Name == ".note.GNU-no-split-stack") { |
| this->SomeNoSplitStack = true; |
| return &InputSection::Discarded; |
| } |
| |
| // The linkonce feature is a sort of proto-comdat. Some glibc i386 object |
| // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce |
| // sections. Drop those sections to avoid duplicate symbol errors. |
| // FIXME: This is glibc PR20543, we should remove this hack once that has been |
| // fixed for a while. |
| if (Name.startswith(".gnu.linkonce.")) |
| return &InputSection::Discarded; |
| |
| // If we are creating a new .build-id section, strip existing .build-id |
| // sections so that the output won't have more than one .build-id. |
| // This is not usually a problem because input object files normally don't |
| // have .build-id sections, but you can create such files by |
| // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. |
| if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) |
| return &InputSection::Discarded; |
| |
| // The linker merges EH (exception handling) frames and creates a |
| // .eh_frame_hdr section for runtime. So we handle them with a special |
| // class. For relocatable outputs, they are just passed through. |
| if (Name == ".eh_frame" && !Config->Relocatable) |
| return make<EhInputSection>(*this, Sec, Name); |
| |
| if (shouldMerge(Sec)) |
| return make<MergeInputSection>(*this, Sec, Name); |
| return make<InputSection>(*this, Sec, Name); |
| } |
| |
| template <class ELFT> |
| StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { |
| return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this); |
| } |
| |
| template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { |
| this->Symbols.reserve(this->ELFSyms.size()); |
| for (const Elf_Sym &Sym : this->ELFSyms) |
| this->Symbols.push_back(createSymbol(&Sym)); |
| } |
| |
| template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { |
| int Binding = Sym->getBinding(); |
| |
| uint32_t SecIdx = this->getSectionIndex(*Sym); |
| if (SecIdx >= this->Sections.size()) |
| fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); |
| |
| InputSectionBase *Sec = this->Sections[SecIdx]; |
| uint8_t StOther = Sym->st_other; |
| uint8_t Type = Sym->getType(); |
| uint64_t Value = Sym->st_value; |
| uint64_t Size = Sym->st_size; |
| |
| if (Binding == STB_LOCAL) { |
| if (Sym->getType() == STT_FILE) |
| SourceFile = CHECK(Sym->getName(this->StringTable), this); |
| |
| if (this->StringTable.size() <= Sym->st_name) |
| fatal(toString(this) + ": invalid symbol name offset"); |
| |
| StringRefZ Name = this->StringTable.data() + Sym->st_name; |
| if (Sym->st_shndx == SHN_UNDEF) |
| return make<Undefined>(this, Name, Binding, StOther, Type); |
| |
| return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); |
| } |
| |
| StringRef Name = CHECK(Sym->getName(this->StringTable), this); |
| |
| switch (Sym->st_shndx) { |
| case SHN_UNDEF: |
| return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, |
| /*CanOmitFromDynSym=*/false, this); |
| case SHN_COMMON: |
| if (Value == 0 || Value >= UINT32_MAX) |
| fatal(toString(this) + ": common symbol '" + Name + |
| "' has invalid alignment: " + Twine(Value)); |
| return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this); |
| } |
| |
| switch (Binding) { |
| default: |
| fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); |
| case STB_GLOBAL: |
| case STB_WEAK: |
| case STB_GNU_UNIQUE: |
| if (Sec == &InputSection::Discarded) |
| return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, |
| /*CanOmitFromDynSym=*/false, this); |
| return Symtab->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, |
| this); |
| } |
| } |
| |
| ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) |
| : InputFile(ArchiveKind, File->getMemoryBufferRef()), |
| File(std::move(File)) {} |
| |
| template <class ELFT> void ArchiveFile::parse() { |
| for (const Archive::Symbol &Sym : File->symbols()) |
| Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym); |
| } |
| |
| // Returns a buffer pointing to a member file containing a given symbol. |
| InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) { |
| Archive::Child C = |
| CHECK(Sym.getMember(), toString(this) + |
| ": could not get the member for symbol " + |
| Sym.getName()); |
| |
| if (!Seen.insert(C.getChildOffset()).second) |
| return nullptr; |
| |
| MemoryBufferRef MB = |
| CHECK(C.getMemoryBufferRef(), |
| toString(this) + |
| ": could not get the buffer for the member defining symbol " + |
| Sym.getName()); |
