blob: 78edc3ccbb5996ea34abadcd2622dee7b5b8daa9 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/geometry/GrQuadUtils.h"
#include "include/core/SkRect.h"
#include "include/private/GrTypesPriv.h"
#include "include/private/SkVx.h"
#include "src/gpu/geometry/GrQuad.h"
using V4f = skvx::Vec<4, float>;
using M4f = skvx::Vec<4, int32_t>;
// Since the local quad may not be type kRect, this uses the opposites for each vertex when
// interpolating, and calculates new ws in addition to new xs, ys.
static void interpolate_local(float alpha, int v0, int v1, int v2, int v3,
float lx[4], float ly[4], float lw[4]) {
SkASSERT(v0 >= 0 && v0 < 4);
SkASSERT(v1 >= 0 && v1 < 4);
SkASSERT(v2 >= 0 && v2 < 4);
SkASSERT(v3 >= 0 && v3 < 4);
float beta = 1.f - alpha;
lx[v0] = alpha * lx[v0] + beta * lx[v2];
ly[v0] = alpha * ly[v0] + beta * ly[v2];
lw[v0] = alpha * lw[v0] + beta * lw[v2];
lx[v1] = alpha * lx[v1] + beta * lx[v3];
ly[v1] = alpha * ly[v1] + beta * ly[v3];
lw[v1] = alpha * lw[v1] + beta * lw[v3];
}
// Crops v0 to v1 based on the clipDevRect. v2 is opposite of v0, v3 is opposite of v1.
// It is written to not modify coordinates if there's no intersection along the edge.
// Ideally this would have been detected earlier and the entire draw is skipped.
static bool crop_rect_edge(const SkRect& clipDevRect, int v0, int v1, int v2, int v3,
float x[4], float y[4], float lx[4], float ly[4], float lw[4]) {
SkASSERT(v0 >= 0 && v0 < 4);
SkASSERT(v1 >= 0 && v1 < 4);
SkASSERT(v2 >= 0 && v2 < 4);
SkASSERT(v3 >= 0 && v3 < 4);
if (SkScalarNearlyEqual(x[v0], x[v1])) {
// A vertical edge
if (x[v0] < clipDevRect.fLeft && x[v2] >= clipDevRect.fLeft) {
// Overlapping with left edge of clipDevRect
if (lx) {
float alpha = (x[v2] - clipDevRect.fLeft) / (x[v2] - x[v0]);
interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
}
x[v0] = clipDevRect.fLeft;
x[v1] = clipDevRect.fLeft;
return true;
} else if (x[v0] > clipDevRect.fRight && x[v2] <= clipDevRect.fRight) {
// Overlapping with right edge of clipDevRect
if (lx) {
float alpha = (clipDevRect.fRight - x[v2]) / (x[v0] - x[v2]);
interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
}
x[v0] = clipDevRect.fRight;
x[v1] = clipDevRect.fRight;
return true;
}
} else {
// A horizontal edge
SkASSERT(SkScalarNearlyEqual(y[v0], y[v1]));
if (y[v0] < clipDevRect.fTop && y[v2] >= clipDevRect.fTop) {
// Overlapping with top edge of clipDevRect
if (lx) {
float alpha = (y[v2] - clipDevRect.fTop) / (y[v2] - y[v0]);
interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
}
y[v0] = clipDevRect.fTop;
y[v1] = clipDevRect.fTop;
return true;
} else if (y[v0] > clipDevRect.fBottom && y[v2] <= clipDevRect.fBottom) {
// Overlapping with bottom edge of clipDevRect
if (lx) {
float alpha = (clipDevRect.fBottom - y[v2]) / (y[v0] - y[v2]);
interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
}
y[v0] = clipDevRect.fBottom;
y[v1] = clipDevRect.fBottom;
return true;
}
}
// No overlap so don't crop it
return false;
}
// Updates x and y to intersect with clipDevRect. lx, ly, and lw are updated appropriately and may
// be null to skip calculations. Returns bit mask of edges that were clipped.
static GrQuadAAFlags crop_rect(const SkRect& clipDevRect, float x[4], float y[4],
float lx[4], float ly[4], float lw[4]) {
GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
// The quad's left edge may not align with the SkRect notion of left due to 90 degree rotations
// or mirrors. So, this processes the logical edges of the quad and clamps it to the 4 sides of
// clipDevRect.
