blob: 9d42d694a5fdb0f289865eeb7550c7acde90f8da [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrProgramDesc.h"
#include "include/private/SkChecksum.h"
#include "include/private/SkTo.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrPrimitiveProcessor.h"
#include "src/gpu/GrProcessor.h"
#include "src/gpu/GrProgramInfo.h"
#include "src/gpu/GrRenderTargetPriv.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
enum {
kSamplerOrImageTypeKeyBits = 4
};
static inline uint16_t texture_type_key(GrTextureType type) {
int value = UINT16_MAX;
switch (type) {
case GrTextureType::k2D:
value = 0;
break;
case GrTextureType::kExternal:
value = 1;
break;
case GrTextureType::kRectangle:
value = 2;
break;
default:
SK_ABORT("Unexpected texture type");
value = 3;
break;
}
SkASSERT((value & ((1 << kSamplerOrImageTypeKeyBits) - 1)) == value);
return SkToU16(value);
}
static uint32_t sampler_key(GrTextureType textureType, const GrSwizzle& swizzle,
const GrShaderCaps& caps) {
int samplerTypeKey = texture_type_key(textureType);
GR_STATIC_ASSERT(2 == sizeof(swizzle.asKey()));
uint16_t swizzleKey = 0;
if (caps.textureSwizzleAppliedInShader()) {
swizzleKey = swizzle.asKey();
}
return SkToU32(samplerTypeKey | swizzleKey << kSamplerOrImageTypeKeyBits);
}
static void add_sampler_keys(GrProcessorKeyBuilder* b, const GrFragmentProcessor& fp,
GrGpu* gpu, const GrShaderCaps& caps) {
int numTextureSamplers = fp.numTextureSamplers();
if (!numTextureSamplers) {
return;
}
for (int i = 0; i < numTextureSamplers; ++i) {
const GrFragmentProcessor::TextureSampler& sampler = fp.textureSampler(i);
const GrTexture* tex = sampler.peekTexture();
uint32_t samplerKey = sampler_key(
tex->texturePriv().textureType(), sampler.swizzle(), caps);
uint32_t extraSamplerKey = gpu->getExtraSamplerKeyForProgram(
sampler.samplerState(), sampler.proxy()->backendFormat());
if (extraSamplerKey) {
// We first mark the normal sampler key with last bit to flag that it has an extra
// sampler key. We then add both keys.
SkASSERT((samplerKey & (1 << 31)) == 0);
b->add32(samplerKey | (1 << 31));
b->add32(extraSamplerKey);
} else {
b->add32(samplerKey);
}
}
}
static void add_sampler_keys(GrProcessorKeyBuilder* b, const GrPrimitiveProcessor& pp,
const GrShaderCaps& caps) {
int numTextureSamplers = pp.numTextureSamplers();
if (!numTextureSamplers) {
return;
}
for (int i = 0; i < numTextureSamplers; ++i) {
const GrPrimitiveProcessor::TextureSampler& sampler = pp.textureSampler(i);
uint32_t samplerKey = sampler_key(
sampler.textureType(), sampler.swizzle(), caps);
uint32_t extraSamplerKey = sampler.extraSamplerKey();
if (extraSamplerKey) {
// We first mark the normal sampler key with last bit to flag that it has an extra
// sampler key. We then add both keys.
SkASSERT((samplerKey & (1 << 31)) == 0);
b->add32(samplerKey | (1 << 31));
b->add32(extraSamplerKey);
} else {
b->add32(samplerKey);
}
}
}
/**
* A function which emits a meta key into the key builder. This is required because shader code may
* be dependent on properties of the effect that the effect itself doesn't use
* in its key (e.g. the pixel format of textures used). So we create a meta-key for
* every effect using this function. It is also responsible for inserting the effect's class ID
* which must be different for every GrProcessor subclass. It can fail if an effect uses too many
* transforms, etc, for the space allotted in the meta-key. NOTE, both FPs and GPs share this
* function because it is hairy, though FPs do not have attribs, and GPs do not have transforms
*/
static bool gen_meta_key(const GrFragmentProcessor& fp,
GrGpu* gpu,
const GrShaderCaps& shaderCaps,
uint32_t transformKey,
GrProcessorKeyBuilder* b) {
size_t processorKeySize = b->size();
uint32_t classID = fp.classID();
// Currently we allow 16 bits for the class id and the overall processor key size.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)UINT16_MAX);
if ((processorKeySize | classID) & kMetaKeyInvalidMask) {
return false;
}
add_sampler_keys(b, fp, gpu, shaderCaps);
uint32_t* key = b->add32n(2);
key[0] = (classID << 16) | SkToU32(processorKeySize);
key[1] = transformKey;
return true;
}
static bool gen_meta_key(const GrPrimitiveProcessor& pp,
const GrShaderCaps& shaderCaps,
uint32_t transformKey,
GrProcessorKeyBuilder* b) {
size_t processorKeySize = b->size();
uint32_t classID = pp.classID();
// Currently we allow 16 bits for the class id and the overall processor key size.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)UINT16_MAX);
