| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkFont.h" |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkPathEffect.h" |
| #include "include/core/SkRRect.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkStream.h" |
| #include "include/core/SkStrokeRec.h" |
| #include "include/core/SkSurface.h" |
| #include "include/private/SkTo.h" |
| #include "include/utils/SkNullCanvas.h" |
| #include "include/utils/SkParse.h" |
| #include "include/utils/SkParsePath.h" |
| #include "include/utils/SkRandom.h" |
| #include "src/core/SkAutoMalloc.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/core/SkReader32.h" |
| #include "src/core/SkWriter32.h" |
| #include "tests/Test.h" |
| |
| #include <cmath> |
| #include <utility> |
| #include <vector> |
| |
| static void set_radii(SkVector radii[4], int index, float rad) { |
| sk_bzero(radii, sizeof(SkVector) * 4); |
| radii[index].set(rad, rad); |
| } |
| |
| static void test_add_rrect(skiatest::Reporter* reporter, const SkRect& bounds, |
| const SkVector radii[4]) { |
| SkRRect rrect; |
| rrect.setRectRadii(bounds, radii); |
| REPORTER_ASSERT(reporter, bounds == rrect.rect()); |
| |
| SkPath path; |
| // this line should not assert in the debug build (from validate) |
| path.addRRect(rrect); |
| REPORTER_ASSERT(reporter, bounds == path.getBounds()); |
| } |
| |
| static void test_skbug_3469(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.moveTo(20, 20); |
| path.quadTo(20, 50, 80, 50); |
| path.quadTo(20, 50, 20, 80); |
| REPORTER_ASSERT(reporter, !path.isConvex()); |
| } |
| |
| static void test_skbug_3239(skiatest::Reporter* reporter) { |
| const float min = SkBits2Float(0xcb7f16c8); /* -16717512.000000 */ |
| const float max = SkBits2Float(0x4b7f1c1d); /* 16718877.000000 */ |
| const float big = SkBits2Float(0x4b7f1bd7); /* 16718807.000000 */ |
| |
| const float rad = 33436320; |
| |
| const SkRect rectx = SkRect::MakeLTRB(min, min, max, big); |
| const SkRect recty = SkRect::MakeLTRB(min, min, big, max); |
| |
| SkVector radii[4]; |
| for (int i = 0; i < 4; ++i) { |
| set_radii(radii, i, rad); |
| test_add_rrect(reporter, rectx, radii); |
| test_add_rrect(reporter, recty, radii); |
| } |
| } |
| |
| static void make_path_crbug364224(SkPath* path) { |
| path->reset(); |
| path->moveTo(3.747501373f, 2.724499941f); |
| path->lineTo(3.747501373f, 3.75f); |
| path->cubicTo(3.747501373f, 3.88774991f, 3.635501385f, 4.0f, 3.497501373f, 4.0f); |
| path->lineTo(0.7475013733f, 4.0f); |
| path->cubicTo(0.6095013618f, 4.0f, 0.4975013733f, 3.88774991f, 0.4975013733f, 3.75f); |
| path->lineTo(0.4975013733f, 1.0f); |
| path->cubicTo(0.4975013733f, 0.8622499704f, 0.6095013618f, 0.75f, 0.7475013733f,0.75f); |
| path->lineTo(3.497501373f, 0.75f); |
| path->cubicTo(3.50275135f, 0.75f, 3.5070014f, 0.7527500391f, 3.513001442f, 0.753000021f); |
| path->lineTo(3.715001345f, 0.5512499809f); |
| path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); |
| path->lineTo(0.7475013733f, 0.4999999702f); |
| path->cubicTo(0.4715013802f, 0.4999999702f, 0.2475013733f, 0.7239999771f, 0.2475013733f, 1.0f); |
| path->lineTo(0.2475013733f, 3.75f); |
| path->cubicTo(0.2475013733f, 4.026000023f, 0.4715013504f, 4.25f, 0.7475013733f, 4.25f); |
| path->lineTo(3.497501373f, 4.25f); |
| path->cubicTo(3.773501396f, 4.25f, 3.997501373f, 4.026000023f, 3.997501373f, 3.75f); |
| path->lineTo(3.997501373f, 2.474750042f); |
| path->lineTo(3.747501373f, 2.724499941f); |
| path->close(); |
| } |
| |
| static void make_path_crbug364224_simplified(SkPath* path) { |
| path->moveTo(3.747501373f, 2.724499941f); |
| path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); |
| path->close(); |
| } |
| |
| static void test_sect_with_horizontal_needs_pinning() { |
| // Test that sect_with_horizontal in SkLineClipper.cpp needs to pin after computing the |
| // intersection. |
| SkPath path; |
| path.reset(); |
| path.moveTo(-540000, -720000); |
| path.lineTo(-9.10000017e-05f, 9.99999996e-13f); |
| path.lineTo(1, 1); |
| |
| // Without the pinning code in sect_with_horizontal(), this would assert in the lineclipper |
| SkPaint paint; |
| SkSurface::MakeRasterN32Premul(10, 10)->getCanvas()->drawPath(path, paint); |
| } |
| |
| static void test_path_crbug364224() { |
| SkPath path; |
| SkPaint paint; |
| auto surface(SkSurface::MakeRasterN32Premul(84, 88)); |
| SkCanvas* canvas = surface->getCanvas(); |
| |
| make_path_crbug364224_simplified(&path); |
| canvas->drawPath(path, paint); |
| |
| make_path_crbug364224(&path); |
| canvas->drawPath(path, paint); |
| } |
| |
| static void test_draw_AA_path(int width, int height, const SkPath& path) { |
| auto surface(SkSurface::MakeRasterN32Premul(width, height)); |
| SkCanvas* canvas = surface->getCanvas(); |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| canvas->drawPath(path, paint); |
| } |
| |
| // this is a unit test instead of a GM because it doesn't draw anything |
| static void test_fuzz_crbug_638223() { |
| SkPath path; |
| path.moveTo(SkBits2Float(0x47452a00), SkBits2Float(0x43211d01)); // 50474, 161.113f |
| path.conicTo(SkBits2Float(0x401c0000), SkBits2Float(0x40680000), |
| SkBits2Float(0x02c25a81), SkBits2Float(0x981a1fa0), |
| SkBits2Float(0x6bf9abea)); // 2.4375f, 3.625f, 2.85577e-37f, -1.992e-24f, 6.03669e+26f |
| test_draw_AA_path(250, 250, path); |
| } |
| |
| static void test_fuzz_crbug_643933() { |
| SkPath path; |
| path.moveTo(0, 0); |
| path.conicTo(SkBits2Float(0x002001f2), SkBits2Float(0x4161ffff), // 2.93943e-39f, 14.125f |
| SkBits2Float(0x49f7224d), SkBits2Float(0x45eec8df), // 2.02452e+06f, 7641.11f |
| SkBits2Float(0x721aee0c)); // 3.0687e+30f |
| test_draw_AA_path(250, 250, path); |
| path.reset(); |
| path.moveTo(0, 0); |
| path.conicTo(SkBits2Float(0x00007ff2), SkBits2Float(0x4169ffff), // 4.58981e-41f, 14.625f |
| SkBits2Float(0x43ff2261), SkBits2Float(0x41eeea04), // 510.269f, 29.8643f |
| SkBits2Float(0x5d06eff8)); // 6.07704e+17f |
| test_draw_AA_path(250, 250, path); |
| } |
| |
| static void test_fuzz_crbug_647922() { |
| SkPath path; |
| path.moveTo(0, 0); |
| path.conicTo(SkBits2Float(0x00003939), SkBits2Float(0x42487fff), // 2.05276e-41f, 50.125f |
| SkBits2Float(0x48082361), SkBits2Float(0x4408e8e9), // 139406, 547.639f |
| SkBits2Float(0x4d1ade0f)); // 1.6239e+08f |
| test_draw_AA_path(250, 250, path); |
| } |
| |
| static void test_fuzz_crbug_662780() { |
| auto surface(SkSurface::MakeRasterN32Premul(250, 250)); |
| SkCanvas* canvas = surface->getCanvas(); |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| SkPath path; |
| path.moveTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158 |
| path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x42f00000)); // 8, 120 |
| // 8, 8, 8.00002f, 8, 0.707107f |
| path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x41000000), |
| SkBits2Float(0x41000010), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3)); |
| path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000)); // 308, 8 |
| // 308, 8, 308, 8, 0.707107f |
| path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000), |
| SkBits2Float(0x439a0000), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3)); |
| path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000)); // 308, 158 |
| // 308, 158, 308, 158, 0.707107f |
| path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), |
| SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3)); |
| path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158 |
| // 8, 158, 8, 158, 0.707107f |
| path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000), |
| SkBits2Float(0x41000000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3)); |
| path.close(); |
| canvas->clipPath(path, true); |
| canvas->drawRect(SkRect::MakeWH(250, 250), paint); |
| } |
| |
| static void test_mask_overflow() { |
| SkPath path; |
| path.moveTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341 |
| path.lineTo(SkBits2Float(0x43de6000), SkBits2Float(0x43aa8000)); // 444.75f, 341 |
| // 440.47f, 341, 437, 344.47f, 437, 348.75f |
| path.cubicTo(SkBits2Float(0x43dc3c29), SkBits2Float(0x43aa8000), |
| SkBits2Float(0x43da8000), SkBits2Float(0x43ac3c29), |
| SkBits2Float(0x43da8000), SkBits2Float(0x43ae6000)); |
| path.lineTo(SkBits2Float(0x43da8000), SkBits2Float(0x43b18000)); // 437, 355 |
| path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43b18000)); // 453, 355 |
| path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341 |
| test_draw_AA_path(500, 500, path); |
| } |
| |
| static void test_fuzz_crbug_668907() { |
| SkPath path; |
| path.moveTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f |
| path.quadTo(SkBits2Float(0x41410041), SkBits2Float(0xc1414141), SkBits2Float(0x41414141), |
| SkBits2Float(0x414100ff)); // 12.0626f, -12.0784f, 12.0784f, 12.0627f |
| path.lineTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f |
| path.close(); |
| test_draw_AA_path(400, 500, path); |
| } |
| |
| /** |
| * In debug mode, this path was causing an assertion to fail in |
| * SkPathStroker::preJoinTo() and, in Release, the use of an unitialized value. |
| */ |
| static void make_path_crbugskia2820(SkPath* path, skiatest::Reporter* reporter) { |
| SkPoint orig, p1, p2, p3; |
| orig = SkPoint::Make(1.f, 1.f); |
| p1 = SkPoint::Make(1.f - SK_ScalarNearlyZero, 1.f); |
| p2 = SkPoint::Make(1.f, 1.f + SK_ScalarNearlyZero); |
| p3 = SkPoint::Make(2.f, 2.f); |
| |
| path->reset(); |
| path->moveTo(orig); |
| path->cubicTo(p1, p2, p3); |
| path->close(); |
| } |
| |
| static void test_path_crbugskia2820(skiatest::Reporter* reporter) {//GrContext* context) { |
| SkPath path; |
| make_path_crbugskia2820(&path, reporter); |
| |
| SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); |
| stroke.setStrokeStyle(2 * SK_Scalar1); |
| stroke.applyToPath(&path, path); |
| } |
| |
| static void test_path_crbugskia5995() { |
| SkPath path; |
| path.moveTo(SkBits2Float(0x40303030), SkBits2Float(0x3e303030)); // 2.75294f, 0.172059f |
| path.quadTo(SkBits2Float(0x41d63030), SkBits2Float(0x30303030), SkBits2Float(0x41013030), |
| SkBits2Float(0x00000000)); // 26.7735f, 6.40969e-10f, 8.07426f, 0 |
| path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 |
| test_draw_AA_path(500, 500, path); |
| } |
| |
| static void make_path0(SkPath* path) { |
| // from * https://code.google.com/p/skia/issues/detail?id=1706 |
| |
| path->moveTo(146.939f, 1012.84f); |
| path->lineTo(181.747f, 1009.18f); |
| path->lineTo(182.165f, 1013.16f); |
| path->lineTo(147.357f, 1016.82f); |
| path->lineTo(146.939f, 1012.84f); |
| path->close(); |
| } |
| |
| static void make_path1(SkPath* path) { |
| path->addRect(SkRect::MakeXYWH(10, 10, 10, 1)); |
| } |
| |
| typedef void (*PathProc)(SkPath*); |
| |
| /* |
| * Regression test: we used to crash (overwrite internal storage) during |
| * construction of the region when the path was INVERSE. That is now fixed, |
| * so test these regions (which used to assert/crash). |
| * |
| * https://code.google.com/p/skia/issues/detail?id=1706 |
| */ |
| static void test_path_to_region(skiatest::Reporter* reporter) { |
| PathProc procs[] = { |
| make_path0, |
| make_path1, |
| }; |
| |
| SkRegion clip; |
| clip.setRect({0, 0, 1255, 1925}); |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) { |
| SkPath path; |
| procs[i](&path); |
| |
| SkRegion rgn; |
| rgn.setPath(path, clip); |
| path.toggleInverseFillType(); |
| rgn.setPath(path, clip); |
| } |
| } |
| |
| #ifdef SK_BUILD_FOR_WIN |
| #define SUPPRESS_VISIBILITY_WARNING |
| #else |
| #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden"))) |
| #endif |
| |
| static void test_path_close_issue1474(skiatest::Reporter* reporter) { |
| // This test checks that r{Line,Quad,Conic,Cubic}To following a close() |
| // are relative to the point we close to, not relative to the point we close from. |
| SkPath path; |
| SkPoint last; |
| |
| // Test rLineTo(). |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); // Returns us back to 0,0. |
| path.rLineTo(50, 50); // This should go to 50,50. |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 50 == last.fX); |
| REPORTER_ASSERT(reporter, 50 == last.fY); |
| |
| // Test rQuadTo(). |
| path.rewind(); |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); |
| path.rQuadTo(50, 50, 75, 75); |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 75 == last.fX); |
| REPORTER_ASSERT(reporter, 75 == last.fY); |
| |
| // Test rConicTo(). |
| path.rewind(); |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); |
| path.rConicTo(50, 50, 85, 85, 2); |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 85 == last.fX); |
| REPORTER_ASSERT(reporter, 85 == last.fY); |
| |
| // Test rCubicTo(). |
| path.rewind(); |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); |
| path.rCubicTo(50, 50, 85, 85, 95, 95); |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 95 == last.fX); |
| REPORTER_ASSERT(reporter, 95 == last.fY); |
| } |
| |
| static void test_gen_id(skiatest::Reporter* reporter) { |
| SkPath a, b; |
| REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); |
| |
| a.moveTo(0, 0); |
| const uint32_t z = a.getGenerationID(); |
| REPORTER_ASSERT(reporter, z != b.getGenerationID()); |
| |
| a.reset(); |
| REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); |
| |
| a.moveTo(1, 1); |
| const uint32_t y = a.getGenerationID(); |
| REPORTER_ASSERT(reporter, z != y); |
| |
| b.moveTo(2, 2); |
| const uint32_t x = b.getGenerationID(); |
| REPORTER_ASSERT(reporter, x != y && x != z); |
| |
| a.swap(b); |
| REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x); |
| |
| b = a; |
| REPORTER_ASSERT(reporter, b.getGenerationID() == x); |
| |
| SkPath c(a); |
| REPORTER_ASSERT(reporter, c.getGenerationID() == x); |
| |
| c.lineTo(3, 3); |
| const uint32_t w = c.getGenerationID(); |
| REPORTER_ASSERT(reporter, b.getGenerationID() == x); |
| REPORTER_ASSERT(reporter, a.getGenerationID() == x); |
| REPORTER_ASSERT(reporter, w != x); |
| |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| static bool kExpectGenIDToIgnoreFill = false; |
| #else |
| static bool kExpectGenIDToIgnoreFill = true; |
| #endif |
| |
| c.toggleInverseFillType(); |
| const uint32_t v = c.getGenerationID(); |
| REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill); |
| |
| c.rewind(); |
| REPORTER_ASSERT(reporter, v != c.getGenerationID()); |
| } |
| |
| // This used to assert in the debug build, as the edges did not all line-up. |
| static void test_bad_cubic_crbug234190() { |
| SkPath path; |
| path.moveTo(13.8509f, 3.16858f); |
| path.cubicTo(-2.35893e+08f, -4.21044e+08f, |
| -2.38991e+08f, -4.26573e+08f, |
| -2.41016e+08f, -4.30188e+08f); |
| test_draw_AA_path(84, 88, path); |
| } |
| |
| static void test_bad_cubic_crbug229478() { |
| const SkPoint pts[] = { |
| { 4595.91064f, -11596.9873f }, |
| { 4597.2168f, -11595.9414f }, |
| { 4598.52344f, -11594.8955f }, |
| { 4599.83008f, -11593.8496f }, |
| }; |
| |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.cubicTo(pts[1], pts[2], pts[3]); |
| |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| paint.setStrokeWidth(20); |
| |
| SkPath dst; |
| // Before the fix, this would infinite-recurse, and run out of stack |
| // because we would keep trying to subdivide a degenerate cubic segment. |
| paint.getFillPath(path, &dst, nullptr); |
| } |
| |
| static void build_path_170666(SkPath& path) { |
| path.moveTo(17.9459f, 21.6344f); |
| path.lineTo(139.545f, -47.8105f); |
| path.lineTo(139.545f, -47.8105f); |
| path.lineTo(131.07f, -47.3888f); |
| path.lineTo(131.07f, -47.3888f); |
| path.lineTo(122.586f, -46.9532f); |
| path.lineTo(122.586f, -46.9532f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(18085.1f, 31390.5f); |
| path.lineTo(18085.1f, 31390.5f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(17955, 31460.3f); |
| path.lineTo(17955, 31460.3f); |
| path.lineTo(17963.5f, 31459.9f); |
| path.lineTo(17963.5f, 31459.9f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(17.9551f, 21.6205f); |
| path.lineTo(17.9551f, 21.6205f); |
| path.lineTo(9.47091f, 22.0561f); |
| path.lineTo(9.47091f, 22.0561f); |
| path.lineTo(17.9459f, 21.6344f); |
| path.lineTo(17.9459f, 21.6344f); |
| path.close();path.moveTo(0.995934f, 22.4779f); |
| path.lineTo(0.986725f, 22.4918f); |
| path.lineTo(0.986725f, 22.4918f); |
| path.lineTo(17955, 31460.4f); |
| path.lineTo(17955, 31460.4f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(18093.6f, 31390.1f); |
| path.lineTo(18093.6f, 31390.1f); |
| path.lineTo(18093.6f, 31390); |
| path.lineTo(18093.6f, 31390); |
| path.lineTo(139.555f, -47.8244f); |
| path.lineTo(139.555f, -47.8244f); |
| path.lineTo(122.595f, -46.9671f); |
| path.lineTo(122.595f, -46.9671f); |
| path.lineTo(0.995934f, 22.4779f); |
| path.lineTo(0.995934f, 22.4779f); |
| path.close(); |
| path.moveTo(5.43941f, 25.5223f); |
| path.lineTo(798267, -28871.1f); |
| path.lineTo(798267, -28871.1f); |
| path.lineTo(3.12512e+06f, -113102); |
| path.lineTo(3.12512e+06f, -113102); |
| path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813); |
| path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f); |
| path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f); |
| path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f); |
| path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f); |
| path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f); |
| path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f); |
| path.lineTo(2.78271e+08f, -1.00733e+07f); |
| path.lineTo(2.78271e+08f, -1.00733e+07f); |
| path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f); |
| path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f); |
| path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f); |
| path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); |
| path.lineTo(2.77473e+08f, -1.00444e+07f); |
| path.lineTo(2.77473e+08f, -1.00444e+07f); |
| path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f); |
| path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f); |
| path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f); |
| path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f); |
| path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f); |
| path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814); |
| path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103); |
| path.lineTo(798284, -28872); |
| path.lineTo(798284, -28872); |
| path.lineTo(22.4044f, 24.6677f); |
| path.lineTo(22.4044f, 24.6677f); |
| path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f); |
| path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f); |
| path.close(); |
| } |
| |
| static void build_path_simple_170666(SkPath& path) { |
| path.moveTo(126.677f, 24.1591f); |
| path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); |
| } |
| |
| // This used to assert in the SK_DEBUG build, as the clip step would fail with |
| // too-few interations in our cubic-line intersection code. That code now runs |
| // 24 interations (instead of 16). |
| static void test_crbug_170666() { |
| SkPath path; |
| build_path_simple_170666(path); |
| test_draw_AA_path(1000, 1000, path); |
| |
| build_path_170666(path); |
| test_draw_AA_path(1000, 1000, path); |
| } |
| |
| |
| static void test_tiny_path_convexity(skiatest::Reporter* reporter, const char* pathBug, |
| SkScalar tx, SkScalar ty, SkScalar scale) { |