| |
| if (Tar && C.getParent()->isThin()) |
| Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); |
| |
| InputFile *File = createObjectFile( |
| MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); |
| File->GroupId = GroupId; |
| return File; |
| } |
| |
| template <class ELFT> |
| SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) |
| : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), |
| IsNeeded(!Config->AsNeeded) {} |
| |
| // Partially parse the shared object file so that we can call |
| // getSoName on this object. |
| template <class ELFT> void SharedFile<ELFT>::parseSoName() { |
| const Elf_Shdr *DynamicSec = nullptr; |
| const ELFFile<ELFT> Obj = this->getObj(); |
| ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); |
| |
| // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. |
| for (const Elf_Shdr &Sec : Sections) { |
| switch (Sec.sh_type) { |
| default: |
| continue; |
| case SHT_DYNSYM: |
| this->initSymtab(Sections, &Sec); |
| break; |
| case SHT_DYNAMIC: |
| DynamicSec = &Sec; |
| break; |
| case SHT_SYMTAB_SHNDX: |
| this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this); |
| break; |
| case SHT_GNU_versym: |
| this->VersymSec = &Sec; |
| break; |
| case SHT_GNU_verdef: |
| this->VerdefSec = &Sec; |
| break; |
| } |
| } |
| |
| if (this->VersymSec && this->ELFSyms.empty()) |
| error("SHT_GNU_versym should be associated with symbol table"); |
| |
| // Search for a DT_SONAME tag to initialize this->SoName. |
| if (!DynamicSec) |
| return; |
| ArrayRef<Elf_Dyn> Arr = |
| CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this); |
| for (const Elf_Dyn &Dyn : Arr) { |
| if (Dyn.d_tag == DT_SONAME) { |
| uint64_t Val = Dyn.getVal(); |
| if (Val >= this->StringTable.size()) |
| fatal(toString(this) + ": invalid DT_SONAME entry"); |
| SoName = this->StringTable.data() + Val; |
| return; |
| } |
| } |
| } |
| |
| // Parses ".gnu.version" section which is a parallel array for the symbol table. |
| // If a given file doesn't have ".gnu.version" section, returns VER_NDX_GLOBAL. |
| template <class ELFT> std::vector<uint32_t> SharedFile<ELFT>::parseVersyms() { |
| size_t Size = this->ELFSyms.size() - this->FirstGlobal; |
| if (!VersymSec) |
| return std::vector<uint32_t>(Size, VER_NDX_GLOBAL); |
| |
| const char *Base = this->MB.getBuffer().data(); |
| const Elf_Versym *Versym = |
| reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + |
| this->FirstGlobal; |
| |
| std::vector<uint32_t> Ret(Size); |
| for (size_t I = 0; I < Size; ++I) |
| Ret[I] = Versym[I].vs_index; |
| return Ret; |
| } |
| |
| // Parse the version definitions in the object file if present. Returns a vector |
| // whose nth element contains a pointer to the Elf_Verdef for version identifier |
| // n. Version identifiers that are not definitions map to nullptr. |
| template <class ELFT> |
| std::vector<const typename ELFT::Verdef *> SharedFile<ELFT>::parseVerdefs() { |
| if (!VerdefSec) |
| return {}; |
| |
| // We cannot determine the largest verdef identifier without inspecting |
| // every Elf_Verdef, but both bfd and gold assign verdef identifiers |
| // sequentially starting from 1, so we predict that the largest identifier |
| // will be VerdefCount. |
| unsigned VerdefCount = VerdefSec->sh_info; |
| std::vector<const Elf_Verdef *> Verdefs(VerdefCount + 1); |
| |
| // Build the Verdefs array by following the chain of Elf_Verdef objects |
| // from the start of the .gnu.version_d section. |
| const char *Base = this->MB.getBuffer().data(); |
| const char *Verdef = Base + VerdefSec->sh_offset; |
| for (unsigned I = 0; I != VerdefCount; ++I) { |
| auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); |
| Verdef += CurVerdef->vd_next; |
| unsigned VerdefIndex = CurVerdef->vd_ndx; |
| if (Verdefs.size() <= VerdefIndex) |
| Verdefs.resize(VerdefIndex + 1); |
| Verdefs[VerdefIndex] = CurVerdef; |
| } |
| |
| return Verdefs; |
| } |
| |
| // We do not usually care about alignments of data in shared object |
| // files because the loader takes care of it. However, if we promote a |
| // DSO symbol to point to .bss due to copy relocation, we need to keep |
| // the original alignment requirements. We infer it in this function. |
| template <class ELFT> |
| uint32_t SharedFile<ELFT>::getAlignment(ArrayRef<Elf_Shdr> Sections, |
| const Elf_Sym &Sym) { |
| uint64_t Ret = UINT64_MAX; |
| if (Sym.st_value) |
| Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); |
| if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) |
| Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); |
| return (Ret > UINT32_MAX) ? 0 : Ret; |
| } |
| |
| // Fully parse the shared object file. This must be called after parseSoName(). |
| // |
| // This function parses symbol versions. If a DSO has version information, |
| // the file has a ".gnu.version_d" section which contains symbol version |
| // definitions. Each symbol is associated to one version through a table in |
| // ".gnu.version" section. That table is a parallel array for the symbol |
| // table, and each table entry contains an index in ".gnu.version_d". |
| // |
| // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for |
| // VER_NDX_GLOBAL. There's no table entry for these special versions in |
| // ".gnu.version_d". |
| // |
| // The file format for symbol versioning is perhaps a bit more complicated |
| // than necessary, but you can easily understand the code if you wrap your |
| // head around the data structure described above. |
| template <class ELFT> void SharedFile<ELFT>::parseRest() { |
| Verdefs = parseVerdefs(); // parse .gnu.version_d |
| std::vector<uint32_t> Versyms = parseVersyms(); // parse .gnu.version |
| ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); |
| |
| // System libraries can have a lot of symbols with versions. Using a |
| // fixed buffer for computing the versions name (foo@ver) can save a |
| // lot of allocations. |
| SmallString<0> VersionedNameBuffer; |
| |
| // Add symbols to the symbol table. |
| ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms(); |
| for (size_t I = 0; I < Syms.size(); ++I) { |
| const Elf_Sym &Sym = Syms[I]; |
| |
| StringRef Name = CHECK(Sym.getName(this->StringTable), this); |
| if (Sym.isUndefined()) { |
| Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(), |
| Sym.st_other, Sym.getType(), |
| /*CanOmitFromDynSym=*/false, this); |
| S->ExportDynamic = true; |
| continue; |
| } |
| |
| // ELF spec requires that all local symbols precede weak or global |
| // symbols in each symbol table, and the index of first non-local symbol |
| // is stored to sh_info. If a local symbol appears after some non-local |
| // symbol, that's a violation of the spec. |
| if (Sym.getBinding() == STB_LOCAL) { |
| warn("found local symbol '" + Name + |
| "' in global part of symbol table in file " + toString(this)); |
| continue; |
| } |
| |
| // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly |
| // assigns VER_NDX_LOCAL to this section global symbol. Here is a |
| // workaround for this bug. |
| uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; |
| if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && |
| Name == "_gp_disp") |
| continue; |
| |
| uint64_t Alignment = getAlignment(Sections, Sym); |
| if (!(Versyms[I] & VERSYM_HIDDEN)) |
| Symtab->addShared(Name, *this, Sym, Alignment, Idx); |
| |
| // Also add the symbol with the versioned name to handle undefined symbols |
| // with explicit versions. |
| if (Idx == VER_NDX_GLOBAL) |
| continue; |
| |
| if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { |
| error("corrupt input file: version definition index " + Twine(Idx) + |
| " for symbol " + Name + " is out of bounds\n>>> defined in " + |
| toString(this)); |
| continue; |
| } |
| |
| StringRef VerName = |
| this->StringTable.data() + Verdefs[Idx]->getAux()->vda_name; |
| VersionedNameBuffer.clear(); |
| Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); |
| Symtab->addShared(Saver.save(Name), *this, Sym, Alignment, Idx); |
| } |
| } |
| |
| static ELFKind getBitcodeELFKind(const Triple &T) { |
| if (T.isLittleEndian()) |
| return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; |
| return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; |
| } |
| |
| static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { |
| switch (T.getArch()) { |
| case Triple::aarch64: |
| return EM_AARCH64; |
| case Triple::arm: |
| case Triple::thumb: |
| return EM_ARM; |
| case Triple::avr: |
| return EM_AVR; |
| case Triple::mips: |
| case Triple::mipsel: |
| case Triple::mips64: |
| case Triple::mips64el: |
| return EM_MIPS; |
| case Triple::ppc: |
| return EM_PPC; |
| case Triple::ppc64: |
| return EM_PPC64; |
| case Triple::x86: |
| return T.isOSIAMCU() ? EM_IAMCU : EM_386; |
| case Triple::x86_64: |
| return EM_X86_64; |
| default: |
| error(Path + ": could not infer e_machine from bitcode target triple " + |
| T.str()); |
| return EM_NONE; |
| } |
| } |
| |
| BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, |