// Quad's left is v0 to v1 (op. v2 and v3)
if (crop_rect_edge(clipDevRect, 0, 1, 2, 3, x, y, lx, ly, lw)) {
clipEdgeFlags |= GrQuadAAFlags::kLeft;
}
// Quad's top edge is v0 to v2 (op. v1 and v3)
if (crop_rect_edge(clipDevRect, 0, 2, 1, 3, x, y, lx, ly, lw)) {
clipEdgeFlags |= GrQuadAAFlags::kTop;
}
// Quad's right edge is v2 to v3 (op. v0 and v1)
if (crop_rect_edge(clipDevRect, 2, 3, 0, 1, x, y, lx, ly, lw)) {
clipEdgeFlags |= GrQuadAAFlags::kRight;
}
// Quad's bottom edge is v1 to v3 (op. v0 and v2)
if (crop_rect_edge(clipDevRect, 1, 3, 0, 2, x, y, lx, ly, lw)) {
clipEdgeFlags |= GrQuadAAFlags::kBottom;
}
return clipEdgeFlags;
}
// Similar to crop_rect, but assumes that both the device coordinates and optional local coordinates
// geometrically match the TL, BL, TR, BR vertex ordering, i.e. axis-aligned but not flipped, etc.
static GrQuadAAFlags crop_simple_rect(const SkRect& clipDevRect, float x[4], float y[4],
float lx[4], float ly[4]) {
GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
// Update local coordinates proportionately to how much the device rect edge was clipped
const SkScalar dx = lx ? (lx[2] - lx[0]) / (x[2] - x[0]) : 0.f;
const SkScalar dy = ly ? (ly[1] - ly[0]) / (y[1] - y[0]) : 0.f;
if (clipDevRect.fLeft > x[0]) {
if (lx) {
lx[0] += (clipDevRect.fLeft - x[0]) * dx;
lx[1] = lx[0];
}
x[0] = clipDevRect.fLeft;
x[1] = clipDevRect.fLeft;
clipEdgeFlags |= GrQuadAAFlags::kLeft;
}
if (clipDevRect.fTop > y[0]) {
if (ly) {
ly[0] += (clipDevRect.fTop - y[0]) * dy;
ly[2] = ly[0];
}
y[0] = clipDevRect.fTop;
y[2] = clipDevRect.fTop;
clipEdgeFlags |= GrQuadAAFlags::kTop;
}
if (clipDevRect.fRight < x[2]) {
if (lx) {
lx[2] -= (x[2] - clipDevRect.fRight) * dx;
lx[3] = lx[2];
}
x[2] = clipDevRect.fRight;
x[3] = clipDevRect.fRight;
clipEdgeFlags |= GrQuadAAFlags::kRight;
}
if (clipDevRect.fBottom < y[1]) {
if (ly) {
ly[1] -= (y[1] - clipDevRect.fBottom) * dy;
ly[3] = ly[1];
}
y[1] = clipDevRect.fBottom;
y[3] = clipDevRect.fBottom;
clipEdgeFlags |= GrQuadAAFlags::kBottom;
}
return clipEdgeFlags;
}
// Consistent with GrQuad::asRect()'s return value but requires fewer operations since we don't need
// to calculate the bounds of the quad.
static bool is_simple_rect(const GrQuad& quad) {
if (quad.quadType() != GrQuad::Type::kAxisAligned) {
return false;
}
// v0 at the geometric top-left is unique, so we only need to compare x[0] < x[2] for left
// and y[0] < y[1] for top, but add a little padding to protect against numerical precision
// on R90 and R270 transforms tricking this check.
return ((quad.x(0) + SK_ScalarNearlyZero) < quad.x(2)) &&
((quad.y(0) + SK_ScalarNearlyZero) < quad.y(1));
}
// Calculates barycentric coordinates for each point in (testX, testY) in the triangle formed by
// (x0,y0) - (x1,y1) - (x2, y2) and stores them in u, v, w.
static void barycentric_coords(float x0, float y0, float x1, float y1, float x2, float y2,
const V4f& testX, const V4f& testY,
V4f* u, V4f* v, V4f* w) {
// Modeled after SkPathOpsQuad::pointInTriangle() but uses float instead of double, is
// vectorized and outputs normalized barycentric coordinates instead of inside/outside test
float v0x = x2 - x0;
float v0y = y2 - y0;
float v1x = x1 - x0;
float v1y = y1 - y0;
V4f v2x = testX - x0;
V4f v2y = testY - y0;
float dot00 = v0x * v0x + v0y * v0y;
float dot01 = v0x * v1x + v0y * v1y;
V4f dot02 = v0x * v2x + v0y * v2y;
float dot11 = v1x * v1x + v1y * v1y;
V4f dot12 = v1x * v2x + v1y * v2y;
float invDenom = sk_ieee_float_divide(1.f, dot00 * dot11 - dot01 * dot01);
*u = (dot11 * dot02 - dot01 * dot12) * invDenom;
*v = (dot00 * dot12 - dot01 * dot02) * invDenom;
*w = 1.f - *u - *v;
}
static M4f inside_triangle(const V4f& u, const V4f& v, const V4f& w) {
return ((u >= 0.f) & (u <= 1.f)) & ((v >= 0.f) & (v <= 1.f)) & ((w >= 0.f) & (w <= 1.f));
}
namespace GrQuadUtils {
void ResolveAAType(GrAAType requestedAAType, GrQuadAAFlags requestedEdgeFlags, const GrQuad& quad,
GrAAType* outAAType, GrQuadAAFlags* outEdgeFlags) {
// Most cases will keep the requested types unchanged
*outAAType = requestedAAType;
*outEdgeFlags = requestedEdgeFlags;
switch (requestedAAType) {
// When aa type is coverage, disable AA if the edge configuration doesn't actually need it
case GrAAType::kCoverage:
if (requestedEdgeFlags == GrQuadAAFlags::kNone) {
// Turn off anti-aliasing
*outAAType = GrAAType::kNone;
} else {
// For coverage AA, if the quad is a rect and it lines up with pixel boundaries
// then overall aa and per-edge aa can be completely disabled
if (quad.quadType() == GrQuad::Type::kAxisAligned && !quad.aaHasEffectOnRect()) {
*outAAType = GrAAType::kNone;
*outEdgeFlags = GrQuadAAFlags::kNone;
}
}
break;
// For no or msaa anti aliasing, override the edge flags since edge flags only make sense
// when coverage aa is being used.