| SkPath smallPath; |
| SkAssertResult(SkParsePath::FromSVGString(pathBug, &smallPath)); |
| bool smallConvex = smallPath.isConvex(); |
| SkPath largePath; |
| SkAssertResult(SkParsePath::FromSVGString(pathBug, &largePath)); |
| SkMatrix matrix; |
| matrix.reset(); |
| matrix.preTranslate(100, 100); |
| matrix.preScale(scale, scale); |
| largePath.transform(matrix); |
| bool largeConvex = largePath.isConvex(); |
| REPORTER_ASSERT(reporter, smallConvex == largeConvex); |
| } |
| |
| static void test_crbug_493450(skiatest::Reporter* reporter) { |
| const char reducedCase[] = |
| "M0,0" |
| "L0.0002, 0" |
| "L0.0002, 0.0002" |
| "L0.0001, 0.0001" |
| "L0,0.0002" |
| "Z"; |
| test_tiny_path_convexity(reporter, reducedCase, 100, 100, 100000); |
| const char originalFiddleData[] = |
| "M-0.3383152268862998,-0.11217565719203619L-0.33846085183212765,-0.11212264406895281" |
| "L-0.338509393480737,-0.11210607966681395L-0.33857792286700894,-0.1121889121487573" |
| "L-0.3383866116636664,-0.11228834570924921L-0.33842087635680235,-0.11246078673250548" |
| "L-0.33809536177201055,-0.11245415228342878L-0.33797257995493996,-0.11216571641452182" |
| "L-0.33802112160354925,-0.11201996164188659L-0.33819815585141844,-0.11218559834671019Z"; |
| test_tiny_path_convexity(reporter, originalFiddleData, 280081.4116670522f, 93268.04618493588f, |
| 826357.3384828606f); |
| } |
| |
| static void test_crbug_495894(skiatest::Reporter* reporter) { |
| const char originalFiddleData[] = |
| "M-0.34004273849857214,-0.11332803232216355L-0.34008271397389744,-0.11324483772714951" |
| "L-0.3401940742265893,-0.11324483772714951L-0.34017694188002134,-0.11329807920275889" |
| "L-0.3402026403998733,-0.11333468903941245L-0.34029972369709194,-0.11334134592705701" |
| "L-0.3403054344792813,-0.11344121970007795L-0.3403140006525653,-0.11351115418399343" |
| "L-0.34024261587519866,-0.11353446986281181L-0.3402197727464413,-0.11360442946144192" |
| "L-0.34013696640469604,-0.11359110237029302L-0.34009128014718143,-0.1135877707043939" |
| "L-0.3400598708451401,-0.11360776134112742L-0.34004273849857214,-0.11355112520064405" |
| "L-0.3400113291965308,-0.11355112520064405L-0.3399970522410575,-0.11359110237029302" |
| "L-0.33997135372120546,-0.11355112520064405L-0.3399627875479215,-0.11353780084493197" |
| "L-0.3399485105924481,-0.11350782354357004L-0.3400027630232468,-0.11346452910331437" |
| "L-0.3399485105924481,-0.11340126558629839L-0.33993994441916414,-0.11340126558629839" |
| "L-0.33988283659727087,-0.11331804756574679L-0.33989140277055485,-0.11324483772714951" |
| "L-0.33997991989448945,-0.11324483772714951L-0.3399856306766788,-0.11324483772714951" |
| "L-0.34002560615200417,-0.11334467443478255ZM-0.3400684370184241,-0.11338461985124307" |
| "L-0.340154098751264,-0.11341791238732665L-0.340162664924548,-0.1134378899559977" |
| "L-0.34017979727111597,-0.11340126558629839L-0.3401655203156427,-0.11338129083212668" |
| "L-0.34012268944922275,-0.11332137577529414L-0.34007414780061346,-0.11334467443478255Z" |
| "M-0.3400027630232468,-0.11290567901106024L-0.3400113291965308,-0.11298876531245433" |
| "L-0.33997991989448945,-0.11301535852306784L-0.33990282433493346,-0.11296217481488612" |
| "L-0.33993994441916414,-0.11288906492739594Z"; |
| test_tiny_path_convexity(reporter, originalFiddleData, 22682.240000000005f,7819.72220766405f, |
| 65536); |
| } |
| |
| static void test_crbug_613918() { |
| SkPath path; |
| path.conicTo(-6.62478e-08f, 4.13885e-08f, -6.36935e-08f, 3.97927e-08f, 0.729058f); |
| path.quadTo(2.28206e-09f, -1.42572e-09f, 3.91919e-09f, -2.44852e-09f); |
| path.cubicTo(-16752.2f, -26792.9f, -21.4673f, 10.9347f, -8.57322f, -7.22739f); |
| |
| // This call could lead to an assert or uninitialized read due to a failure |
| // to check the return value from SkCubicClipper::ChopMonoAtY. |
| path.contains(-1.84817e-08f, 1.15465e-08f); |
| } |
| |
| static void test_addrect(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.lineTo(0, 0); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, path.isRect(nullptr)); |
| |
| path.reset(); |
| path.lineTo(FLT_EPSILON, FLT_EPSILON); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(nullptr)); |
| |
| path.reset(); |
| path.quadTo(0, 0, 0, 0); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(nullptr)); |
| |
| path.reset(); |
| path.conicTo(0, 0, 0, 0, 0.5f); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(nullptr)); |
| |
| path.reset(); |
| path.cubicTo(0, 0, 0, 0, 0, 0); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(nullptr)); |
| } |
| |
| // Make sure we stay non-finite once we get there (unless we reset or rewind). |
| static void test_addrect_isfinite(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.moveTo(0, 0); |
| path.lineTo(SK_ScalarInfinity, 42); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| |
| path.reset(); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| } |
| |
| static void build_big_path(SkPath* path, bool reducedCase) { |
| if (reducedCase) { |
| path->moveTo(577330, 1971.72f); |
| path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); |
| } else { |
| path->moveTo(60.1631f, 7.70567f); |
| path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f); |
| path->lineTo(577379, 1977.77f); |
| path->quadTo(577364, 1979.57f, 577325, 1980.26f); |
| path->quadTo(577286, 1980.95f, 577245, 1980.13f); |
| path->quadTo(577205, 1979.3f, 577187, 1977.45f); |
| path->quadTo(577168, 1975.6f, 577183, 1973.8f); |
| path->quadTo(577198, 1972, 577238, 1971.31f); |
| path->quadTo(577277, 1970.62f, 577317, 1971.45f); |
| path->quadTo(577330, 1971.72f, 577341, 1972.11f); |
| path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); |
| path->moveTo(306.718f, -32.912f); |
| path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f); |
| } |
| } |
| |
| static void test_clipped_cubic() { |
| auto surface(SkSurface::MakeRasterN32Premul(640, 480)); |
| |
| // This path used to assert, because our cubic-chopping code incorrectly |
| // moved control points after the chop. This test should be run in SK_DEBUG |
| // mode to ensure that we no long assert. |
| SkPath path; |
| for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) { |
| build_big_path(&path, SkToBool(doReducedCase)); |
| |
| SkPaint paint; |
| for (int doAA = 0; doAA <= 1; ++doAA) { |
| paint.setAntiAlias(SkToBool(doAA)); |
| surface->getCanvas()->drawPath(path, paint); |
| } |
| } |
| } |
| |
| static void dump_if_ne(skiatest::Reporter* reporter, const SkRect& expected, const SkRect& bounds) { |
| if (expected != bounds) { |
| ERRORF(reporter, "path.getBounds() returned [%g %g %g %g], but expected [%g %g %g %g]", |
| bounds.left(), bounds.top(), bounds.right(), bounds.bottom(), |
| expected.left(), expected.top(), expected.right(), expected.bottom()); |
| } |
| } |
| |
| static void test_bounds_crbug_513799(skiatest::Reporter* reporter) { |
| SkPath path; |
| #if 0 |
| // As written these tests were failing on LLVM 4.2 MacMini Release mysteriously, so we've |
| // rewritten them to avoid this (compiler-bug?). |
| REPORTER_ASSERT(reporter, SkRect::MakeLTRB(0, 0, 0, 0) == path.getBounds()); |
| |
| path.moveTo(-5, -8); |
| REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, -5, -8) == path.getBounds()); |
| |
| path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); |
| REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds()); |
| |
| path.moveTo(1, 2); |
| REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds()); |
| #else |
| dump_if_ne(reporter, SkRect::MakeLTRB(0, 0, 0, 0), path.getBounds()); |
| |
| path.moveTo(-5, -8); // should set the bounds |
| dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, -5, -8), path.getBounds()); |
| |
| path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); // should extend the bounds |
| dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds()); |
| |
| path.moveTo(1, 2); // don't expect this to have changed the bounds |
| dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds()); |
| #endif |
| } |
| |
| #include "include/core/SkSurface.h" |
| static void test_fuzz_crbug_627414(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.moveTo(0, 0); |
| path.conicTo(3.58732e-43f, 2.72084f, 3.00392f, 3.00392f, 8.46e+37f); |
| test_draw_AA_path(100, 100, path); |
| } |
| |
| // Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/ |
| // which triggered an assert, from a tricky cubic. This test replicates that |
| // example, so we can ensure that we handle it (in SkEdge.cpp), and don't |
| // assert in the SK_DEBUG build. |
| static void test_tricky_cubic() { |
| const SkPoint pts[] = { |
| { SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) }, |
| { SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) }, |
| { SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) }, |
| { SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) }, |
| }; |
| |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.cubicTo(pts[1], pts[2], pts[3]); |
| test_draw_AA_path(19, 130, path); |
| } |
| |
| // Inspired by http://code.google.com/p/chromium/issues/detail?id=141651 |
| // |
| static void test_isfinite_after_transform(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.quadTo(157, 366, 286, 208); |
| path.arcTo(37, 442, 315, 163, 957494590897113.0f); |
| |
| SkMatrix matrix; |
| matrix.setScale(1000*1000, 1000*1000); |
| |
| // Be sure that path::transform correctly updates isFinite and the bounds |
| // if the transformation overflows. The previous bug was that isFinite was |
| // set to true in this case, but the bounds were not set to empty (which |
| // they should be). |
| while (path.isFinite()) { |
| REPORTER_ASSERT(reporter, path.getBounds().isFinite()); |
| REPORTER_ASSERT(reporter, !path.getBounds().isEmpty()); |
| path.transform(matrix); |
| } |
| REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); |
| |
| matrix.setTranslate(SK_Scalar1, SK_Scalar1); |
| path.transform(matrix); |
| // we need to still be non-finite |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); |
| } |
| |
| static void add_corner_arc(SkPath* path, const SkRect& rect, |
| SkScalar xIn, SkScalar yIn, |
| int startAngle) |
| { |
| |
| SkScalar rx = SkMinScalar(rect.width(), xIn); |
| SkScalar ry = SkMinScalar(rect.height(), yIn); |
| |
| SkRect arcRect; |
| arcRect.setLTRB(-rx, -ry, rx, ry); |
| switch (startAngle) { |
| case 0: |
| arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); |
| break; |
| case 90: |
| arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); |
| break; |
| case 180: |
| arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); |
| break; |
| case 270: |
| arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); |
| break; |
| default: |
| break; |
| } |
| |
| path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); |
| } |
| |
| static void make_arb_round_rect(SkPath* path, const SkRect& r, |
| SkScalar xCorner, SkScalar yCorner) { |
| // we are lazy here and use the same x & y for each corner |
| add_corner_arc(path, r, xCorner, yCorner, 270); |
| add_corner_arc(path, r, xCorner, yCorner, 0); |
| add_corner_arc(path, r, xCorner, yCorner, 90); |
| add_corner_arc(path, r, xCorner, yCorner, 180); |
| path->close(); |
| } |
| |
| // Chrome creates its own round rects with each corner possibly being different. |
| // Performance will suffer if they are not convex. |
| // Note: PathBench::ArbRoundRectBench performs almost exactly |
| // the same test (but with drawing) |
| static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) { |
| SkRandom rand; |
| SkRect r; |
| |
| for (int i = 0; i < 5000; ++i) { |
| |
| SkScalar size = rand.nextUScalar1() * 30; |
| if (size < SK_Scalar1) { |
| continue; |
| } |
| r.fLeft = rand.nextUScalar1() * 300; |
| r.fTop = rand.nextUScalar1() * 300; |
| r.fRight = r.fLeft + 2 * size; |
| r.fBottom = r.fTop + 2 * size; |
| |
| SkPath temp; |
| |
| make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); |
| |
| REPORTER_ASSERT(reporter, temp.isConvex()); |
| } |
| } |
| |
| // Chrome will sometimes create a 0 radius round rect. The degenerate |
| // quads prevent the path from being converted to a rect |
| // Note: PathBench::ArbRoundRectBench performs almost exactly |
| // the same test (but with drawing) |
| static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) { |
| SkRandom rand; |
| SkRect r; |
| |
| for (int i = 0; i < 5000; ++i) { |
| |
| SkScalar size = rand.nextUScalar1() * 30; |
| if (size < SK_Scalar1) { |
| continue; |
| } |
| r.fLeft = rand.nextUScalar1() * 300; |
| r.fTop = rand.nextUScalar1() * 300; |
| r.fRight = r.fLeft + 2 * size; |
| r.fBottom = r.fTop + 2 * size; |
| |
| SkPath temp; |
| |
| make_arb_round_rect(&temp, r, 0, 0); |
| |
| SkRect result; |
| REPORTER_ASSERT(reporter, temp.isRect(&result)); |
| REPORTER_ASSERT(reporter, r == result); |
| } |
| } |
| |
| static void test_rect_isfinite(skiatest::Reporter* reporter) { |
| const SkScalar inf = SK_ScalarInfinity; |
| const SkScalar negInf = SK_ScalarNegativeInfinity; |
| const SkScalar nan = SK_ScalarNaN; |
| |
| SkRect r; |
| r.setEmpty(); |
| REPORTER_ASSERT(reporter, r.isFinite()); |
| r.setLTRB(0, 0, inf, negInf); |
| REPORTER_ASSERT(reporter, !r.isFinite()); |
| r.setLTRB(0, 0, nan, 0); |
| REPORTER_ASSERT(reporter, !r.isFinite()); |
| |
| SkPoint pts[] = { |
| { 0, 0 }, |
| { SK_Scalar1, 0 }, |
| { 0, SK_Scalar1 }, |
| }; |
| |
| bool isFine = r.setBoundsCheck(pts, 3); |
| REPORTER_ASSERT(reporter, isFine); |
| REPORTER_ASSERT(reporter, !r.isEmpty()); |
| |
| pts[1].set(inf, 0); |
| isFine = r.setBoundsCheck(pts, 3); |
| REPORTER_ASSERT(reporter, !isFine); |
| REPORTER_ASSERT(reporter, r.isEmpty()); |
| |
| pts[1].set(nan, 0); |
| isFine = r.setBoundsCheck(pts, 3); |
| REPORTER_ASSERT(reporter, !isFine); |
| REPORTER_ASSERT(reporter, r.isEmpty()); |
| } |
| |
| static void test_path_isfinite(skiatest::Reporter* reporter) { |
| const SkScalar inf = SK_ScalarInfinity; |
| const SkScalar negInf = SK_ScalarNegativeInfinity; |
| const SkScalar nan = SK_ScalarNaN; |
| |
| SkPath path; |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.reset(); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.reset(); |
| path.moveTo(SK_Scalar1, 0); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.reset(); |
| path.moveTo(inf, negInf); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| |
| path.reset(); |
| path.moveTo(nan, 0); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| } |
| |
| static void test_isfinite(skiatest::Reporter* reporter) { |
| test_rect_isfinite(reporter); |
| test_path_isfinite(reporter); |
| } |
| |
| static void test_islastcontourclosed(skiatest::Reporter* reporter) { |
| SkPath path; |
| REPORTER_ASSERT(reporter, !path.isLastContourClosed()); |
| path.moveTo(0, 0); |
| REPORTER_ASSERT(reporter, !path.isLastContourClosed()); |
| path.close(); |
| REPORTER_ASSERT(reporter, path.isLastContourClosed()); |
| path.lineTo(100, 100); |
| REPORTER_ASSERT(reporter, !path.isLastContourClosed()); |
| path.moveTo(200, 200); |
| REPORTER_ASSERT(reporter, !path.isLastContourClosed()); |
| path.close(); |
| REPORTER_ASSERT(reporter, path.isLastContourClosed()); |
| path.moveTo(0, 0); |
| REPORTER_ASSERT(reporter, !path.isLastContourClosed()); |
| } |
| |
| // assert that we always |
| // start with a moveTo |
| // only have 1 moveTo |
| // only have Lines after that |
| // end with a single close |
| // only have (at most) 1 close |
| // |
| static void test_poly(skiatest::Reporter* reporter, const SkPath& path, |
| const SkPoint srcPts[], bool expectClose) { |
| SkPath::RawIter iter(path); |
| SkPoint pts[4]; |
| |
| bool firstTime = true; |
| bool foundClose = false; |
| for (;;) { |
| switch (iter.next(pts)) { |
| case SkPath::kMove_Verb: |
| REPORTER_ASSERT(reporter, firstTime); |
| REPORTER_ASSERT(reporter, pts[0] == srcPts[0]); |
| srcPts++; |
| firstTime = false; |
| break; |
| case SkPath::kLine_Verb: |
| REPORTER_ASSERT(reporter, !firstTime); |
| REPORTER_ASSERT(reporter, pts[1] == srcPts[0]); |
| srcPts++; |
| break; |
| case SkPath::kQuad_Verb: |
| REPORTER_ASSERT(reporter, false, "unexpected quad verb"); |
| break; |
| case SkPath::kConic_Verb: |
| REPORTER_ASSERT(reporter, false, "unexpected conic verb"); |
| break; |
| case SkPath::kCubic_Verb: |
| REPORTER_ASSERT(reporter, false, "unexpected cubic verb"); |
| break; |
| case SkPath::kClose_Verb: |
| REPORTER_ASSERT(reporter, !firstTime); |
| REPORTER_ASSERT(reporter, !foundClose); |
| REPORTER_ASSERT(reporter, expectClose); |
| foundClose = true; |
| break; |
| case SkPath::kDone_Verb: |
| goto DONE; |
| } |
| } |
| DONE: |
| REPORTER_ASSERT(reporter, foundClose == expectClose); |
| } |
| |
| static void test_addPoly(skiatest::Reporter* reporter) { |
| SkPoint pts[32]; |
| SkRandom rand; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) { |
| pts[i].fX = rand.nextSScalar1(); |
| pts[i].fY = rand.nextSScalar1(); |
| } |
| |
| for (int doClose = 0; doClose <= 1; ++doClose) { |
| for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) { |
| SkPath path; |
| path.addPoly(pts, SkToInt(count), SkToBool(doClose)); |
| test_poly(reporter, path, pts, SkToBool(doClose)); |
| } |
| } |
| } |
| |
| static void test_strokerec(skiatest::Reporter* reporter) { |
| SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); |
| REPORTER_ASSERT(reporter, rec.isFillStyle()); |
| |
| rec.setHairlineStyle(); |
| REPORTER_ASSERT(reporter, rec.isHairlineStyle()); |
| |
| rec.setStrokeStyle(SK_Scalar1, false); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle()); |
| |
| rec.setStrokeStyle(SK_Scalar1, true); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle()); |
| |
| rec.setStrokeStyle(0, false); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle()); |
| |
| rec.setStrokeStyle(0, true); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle()); |
| } |
| |
| // Set this for paths that don't have a consistent direction such as a bowtie. |
| // (cheapComputeDirection is not expected to catch these.) |
| // Legal values are CW (0), CCW (1) and Unknown (2), leaving 3 as a convenient sentinel. |
| const SkPathPriv::FirstDirection kDontCheckDir = static_cast<SkPathPriv::FirstDirection>(3); |
| |
| static void check_direction(skiatest::Reporter* reporter, const SkPath& path, |
| SkPathPriv::FirstDirection expected) { |
| if (expected == kDontCheckDir) { |
| return; |
| } |
| SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. |
| |
| SkPathPriv::FirstDirection dir; |
| if (SkPathPriv::CheapComputeFirstDirection(copy, &dir)) { |
| REPORTER_ASSERT(reporter, dir == expected); |
| } else { |
| REPORTER_ASSERT(reporter, SkPathPriv::kUnknown_FirstDirection == expected); |
| } |
| } |
| |
| static void test_direction(skiatest::Reporter* reporter) { |
| size_t i; |
| SkPath path; |
| REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr)); |
| REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection)); |
| REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection)); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kUnknown_FirstDirection)); |
| |
| static const char* gDegen[] = { |
| "M 10 10", |
| "M 10 10 M 20 20", |
| "M 10 10 L 20 20", |
| "M 10 10 L 10 10 L 10 10", |
| "M 10 10 Q 10 10 10 10", |
| "M 10 10 C 10 10 10 10 10 10", |
| }; |
| for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) { |