| uint64_t OffsetInArchive) |
| : InputFile(BitcodeKind, MB) { |
| this->ArchiveName = ArchiveName; |
| |
| std::string Path = MB.getBufferIdentifier().str(); |
| if (Config->ThinLTOIndexOnly) |
| Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); |
| |
| // ThinLTO assumes that all MemoryBufferRefs given to it have a unique |
| // name. If two archives define two members with the same name, this |
| // causes a collision which result in only one of the objects being taken |
| // into consideration at LTO time (which very likely causes undefined |
| // symbols later in the link stage). So we append file offset to make |
| // filename unique. |
| MemoryBufferRef MBRef( |
| MB.getBuffer(), |
| Saver.save(ArchiveName + Path + |
| (ArchiveName.empty() ? "" : utostr(OffsetInArchive)))); |
| |
| Obj = CHECK(lto::InputFile::create(MBRef), this); |
| |
| Triple T(Obj->getTargetTriple()); |
| EKind = getBitcodeELFKind(T); |
| EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); |
| } |
| |
| static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { |
| switch (GvVisibility) { |
| case GlobalValue::DefaultVisibility: |
| return STV_DEFAULT; |
| case GlobalValue::HiddenVisibility: |
| return STV_HIDDEN; |
| case GlobalValue::ProtectedVisibility: |
| return STV_PROTECTED; |
| } |
| llvm_unreachable("unknown visibility"); |
| } |
| |
| template <class ELFT> |
| static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, |
| const lto::InputFile::Symbol &ObjSym, |
| BitcodeFile &F) { |
| StringRef Name = Saver.save(ObjSym.getName()); |
| uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; |
| |
| uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; |
| uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); |
| bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); |
| |
| int C = ObjSym.getComdatIndex(); |
| if (C != -1 && !KeptComdats[C]) |
| return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, |
| CanOmitFromDynSym, &F); |
| |
| if (ObjSym.isUndefined()) |
| return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, |
| CanOmitFromDynSym, &F); |
| |
| if (ObjSym.isCommon()) |
| return Symtab->addCommon(Name, ObjSym.getCommonSize(), |
| ObjSym.getCommonAlignment(), Binding, Visibility, |
| STT_OBJECT, F); |
| |
| return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym, |
| F); |
| } |
| |
| template <class ELFT> |
| void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { |
| std::vector<bool> KeptComdats; |
| for (StringRef S : Obj->getComdatTable()) |
| KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); |
| |
| for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) |
| Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); |
| } |
| |
| static ELFKind getELFKind(MemoryBufferRef MB) { |
| unsigned char Size; |
| unsigned char Endian; |
| std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); |
| |
| if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) |
| fatal(MB.getBufferIdentifier() + ": invalid data encoding"); |
| if (Size != ELFCLASS32 && Size != ELFCLASS64) |
| fatal(MB.getBufferIdentifier() + ": invalid file class"); |
| |
| size_t BufSize = MB.getBuffer().size(); |
| if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || |
| (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) |
| fatal(MB.getBufferIdentifier() + ": file is too short"); |
| |
| if (Size == ELFCLASS32) |
| return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; |
| return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; |
| } |
| |
| void BinaryFile::parse() { |
| ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); |
| auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, |
| 8, Data, ".data"); |
| Sections.push_back(Section); |
| |
| // For each input file foo that is embedded to a result as a binary |
| // blob, we define _binary_foo_{start,end,size} symbols, so that |
| // user programs can access blobs by name. Non-alphanumeric |
| // characters in a filename are replaced with underscore. |
| std::string S = "_binary_" + MB.getBufferIdentifier().str(); |
| for (size_t I = 0; I < S.size(); ++I) |
| if (!isAlnum(S[I])) |
| S[I] = '_'; |
| |
| Symtab->addRegular(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0, |
| STB_GLOBAL, Section, nullptr); |
| Symtab->addRegular(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, |
| Data.size(), 0, STB_GLOBAL, Section, nullptr); |
| Symtab->addRegular(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, |
| Data.size(), 0, STB_GLOBAL, nullptr, nullptr); |