if ((processorKeySize | classID) & kMetaKeyInvalidMask) {
return false;
}
add_sampler_keys(b, pp, shaderCaps);
uint32_t* key = b->add32n(2);
key[0] = (classID << 16) | SkToU32(processorKeySize);
key[1] = transformKey;
return true;
}
static bool gen_meta_key(const GrXferProcessor& xp,
const GrShaderCaps& shaderCaps,
GrProcessorKeyBuilder* b) {
size_t processorKeySize = b->size();
uint32_t classID = xp.classID();
// Currently we allow 16 bits for the class id and the overall processor key size.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)UINT16_MAX);
if ((processorKeySize | classID) & kMetaKeyInvalidMask) {
return false;
}
b->add32((classID << 16) | SkToU32(processorKeySize));
return true;
}
static bool gen_frag_proc_and_meta_keys(const GrPrimitiveProcessor& primProc,
const GrFragmentProcessor& fp,
GrGpu* gpu,
const GrShaderCaps& shaderCaps,
GrProcessorKeyBuilder* b) {
for (int i = 0; i < fp.numChildProcessors(); ++i) {
if (!gen_frag_proc_and_meta_keys(primProc, fp.childProcessor(i), gpu, shaderCaps, b)) {
return false;
}
}
fp.getGLSLProcessorKey(shaderCaps, b);
return gen_meta_key(fp, gpu, shaderCaps, primProc.getTransformKey(fp.coordTransforms(),
fp.numCoordTransforms()), b);
}
bool GrProgramDesc::Build(GrProgramDesc* desc, const GrRenderTarget* renderTarget,
const GrProgramInfo& programInfo, GrPrimitiveType primitiveType,
GrGpu* gpu) {
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the attribute
// bindings in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
const GrShaderCaps& shaderCaps = *gpu->caps()->shaderCaps();
GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t));
// Make room for everything up to the effect keys.
desc->key().reset();
desc->key().push_back_n(kProcessorKeysOffset);
GrProcessorKeyBuilder b(&desc->key());
programInfo.primProc().getGLSLProcessorKey(shaderCaps, &b);
programInfo.primProc().getAttributeKey(&b);
if (!gen_meta_key(programInfo.primProc(), shaderCaps, 0, &b)) {
desc->key().reset();
return false;
}
for (int i = 0; i < programInfo.pipeline().numFragmentProcessors(); ++i) {
const GrFragmentProcessor& fp = programInfo.pipeline().getFragmentProcessor(i);
if (!gen_frag_proc_and_meta_keys(programInfo.primProc(), fp, gpu, shaderCaps, &b)) {
desc->key().reset();
return false;
}
}
const GrXferProcessor& xp = programInfo.pipeline().getXferProcessor();
const GrSurfaceOrigin* originIfDstTexture = nullptr;
GrSurfaceOrigin origin;
if (programInfo.pipeline().dstTextureProxy()) {
origin = programInfo.pipeline().dstTextureProxy()->origin();
originIfDstTexture = &origin;
}
xp.getGLSLProcessorKey(shaderCaps, &b, originIfDstTexture);
if (!gen_meta_key(xp, shaderCaps, &b)) {
desc->key().reset();
return false;
}
if (programInfo.requestedFeatures() & GrProcessor::CustomFeatures::kSampleLocations) {
SkASSERT(programInfo.pipeline().isHWAntialiasState());
b.add32(renderTarget->renderTargetPriv().getSamplePatternKey());
}
// --------DO NOT MOVE HEADER ABOVE THIS LINE--------------------------------------------------
// Because header is a pointer into the dynamic array, we can't push any new data into the key
// below here.
KeyHeader* header = desc->atOffset<KeyHeader, kHeaderOffset>();
// make sure any padding in the header is zeroed.
memset(header, 0, kHeaderSize);
header->fOutputSwizzle = programInfo.pipeline().outputSwizzle().asKey();
header->fColorFragmentProcessorCnt = programInfo.pipeline().numColorFragmentProcessors();
header->fCoverageFragmentProcessorCnt = programInfo.pipeline().numCoverageFragmentProcessors();
// Fail if the client requested more processors than the key can fit.
if (header->fColorFragmentProcessorCnt != programInfo.pipeline().numColorFragmentProcessors() ||
header->fCoverageFragmentProcessorCnt !=
programInfo.pipeline().numCoverageFragmentProcessors()) {
return false;
}
// If we knew the shader won't depend on origin, we could skip this (and use the same program
// for both origins). Instrumenting all fragment processors would be difficult and error prone.
header->fSurfaceOriginKey =
GrGLSLFragmentShaderBuilder::KeyForSurfaceOrigin(programInfo.origin());
header->fProcessorFeatures = (uint8_t)programInfo.requestedFeatures();
// Ensure enough bits.
SkASSERT(header->fProcessorFeatures == (int) programInfo.requestedFeatures());
header->fSnapVerticesToPixelCenters = programInfo.pipeline().snapVerticesToPixelCenters();
header->fHasPointSize = (primitiveType == GrPrimitiveType::kPoints);
return true;
}