| path.reset(); |
| bool valid = SkParsePath::FromSVGString(gDegen[i], &path); |
| REPORTER_ASSERT(reporter, valid); |
| REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr)); |
| } |
| |
| static const char* gCW[] = { |
| "M 10 10 L 10 10 Q 20 10 20 20", |
| "M 10 10 C 20 10 20 20 20 20", |
| "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max |
| // rect with top two corners replaced by cubics with identical middle |
| // control points |
| "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10", |
| "M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif |
| }; |
| for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) { |
| path.reset(); |
| bool valid = SkParsePath::FromSVGString(gCW[i], &path); |
| REPORTER_ASSERT(reporter, valid); |
| check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); |
| } |
| |
| static const char* gCCW[] = { |
| "M 10 10 L 10 10 Q 20 10 20 -20", |
| "M 10 10 C 20 10 20 -20 20 -20", |
| "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max |
| // rect with top two corners replaced by cubics with identical middle |
| // control points |
| "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10", |
| "M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif |
| }; |
| for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) { |
| path.reset(); |
| bool valid = SkParsePath::FromSVGString(gCCW[i], &path); |
| REPORTER_ASSERT(reporter, valid); |
| check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); |
| } |
| |
| // Test two donuts, each wound a different direction. Only the outer contour |
| // determines the cheap direction |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction); |
| path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction); |
| check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); |
| |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction); |
| path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction); |
| check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); |
| |
| // triangle with one point really far from the origin. |
| path.reset(); |
| // the first point is roughly 1.05e10, 1.05e10 |
| path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652)); |
| path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1); |
| path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1); |
| check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); |
| |
| path.reset(); |
| path.conicTo(20, 0, 20, 20, 0.5f); |
| path.close(); |
| check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); |
| |
| path.reset(); |
| path.lineTo(1, 1e7f); |
| path.lineTo(1e7f, 2e7f); |
| path.close(); |
| REPORTER_ASSERT(reporter, SkPath::kConvex_Convexity == path.getConvexity()); |
| check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); |
| } |
| |
| static void add_rect(SkPath* path, const SkRect& r) { |
| path->moveTo(r.fLeft, r.fTop); |
| path->lineTo(r.fRight, r.fTop); |
| path->lineTo(r.fRight, r.fBottom); |
| path->lineTo(r.fLeft, r.fBottom); |
| path->close(); |
| } |
| |
| static void test_bounds(skiatest::Reporter* reporter) { |
| static const SkRect rects[] = { |
| { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) }, |
| { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) }, |
| { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) }, |
| { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) }, |
| }; |
| |
| SkPath path0, path1; |
| for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) { |
| path0.addRect(rects[i]); |
| add_rect(&path1, rects[i]); |
| } |
| |
| REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds()); |
| } |
| |
| static void stroke_cubic(const SkPoint pts[4]) { |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.cubicTo(pts[1], pts[2], pts[3]); |
| |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| paint.setStrokeWidth(SK_Scalar1 * 2); |
| |
| SkPath fill; |
| paint.getFillPath(path, &fill); |
| } |
| |
| // just ensure this can run w/o any SkASSERTS firing in the debug build |
| // we used to assert due to differences in how we determine a degenerate vector |
| // but that was fixed with the introduction of SkPoint::CanNormalize |
| static void stroke_tiny_cubic() { |
| SkPoint p0[] = { |
| { 372.0f, 92.0f }, |
| { 372.0f, 92.0f }, |
| { 372.0f, 92.0f }, |
| { 372.0f, 92.0f }, |
| }; |
| |
| stroke_cubic(p0); |
| |
| SkPoint p1[] = { |
| { 372.0f, 92.0f }, |
| { 372.0007f, 92.000755f }, |
| { 371.99927f, 92.003922f }, |
| { 371.99826f, 92.003899f }, |
| }; |
| |
| stroke_cubic(p1); |
| } |
| |
| static void check_close(skiatest::Reporter* reporter, const SkPath& path) { |
| for (int i = 0; i < 2; ++i) { |
| SkPath::Iter iter(path, SkToBool(i)); |
| SkPoint mv; |
| SkPoint pts[4]; |
| SkPath::Verb v; |
| int nMT = 0; |
| int nCL = 0; |
| mv.set(0, 0); |
| while (SkPath::kDone_Verb != (v = iter.next(pts))) { |
| switch (v) { |
| case SkPath::kMove_Verb: |
| mv = pts[0]; |
| ++nMT; |
| break; |
| case SkPath::kClose_Verb: |
| REPORTER_ASSERT(reporter, mv == pts[0]); |
| ++nCL; |
| break; |
| default: |
| break; |
| } |
| } |
| // if we force a close on the interator we should have a close |
| // for every moveTo |
| REPORTER_ASSERT(reporter, !i || nMT == nCL); |
| } |
| } |
| |
| static void test_close(skiatest::Reporter* reporter) { |
| SkPath closePt; |
| closePt.moveTo(0, 0); |
| closePt.close(); |
| check_close(reporter, closePt); |
| |
| SkPath openPt; |
| openPt.moveTo(0, 0); |
| check_close(reporter, openPt); |
| |
| SkPath empty; |
| check_close(reporter, empty); |
| empty.close(); |
| check_close(reporter, empty); |
| |
| SkPath rect; |
| rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, rect); |
| rect.close(); |
| check_close(reporter, rect); |
| |
| SkPath quad; |
| quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, quad); |
| quad.close(); |
| check_close(reporter, quad); |
| |
| SkPath cubic; |
| quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, |
| 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); |
| check_close(reporter, cubic); |
| cubic.close(); |
| check_close(reporter, cubic); |
| |
| SkPath line; |
| line.moveTo(SK_Scalar1, SK_Scalar1); |
| line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, line); |
| line.close(); |
| check_close(reporter, line); |
| |
| SkPath rect2; |
| rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| rect2.close(); |
| rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, rect2); |
| rect2.close(); |
| check_close(reporter, rect2); |
| |
| SkPath oval3; |
| oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); |
| oval3.close(); |
| oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); |
| check_close(reporter, oval3); |
| oval3.close(); |
| check_close(reporter, oval3); |
| |
| SkPath moves; |
| moves.moveTo(SK_Scalar1, SK_Scalar1); |
| moves.moveTo(5 * SK_Scalar1, SK_Scalar1); |
| moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); |
| moves.moveTo(10 *SK_Scalar1, SK_Scalar1); |
| check_close(reporter, moves); |
| |
| stroke_tiny_cubic(); |
| } |
| |
| static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, |
| SkPath::Convexity expected) { |
| SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. |
| SkPath::Convexity c = copy.getConvexity(); |
| REPORTER_ASSERT(reporter, c == expected); |
| #ifndef SK_LEGACY_PATH_CONVEXITY |
| // test points-by-array interface |
| SkPath::Iter iter(path, true); |
| int initialMoves = 0; |
| SkPoint pts[4]; |
| while (SkPath::kMove_Verb == iter.next(pts)) { |
| ++initialMoves; |
| } |
| if (initialMoves > 0) { |
| std::vector<SkPoint> points; |
| points.resize(path.getPoints(nullptr, 0)); |
| (void) path.getPoints(&points.front(), points.size()); |
| int skip = initialMoves - 1; |
| bool isConvex = SkPathPriv::IsConvex(&points.front() + skip, points.size() - skip); |
| REPORTER_ASSERT(reporter, isConvex == (SkPath::kConvex_Convexity == expected)); |
| } |
| #endif |
| } |
| |
| static void test_path_crbug389050(skiatest::Reporter* reporter) { |
| SkPath tinyConvexPolygon; |
| tinyConvexPolygon.moveTo(600.131559f, 800.112512f); |
| tinyConvexPolygon.lineTo(600.161735f, 800.118627f); |
| tinyConvexPolygon.lineTo(600.148962f, 800.142338f); |
| tinyConvexPolygon.lineTo(600.134891f, 800.137724f); |
| tinyConvexPolygon.close(); |
| tinyConvexPolygon.getConvexity(); |
| // This is convex, but so small that it fails many of our checks, and the three "backwards" |
| // bends convince the checker that it's concave. That's okay though, we draw it correctly. |
| check_convexity(reporter, tinyConvexPolygon, SkPath::kConcave_Convexity); |
| check_direction(reporter, tinyConvexPolygon, SkPathPriv::kCW_FirstDirection); |
| |
| SkPath platTriangle; |
| platTriangle.moveTo(0, 0); |
| platTriangle.lineTo(200, 0); |
| platTriangle.lineTo(100, 0.04f); |
| platTriangle.close(); |
| platTriangle.getConvexity(); |
| check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection); |
| |
| platTriangle.reset(); |
| platTriangle.moveTo(0, 0); |
| platTriangle.lineTo(200, 0); |
| platTriangle.lineTo(100, 0.03f); |
| platTriangle.close(); |
| platTriangle.getConvexity(); |
| check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection); |
| } |
| |
| static void test_convexity2(skiatest::Reporter* reporter) { |
| SkPath pt; |
| pt.moveTo(0, 0); |
| pt.close(); |
| check_convexity(reporter, pt, SkPath::kConvex_Convexity); |
| check_direction(reporter, pt, SkPathPriv::kUnknown_FirstDirection); |
| |
| SkPath line; |
| line.moveTo(12*SK_Scalar1, 20*SK_Scalar1); |
| line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1); |
| line.close(); |
| check_convexity(reporter, line, SkPath::kConvex_Convexity); |
| check_direction(reporter, line, SkPathPriv::kUnknown_FirstDirection); |
| |
| SkPath triLeft; |
| triLeft.moveTo(0, 0); |
| triLeft.lineTo(SK_Scalar1, 0); |
| triLeft.lineTo(SK_Scalar1, SK_Scalar1); |
| triLeft.close(); |
| check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); |
| check_direction(reporter, triLeft, SkPathPriv::kCW_FirstDirection); |
| |
| SkPath triRight; |
| triRight.moveTo(0, 0); |
| triRight.lineTo(-SK_Scalar1, 0); |
| triRight.lineTo(SK_Scalar1, SK_Scalar1); |
| triRight.close(); |
| check_convexity(reporter, triRight, SkPath::kConvex_Convexity); |
| check_direction(reporter, triRight, SkPathPriv::kCCW_FirstDirection); |
| |
| SkPath square; |
| square.moveTo(0, 0); |
| square.lineTo(SK_Scalar1, 0); |
| square.lineTo(SK_Scalar1, SK_Scalar1); |
| square.lineTo(0, SK_Scalar1); |
| square.close(); |
| check_convexity(reporter, square, SkPath::kConvex_Convexity); |
| check_direction(reporter, square, SkPathPriv::kCW_FirstDirection); |
| |
| SkPath redundantSquare; |
| redundantSquare.moveTo(0, 0); |
| redundantSquare.lineTo(0, 0); |
| redundantSquare.lineTo(0, 0); |
| redundantSquare.lineTo(SK_Scalar1, 0); |
| redundantSquare.lineTo(SK_Scalar1, 0); |
| redundantSquare.lineTo(SK_Scalar1, 0); |
| redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); |
| redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); |
| redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); |
| redundantSquare.lineTo(0, SK_Scalar1); |
| redundantSquare.lineTo(0, SK_Scalar1); |
| redundantSquare.lineTo(0, SK_Scalar1); |
| redundantSquare.close(); |
| check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); |
| check_direction(reporter, redundantSquare, SkPathPriv::kCW_FirstDirection); |
| |
| SkPath bowTie; |
| bowTie.moveTo(0, 0); |
| bowTie.lineTo(0, 0); |
| bowTie.lineTo(0, 0); |
| bowTie.lineTo(SK_Scalar1, SK_Scalar1); |
| bowTie.lineTo(SK_Scalar1, SK_Scalar1); |
| bowTie.lineTo(SK_Scalar1, SK_Scalar1); |
| bowTie.lineTo(SK_Scalar1, 0); |
| bowTie.lineTo(SK_Scalar1, 0); |
| bowTie.lineTo(SK_Scalar1, 0); |
| bowTie.lineTo(0, SK_Scalar1); |
| bowTie.lineTo(0, SK_Scalar1); |
| bowTie.lineTo(0, SK_Scalar1); |
| bowTie.close(); |
| check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); |
| check_direction(reporter, bowTie, kDontCheckDir); |
| |
| SkPath spiral; |
| spiral.moveTo(0, 0); |
| spiral.lineTo(100*SK_Scalar1, 0); |
| spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1); |
| spiral.lineTo(0, 100*SK_Scalar1); |
| spiral.lineTo(0, 50*SK_Scalar1); |
| spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1); |
| spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1); |
| spiral.close(); |
| check_convexity(reporter, spiral, SkPath::kConcave_Convexity); |
| check_direction(reporter, spiral, kDontCheckDir); |
| |
| SkPath dent; |
| dent.moveTo(0, 0); |
| dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1); |
| dent.lineTo(0, 100*SK_Scalar1); |
| dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1); |
| dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1); |
| dent.close(); |
| check_convexity(reporter, dent, SkPath::kConcave_Convexity); |
| check_direction(reporter, dent, SkPathPriv::kCW_FirstDirection); |
| |
| // https://bug.skia.org/2235 |
| SkPath strokedSin; |
| for (int i = 0; i < 2000; i++) { |
| SkScalar x = SkIntToScalar(i) / 2; |
| SkScalar y = 500 - (x + SkScalarSin(x / 100) * 40) / 3; |
| if (0 == i) { |
| strokedSin.moveTo(x, y); |
| } else { |
| strokedSin.lineTo(x, y); |
| } |
| } |
| SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); |
| stroke.setStrokeStyle(2 * SK_Scalar1); |
| stroke.applyToPath(&strokedSin, strokedSin); |
| check_convexity(reporter, strokedSin, SkPath::kConcave_Convexity); |
| check_direction(reporter, strokedSin, kDontCheckDir); |
| |
| // http://crbug.com/412640 |
| SkPath degenerateConcave; |
| degenerateConcave.moveTo(148.67912f, 191.875f); |
| degenerateConcave.lineTo(470.37695f, 7.5f); |
| degenerateConcave.lineTo(148.67912f, 191.875f); |
| degenerateConcave.lineTo(41.446522f, 376.25f); |
| degenerateConcave.lineTo(-55.971577f, 460.0f); |
| degenerateConcave.lineTo(41.446522f, 376.25f); |
| check_convexity(reporter, degenerateConcave, SkPath::kConcave_Convexity); |
| check_direction(reporter, degenerateConcave, SkPathPriv::kUnknown_FirstDirection); |
| |
| // http://crbug.com/433683 |
| SkPath badFirstVector; |
| badFirstVector.moveTo(501.087708f, 319.610352f); |
| badFirstVector.lineTo(501.087708f, 319.610352f); |
| badFirstVector.cubicTo(501.087677f, 319.610321f, 449.271606f, 258.078674f, 395.084564f, 198.711182f); |
| badFirstVector.cubicTo(358.967072f, 159.140717f, 321.910553f, 120.650436f, 298.442322f, 101.955399f); |
| badFirstVector.lineTo(301.557678f, 98.044601f); |
| badFirstVector.cubicTo(325.283844f, 116.945084f, 362.615204f, 155.720825f, 398.777557f, 195.340454f); |
| badFirstVector.cubicTo(453.031860f, 254.781662f, 504.912262f, 316.389618f, 504.912292f, 316.389648f); |
| badFirstVector.lineTo(504.912292f, 316.389648f); |
| badFirstVector.lineTo(501.087708f, 319.610352f); |
| badFirstVector.close(); |
| check_convexity(reporter, badFirstVector, SkPath::kConcave_Convexity); |
| |
| // http://crbug.com/993330 |
| SkPath falseBackEdge; |
| falseBackEdge.moveTo(-217.83430557928145f, -382.14948768484857f); |
| falseBackEdge.lineTo(-227.73867866614847f, -399.52485512718323f); |
| falseBackEdge.cubicTo(-158.3541047666846f, -439.0757140459542f, |
| -79.8654464485281f, -459.875f, |
| -1.1368683772161603e-13f, -459.875f); |
| falseBackEdge.lineTo(-8.08037266162413e-14f, -439.875f); |
| falseBackEdge.lineTo(-8.526512829121202e-14f, -439.87499999999994f); |
| falseBackEdge.cubicTo(-76.39209188702645f, -439.87499999999994f, |
| -151.46727226799754f, -419.98027663161537f, |
| -217.83430557928145f, -382.14948768484857f); |
| falseBackEdge.close(); |
| check_convexity(reporter, falseBackEdge, SkPath::kConcave_Convexity); |
| } |
| |
| static void test_convexity_doubleback(skiatest::Reporter* reporter) { |
| SkPath doubleback; |
| doubleback.lineTo(1, 1); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| doubleback.lineTo(2, 2); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| doubleback.reset(); |
| doubleback.lineTo(1, 0); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| doubleback.lineTo(2, 0); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| doubleback.lineTo(1, 0); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| doubleback.reset(); |
| doubleback.quadTo(1, 1, 2, 2); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| doubleback.reset(); |
| doubleback.quadTo(1, 0, 2, 0); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| doubleback.quadTo(1, 0, 0, 0); |
| check_convexity(reporter, doubleback, SkPath::kConvex_Convexity); |
| } |
| |
| static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, |
| const SkRect& bounds) { |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| REPORTER_ASSERT(reporter, p.getBounds() == bounds); |
| |
| SkPath p2(p); |
| REPORTER_ASSERT(reporter, p2.isConvex()); |
| REPORTER_ASSERT(reporter, p2.getBounds() == bounds); |
| |
| SkPath other; |
| other.swap(p2); |
| REPORTER_ASSERT(reporter, other.isConvex()); |
| REPORTER_ASSERT(reporter, other.getBounds() == bounds); |
| } |
| |
| static void setFromString(SkPath* path, const char str[]) { |
| bool first = true; |
| while (str) { |
| SkScalar x, y; |
| str = SkParse::FindScalar(str, &x); |
| if (nullptr == str) { |
| break; |
| } |
| str = SkParse::FindScalar(str, &y); |
| SkASSERT(str); |
| if (first) { |
| path->moveTo(x, y); |
| first = false; |
| } else { |
| path->lineTo(x, y); |
| } |
| } |
| } |
| |
| static void test_convexity(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| path.addCircle(0, 0, SkIntToScalar(10)); |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle |
| check_convexity(reporter, path, SkPath::kConcave_Convexity); |
| |
| path.reset(); |
| path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction); |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection)); |
| |
| path.reset(); |
| path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction); |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection)); |
| |
| path.reset(); |
| path.quadTo(100, 100, 50, 50); // This from GM:convexpaths |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| |
| static const struct { |
| const char* fPathStr; |
| SkPath::Convexity fExpectedConvexity; |
| SkPathPriv::FirstDirection fExpectedDirection; |
| } gRec[] = { |
| { "", SkPath::kConvex_Convexity, SkPathPriv::kUnknown_FirstDirection }, |
| { "0 0", SkPath::kConvex_Convexity, SkPathPriv::kUnknown_FirstDirection }, |
| { "0 0 10 10", SkPath::kConvex_Convexity, SkPathPriv::kUnknown_FirstDirection }, |
| { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPathPriv::kUnknown_FirstDirection }, |
| { "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPathPriv::kCW_FirstDirection }, |
| { "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPathPriv::kCCW_FirstDirection }, |
| { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir }, |
| { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPathPriv::kCW_FirstDirection }, |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { |
| path.reset(); |
| setFromString(&path, gRec[i].fPathStr); |
| check_convexity(reporter, path, gRec[i].fExpectedConvexity); |
| check_direction(reporter, path, gRec[i].fExpectedDirection); |
| // check after setting the initial convex and direction |
| if (kDontCheckDir != gRec[i].fExpectedDirection) { |
| SkPath copy(path); |
| SkPathPriv::FirstDirection dir; |
| bool foundDir = SkPathPriv::CheapComputeFirstDirection(copy, &dir); |
| REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPathPriv::kUnknown_FirstDirection) |
| ^ foundDir); |
| REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir); |
| check_convexity(reporter, copy, gRec[i].fExpectedConvexity); |
| } |
| REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexity()); |
| check_direction(reporter, path, gRec[i].fExpectedDirection); |
| } |
| |
| static const SkPoint nonFinitePts[] = { |
| { SK_ScalarInfinity, 0 }, |
| { 0, SK_ScalarInfinity }, |
| { SK_ScalarInfinity, SK_ScalarInfinity }, |
| { SK_ScalarNegativeInfinity, 0}, |
| { 0, SK_ScalarNegativeInfinity }, |
| { SK_ScalarNegativeInfinity, SK_ScalarNegativeInfinity }, |
| { SK_ScalarNegativeInfinity, SK_ScalarInfinity }, |
| { SK_ScalarInfinity, SK_ScalarNegativeInfinity }, |
| { SK_ScalarNaN, 0 }, |
| { 0, SK_ScalarNaN }, |
| { SK_ScalarNaN, SK_ScalarNaN }, |
| }; |
| |
| const size_t nonFinitePtsCount = sizeof(nonFinitePts) / sizeof(nonFinitePts[0]); |
| |
| static const SkPoint axisAlignedPts[] = { |
| { SK_ScalarMax, 0 }, |
| { 0, SK_ScalarMax }, |
| { SK_ScalarMin, 0 }, |
| { 0, SK_ScalarMin }, |
| }; |
| |
| const size_t axisAlignedPtsCount = sizeof(axisAlignedPts) / sizeof(axisAlignedPts[0]); |
| |
| for (int index = 0; index < (int) (13 * nonFinitePtsCount * axisAlignedPtsCount); ++index) { |
| int i = (int) (index % nonFinitePtsCount); |
| int f = (int) (index % axisAlignedPtsCount); |
| int g = (int) ((f + 1) % axisAlignedPtsCount); |
| path.reset(); |
| switch (index % 13) { |
| case 0: path.lineTo(nonFinitePts[i]); break; |
| case 1: path.quadTo(nonFinitePts[i], nonFinitePts[i]); break; |
| case 2: path.quadTo(nonFinitePts[i], axisAlignedPts[f]); break; |
| case 3: path.quadTo(axisAlignedPts[f], nonFinitePts[i]); break; |
| case 4: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[f]); break; |
| case 5: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], axisAlignedPts[f]); break; |
| case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], nonFinitePts[i]); break; |
| case 7: path.cubicTo(nonFinitePts[i], nonFinitePts[i], axisAlignedPts[f]); break; |
| case 8: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], nonFinitePts[i]); break; |
| case 9: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], nonFinitePts[i]); break; |
| case 10: path.cubicTo(nonFinitePts[i], nonFinitePts[i], nonFinitePts[i]); break; |
| case 11: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[g]); break; |
| case 12: path.moveTo(nonFinitePts[i]); break; |
| } |
| check_convexity(reporter, path, SkPath::kUnknown_Convexity); |
| } |
| |
| for (int index = 0; index < (int) (11 * axisAlignedPtsCount); ++index) { |
| int f = (int) (index % axisAlignedPtsCount); |
| int g = (int) ((f + 1) % axisAlignedPtsCount); |
| path.reset(); |
| int curveSelect = index % 11; |
| switch (curveSelect) { |
| case 0: path.moveTo(axisAlignedPts[f]); break; |
| case 1: path.lineTo(axisAlignedPts[f]); break; |
| case 2: path.quadTo(axisAlignedPts[f], axisAlignedPts[f]); break; |
| case 3: path.quadTo(axisAlignedPts[f], axisAlignedPts[g]); break; |
| case 4: path.quadTo(axisAlignedPts[g], axisAlignedPts[f]); break; |
| case 5: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[f]); break; |
| case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[g]); break; |
| case 7: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[f]); break; |
| case 8: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[g]); break; |
| case 9: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[f]); break; |
| case 10: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[g]); break; |
| } |
| if (curveSelect == 0 || curveSelect == 1 || curveSelect == 2 || curveSelect == 5) { |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| } else { |
| SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. |
| SkPath::Convexity c = copy.getConvexity(); |
| REPORTER_ASSERT(reporter, SkPath::kUnknown_Convexity == c |
| || SkPath::kConcave_Convexity == c); |
| } |
| } |
| |
| static const SkPoint diagonalPts[] = { |
| { SK_ScalarMax, SK_ScalarMax }, |
| { SK_ScalarMin, SK_ScalarMin }, |
| }; |
| |
| const size_t diagonalPtsCount = sizeof(diagonalPts) / sizeof(diagonalPts[0]); |
| |
| for (int index = 0; index < (int) (7 * diagonalPtsCount); ++index) { |
| int f = (int) (index % diagonalPtsCount); |
| int g = (int) ((f + 1) % diagonalPtsCount); |
| path.reset(); |
| int curveSelect = index % 11; |
| switch (curveSelect) { |
| case 0: path.moveTo(diagonalPts[f]); break; |
| case 1: path.lineTo(diagonalPts[f]); break; |
| case 2: path.quadTo(diagonalPts[f], diagonalPts[f]); break; |
| case 3: path.quadTo(axisAlignedPts[f], diagonalPts[g]); break; |
| case 4: path.quadTo(diagonalPts[g], axisAlignedPts[f]); break; |
| case 5: path.cubicTo(diagonalPts[f], diagonalPts[f], diagonalPts[f]); break; |
| case 6: path.cubicTo(diagonalPts[f], diagonalPts[f], axisAlignedPts[g]); break; |
| case 7: path.cubicTo(diagonalPts[f], axisAlignedPts[g], diagonalPts[f]); break; |
| case 8: path.cubicTo(axisAlignedPts[f], diagonalPts[g], diagonalPts[g]); break; |
| case 9: path.cubicTo(diagonalPts[g], diagonalPts[f], axisAlignedPts[f]); break; |
| case 10: path.cubicTo(diagonalPts[g], axisAlignedPts[f], diagonalPts[g]); break; |
| } |
| if (curveSelect == 0) { |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| } else { |
| SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. |
| SkPath::Convexity c = copy.getConvexity(); |
| REPORTER_ASSERT(reporter, SkPath::kUnknown_Convexity == c |
| || SkPath::kConcave_Convexity == c); |
| } |
| } |
| |
| |
| path.reset(); |
| path.moveTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f |
| path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eea38)); // -0.284072f, -0.0622351f |
| path.lineTo(SkBits2Float(0xbe9171a0), SkBits2Float(0xbd7ee5a7)); // -0.28407f, -0.0622307f |
| path.lineTo(SkBits2Float(0xbe917147), SkBits2Float(0xbd7ed886)); // -0.284067f, -0.0622182f |
| path.lineTo(SkBits2Float(0xbe917378), SkBits2Float(0xbd7ee1a9)); // -0.284084f, -0.0622269f |
| path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f |
| path.close(); |
| check_convexity(reporter, path, SkPath::kConcave_Convexity); |
| |
| } |
| |
| static void test_isLine(skiatest::Reporter* reporter) { |
| SkPath path; |
| SkPoint pts[2]; |
| const SkScalar value = SkIntToScalar(5); |
| |
| REPORTER_ASSERT(reporter, !path.isLine(nullptr)); |
| |
| // set some non-zero values |
| pts[0].set(value, value); |
| pts[1].set(value, value); |
| REPORTER_ASSERT(reporter, !path.isLine(pts)); |
| // check that pts was untouched |
| REPORTER_ASSERT(reporter, pts[0].equals(value, value)); |
| REPORTER_ASSERT(reporter, pts[1].equals(value, value)); |
| |
| const SkScalar moveX = SkIntToScalar(1); |
| const SkScalar moveY = SkIntToScalar(2); |
| REPORTER_ASSERT(reporter, value != moveX && value != moveY); |
| |
| path.moveTo(moveX, moveY); |
| REPORTER_ASSERT(reporter, !path.isLine(nullptr)); |
| REPORTER_ASSERT(reporter, !path.isLine(pts)); |
| // check that pts was untouched |
| REPORTER_ASSERT(reporter, pts[0].equals(value, value)); |
| REPORTER_ASSERT(reporter, pts[1].equals(value, value)); |
| |
| const SkScalar lineX = SkIntToScalar(2); |
| const SkScalar lineY = SkIntToScalar(2); |
| REPORTER_ASSERT(reporter, value != lineX && value != lineY); |
| |
| path.lineTo(lineX, lineY); |
| REPORTER_ASSERT(reporter, path.isLine(nullptr)); |
| |
| REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY)); |
| REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY)); |
| REPORTER_ASSERT(reporter, path.isLine(pts)); |
| REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); |
| REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); |
| |
| path.lineTo(0, 0); // too many points/verbs |
| REPORTER_ASSERT(reporter, !path.isLine(nullptr)); |
| REPORTER_ASSERT(reporter, !path.isLine(pts)); |
| REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); |
| REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); |
| |
| path.reset(); |
| path.quadTo(1, 1, 2, 2); |
| REPORTER_ASSERT(reporter, !path.isLine(nullptr)); |
| } |
| |
| static void test_conservativelyContains(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| // kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect. |
| static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); |
| |
| // A circle that bounds kBaseRect (with a significant amount of slop) |
| SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height()); |
| circleR *= 1.75f / 2; |
| static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()}; |
| |
| // round-rect radii |
| static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)}; |
| |
| static const struct SUPPRESS_VISIBILITY_WARNING { |
| SkRect fQueryRect; |
| bool fInRect; |
| bool fInCircle; |
| bool fInRR; |
| bool fInCubicRR; |
| } kQueries[] = { |
| {kBaseRect, true, true, false, false}, |
| |
| // rect well inside of kBaseRect |
| {SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(), |
| kBaseRect.fTop + 0.25f*kBaseRect.height(), |
| kBaseRect.fRight - 0.25f*kBaseRect.width(), |
| kBaseRect.fBottom - 0.25f*kBaseRect.height()), |
| true, true, true, true}, |
| |
| // rects with edges off by one from kBaseRect's edges |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, |
| kBaseRect.width(), kBaseRect.height() + 1), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, |
| kBaseRect.width() + 1, kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, |
| kBaseRect.width() + 1, kBaseRect.height() + 1), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, |
| kBaseRect.width(), kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, |
| kBaseRect.width(), kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, |
| kBaseRect.width() + 2, kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, |
| kBaseRect.width() + 2, kBaseRect.height()), |
| false, true, false, false}, |
| |
| // zero-w/h rects at each corner of kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true}, |
| {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true}, |
| |
| // far away rect |
| {SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom, |
| SkIntToScalar(10), SkIntToScalar(10)), |
| false, false, false, false}, |
| |
| // very large rect containing kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(), |
| kBaseRect.fTop - 5 * kBaseRect.height(), |
| 11 * kBaseRect.width(), 11 * kBaseRect.height()), |
| false, false, false, false}, |
| |
| // skinny rect that spans same y-range as kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, |
| SkIntToScalar(1), kBaseRect.height()), |
| true, true, true, true}, |
| |
| // short rect that spans same x-range as kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)), |
| true, true, true, true}, |
| |
| // skinny rect that spans slightly larger y-range than kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, |
| SkIntToScalar(1), kBaseRect.height() + 1), |
| false, true, false, false}, |
| |
| // short rect that spans slightly larger x-range than kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), |
| kBaseRect.width() + 1, SkScalar(1)), |
| false, true, false, false}, |
| }; |
| |
| for (int inv = 0; inv < 4; ++inv) { |
| for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) { |
| SkRect qRect = kQueries[q].fQueryRect; |
| if (inv & 0x1) { |
| using std::swap; |
| swap(qRect.fLeft, qRect.fRight); |
| } |
| if (inv & 0x2) { |
| using std::swap; |
| swap(qRect.fTop, qRect.fBottom); |
| } |
| for (int d = 0; d < 2; ++d) { |
| SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction; |
| path.reset(); |
| path.addRect(kBaseRect, dir); |
| REPORTER_ASSERT(reporter, kQueries[q].fInRect == |
| path.conservativelyContainsRect(qRect)); |
| |
| path.reset(); |
| path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir); |
| REPORTER_ASSERT(reporter, kQueries[q].fInCircle == |
| path.conservativelyContainsRect(qRect)); |
| |
| path.reset(); |
| path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir); |
| REPORTER_ASSERT(reporter, kQueries[q].fInRR == |
| path.conservativelyContainsRect(qRect)); |
| |
| path.reset(); |
| path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop); |
| path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop, |
| kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2, |
| kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]); |
| path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom); |
| path.lineTo(kBaseRect.fRight, kBaseRect.fBottom); |
| path.lineTo(kBaseRect.fRight, kBaseRect.fTop); |
| path.close(); |
| REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR == |
| path.conservativelyContainsRect(qRect)); |
| |
| } |
| // Slightly non-convex shape, shouldn't contain any rects. |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(50), 0.05f); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(SkIntToScalar(100), SkIntToScalar(100)); |
| path.lineTo(0, SkIntToScalar(100)); |
| path.close(); |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect)); |
| } |
| } |
| |
| // make sure a minimal convex shape works, a right tri with edges along pos x and y axes. |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(0, SkIntToScalar(100)); |
| |
| // inside, on along top edge |
| REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| // above |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( |
| SkRect::MakeXYWH(SkIntToScalar(50), |
| SkIntToScalar(-10), |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| // to the left |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10), |
| SkIntToScalar(5), |
| SkIntToScalar(5), |
| SkIntToScalar(5)))); |
| |
| // outside the diagonal edge |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10), |
| SkIntToScalar(200), |
| SkIntToScalar(20), |
| SkIntToScalar(5)))); |
| |
| |
| // Test that multiple move commands do not cause asserts. |
| path.moveTo(SkIntToScalar(100), SkIntToScalar(100)); |
| REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| |
| // Same as above path and first test but with an extra moveTo. |
| path.reset(); |
| path.moveTo(100, 100); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(0, SkIntToScalar(100)); |
| // Convexity logic is now more conservative, so that multiple (non-trailing) moveTos make a |
| // path non-convex. |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( |
| SkRect::MakeXYWH(SkIntToScalar(50), 0, |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| |
| // Same as above path and first test but with the extra moveTo making a degenerate sub-path |
| // following the non-empty sub-path. Verifies that this does not trigger assertions. |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(0, SkIntToScalar(100)); |
| path.moveTo(100, 100); |
| |
| REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| |
| // Test that multiple move commands do not cause asserts and that the function |
| // is not confused by the multiple moves. |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(0, SkIntToScalar(100)); |
| path.moveTo(0, SkIntToScalar(200)); |
| path.lineTo(SkIntToScalar(100), SkIntToScalar(200)); |
| path.lineTo(0, SkIntToScalar(300)); |
| |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( |
| SkRect::MakeXYWH(SkIntToScalar(50), 0, |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| |
| path.reset(); |
| path.lineTo(100, 100); |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1))); |
| |
| // An empty path should not contain any rectangle. It's questionable whether an empty path |
| // contains an empty rectangle. However, since it is a conservative test it is ok to |
| // return false. |
| path.reset(); |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(1,1))); |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(0,0))); |
| } |
| |
| static void test_isRect_open_close(skiatest::Reporter* reporter) { |
| SkPath path; |
| bool isClosed; |
| |
| path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1); |
| path.close(); |
| |
| REPORTER_ASSERT(reporter, path.isRect(nullptr, &isClosed, nullptr)); |
| REPORTER_ASSERT(reporter, isClosed); |
| } |
| |
| // Simple isRect test is inline TestPath, below. |
| // test_isRect provides more extensive testing. |
| static void test_isRect(skiatest::Reporter* reporter) { |
| test_isRect_open_close(reporter); |
| |
| // passing tests (all moveTo / lineTo... |
| SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; |
| SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; |
| SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; |
| SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; |
| SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; |
| SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; |
| SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; |
| SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; |
| SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; |
| SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; |
| SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; |
| SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}}; |
| |
| // failing tests |
| SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points |
| SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal |
| SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps |
| SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up |
| SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots |
| SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots |
| SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots |
| SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' |
| SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps |
| SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap |
| SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short |
| |
| // no close, but we should detect them as fillably the same as a rect |
| SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; |
| SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; |
| SkPoint c3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 0}}; // hit the start |
| |
| // like c2, but we double-back on ourselves |
| SkPoint d1[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 2}}; |
| // like c2, but we overshoot the start point |
| SkPoint d2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}}; |
| SkPoint d3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}, {0, 0}}; |
| |
| struct IsRectTest { |
| SkPoint *fPoints; |
| int fPointCount; |
| bool fClose; |
| bool fIsRect; |
| } tests[] = { |
| { r1, SK_ARRAY_COUNT(r1), true, true }, |
| { r2, SK_ARRAY_COUNT(r2), true, true }, |
| { r3, SK_ARRAY_COUNT(r3), true, true }, |
| { r4, SK_ARRAY_COUNT(r4), true, true }, |
| { r5, SK_ARRAY_COUNT(r5), true, true }, |
| { r6, SK_ARRAY_COUNT(r6), true, true }, |
| { r7, SK_ARRAY_COUNT(r7), true, true }, |
| { r8, SK_ARRAY_COUNT(r8), true, true }, |
| { r9, SK_ARRAY_COUNT(r9), true, true }, |
| { ra, SK_ARRAY_COUNT(ra), true, true }, |
| { rb, SK_ARRAY_COUNT(rb), true, true }, |
| { rc, SK_ARRAY_COUNT(rc), true, true }, |
| { rd, SK_ARRAY_COUNT(rd), true, true }, |
| { re, SK_ARRAY_COUNT(re), true, true }, |
| { rf, SK_ARRAY_COUNT(rf), true, true }, |
| |
| { f1, SK_ARRAY_COUNT(f1), true, false }, |
| { f2, SK_ARRAY_COUNT(f2), true, false }, |
| { f3, SK_ARRAY_COUNT(f3), true, false }, |