| } |
| |
| InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, |
| uint64_t OffsetInArchive) { |
| if (isBitcode(MB)) |
| return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); |
| |
| switch (getELFKind(MB)) { |
| case ELF32LEKind: |
| return make<ObjFile<ELF32LE>>(MB, ArchiveName); |
| case ELF32BEKind: |
| return make<ObjFile<ELF32BE>>(MB, ArchiveName); |
| case ELF64LEKind: |
| return make<ObjFile<ELF64LE>>(MB, ArchiveName); |
| case ELF64BEKind: |
| return make<ObjFile<ELF64BE>>(MB, ArchiveName); |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { |
| switch (getELFKind(MB)) { |
| case ELF32LEKind: |
| return make<SharedFile<ELF32LE>>(MB, DefaultSoName); |
| case ELF32BEKind: |
| return make<SharedFile<ELF32BE>>(MB, DefaultSoName); |
| case ELF64LEKind: |
| return make<SharedFile<ELF64LE>>(MB, DefaultSoName); |
| case ELF64BEKind: |
| return make<SharedFile<ELF64BE>>(MB, DefaultSoName); |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| MemoryBufferRef LazyObjFile::getBuffer() { |
| if (AddedToLink) |
| return MemoryBufferRef(); |
| AddedToLink = true; |
| return MB; |
| } |
| |
| InputFile *LazyObjFile::fetch() { |
| MemoryBufferRef MBRef = getBuffer(); |
| if (MBRef.getBuffer().empty()) |
| return nullptr; |
| |
| InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive); |
| File->GroupId = GroupId; |
| return File; |
| } |
| |
| template <class ELFT> void LazyObjFile::parse() { |
| // A lazy object file wraps either a bitcode file or an ELF file. |
| if (isBitcode(this->MB)) { |
| std::unique_ptr<lto::InputFile> Obj = |
| CHECK(lto::InputFile::create(this->MB), this); |
| for (const lto::InputFile::Symbol &Sym : Obj->symbols()) |
| if (!Sym.isUndefined()) |
| Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this); |
| return; |
| } |
| |
| switch (getELFKind(this->MB)) { |
| case ELF32LEKind: |
| addElfSymbols<ELF32LE>(); |
| return; |
| case ELF32BEKind: |
| addElfSymbols<ELF32BE>(); |
| return; |
| case ELF64LEKind: |
| addElfSymbols<ELF64LE>(); |
| return; |
| case ELF64BEKind: |
| addElfSymbols<ELF64BE>(); |
| return; |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| template <class ELFT> void LazyObjFile::addElfSymbols() { |
| ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); |
| ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); |
| |
| for (const typename ELFT::Shdr &Sec : Sections) { |
| if (Sec.sh_type != SHT_SYMTAB) |
| continue; |
| |
| typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this); |
| uint32_t FirstGlobal = Sec.sh_info; |
| StringRef StringTable = |
| CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); |
| |
| for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal)) |
| if (Sym.st_shndx != SHN_UNDEF) |
| Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this), |
| *this); |
| return; |
| } |
| } |
| |
| std::string elf::replaceThinLTOSuffix(StringRef Path) { |
| StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; |
| StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; |
| |
| if (!Path.endswith(Suffix)) { |
| error("-thinlto-object-suffix-replace=" + Suffix + ";" + Repl + |
| " was given, but " + Path + " does not end with the suffix"); |
| return ""; |
| } |
| return (Path.drop_back(Suffix.size()) + Repl).str(); |
| } |
| |
| template void ArchiveFile::parse<ELF32LE>(); |
| template void ArchiveFile::parse<ELF32BE>(); |
| template void ArchiveFile::parse<ELF64LE>(); |
| template void ArchiveFile::parse<ELF64BE>(); |
| |
| template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); |
| template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); |
| template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); |
| template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); |
| |
| template void LazyObjFile::parse<ELF32LE>(); |
| template void LazyObjFile::parse<ELF32BE>(); |
| template void LazyObjFile::parse<ELF64LE>(); |
| template void LazyObjFile::parse<ELF64BE>(); |
| |
| template class elf::ELFFileBase<ELF32LE>; |
| template class elf::ELFFileBase<ELF32BE>; |
| template class elf::ELFFileBase<ELF64LE>; |
| template class elf::ELFFileBase<ELF64BE>; |
| |
| template class elf::ObjFile<ELF32LE>; |
| template class elf::ObjFile<ELF32BE>; |
| template class elf::ObjFile<ELF64LE>; |
| template class elf::ObjFile<ELF64BE>; |
| |
| template class elf::SharedFile<ELF32LE>; |
| template class elf::SharedFile<ELF32BE>; |
| template class elf::SharedFile<ELF64LE>; |
| template class elf::SharedFile<ELF64BE>; |