case GrAAType::kNone:
*outEdgeFlags = GrQuadAAFlags::kNone;
break;
case GrAAType::kMSAA:
*outEdgeFlags = GrQuadAAFlags::kAll;
break;
}
}
bool CropToRect(const SkRect& cropRect, GrAA cropAA, GrQuadAAFlags* edgeFlags, GrQuad* quad,
GrQuad* local) {
SkASSERT(quad->isFinite());
if (quad->quadType() == GrQuad::Type::kAxisAligned) {
// crop_rect and crop_rect_simple keep the rectangles as rectangles, so the intersection
// of the crop and quad can be calculated exactly. Some care must be taken if the quad
// is axis-aligned but does not satisfy asRect() due to flips, etc.
GrQuadAAFlags clippedEdges;
if (local) {
if (is_simple_rect(*quad) && is_simple_rect(*local)) {
clippedEdges = crop_simple_rect(cropRect, quad->xs(), quad->ys(),
local->xs(), local->ys());
} else {
clippedEdges = crop_rect(cropRect, quad->xs(), quad->ys(),
local->xs(), local->ys(), local->ws());
}
} else {
if (is_simple_rect(*quad)) {
clippedEdges = crop_simple_rect(cropRect, quad->xs(), quad->ys(), nullptr, nullptr);
} else {
clippedEdges = crop_rect(cropRect, quad->xs(), quad->ys(),
nullptr, nullptr, nullptr);
}
}
// Apply the clipped edge updates to the original edge flags
if (cropAA == GrAA::kYes) {
// Turn on all edges that were clipped
*edgeFlags |= clippedEdges;
} else {
// Turn off all edges that were clipped
*edgeFlags &= ~clippedEdges;
}
return true;
}
if (local) {
// FIXME (michaelludwig) Calculate cropped local coordinates when not kAxisAligned
return false;
}
V4f devX = quad->x4f();
V4f devY = quad->y4f();
V4f devIW = quad->iw4f();
// Project the 3D coordinates to 2D
if (quad->quadType() == GrQuad::Type::kPerspective) {
devX *= devIW;
devY *= devIW;
}
V4f clipX = {cropRect.fLeft, cropRect.fLeft, cropRect.fRight, cropRect.fRight};
V4f clipY = {cropRect.fTop, cropRect.fBottom, cropRect.fTop, cropRect.fBottom};
// Calculate barycentric coordinates for the 4 rect corners in the 2 triangles that the quad
// is tessellated into when drawn.
V4f u1, v1, w1;
barycentric_coords(devX[0], devY[0], devX[1], devY[1], devX[2], devY[2], clipX, clipY,
&u1, &v1, &w1);
V4f u2, v2, w2;
barycentric_coords(devX[1], devY[1], devX[3], devY[3], devX[2], devY[2], clipX, clipY,
&u2, &v2, &w2);
// clipDevRect is completely inside this quad if each corner is in at least one of two triangles
M4f inTri1 = inside_triangle(u1, v1, w1);
M4f inTri2 = inside_triangle(u2, v2, w2);
if (all(inTri1 | inTri2)) {
// We can crop to exactly the clipDevRect.
// FIXME (michaelludwig) - there are other ways to have determined quad covering the clip
// rect, but the barycentric coords will be useful to derive local coordinates in the future
// Since we are cropped to exactly clipDevRect, we have discarded any perspective and the
// type becomes kRect. If updated locals were requested, they will incorporate perspective.
// FIXME (michaelludwig) - once we have local coordinates handled, it may be desirable to
// keep the draw as perspective so that the hardware does perspective interpolation instead
// of pushing it into a local coord w and having the shader do an extra divide.
clipX.store(quad->xs());
clipY.store(quad->ys());
quad->ws()[0] = 1.f;
quad->ws()[1] = 1.f;
quad->ws()[2] = 1.f;
quad->ws()[3] = 1.f;
quad->setQuadType(GrQuad::Type::kAxisAligned);
// Update the edge flags to match the clip setting since all 4 edges have been clipped
*edgeFlags = cropAA == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone;
return true;
}
// FIXME (michaelludwig) - use the GrQuadPerEdgeAA tessellation inset/outset math to move
// edges to the closest clip corner they are outside of
return false;
}
}; // namespace GrQuadUtils