| { f4, SK_ARRAY_COUNT(f4), true, false }, |
| { f5, SK_ARRAY_COUNT(f5), true, false }, |
| { f6, SK_ARRAY_COUNT(f6), true, false }, |
| { f7, SK_ARRAY_COUNT(f7), true, false }, |
| { f8, SK_ARRAY_COUNT(f8), true, false }, |
| { f9, SK_ARRAY_COUNT(f9), true, false }, |
| { fa, SK_ARRAY_COUNT(fa), true, false }, |
| { fb, SK_ARRAY_COUNT(fb), true, false }, |
| |
| { c1, SK_ARRAY_COUNT(c1), false, true }, |
| { c2, SK_ARRAY_COUNT(c2), false, true }, |
| { c3, SK_ARRAY_COUNT(c3), false, true }, |
| |
| { d1, SK_ARRAY_COUNT(d1), false, false }, |
| { d2, SK_ARRAY_COUNT(d2), false, true }, |
| { d3, SK_ARRAY_COUNT(d3), false, false }, |
| }; |
| |
| const size_t testCount = SK_ARRAY_COUNT(tests); |
| int index; |
| for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { |
| SkPath path; |
| path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); |
| for (index = 1; index < tests[testIndex].fPointCount; ++index) { |
| path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); |
| } |
| if (tests[testIndex].fClose) { |
| path.close(); |
| } |
| REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(nullptr)); |
| |
| if (tests[testIndex].fIsRect) { |
| SkRect computed, expected; |
| bool isClosed; |
| SkPath::Direction direction; |
| SkPathPriv::FirstDirection cheapDirection; |
| int pointCount = tests[testIndex].fPointCount - (d2 == tests[testIndex].fPoints); |
| expected.setBounds(tests[testIndex].fPoints, pointCount); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapComputeFirstDirection(path, &cheapDirection)); |
| REPORTER_ASSERT(reporter, path.isRect(&computed, &isClosed, &direction)); |
| REPORTER_ASSERT(reporter, expected == computed); |
| REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose); |
| REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(direction) == cheapDirection); |
| } else { |
| SkRect computed; |
| computed.setLTRB(123, 456, 789, 1011); |
| for (auto c : {true, false}) |
| for (auto d : {SkPath::kCW_Direction, SkPath::kCCW_Direction}) { |
| bool isClosed = c; |
| SkPath::Direction direction = d; |
| REPORTER_ASSERT(reporter, !path.isRect(&computed, &isClosed, &direction)); |
| REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456); |
| REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011); |
| REPORTER_ASSERT(reporter, isClosed == c); |
| REPORTER_ASSERT(reporter, direction == d); |
| } |
| } |
| } |
| |
| // fail, close then line |
| SkPath path1; |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| path1.lineTo(1, 0); |
| REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); |
| |
| // fail, move in the middle |
| path1.reset(); |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| if (index == 2) { |
| path1.moveTo(1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); |
| |
| // fail, move on the edge |
| path1.reset(); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); |
| |
| // fail, quad |
| path1.reset(); |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| if (index == 2) { |
| path1.quadTo(1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); |
| |
| // fail, cubic |
| path1.reset(); |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| if (index == 2) { |
| path1.cubicTo(1, .5f, 1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); |
| } |
| |
| static void check_simple_closed_rect(skiatest::Reporter* reporter, const SkPath& path, |
| const SkRect& rect, SkPath::Direction dir, unsigned start) { |
| SkRect r = SkRect::MakeEmpty(); |
| SkPath::Direction d = SkPath::kCCW_Direction; |
| unsigned s = ~0U; |
| |
| REPORTER_ASSERT(reporter, SkPathPriv::IsSimpleClosedRect(path, &r, &d, &s)); |
| REPORTER_ASSERT(reporter, r == rect); |
| REPORTER_ASSERT(reporter, d == dir); |
| REPORTER_ASSERT(reporter, s == start); |
| } |
| |
| static void test_is_simple_closed_rect(skiatest::Reporter* reporter) { |
| using std::swap; |
| SkRect r = SkRect::MakeEmpty(); |
| SkPath::Direction d = SkPath::kCCW_Direction; |
| unsigned s = ~0U; |
| |
| const SkRect testRect = SkRect::MakeXYWH(10, 10, 50, 70); |
| const SkRect emptyRect = SkRect::MakeEmpty(); |
| SkPath path; |
| for (int start = 0; start < 4; ++start) { |
| for (auto dir : {SkPath::kCCW_Direction, SkPath::kCW_Direction}) { |
| SkPath path; |
| path.addRect(testRect, dir, start); |
| check_simple_closed_rect(reporter, path, testRect, dir, start); |
| path.close(); |
| check_simple_closed_rect(reporter, path, testRect, dir, start); |
| SkPath path2 = path; |
| path2.lineTo(10, 10); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); |
| path2 = path; |
| path2.moveTo(10, 10); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); |
| path2 = path; |
| path2.addRect(testRect, dir, start); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); |
| // Make the path by hand, manually closing it. |
| path2.reset(); |
| SkPath::RawIter iter(path); |
| SkPath::Verb v; |
| SkPoint verbPts[4]; |
| SkPoint firstPt = {0.f, 0.f}; |
| while ((v = iter.next(verbPts)) != SkPath::kDone_Verb) { |
| switch(v) { |
| case SkPath::kMove_Verb: |
| firstPt = verbPts[0]; |
| path2.moveTo(verbPts[0]); |
| break; |
| case SkPath::kLine_Verb: |
| path2.lineTo(verbPts[1]); |
| break; |
| default: |
| break; |
| } |
| } |
| // We haven't closed it yet... |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); |
| // ... now we do and test again. |
| path2.lineTo(firstPt); |
| check_simple_closed_rect(reporter, path2, testRect, dir, start); |
| // A redundant close shouldn't cause a failure. |
| path2.close(); |
| check_simple_closed_rect(reporter, path2, testRect, dir, start); |
| // Degenerate point and line rects are not allowed |
| path2.reset(); |
| path2.addRect(emptyRect, dir, start); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); |
| SkRect degenRect = testRect; |
| degenRect.fLeft = degenRect.fRight; |
| path2.reset(); |
| path2.addRect(degenRect, dir, start); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); |
| degenRect = testRect; |
| degenRect.fTop = degenRect.fBottom; |
| path2.reset(); |
| path2.addRect(degenRect, dir, start); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); |
| // An inverted rect makes a rect path, but changes the winding dir and start point. |
| SkPath::Direction swapDir = (dir == SkPath::kCW_Direction) |
| ? SkPath::kCCW_Direction |
| : SkPath::kCW_Direction; |
| static constexpr unsigned kXSwapStarts[] = { 1, 0, 3, 2 }; |
| static constexpr unsigned kYSwapStarts[] = { 3, 2, 1, 0 }; |
| SkRect swapRect = testRect; |
| swap(swapRect.fLeft, swapRect.fRight); |
| path2.reset(); |
| path2.addRect(swapRect, dir, start); |
| check_simple_closed_rect(reporter, path2, testRect, swapDir, kXSwapStarts[start]); |
| swapRect = testRect; |
| swap(swapRect.fTop, swapRect.fBottom); |
| path2.reset(); |
| path2.addRect(swapRect, dir, start); |
| check_simple_closed_rect(reporter, path2, testRect, swapDir, kYSwapStarts[start]); |
| } |
| } |
| // down, up, left, close |
| path.reset(); |
| path.moveTo(1, 1); |
| path.lineTo(1, 2); |
| path.lineTo(1, 1); |
| path.lineTo(0, 1); |
| SkRect rect; |
| SkPath::Direction dir; |
| unsigned start; |
| path.close(); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); |
| // right, left, up, close |
| path.reset(); |
| path.moveTo(1, 1); |
| path.lineTo(2, 1); |
| path.lineTo(1, 1); |
| path.lineTo(1, 0); |
| path.close(); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); |
| // parallelogram with horizontal edges |
| path.reset(); |
| path.moveTo(1, 0); |
| path.lineTo(3, 0); |
| path.lineTo(2, 1); |
| path.lineTo(0, 1); |
| path.close(); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); |
| // parallelogram with vertical edges |
| path.reset(); |
| path.moveTo(0, 1); |
| path.lineTo(0, 3); |
| path.lineTo(1, 2); |
| path.lineTo(1, 0); |
| path.close(); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); |
| |
| } |
| |
| static void test_isNestedFillRects(skiatest::Reporter* reporter) { |
| // passing tests (all moveTo / lineTo... |
| SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW |
| SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; |
| SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; |
| SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; |
| SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW |
| SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; |
| SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; |
| SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW |
| SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW |
| SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW |
| SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW |
| SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW |
| |
| // failing tests |
| SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points |
| SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal |
| SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps |
| SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up |
| SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots |
| SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots |
| SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots |
| SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' |
| |
| // success, no close is OK |
| SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match |
| SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto |
| |
| struct IsNestedRectTest { |
| SkPoint *fPoints; |
| int fPointCount; |
| SkPathPriv::FirstDirection fDirection; |
| bool fClose; |
| bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2); |
| } tests[] = { |
| { r1, SK_ARRAY_COUNT(r1), SkPathPriv::kCW_FirstDirection , true, true }, |
| { r2, SK_ARRAY_COUNT(r2), SkPathPriv::kCW_FirstDirection , true, true }, |
| { r3, SK_ARRAY_COUNT(r3), SkPathPriv::kCW_FirstDirection , true, true }, |
| { r4, SK_ARRAY_COUNT(r4), SkPathPriv::kCW_FirstDirection , true, true }, |
| { r5, SK_ARRAY_COUNT(r5), SkPathPriv::kCCW_FirstDirection, true, true }, |
| { r6, SK_ARRAY_COUNT(r6), SkPathPriv::kCCW_FirstDirection, true, true }, |
| { r7, SK_ARRAY_COUNT(r7), SkPathPriv::kCCW_FirstDirection, true, true }, |
| { r8, SK_ARRAY_COUNT(r8), SkPathPriv::kCCW_FirstDirection, true, true }, |
| { r9, SK_ARRAY_COUNT(r9), SkPathPriv::kCCW_FirstDirection, true, true }, |
| { ra, SK_ARRAY_COUNT(ra), SkPathPriv::kCCW_FirstDirection, true, true }, |
| { rb, SK_ARRAY_COUNT(rb), SkPathPriv::kCW_FirstDirection, true, true }, |
| { rc, SK_ARRAY_COUNT(rc), SkPathPriv::kCW_FirstDirection, true, true }, |
| { rd, SK_ARRAY_COUNT(rd), SkPathPriv::kCCW_FirstDirection, true, true }, |
| { re, SK_ARRAY_COUNT(re), SkPathPriv::kCW_FirstDirection, true, true }, |
| |
| { f1, SK_ARRAY_COUNT(f1), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| { f2, SK_ARRAY_COUNT(f2), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| { f3, SK_ARRAY_COUNT(f3), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| { f4, SK_ARRAY_COUNT(f4), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| { f5, SK_ARRAY_COUNT(f5), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| { f6, SK_ARRAY_COUNT(f6), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| { f7, SK_ARRAY_COUNT(f7), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| { f8, SK_ARRAY_COUNT(f8), SkPathPriv::kUnknown_FirstDirection, true, false }, |
| |
| { c1, SK_ARRAY_COUNT(c1), SkPathPriv::kCW_FirstDirection, false, true }, |
| { c2, SK_ARRAY_COUNT(c2), SkPathPriv::kCW_FirstDirection, false, true }, |
| }; |
| |
| const size_t testCount = SK_ARRAY_COUNT(tests); |
| int index; |
| for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) { |
| for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { |
| SkPath path; |
| if (rectFirst) { |
| path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); |
| for (index = 1; index < tests[testIndex].fPointCount; ++index) { |
| path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); |
| } |
| if (tests[testIndex].fClose) { |
| path.close(); |
| } |
| if (!rectFirst) { |
| path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, |
| tests[testIndex].fIsNestedRect == SkPathPriv::IsNestedFillRects(path, nullptr)); |
| if (tests[testIndex].fIsNestedRect) { |
| SkRect expected[2], computed[2]; |
| SkPathPriv::FirstDirection expectedDirs[2]; |
| SkPath::Direction computedDirs[2]; |
| SkRect testBounds; |
| testBounds.setBounds(tests[testIndex].fPoints, tests[testIndex].fPointCount); |
| expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2); |
| expected[1] = testBounds; |
| if (rectFirst) { |
| expectedDirs[0] = SkPathPriv::kCW_FirstDirection; |
| } else { |
| expectedDirs[0] = SkPathPriv::kCCW_FirstDirection; |
| } |
| expectedDirs[1] = tests[testIndex].fDirection; |
| REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, computed, computedDirs)); |
| REPORTER_ASSERT(reporter, expected[0] == computed[0]); |
| REPORTER_ASSERT(reporter, expected[1] == computed[1]); |
| REPORTER_ASSERT(reporter, expectedDirs[0] == SkPathPriv::AsFirstDirection(computedDirs[0])); |
| REPORTER_ASSERT(reporter, expectedDirs[1] == SkPathPriv::AsFirstDirection(computedDirs[1])); |
| } |
| } |
| |
| // fail, close then line |
| SkPath path1; |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| path1.lineTo(1, 0); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); |
| |
| // fail, move in the middle |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| if (index == 2) { |
| path1.moveTo(1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); |
| |
| // fail, move on the edge |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); |
| |
| // fail, quad |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| if (index == 2) { |
| path1.quadTo(1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); |
| |
| // fail, cubic |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { |
| if (index == 2) { |
| path1.cubicTo(1, .5f, 1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); |
| |
| // fail, not nested |
| path1.reset(); |
| path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction); |
| path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction); |
| REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr)); |
| } |
| |
| // pass, constructed explicitly from manually closed rects specified as moves/lines. |
| SkPath path; |
| path.moveTo(0, 0); |
| path.lineTo(10, 0); |
| path.lineTo(10, 10); |
| path.lineTo(0, 10); |
| path.lineTo(0, 0); |
| path.moveTo(1, 1); |
| path.lineTo(9, 1); |
| path.lineTo(9, 9); |
| path.lineTo(1, 9); |
| path.lineTo(1, 1); |
| REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, nullptr)); |
| |
| // pass, stroke rect |
| SkPath src, dst; |
| src.addRect(1, 1, 7, 7, SkPath::kCW_Direction); |
| SkPaint strokePaint; |
| strokePaint.setStyle(SkPaint::kStroke_Style); |
| strokePaint.setStrokeWidth(2); |
| strokePaint.getFillPath(src, &dst); |
| REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(dst, nullptr)); |
| } |
| |
| static void write_and_read_back(skiatest::Reporter* reporter, |
| const SkPath& p) { |
| SkWriter32 writer; |
| writer.writePath(p); |
| size_t size = writer.bytesWritten(); |
| SkAutoMalloc storage(size); |
| writer.flatten(storage.get()); |
| SkReader32 reader(storage.get(), size); |
| |
| SkPath readBack; |
| REPORTER_ASSERT(reporter, readBack != p); |
| reader.readPath(&readBack); |
| REPORTER_ASSERT(reporter, readBack == p); |
| |
| REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() == |
| p.getConvexityOrUnknown()); |
| |
| SkRect oval0, oval1; |
| SkPath::Direction dir0, dir1; |
| unsigned start0, start1; |
| REPORTER_ASSERT(reporter, readBack.isOval(nullptr) == p.isOval(nullptr)); |
| if (SkPathPriv::IsOval(p, &oval0, &dir0, &start0) && |
| SkPathPriv::IsOval(readBack, &oval1, &dir1, &start1)) { |
| REPORTER_ASSERT(reporter, oval0 == oval1); |
| REPORTER_ASSERT(reporter, dir0 == dir1); |
| REPORTER_ASSERT(reporter, start0 == start1); |
| } |
| REPORTER_ASSERT(reporter, readBack.isRRect(nullptr) == p.isRRect(nullptr)); |
| SkRRect rrect0, rrect1; |
| if (SkPathPriv::IsRRect(p, &rrect0, &dir0, &start0) && |
| SkPathPriv::IsRRect(readBack, &rrect1, &dir1, &start1)) { |
| REPORTER_ASSERT(reporter, rrect0 == rrect1); |
| REPORTER_ASSERT(reporter, dir0 == dir1); |
| REPORTER_ASSERT(reporter, start0 == start1); |
| } |
| const SkRect& origBounds = p.getBounds(); |
| const SkRect& readBackBounds = readBack.getBounds(); |
| |
| REPORTER_ASSERT(reporter, origBounds == readBackBounds); |
| } |
| |
| static void test_flattening(skiatest::Reporter* reporter) { |
| SkPath p; |
| |
| static const SkPoint pts[] = { |
| { 0, 0 }, |
| { SkIntToScalar(10), SkIntToScalar(10) }, |
| { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, |
| { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } |
| }; |
| p.moveTo(pts[0]); |
| p.lineTo(pts[1]); |
| p.quadTo(pts[2], pts[3]); |
| p.cubicTo(pts[4], pts[5], pts[6]); |
| |
| write_and_read_back(reporter, p); |
| |
| // create a buffer that should be much larger than the path so we don't |
| // kill our stack if writer goes too far. |
| char buffer[1024]; |
| size_t size1 = p.writeToMemory(nullptr); |
| size_t size2 = p.writeToMemory(buffer); |
| REPORTER_ASSERT(reporter, size1 == size2); |
| |
| SkPath p2; |
| size_t size3 = p2.readFromMemory(buffer, 1024); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, p == p2); |
| |
| size3 = p2.readFromMemory(buffer, 0); |
| REPORTER_ASSERT(reporter, !size3); |
| |
| SkPath tooShort; |
| size3 = tooShort.readFromMemory(buffer, size1 - 1); |
| REPORTER_ASSERT(reporter, tooShort.isEmpty()); |
| |
| char buffer2[1024]; |
| size3 = p2.writeToMemory(buffer2); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); |
| |
| // test persistence of the oval flag & convexity |
| { |
| SkPath oval; |
| SkRect rect = SkRect::MakeWH(10, 10); |
| oval.addOval(rect); |
| |
| write_and_read_back(reporter, oval); |
| } |
| } |
| |
| static void test_transform(skiatest::Reporter* reporter) { |
| SkPath p; |
| |
| #define CONIC_PERSPECTIVE_BUG_FIXED 0 |
| static const SkPoint pts[] = { |
| { 0, 0 }, // move |
| { SkIntToScalar(10), SkIntToScalar(10) }, // line |
| { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, // quad |
| { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }, // cubic |
| #if CONIC_PERSPECTIVE_BUG_FIXED |
| { 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) }, // conic |
| #endif |
| }; |
| const int kPtCount = SK_ARRAY_COUNT(pts); |
| |
| p.moveTo(pts[0]); |
| p.lineTo(pts[1]); |
| p.quadTo(pts[2], pts[3]); |
| p.cubicTo(pts[4], pts[5], pts[6]); |
| #if CONIC_PERSPECTIVE_BUG_FIXED |
| p.conicTo(pts[4], pts[5], 0.5f); |
| #endif |
| p.close(); |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| SkPath p1; |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, p == p1); |
| } |
| |
| |
| { |
| SkMatrix matrix; |
| matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); |
| |
| SkPath p1; // Leave p1 non-unique (i.e., the empty path) |
| |
| p.transform(matrix, &p1); |
| SkPoint pts1[kPtCount]; |
| int count = p1.getPoints(pts1, kPtCount); |
| REPORTER_ASSERT(reporter, kPtCount == count); |
| for (int i = 0; i < count; ++i) { |
| SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); |
| REPORTER_ASSERT(reporter, newPt == pts1[i]); |
| } |
| } |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| matrix.setPerspX(4); |
| |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, matrix.invert(&matrix)); |
| p1.transform(matrix, nullptr); |
| SkRect pBounds = p.getBounds(); |
| SkRect p1Bounds = p1.getBounds(); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom)); |
| } |
| |
| p.reset(); |
| p.addCircle(0, 0, 1, SkPath::kCW_Direction); |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCW_FirstDirection)); |
| } |
| |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| matrix.setScaleX(-1); |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCCW_FirstDirection)); |
| } |
| |
| { |
| SkMatrix matrix; |
| matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1); |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kUnknown_FirstDirection)); |
| } |
| |
| { |
| SkPath p1; |
| p1.addRect({ 10, 20, 30, 40 }); |
| SkPath p2; |
| p2.addRect({ 10, 20, 30, 40 }); |
| uint32_t id1 = p1.getGenerationID(); |
| uint32_t id2 = p2.getGenerationID(); |
| REPORTER_ASSERT(reporter, id1 != id2); |
| SkMatrix matrix; |
| matrix.setScale(2, 2); |
| p1.transform(matrix, &p2); |
| REPORTER_ASSERT(reporter, id1 == p1.getGenerationID()); |
| REPORTER_ASSERT(reporter, id2 != p2.getGenerationID()); |
| p1.transform(matrix); |
| REPORTER_ASSERT(reporter, id1 != p1.getGenerationID()); |
| } |
| } |
| |
| static void test_zero_length_paths(skiatest::Reporter* reporter) { |
| SkPath p; |
| uint8_t verbs[32]; |
| |
| struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData { |
| const char* testPath; |
| const size_t numResultPts; |
| const SkRect resultBound; |
| const SkPath::Verb* resultVerbs; |
| const size_t numResultVerbs; |
| }; |
| |
| static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb }; |
| static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb }; |
| static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb }; |
| static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; |
| static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs8[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb |
| }; |
| static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb }; |
| static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb }; |
| static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs12[] = { |
| SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb |
| }; |
| static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb }; |
| static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb }; |
| static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs16[] = { |
| SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb |
| }; |
| static const struct zeroPathTestData gZeroLengthTests[] = { |
| { "M 1 1", 1, {1, 1, 1, 1}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, |
| { "M 1 1 z", 1, {1, 1, 1, 1}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, |
| { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, |
| { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }, |
| { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) }, |
| { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) }, |
| { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) }, |
| { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) }, |
| { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) }, |
| { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) }, |
| { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) }, |
| { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) }, |
| { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14, |
| SK_ARRAY_COUNT(resultVerbs14) |
| }, |
| { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) }, |
| { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16, |
| SK_ARRAY_COUNT(resultVerbs16) |
| } |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) { |
| p.reset(); |
| bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p); |
| REPORTER_ASSERT(reporter, valid); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints()); |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds()); |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs))); |
| for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) { |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]); |
| } |
| } |
| } |
| |
| struct SegmentInfo { |
| SkPath fPath; |
| int fPointCount; |
| }; |
| |
| #define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) |
| |
| static void test_segment_masks(skiatest::Reporter* reporter) { |
| SkPath p, p2; |
| |
| p.moveTo(0, 0); |
| p.quadTo(100, 100, 200, 200); |
| REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| p2 = p; |
| REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); |
| p.cubicTo(100, 100, 200, 200, 300, 300); |
| REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| p2 = p; |
| REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); |
| |
| p.reset(); |
| p.moveTo(0, 0); |
| p.cubicTo(100, 100, 200, 200, 300, 300); |
| REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); |
| p2 = p; |
| REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); |
| |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| } |
| |
| static void test_iter(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkPoint pts[4]; |
| |
| // Test an iterator with no path |
| SkPath::Iter noPathIter; |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that setting an empty path works |
| noPathIter.setPath(p, false); |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that close path makes no difference for an empty path |
| noPathIter.setPath(p, true); |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test an iterator with an initial empty path |
| SkPath::Iter iter(p, false); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that close path makes no difference |
| iter.setPath(p, true); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| |
| struct iterTestData { |
| const char* testPath; |
| const bool forceClose; |
| const size_t* numResultPtsPerVerb; |
| const SkPoint* resultPts; |
| const SkPath::Verb* resultVerbs; |
| const size_t numResultVerbs; |
| }; |
| |
| static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb }; |
| static const SkPath::Verb resultVerbs2[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb |
| }; |
| static const SkPath::Verb resultVerbs3[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb |
| }; |
| static const size_t resultPtsSizes1[] = { 0 }; |
| static const size_t resultPtsSizes2[] = { 1, 2, 1, 1, 0 }; |
| static const size_t resultPtsSizes3[] = { 1, 2, 1, 1, 1, 0 }; |
| static const SkPoint* resultPts1 = nullptr; |
| static const SkPoint resultPts2[] = { |
| { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } |
| }; |
| static const SkPoint resultPts3[] = { |
| { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } |
| }; |
| static const struct iterTestData gIterTests[] = { |
| { "M 1 0", false, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "z", false, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "z", true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 0 L 1 0 M 0 0 z", false, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, |
| { "M 1 0 L 1 0 M 0 0 z", true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) } |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) { |
| p.reset(); |
| bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p); |
| REPORTER_ASSERT(reporter, valid); |
| iter.setPath(p, gIterTests[i].forceClose); |
| int j = 0, l = 0; |
| do { |
| REPORTER_ASSERT(reporter, iter.next(pts) == gIterTests[i].resultVerbs[j]); |
| for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) { |
| REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]); |
| } |
| } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb); |
| REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs); |
| } |
| |
| p.reset(); |
| iter.setPath(p, false); |
| REPORTER_ASSERT(reporter, !iter.isClosedContour()); |
| p.lineTo(1, 1); |
| p.close(); |
| iter.setPath(p, false); |
| REPORTER_ASSERT(reporter, iter.isClosedContour()); |
| p.reset(); |
| iter.setPath(p, true); |
| REPORTER_ASSERT(reporter, !iter.isClosedContour()); |
| p.lineTo(1, 1); |
| iter.setPath(p, true); |
| REPORTER_ASSERT(reporter, iter.isClosedContour()); |
| p.moveTo(0, 0); |
| p.lineTo(2, 2); |
| iter.setPath(p, false); |
| REPORTER_ASSERT(reporter, !iter.isClosedContour()); |
| |
| // this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not |
| // check to see if the result is correct. |
| for (int setNaN = 0; setNaN < 4; ++setNaN) { |
| p.reset(); |
| p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0); |
| p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1); |
| iter.setPath(p, true); |
| iter.next(pts); |
| iter.next(pts); |
| REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts)); |
| } |
| |
| p.reset(); |
| p.quadTo(0, 0, 0, 0); |
| iter.setPath(p, false); |
| iter.next(pts); |
| REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts)); |
| |
| p.reset(); |
| p.conicTo(0, 0, 0, 0, 0.5f); |
| iter.setPath(p, false); |
| iter.next(pts); |
| REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts)); |
| |
| p.reset(); |
| p.cubicTo(0, 0, 0, 0, 0, 0); |
| iter.setPath(p, false); |
| iter.next(pts); |
| REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts)); |
| |
| p.moveTo(1, 1); // add a trailing moveto |
| iter.setPath(p, false); |
| iter.next(pts); |
| REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts)); |
| |
| // The GM degeneratesegments.cpp test is more extensive |
| |
| // Test out mixed degenerate and non-degenerate geometry with Conics |
| const SkVector radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 100, 100 } }; |
| SkRect r = SkRect::MakeWH(100, 100); |
| SkRRect rr; |
| rr.setRectRadii(r, radii); |
| p.reset(); |
| p.addRRect(rr); |
| iter.setPath(p, false); |
| REPORTER_ASSERT(reporter, SkPath::kMove_Verb == iter.next(pts)); |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts)); |
| return; |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts)); |
| REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts)); |
| REPORTER_ASSERT(reporter, SK_ScalarRoot2Over2 == iter.conicWeight()); |
| } |
| |
| static void test_raw_iter(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkPoint pts[4]; |
| |
| // Test an iterator with no path |
| SkPath::RawIter noPathIter; |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| // Test that setting an empty path works |
| noPathIter.setPath(p); |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test an iterator with an initial empty path |
| SkPath::RawIter iter(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that a move-only path returns the move. |
| p.moveTo(SK_Scalar1, 0); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, pts[0].fY == 0); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // No matter how many moves we add, we should get them all back |
| p.moveTo(SK_Scalar1*2, SK_Scalar1); |
| p.moveTo(SK_Scalar1*3, SK_Scalar1*2); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, pts[0].fY == 0); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Initial close is never ever stored |
| p.reset(); |
| p.close(); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Move/close sequences |
| p.reset(); |
| p.close(); // Not stored, no purpose |
| p.moveTo(SK_Scalar1, 0); |
| p.close(); |
| p.close(); // Not stored, no purpose |
| p.moveTo(SK_Scalar1*2, SK_Scalar1); |
| p.close(); |
| p.moveTo(SK_Scalar1*3, SK_Scalar1*2); |
| p.moveTo(SK_Scalar1*4, SK_Scalar1*3); |
| p.close(); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, pts[0].fY == 0); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Generate random paths and verify |
| SkPoint randomPts[25]; |
| for (int i = 0; i < 5; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j); |
| } |
| } |
| |
| // Max of 10 segments, max 3 points per segment |
| SkRandom rand(9876543); |
| SkPoint expectedPts[31]; // May have leading moveTo |
| SkPath::Verb expectedVerbs[22]; // May have leading moveTo |
| SkPath::Verb nextVerb; |
| |
| for (int i = 0; i < 500; ++i) { |
| p.reset(); |
| bool lastWasClose = true; |
| bool haveMoveTo = false; |
| SkPoint lastMoveToPt = { 0, 0 }; |
| int numPoints = 0; |
| int numVerbs = (rand.nextU() >> 16) % 10; |
| int numIterVerbs = 0; |
| for (int j = 0; j < numVerbs; ++j) { |
| do { |
| nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb); |
| } while (lastWasClose && nextVerb == SkPath::kClose_Verb); |
| switch (nextVerb) { |
| case SkPath::kMove_Verb: |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.moveTo(expectedPts[numPoints]); |
| lastMoveToPt = expectedPts[numPoints]; |
| numPoints += 1; |
| lastWasClose = false; |
| haveMoveTo = true; |
| break; |
| case SkPath::kLine_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.lineTo(expectedPts[numPoints]); |
| numPoints += 1; |
| lastWasClose = false; |
| break; |
| case SkPath::kQuad_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]); |
| numPoints += 2; |
| lastWasClose = false; |
| break; |
| case SkPath::kConic_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1], |
| rand.nextUScalar1() * 4); |
| numPoints += 2; |
| lastWasClose = false; |
| break; |
| case SkPath::kCubic_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1], |
| expectedPts[numPoints + 2]); |
| numPoints += 3; |
| lastWasClose = false; |
| break; |
| case SkPath::kClose_Verb: |
| p.close(); |
| haveMoveTo = false; |
| lastWasClose = true; |
| break; |
| default: |
| SkDEBUGFAIL("unexpected verb"); |
| } |
| expectedVerbs[numIterVerbs++] = nextVerb; |
| } |
| |
| iter.setPath(p); |
| numVerbs = numIterVerbs; |
| numIterVerbs = 0; |
| int numIterPts = 0; |
| SkPoint lastMoveTo; |
| SkPoint lastPt; |
| lastMoveTo.set(0, 0); |
| lastPt.set(0, 0); |
| while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) { |
| REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]); |
| numIterVerbs++; |
| switch (nextVerb) { |
| case SkPath::kMove_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints); |
| REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]); |
| lastPt = lastMoveTo = pts[0]; |
| numIterPts += 1; |
| break; |
| case SkPath::kLine_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints + 1); |
| REPORTER_ASSERT(reporter, pts[0] == lastPt); |
| REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); |
| lastPt = pts[1]; |
| numIterPts += 1; |
| break; |
| case SkPath::kQuad_Verb: |
| case SkPath::kConic_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints + 2); |
| REPORTER_ASSERT(reporter, pts[0] == lastPt); |
| REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); |
| REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); |
| lastPt = pts[2]; |
| numIterPts += 2; |
| break; |
| case SkPath::kCubic_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints + 3); |
| REPORTER_ASSERT(reporter, pts[0] == lastPt); |
| REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); |
| REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); |
| REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]); |
| lastPt = pts[3]; |
| numIterPts += 3; |
| break; |
| case SkPath::kClose_Verb: |
| lastPt = lastMoveTo; |
| break; |
| default: |
| SkDEBUGFAIL("unexpected verb"); |
| } |
| } |
| REPORTER_ASSERT(reporter, numIterPts == numPoints); |
| REPORTER_ASSERT(reporter, numIterVerbs == numVerbs); |
| } |
| } |
| |
| static void check_for_circle(skiatest::Reporter* reporter, |
| const SkPath& path, |
| bool expectedCircle, |
| SkPathPriv::FirstDirection expectedDir) { |
| SkRect rect = SkRect::MakeEmpty(); |
| REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle); |
| SkPath::Direction isOvalDir; |
| unsigned isOvalStart; |
| if (SkPathPriv::IsOval(path, &rect, &isOvalDir, &isOvalStart)) { |
| REPORTER_ASSERT(reporter, rect.height() == rect.width()); |
| REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(isOvalDir) == expectedDir); |
| SkPath tmpPath; |
| tmpPath.addOval(rect, isOvalDir, isOvalStart); |
| REPORTER_ASSERT(reporter, path == tmpPath); |
| } |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, expectedDir)); |
| } |
| |
| static void test_circle_skew(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPathPriv::FirstDirection dir) { |
| SkPath tmp; |
| |
| SkMatrix m; |
| m.setSkew(SkIntToScalar(3), SkIntToScalar(5)); |
| path.transform(m, &tmp); |
| // this matrix reverses the direction. |
| if (SkPathPriv::kCCW_FirstDirection == dir) { |
| dir = SkPathPriv::kCW_FirstDirection; |
| } else { |
| REPORTER_ASSERT(reporter, SkPathPriv::kCW_FirstDirection == dir); |
| dir = SkPathPriv::kCCW_FirstDirection; |
| } |
| check_for_circle(reporter, tmp, false, dir); |
| } |
| |
| static void test_circle_translate(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPathPriv::FirstDirection dir) { |
| SkPath tmp; |
| |
| // translate at small offset |
| SkMatrix m; |
| m.setTranslate(SkIntToScalar(15), SkIntToScalar(15)); |
| path.transform(m, &tmp); |
| check_for_circle(reporter, tmp, true, dir); |
| |
| tmp.reset(); |
| m.reset(); |
| |
| // translate at a relatively big offset |
| m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000)); |
| path.transform(m, &tmp); |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_rotate(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPathPriv::FirstDirection dir) { |
| for (int angle = 0; angle < 360; ++angle) { |
| SkPath tmp; |
| SkMatrix m; |
| m.setRotate(SkIntToScalar(angle)); |
| path.transform(m, &tmp); |
| |
| // TODO: a rotated circle whose rotated angle is not a multiple of 90 |
| // degrees is not an oval anymore, this can be improved. we made this |
| // for the simplicity of our implementation. |
| if (angle % 90 == 0) { |
| check_for_circle(reporter, tmp, true, dir); |
| } else { |
| check_for_circle(reporter, tmp, false, dir); |
| } |
| } |
| } |
| |
| static void test_circle_mirror_x(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPathPriv::FirstDirection dir) { |
| SkPath tmp; |
| SkMatrix m; |
| m.reset(); |
| m.setScaleX(-SK_Scalar1); |
| path.transform(m, &tmp); |
| if (SkPathPriv::kCW_FirstDirection == dir) { |
| dir = SkPathPriv::kCCW_FirstDirection; |
| } else { |
| REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir); |
| dir = SkPathPriv::kCW_FirstDirection; |
| } |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_mirror_y(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPathPriv::FirstDirection dir) { |
| SkPath tmp; |
| SkMatrix m; |
| m.reset(); |
| m.setScaleY(-SK_Scalar1); |
| path.transform(m, &tmp); |
| |
| if (SkPathPriv::kCW_FirstDirection == dir) { |
| dir = SkPathPriv::kCCW_FirstDirection; |
| } else { |
| REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir); |
| dir = SkPathPriv::kCW_FirstDirection; |
| } |
| |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_mirror_xy(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPathPriv::FirstDirection dir) { |
| SkPath tmp; |
| SkMatrix m; |
| m.reset(); |
| m.setScaleX(-SK_Scalar1); |
| m.setScaleY(-SK_Scalar1); |
| path.transform(m, &tmp); |
| |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_with_direction(skiatest::Reporter* reporter, |
| SkPath::Direction inDir) { |
| const SkPathPriv::FirstDirection dir = SkPathPriv::AsFirstDirection(inDir); |
| SkPath path; |
| |
| // circle at origin |
| path.addCircle(0, 0, SkIntToScalar(20), inDir); |
| |
| check_for_circle(reporter, path, true, dir); |
| test_circle_rotate(reporter, path, dir); |
| test_circle_translate(reporter, path, dir); |
| test_circle_skew(reporter, path, dir); |
| test_circle_mirror_x(reporter, path, dir); |
| test_circle_mirror_y(reporter, path, dir); |
| test_circle_mirror_xy(reporter, path, dir); |
| |
| // circle at an offset at (10, 10) |
| path.reset(); |
| path.addCircle(SkIntToScalar(10), SkIntToScalar(10), |
| SkIntToScalar(20), inDir); |
| |
| check_for_circle(reporter, path, true, dir); |
| test_circle_rotate(reporter, path, dir); |
| test_circle_translate(reporter, path, dir); |
| test_circle_skew(reporter, path, dir); |
| test_circle_mirror_x(reporter, path, dir); |
| test_circle_mirror_y(reporter, path, dir); |
| test_circle_mirror_xy(reporter, path, dir); |
| |
| // Try different starting points for the contour. |
| for (unsigned start = 0; start < 4; ++start) { |
| path.reset(); |
| path.addOval(SkRect::MakeXYWH(20, 10, 5, 5), inDir, start); |
| test_circle_rotate(reporter, path, dir); |
| test_circle_translate(reporter, path, dir); |
| test_circle_skew(reporter, path, dir); |
| test_circle_mirror_x(reporter, path, dir); |
| test_circle_mirror_y(reporter, path, dir); |
| test_circle_mirror_xy(reporter, path, dir); |
| } |
| } |
| |
| static void test_circle_with_add_paths(skiatest::Reporter* reporter) { |
| SkPath path; |
| SkPath circle; |
| SkPath rect; |
| SkPath empty; |
| |
| const SkPath::Direction kCircleDir = SkPath::kCW_Direction; |
| const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction; |
| |
| circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir); |
| rect.addRect(SkIntToScalar(5), SkIntToScalar(5), |
| SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction); |
| |
| SkMatrix translate; |
| translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12)); |
| |
| // Although all the path concatenation related operations leave |
| // the path a circle, most mark it as a non-circle for simplicity |
| |
| // empty + circle (translate) |
| path = empty; |
| path.addPath(circle, translate); |
| check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDir)); |
| |
| // circle + empty (translate) |
| path = circle; |
| path.addPath(empty, translate); |
| |
| check_for_circle(reporter, path, true, SkPathPriv::AsFirstDirection(kCircleDir)); |
| |
| // test reverseAddPath |
| path = circle; |
| path.reverseAddPath(rect); |
| check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDirOpposite)); |
| } |
| |
| static void test_circle(skiatest::Reporter* reporter) { |
| test_circle_with_direction(reporter, SkPath::kCW_Direction); |
| test_circle_with_direction(reporter, SkPath::kCCW_Direction); |
| |
| // multiple addCircle() |
| SkPath path; |
| path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); |
| path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction); |
| check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); |
| |
| // some extra lineTo() would make isOval() fail |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); |
| path.lineTo(0, 0); |
| check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); |
| |
| // not back to the original point |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); |
| path.setLastPt(SkIntToScalar(5), SkIntToScalar(5)); |
| check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); |
| |
| test_circle_with_add_paths(reporter); |
| |
| // test negative radius |
| path.reset(); |
| path.addCircle(0, 0, -1, SkPath::kCW_Direction); |
| REPORTER_ASSERT(reporter, path.isEmpty()); |
| } |
| |
| static void test_oval(skiatest::Reporter* reporter) { |
| SkRect rect; |
| SkMatrix m; |
| SkPath path; |
| unsigned start = 0; |
| SkPath::Direction dir = SkPath::kCCW_Direction; |
| |
| rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50)); |
| path.addOval(rect); |
| |
| // Defaults to dir = CW and start = 1 |
| REPORTER_ASSERT(reporter, path.isOval(nullptr)); |
| |
| m.setRotate(SkIntToScalar(90)); |
| SkPath tmp; |
| path.transform(m, &tmp); |
| // an oval rotated 90 degrees is still an oval. The start index changes from 1 to 2. Direction |
| // is unchanged. |
| REPORTER_ASSERT(reporter, SkPathPriv::IsOval(tmp, nullptr, &dir, &start)); |
| REPORTER_ASSERT(reporter, 2 == start); |
| REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); |
| |
| m.reset(); |
| m.setRotate(SkIntToScalar(30)); |
| tmp.reset(); |
| path.transform(m, &tmp); |
| // an oval rotated 30 degrees is not an oval anymore. |
| REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); |
| |
| // since empty path being transformed. |
| path.reset(); |
| tmp.reset(); |
| m.reset(); |
| path.transform(m, &tmp); |
| REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); |
| |
| // empty path is not an oval |
| tmp.reset(); |
| REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); |
| |
| // only has moveTo()s |
| tmp.reset(); |
| tmp.moveTo(0, 0); |
| tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10)); |
| REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); |
| |
| // mimic WebKit's calling convention, |
| // call moveTo() first and then call addOval() |
| path.reset(); |
| path.moveTo(0, 0); |
| path.addOval(rect); |
| REPORTER_ASSERT(reporter, path.isOval(nullptr)); |
| |
| // copy path |
| path.reset(); |
| tmp.reset(); |
| tmp.addOval(rect); |
| path = tmp; |
| REPORTER_ASSERT(reporter, SkPathPriv::IsOval(path, nullptr, &dir, &start)); |
| REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); |
| REPORTER_ASSERT(reporter, 1 == start); |
| } |
| |
| static void test_empty(skiatest::Reporter* reporter, const SkPath& p) { |
| SkPath empty; |
| |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| REPORTER_ASSERT(reporter, 0 == p.countPoints()); |
| REPORTER_ASSERT(reporter, 0 == p.countVerbs()); |
| REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); |
| REPORTER_ASSERT(reporter, !p.isInverseFillType()); |
| REPORTER_ASSERT(reporter, p == empty); |
| REPORTER_ASSERT(reporter, !(p != empty)); |
| } |
| |
| static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path, |
| SkPath::Direction dir) { |
| REPORTER_ASSERT(reporter, path->isConvex()); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir))); |
| path->setConvexity(SkPath::kUnknown_Convexity); |
| REPORTER_ASSERT(reporter, path->isConvex()); |
| path->reset(); |
| } |
| |
| static void test_rrect_convexity_is_unknown(skiatest::Reporter* reporter, SkPath* path, |
| SkPath::Direction dir) { |
| REPORTER_ASSERT(reporter, path->isConvex()); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir))); |
| path->setConvexity(SkPath::kUnknown_Convexity); |
| REPORTER_ASSERT(reporter, path->getConvexity() == SkPath::kConcave_Convexity); |
| path->reset(); |
| } |
| |
| static void test_rrect(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkRRect rr; |
| SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}; |
| SkRect r = {10, 20, 30, 40}; |
| rr.setRectRadii(r, radii); |
| p.addRRect(rr); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRRect(rr, SkPath::kCCW_Direction); |
| test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); |
| p.addRoundRect(r, &radii[0].fX); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRoundRect(r, &radii[0].fX, SkPath::kCCW_Direction); |
| test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); |
| p.addRoundRect(r, radii[1].fX, radii[1].fY); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPath::kCCW_Direction); |
| test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) { |
| SkVector save = radii[i]; |
| radii[i].set(0, 0); |
| rr.setRectRadii(r, radii); |
| p.addRRect(rr); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| radii[i] = save; |
| } |
| p.addRoundRect(r, 0, 0); |
| SkRect returnedRect; |
| REPORTER_ASSERT(reporter, p.isRect(&returnedRect)); |
| REPORTER_ASSERT(reporter, returnedRect == r); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; |
| rr.setRectRadii(r, zeroRadii); |
| p.addRRect(rr); |
| bool closed; |
| SkPath::Direction dir; |
| REPORTER_ASSERT(reporter, p.isRect(nullptr, &closed, &dir)); |
| REPORTER_ASSERT(reporter, closed); |
| REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRRect(rr, SkPath::kCW_Direction); |
| p.addRRect(rr, SkPath::kCW_Direction); |
| REPORTER_ASSERT(reporter, !p.isConvex()); |
| p.reset(); |
| p.addRRect(rr, SkPath::kCCW_Direction); |
| p.addRRect(rr, SkPath::kCCW_Direction); |
| REPORTER_ASSERT(reporter, !p.isConvex()); |
| p.reset(); |
| SkRect emptyR = {10, 20, 10, 30}; |
| rr.setRectRadii(emptyR, radii); |
| p.addRRect(rr); |
| // The round rect is "empty" in that it has no fill area. However, |
| // the path isn't "empty" in that it should have verbs and points. |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| p.reset(); |
| SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax}; |
| rr.setRectRadii(largeR, radii); |
| p.addRRect(rr); |
| test_rrect_convexity_is_unknown(reporter, &p, SkPath::kCW_Direction); |
| |
| // we check for non-finites |
| SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity}; |
| rr.setRectRadii(infR, radii); |
| REPORTER_ASSERT(reporter, rr.isEmpty()); |
| |
| // We consider any path with very small (numerically unstable) edges to be concave. |
| SkRect tinyR = {0, 0, 1e-9f, 1e-9f}; |
| p.addRoundRect(tinyR, 5e-11f, 5e-11f); |
| test_rrect_convexity_is_unknown(reporter, &p, SkPath::kCW_Direction); |
| } |
| |
| static void test_arc(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkRect emptyOval = {10, 20, 30, 20}; |
| REPORTER_ASSERT(reporter, emptyOval.isEmpty()); |
| p.addArc(emptyOval, 1, 2); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| p.reset(); |
| SkRect oval = {10, 20, 30, 40}; |
| p.addArc(oval, 1, 0); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| p.reset(); |
| SkPath cwOval; |
| cwOval.addOval(oval); |
| p.addArc(oval, 0, 360); |
| REPORTER_ASSERT(reporter, p == cwOval); |
| p.reset(); |
| SkPath ccwOval; |
| ccwOval.addOval(oval, SkPath::kCCW_Direction); |
| p.addArc(oval, 0, -360); |
| REPORTER_ASSERT(reporter, p == ccwOval); |
| p.reset(); |
| p.addArc(oval, 1, 180); |
| // diagonal colinear points make arc convex |
| // TODO: one way to keep it concave would be to introduce interpolated on curve points |
| // between control points and computing the on curve point at scan conversion time |
| REPORTER_ASSERT(reporter, p.getConvexity() == SkPath::kConvex_Convexity); |
| REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p, SkPathPriv::kCW_FirstDirection)); |
| p.setConvexity(SkPath::kUnknown_Convexity); |
| REPORTER_ASSERT(reporter, p.getConvexity() == SkPath::kConvex_Convexity); |
| } |
| |
| static inline SkScalar oval_start_index_to_angle(unsigned start) { |
| switch (start) { |
| case 0: |
| return 270.f; |
| case 1: |
| return 0.f; |
| case 2: |
| return 90.f; |
| case 3: |
| return 180.f; |
| default: |
| return -1.f; |
| } |
| } |
| |
| static inline SkScalar canonical_start_angle(float angle) { |
| while (angle < 0.f) { |
| angle += 360.f; |
| } |
| while (angle >= 360.f) { |
| angle -= 360.f; |
| } |
| return angle; |
| } |
| |
| static void check_oval_arc(skiatest::Reporter* reporter, SkScalar start, SkScalar sweep, |
| const SkPath& path) { |
| SkRect r = SkRect::MakeEmpty(); |
| SkPath::Direction d = SkPath::kCCW_Direction; |
| unsigned s = ~0U; |
| bool isOval = SkPathPriv::IsOval(path, &r, &d, &s); |
| REPORTER_ASSERT(reporter, isOval); |
| SkPath recreatedPath; |
| recreatedPath.addOval(r, d, s); |
| REPORTER_ASSERT(reporter, path == recreatedPath); |
| REPORTER_ASSERT(reporter, oval_start_index_to_angle(s) == canonical_start_angle(start)); |
| REPORTER_ASSERT(reporter, (SkPath::kCW_Direction == d) == (sweep > 0.f)); |
| } |
| |
| static void test_arc_ovals(skiatest::Reporter* reporter) { |
| SkRect oval = SkRect::MakeWH(10, 20); |
| for (SkScalar sweep : {-720.f, -540.f, -360.f, 360.f, 432.f, 720.f}) { |
| for (SkScalar start = -360.f; start <= 360.f; start += 1.f) { |
| SkPath path; |
| path.addArc(oval, start, sweep); |
| // SkPath's interfaces for inserting and extracting ovals only allow contours |
| // to start at multiples of 90 degrees. |
| if (std::fmod(start, 90.f) == 0) { |
| check_oval_arc(reporter, start, sweep, path); |
| } else { |
| REPORTER_ASSERT(reporter, !path.isOval(nullptr)); |
| } |
| } |
| // Test start angles that are nearly at valid oval start angles. |
| for (float start : {-180.f, -90.f, 90.f, 180.f}) { |
| for (float delta : {-SK_ScalarNearlyZero, SK_ScalarNearlyZero}) { |
| SkPath path; |
| path.addArc(oval, start + delta, sweep); |
| check_oval_arc(reporter, start, sweep, path); |
| } |
| } |
| } |
| } |
| |
| static void check_move(skiatest::Reporter* reporter, SkPath::RawIter* iter, |
| SkScalar x0, SkScalar y0) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == x0); |
| REPORTER_ASSERT(reporter, pts[0].fY == y0); |
| } |
| |
| static void check_line(skiatest::Reporter* reporter, SkPath::RawIter* iter, |
| SkScalar x1, SkScalar y1) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kLine_Verb); |
| REPORTER_ASSERT(reporter, pts[1].fX == x1); |
| REPORTER_ASSERT(reporter, pts[1].fY == y1); |
| } |
| |
| static void check_quad(skiatest::Reporter* reporter, SkPath::RawIter* iter, |
| SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kQuad_Verb); |
| REPORTER_ASSERT(reporter, pts[1].fX == x1); |
| REPORTER_ASSERT(reporter, pts[1].fY == y1); |
| REPORTER_ASSERT(reporter, pts[2].fX == x2); |
| REPORTER_ASSERT(reporter, pts[2].fY == y2); |
| } |
| |
| static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kDone_Verb); |
| } |
| |
| static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { |
| check_done(reporter, p, iter); |
| p->reset(); |
| } |
| |
| static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x0, SkScalar y0) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, x0, y0); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_line(reporter, &iter, x1, y1); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_line(reporter, &iter, x1, y1); |
| check_done(reporter, p, &iter); |
| } |
| |
| static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_line(reporter, &iter, x1, y1); |
| check_line(reporter, &iter, x2, y2); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_quad(reporter, &iter, x1, y1, x2, y2); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static bool nearly_equal(const SkRect& a, const SkRect& b) { |
| return SkScalarNearlyEqual(a.fLeft, b.fLeft) && |
| SkScalarNearlyEqual(a.fTop, b.fTop) && |
| SkScalarNearlyEqual(a.fRight, b.fRight) && |
| SkScalarNearlyEqual(a.fBottom, b.fBottom); |
| } |
| |
| static void test_arcTo(skiatest::Reporter* reporter) { |
| SkPath p; |
| p.arcTo(0, 0, 1, 2, 1); |
| check_path_is_line_and_reset(reporter, &p, 0, 0); |
| p.arcTo(1, 2, 1, 2, 1); |
| check_path_is_line_and_reset(reporter, &p, 1, 2); |
| p.arcTo(1, 2, 3, 4, 0); |
| check_path_is_line_and_reset(reporter, &p, 1, 2); |
| p.arcTo(1, 2, 0, 0, 1); |
| check_path_is_line_and_reset(reporter, &p, 1, 2); |
| p.arcTo(1, 0, 1, 1, 1); |
| SkPoint pt; |
| REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1); |
| p.reset(); |
| p.arcTo(1, 0, 1, -1, 1); |
| REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1); |
| p.reset(); |
| SkRect oval = {1, 2, 3, 4}; |
| p.arcTo(oval, 0, 0, true); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| p.arcTo(oval, 0, 0, false); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| p.arcTo(oval, 360, 0, true); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| p.arcTo(oval, 360, 0, false); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| |
| for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) { |
| p.arcTo(oval, 0, sweep, false); |
| REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval)); |
| sweep += delta; |
| delta /= 2; |
| } |
| for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) { |
| p.arcTo(oval, 0, sweep, false); |
| REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval)); |
| sweep -= delta; |
| delta /= 2; |
| } |
| SkRect noOvalWidth = {1, 2, 0, 3}; |
| p.reset(); |
| p.arcTo(noOvalWidth, 0, 360, false); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| |
| SkRect noOvalHeight = {1, 2, 3, 1}; |
| p.reset(); |
| p.arcTo(noOvalHeight, 0, 360, false); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| } |
| |
| static void test_addPath(skiatest::Reporter* reporter) { |
| SkPath p, q; |
| p.lineTo(1, 2); |
| q.moveTo(4, 4); |
| q.lineTo(7, 8); |
| q.conicTo(8, 7, 6, 5, 0.5f); |
| q.quadTo(6, 7, 8, 6); |
| q.cubicTo(5, 6, 7, 8, 7, 5); |
| q.close(); |
| p.addPath(q, -4, -4); |
| SkRect expected = {0, 0, 4, 4}; |
| REPORTER_ASSERT(reporter, p.getBounds() == expected); |
| p.reset(); |
| p.reverseAddPath(q); |
| SkRect reverseExpected = {4, 4, 8, 8}; |
| REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); |
| } |
| |
| static void test_addPathMode(skiatest::Reporter* reporter, bool explicitMoveTo, bool extend) { |
| SkPath p, q; |
| if (explicitMoveTo) { |
| p.moveTo(1, 1); |
| } |
| p.lineTo(1, 2); |
| if (explicitMoveTo) { |
| q.moveTo(2, 1); |
| } |
| q.lineTo(2, 2); |
| p.addPath(q, extend ? SkPath::kExtend_AddPathMode : SkPath::kAppend_AddPathMode); |
| uint8_t verbs[4]; |
| int verbcount = p.getVerbs(verbs, 4); |
| REPORTER_ASSERT(reporter, verbcount == 4); |
| REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); |
| REPORTER_ASSERT(reporter, verbs[2] == (extend ? SkPath::kLine_Verb : SkPath::kMove_Verb)); |
| REPORTER_ASSERT(reporter, verbs[3] == SkPath::kLine_Verb); |
| } |
| |
| static void test_extendClosedPath(skiatest::Reporter* reporter) { |
| SkPath p, q; |
| p.moveTo(1, 1); |
| p.lineTo(1, 2); |
| p.lineTo(2, 2); |
| p.close(); |
| q.moveTo(2, 1); |
| q.lineTo(2, 3); |
| p.addPath(q, SkPath::kExtend_AddPathMode); |
| uint8_t verbs[7]; |
| int verbcount = p.getVerbs(verbs, 7); |
| REPORTER_ASSERT(reporter, verbcount == 7); |
| REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); |
| REPORTER_ASSERT(reporter, verbs[2] == SkPath::kLine_Verb); |
| REPORTER_ASSERT(reporter, verbs[3] == SkPath::kClose_Verb); |
| REPORTER_ASSERT(reporter, verbs[4] == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, verbs[5] == SkPath::kLine_Verb); |
| REPORTER_ASSERT(reporter, verbs[6] == SkPath::kLine_Verb); |
| |
| SkPoint pt; |
| REPORTER_ASSERT(reporter, p.getLastPt(&pt)); |
| REPORTER_ASSERT(reporter, pt == SkPoint::Make(2, 3)); |
| REPORTER_ASSERT(reporter, p.getPoint(3) == SkPoint::Make(1, 1)); |
| } |
| |
| static void test_addEmptyPath(skiatest::Reporter* reporter, SkPath::AddPathMode mode) { |
| SkPath p, q, r; |
| // case 1: dst is empty |
| p.moveTo(2, 1); |
| p.lineTo(2, 3); |
| q.addPath(p, mode); |
| REPORTER_ASSERT(reporter, q == p); |
| // case 2: src is empty |
| p.addPath(r, mode); |
| REPORTER_ASSERT(reporter, q == p); |
| // case 3: src and dst are empty |
| q.reset(); |
| q.addPath(r, mode); |
| REPORTER_ASSERT(reporter, q.isEmpty()); |
| } |
| |
| static void test_conicTo_special_case(skiatest::Reporter* reporter) { |
| SkPath p; |
| p.conicTo(1, 2, 3, 4, -1); |
| check_path_is_line_and_reset(reporter, &p, 3, 4); |
| p.conicTo(1, 2, 3, 4, SK_ScalarInfinity); |
| check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4); |
| p.conicTo(1, 2, 3, 4, 1); |
| check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4); |
| } |
| |
| static void test_get_point(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkPoint pt = p.getPoint(0); |
| REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0)); |
| REPORTER_ASSERT(reporter, !p.getLastPt(nullptr)); |
| REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0)); |
| p.setLastPt(10, 10); |
| pt = p.getPoint(0); |
| REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10)); |
| REPORTER_ASSERT(reporter, p.getLastPt(nullptr)); |
| p.rMoveTo(10, 10); |
| REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20)); |
| } |
| |
| static void test_contains(skiatest::Reporter* reporter) { |
| SkPath p; |
| p.moveTo(SkBits2Float(0xe085e7b1), SkBits2Float(0x5f512c00)); // -7.7191e+19f, 1.50724e+19f |
| p.conicTo(SkBits2Float(0xdfdaa221), SkBits2Float(0x5eaac338), SkBits2Float(0x60342f13), SkBits2Float(0xdf0cbb58), SkBits2Float(0x3f3504f3)); // -3.15084e+19f, 6.15237e+18f, 5.19345e+19f, -1.01408e+19f, 0.707107f |
| p.conicTo(SkBits2Float(0x60ead799), SkBits2Float(0xdfb76c24), SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8), SkBits2Float(0x3f3504f4)); // 1.35377e+20f, -2.6434e+19f, 8.96947e+19f, -1.75139e+19f, 0.707107f |
| p.lineTo(SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8)); // 8.96947e+19f, -1.75139e+19f |
| p.conicTo(SkBits2Float(0x6018b296), SkBits2Float(0xdeee870d), SkBits2Float(0xe008cd8e), SkBits2Float(0x5ed5b2db), SkBits2Float(0x3f3504f3)); // 4.40121e+19f, -8.59386e+18f, -3.94308e+19f, 7.69931e+18f, 0.707107f |
| p.conicTo(SkBits2Float(0xe0d526d9), SkBits2Float(0x5fa67b31), SkBits2Float(0xe085e7b2), SkBits2Float(0x5f512c01), SkBits2Float(0x3f3504f3)); // -1.22874e+20f, 2.39925e+19f, -7.7191e+19f, 1.50724e+19f, 0.707107f |
| // this may return true or false, depending on the platform's numerics, but it should not crash |
| (void) p.contains(-77.2027664f, 15.3066053f); |
| |
| p.reset(); |
| p.setFillType(SkPath::kInverseWinding_FillType); |
| REPORTER_ASSERT(reporter, p.contains(0, 0)); |
| p.setFillType(SkPath::kWinding_FillType); |
| REPORTER_ASSERT(reporter, !p.contains(0, 0)); |
| p.moveTo(4, 4); |
| p.lineTo(6, 8); |
| p.lineTo(8, 4); |
| // test on edge |
| REPORTER_ASSERT(reporter, p.contains(6, 4)); |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, p.contains(7, 6)); |
| // test quick reject |
| REPORTER_ASSERT(reporter, !p.contains(4, 0)); |
| REPORTER_ASSERT(reporter, !p.contains(0, 4)); |
| REPORTER_ASSERT(reporter, !p.contains(4, 10)); |
| REPORTER_ASSERT(reporter, !p.contains(10, 4)); |
| // test various crossings in x |
| REPORTER_ASSERT(reporter, !p.contains(5, 7)); |
| REPORTER_ASSERT(reporter, p.contains(6, 7)); |
| REPORTER_ASSERT(reporter, !p.contains(7, 7)); |
| p.reset(); |
| p.moveTo(4, 4); |
| p.lineTo(8, 6); |
| p.lineTo(4, 8); |
| // test on edge |
| REPORTER_ASSERT(reporter, p.contains(4, 6)); |
| REPORTER_ASSERT(reporter, p.contains(6, 5)); |
| REPORTER_ASSERT(reporter, p.contains(6, 7)); |
| // test various crossings in y |
| REPORTER_ASSERT(reporter, !p.contains(7, 5)); |
| REPORTER_ASSERT(reporter, p.contains(7, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(7, 7)); |
| p.reset(); |
| p.moveTo(4, 4); |
| p.lineTo(8, 4); |
| p.lineTo(8, 8); |
| p.lineTo(4, 8); |
| // test on vertices |
| REPORTER_ASSERT(reporter, p.contains(4, 4)); |
| REPORTER_ASSERT(reporter, p.contains(8, 4)); |
| REPORTER_ASSERT(reporter, p.contains(8, 8)); |
| REPORTER_ASSERT(reporter, p.contains(4, 8)); |
| p.reset(); |
| p.moveTo(4, 4); |
| p.lineTo(6, 8); |
| p.lineTo(2, 8); |
| // test on edge |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, p.contains(4, 8)); |
| REPORTER_ASSERT(reporter, p.contains(3, 6)); |
| p.reset(); |
| p.moveTo(4, 4); |
| p.lineTo(0, 6); |
| p.lineTo(4, 8); |
| // test on edge |
| REPORTER_ASSERT(reporter, p.contains(2, 5)); |
| REPORTER_ASSERT(reporter, p.contains(2, 7)); |
| REPORTER_ASSERT(reporter, p.contains(4, 6)); |
| // test canceling coincident edge (a smaller triangle is coincident with a larger one) |
| p.reset(); |
| p.moveTo(4, 0); |
| p.lineTo(6, 4); |
| p.lineTo(2, 4); |
| p.moveTo(4, 0); |
| p.lineTo(0, 8); |
| p.lineTo(8, 8); |
| REPORTER_ASSERT(reporter, !p.contains(1, 2)); |
| REPORTER_ASSERT(reporter, !p.contains(3, 2)); |
| REPORTER_ASSERT(reporter, !p.contains(4, 0)); |
| REPORTER_ASSERT(reporter, p.contains(4, 4)); |
| |
| // test quads |
| p.reset(); |
| p.moveTo(4, 4); |
| p.quadTo(6, 6, 8, 8); |
| p.quadTo(6, 8, 4, 8); |
| p.quadTo(4, 6, 4, 4); |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(6, 5)); |
| // test quad edge |
| REPORTER_ASSERT(reporter, p.contains(5, 5)); |
| REPORTER_ASSERT(reporter, p.contains(5, 8)); |
| REPORTER_ASSERT(reporter, p.contains(4, 5)); |
| // test quad endpoints |
| REPORTER_ASSERT(reporter, p.contains(4, 4)); |
| REPORTER_ASSERT(reporter, p.contains(8, 8)); |
| REPORTER_ASSERT(reporter, p.contains(4, 8)); |
| |
| p.reset(); |
| const SkPoint qPts[] = {{6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}, {6, 6}}; |
| p.moveTo(qPts[0]); |
| for (int index = 1; index < (int) SK_ARRAY_COUNT(qPts); index += 2) { |
| p.quadTo(qPts[index], qPts[index + 1]); |
| } |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(6, 5)); |
| // test quad edge |
| SkPoint halfway; |
| for (int index = 0; index < (int) SK_ARRAY_COUNT(qPts) - 2; index += 2) { |
| SkEvalQuadAt(&qPts[index], 0.5f, &halfway, nullptr); |
| REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); |
| } |
| |
| // test conics |
| p.reset(); |
| const SkPoint kPts[] = {{4, 4}, {6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}}; |
| p.moveTo(kPts[0]); |
| for (int index = 1; index < (int) SK_ARRAY_COUNT(kPts); index += 2) { |
| p.conicTo(kPts[index], kPts[index + 1], 0.5f); |
| } |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(6, 5)); |
| // test conic edge |
| for (int index = 0; index < (int) SK_ARRAY_COUNT(kPts) - 2; index += 2) { |
| SkConic conic(&kPts[index], 0.5f); |
| halfway = conic.evalAt(0.5f); |
| REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); |
| } |
| // test conic end points |
| REPORTER_ASSERT(reporter, p.contains(4, 4)); |
| REPORTER_ASSERT(reporter, p.contains(8, 8)); |
| REPORTER_ASSERT(reporter, p.contains(4, 8)); |
| |
| // test cubics |
| SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}}; |
| for (int i = 0; i < 3; ++i) { |
| p.reset(); |
| p.setFillType(SkPath::kEvenOdd_FillType); |
| p.moveTo(pts[i].fX, pts[i].fY); |
| p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY); |
| p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY); |
| p.close(); |
| REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f)); |
| REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f)); |
| // test cubic edge |
| SkEvalCubicAt(&pts[i], 0.5f, &halfway, nullptr, nullptr); |
| REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); |
| SkEvalCubicAt(&pts[i + 3], 0.5f, &halfway, nullptr, nullptr); |
| REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); |
| // test cubic end points |
| REPORTER_ASSERT(reporter, p.contains(pts[i].fX, pts[i].fY)); |
| REPORTER_ASSERT(reporter, p.contains(pts[i + 3].fX, pts[i + 3].fY)); |
| REPORTER_ASSERT(reporter, p.contains(pts[i + 6].fX, pts[i + 6].fY)); |
| } |
| } |
| |
| class PathRefTest_Private { |
| public: |
| static size_t GetFreeSpace(const SkPathRef& ref) { |
| return (ref.fPoints.reserved() - ref.fPoints.count()) * sizeof(SkPoint) |
| + (ref.fVerbs.reserved() - ref.fVerbs.count()) * sizeof(uint8_t); |
| } |
| |
| static void TestPathRef(skiatest::Reporter* reporter) { |
| static const int kRepeatCnt = 10; |
| |
| sk_sp<SkPathRef> pathRef(new SkPathRef); |
| |
| SkPathRef::Editor ed(&pathRef); |
| |
| { |
| ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); |
| REPORTER_ASSERT(reporter, 0 == pathRef->getSegmentMasks()); |
| for (int i = 0; i < kRepeatCnt; ++i) { |
| REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef->atVerb(i)); |
| } |
| ed.resetToSize(0, 0, 0); |
| } |
| |
| { |
| ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); |
| REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef->getSegmentMasks()); |
| for (int i = 0; i < kRepeatCnt; ++i) { |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef->atVerb(i)); |
| } |
| ed.resetToSize(0, 0, 0); |
| } |
| |
| { |
| ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); |
| REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); |
| REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef->getSegmentMasks()); |
| for (int i = 0; i < kRepeatCnt; ++i) { |
| REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef->atVerb(i)); |
| } |
| ed.resetToSize(0, 0, 0); |
| } |
| |
| { |
| SkScalar* weights = nullptr; |
| ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); |
| REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countWeights()); |
| REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef->getSegmentMasks()); |
| REPORTER_ASSERT(reporter, weights); |
| for (int i = 0; i < kRepeatCnt; ++i) { |
| REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef->atVerb(i)); |
| } |
| ed.resetToSize(0, 0, 0); |
| } |
| |
| { |
| ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt); |
| REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); |
| REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef->countPoints()); |
| REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef->getSegmentMasks()); |
| for (int i = 0; i < kRepeatCnt; ++i) { |
| REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef->atVerb(i)); |
| } |
| ed.resetToSize(0, 0, 0); |
| } |
| } |
| }; |
| |
| static void test_operatorEqual(skiatest::Reporter* reporter) { |
| SkPath a; |
| SkPath b; |
| REPORTER_ASSERT(reporter, a == a); |
| REPORTER_ASSERT(reporter, a == b); |
| a.setFillType(SkPath::kInverseWinding_FillType); |
| REPORTER_ASSERT(reporter, a != b); |
| a.reset(); |
| REPORTER_ASSERT(reporter, a == b); |
| a.lineTo(1, 1); |
| REPORTER_ASSERT(reporter, a != b); |
| a.reset(); |
| REPORTER_ASSERT(reporter, a == b); |
| a.lineTo(1, 1); |
| b.lineTo(1, 2); |
| REPORTER_ASSERT(reporter, a != b); |
| a.reset(); |
| a.lineTo(1, 2); |
| REPORTER_ASSERT(reporter, a == b); |
| } |
| |
| static void compare_dump(skiatest::Reporter* reporter, const SkPath& path, bool force, |
| bool dumpAsHex, const char* str) { |
| SkDynamicMemoryWStream wStream; |
| path.dump(&wStream, force, dumpAsHex); |
| sk_sp<SkData> data = wStream.detachAsData(); |
| REPORTER_ASSERT(reporter, data->size() == strlen(str)); |
| if (strlen(str) > 0) { |
| REPORTER_ASSERT(reporter, !memcmp(data->data(), str, strlen(str))); |
| } else { |
| REPORTER_ASSERT(reporter, data->data() == nullptr || !memcmp(data->data(), str, strlen(str))); |
| } |
| } |
| |
| static void test_dump(skiatest::Reporter* reporter) { |
| SkPath p; |
| compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kWinding_FillType);\n"); |
| compare_dump(reporter, p, true, false, "path.setFillType(SkPath::kWinding_FillType);\n"); |
| p.moveTo(1, 2); |
| p.lineTo(3, 4); |
| compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kWinding_FillType);\n" |
| "path.moveTo(1, 2);\n" |
| "path.lineTo(3, 4);\n"); |
| compare_dump(reporter, p, true, false, "path.setFillType(SkPath::kWinding_FillType);\n" |
| "path.moveTo(1, 2);\n" |
| "path.lineTo(3, 4);\n" |
| "path.lineTo(1, 2);\n" |
| "path.close();\n"); |
| p.reset(); |
| p.setFillType(SkPath::kEvenOdd_FillType); |
| p.moveTo(1, 2); |
| p.quadTo(3, 4, 5, 6); |
| compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kEvenOdd_FillType);\n" |
| "path.moveTo(1, 2);\n" |
| "path.quadTo(3, 4, 5, 6);\n"); |
| p.reset(); |
| p.setFillType(SkPath::kInverseWinding_FillType); |
| p.moveTo(1, 2); |
| p.conicTo(3, 4, 5, 6, 0.5f); |
| compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kInverseWinding_FillType);\n" |
| "path.moveTo(1, 2);\n" |
| "path.conicTo(3, 4, 5, 6, 0.5f);\n"); |
| p.reset(); |
| p.setFillType(SkPath::kInverseEvenOdd_FillType); |
| p.moveTo(1, 2); |
| p.cubicTo(3, 4, 5, 6, 7, 8); |
| compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kInverseEvenOdd_FillType);\n" |
| "path.moveTo(1, 2);\n" |
| "path.cubicTo(3, 4, 5, 6, 7, 8);\n"); |
| p.reset(); |
| p.setFillType(SkPath::kWinding_FillType); |
| p.moveTo(1, 2); |
| p.lineTo(3, 4); |
| compare_dump(reporter, p, false, true, |
| "path.setFillType(SkPath::kWinding_FillType);\n" |
| "path.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); // 1, 2\n" |
| "path.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); // 3, 4\n"); |
| p.reset(); |
| p.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); |
| p.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); |
| compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kWinding_FillType);\n" |
| "path.moveTo(1, 2);\n" |
| "path.lineTo(3, 4);\n"); |
| } |
| |
| namespace { |
| |
| class ChangeListener : public SkPathRef::GenIDChangeListener { |
| public: |
| ChangeListener(bool *changed) : fChanged(changed) { *fChanged = false; } |
| ~ChangeListener() override {} |
| void onChange() override { |
| *fChanged = true; |
| } |
| private: |
| bool* fChanged; |
| }; |
| |
| } |
| |
| class PathTest_Private { |
| public: |
| static size_t GetFreeSpace(const SkPath& path) { |
| return PathRefTest_Private::GetFreeSpace(*path.fPathRef); |
| } |
| |
| static void TestPathTo(skiatest::Reporter* reporter) { |
| SkPath p, q; |
| p.lineTo(4, 4); |
| p.reversePathTo(q); |
| check_path_is_line(reporter, &p, 4, 4); |
| q.moveTo(-4, -4); |
| p.reversePathTo(q); |
| check_path_is_line(reporter, &p, 4, 4); |
| q.lineTo(7, 8); |
| q.conicTo(8, 7, 6, 5, 0.5f); |
| q.quadTo(6, 7, 8, 6); |
| q.cubicTo(5, 6, 7, 8, 7, 5); |
| q.close(); |
| p.reversePathTo(q); |
| SkRect reverseExpected = {-4, -4, 8, 8}; |
| REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); |
| } |
| |
| static void TestPathrefListeners(skiatest::Reporter* reporter) { |
| SkPath p; |
| |
| bool changed = false; |
| p.moveTo(0, 0); |
| |
| // Check that listener is notified on moveTo(). |
| |
| SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed)); |
| REPORTER_ASSERT(reporter, !changed); |
| p.moveTo(10, 0); |
| REPORTER_ASSERT(reporter, changed); |
| |
| // Check that listener is notified on lineTo(). |
| SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed)); |
| REPORTER_ASSERT(reporter, !changed); |
| p.lineTo(20, 0); |
| REPORTER_ASSERT(reporter, changed); |
| |
| // Check that listener is notified on reset(). |
| SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed)); |
| REPORTER_ASSERT(reporter, !changed); |
| p.reset(); |
| REPORTER_ASSERT(reporter, changed); |
| |
| p.moveTo(0, 0); |
| |
| // Check that listener is notified on rewind(). |
| SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed)); |
| REPORTER_ASSERT(reporter, !changed); |
| p.rewind(); |
| REPORTER_ASSERT(reporter, changed); |
| |
| // Check that listener is notified on transform(). |
| { |
| SkPath q; |
| q.moveTo(10, 10); |
| SkPathPriv::AddGenIDChangeListener(q, sk_make_sp<ChangeListener>(&changed)); |
| REPORTER_ASSERT(reporter, !changed); |
| SkMatrix matrix; |
| matrix.setScale(2, 2); |
| p.transform(matrix, &q); |
| REPORTER_ASSERT(reporter, changed); |
| } |
| |
| // Check that listener is notified when pathref is deleted. |
| { |
| SkPath q; |
| q.moveTo(10, 10); |
| SkPathPriv::AddGenIDChangeListener(q, sk_make_sp<ChangeListener>(&changed)); |
| REPORTER_ASSERT(reporter, !changed); |
| } |
| // q went out of scope. |
| REPORTER_ASSERT(reporter, changed); |
| } |
| }; |
| |
| static void test_crbug_629455(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.moveTo(0, 0); |
| path.cubicTo(SkBits2Float(0xcdcdcd00), SkBits2Float(0xcdcdcdcd), |
| SkBits2Float(0xcdcdcdcd), SkBits2Float(0xcdcdcdcd), |
| SkBits2Float(0x423fcdcd), SkBits2Float(0x40ed9341)); |
| // AKA: cubicTo(-4.31596e+08f, -4.31602e+08f, -4.31602e+08f, -4.31602e+08f, 47.951f, 7.42423f); |
| path.lineTo(0, 0); |
| test_draw_AA_path(100, 100, path); |
| } |
| |
| static void test_fuzz_crbug_662952(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.moveTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f |
| path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411c0000)); // 8.65f, 9.75f |
| path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411e6666)); // 8.65f, 9.9f |
| path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411e6666)); // 8.6f, 9.9f |
| path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f |
| path.close(); |
| |
| auto surface = SkSurface::MakeRasterN32Premul(100, 100); |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| surface->getCanvas()->clipPath(path, true); |
| surface->getCanvas()->drawRect(SkRect::MakeWH(100, 100), paint); |
| } |
| |
| static void test_path_crbugskia6003() { |
| auto surface(SkSurface::MakeRasterN32Premul(500, 500)); |
| SkCanvas* canvas = surface->getCanvas(); |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| SkPath path; |
| path.moveTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f |
| path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a2999a)); // 165.9f, 81.3f |
| path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a2999a)); // 165.7f, 81.3f |
| path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a16666)); // 165.7f, 80.7f |
| path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666)); // 165.7f, 79.7f |
| // 165.7f, 79.7f, 165.8f, 79.7f, 165.8f, 79.7f |
| path.cubicTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), |
| SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666)); |
| // 165.8f, 79.7f, 165.8f, 79.7f, 165.9f, 79.7f |
| path.cubicTo(SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), |
| SkBits2Float(0x429f6666), SkBits2Float(0x4325e666), SkBits2Float(0x429f6666)); |
| path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f |
| path.close(); |
| canvas->clipPath(path, true); |
| canvas->drawRect(SkRect::MakeWH(500, 500), paint); |
| } |
| |
| static void test_fuzz_crbug_662730(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 |
| path.lineTo(SkBits2Float(0xd5394437), SkBits2Float(0x37373737)); // -1.2731e+13f, 1.09205e-05f |
| path.lineTo(SkBits2Float(0x37373737), SkBits2Float(0x37373737)); // 1.09205e-05f, 1.09205e-05f |
| path.lineTo(SkBits2Float(0x37373745), SkBits2Float(0x0001b800)); // 1.09205e-05f, 1.57842e-40f |
| path.close(); |
| test_draw_AA_path(100, 100, path); |
| } |
| |
| static void test_skbug_6947() { |
| SkPath path; |
| SkPoint points[] = |
| {{125.126022f, -0.499872506f}, {125.288895f, -0.499338806f}, |
| {125.299316f, -0.499290764f}, {126.294594f, 0.505449712f}, |
| {125.999992f, 62.5047531f}, {124.0f, 62.4980202f}, |
| {124.122749f, 0.498142242f}, {125.126022f, -0.499872506f}, |
| {125.119476f, 1.50011659f}, {125.122749f, 0.50012207f}, |
| {126.122749f, 0.502101898f}, {126.0f, 62.5019798f}, |
| {125.0f, 62.5f}, {124.000008f, 62.4952469f}, |
| {124.294609f, 0.495946467f}, {125.294601f, 0.50069809f}, |
| {125.289886f, 1.50068688f}, {125.282349f, 1.50065041f}, |
| {125.119476f, 1.50011659f}}; |
| constexpr SkPath::Verb kMove = SkPath::kMove_Verb; |
| constexpr SkPath::Verb kLine = SkPath::kLine_Verb; |
| constexpr SkPath::Verb kClose = SkPath::kClose_Verb; |
| SkPath::Verb verbs[] = {kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose, |
| kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose}; |
| int pointIndex = 0; |
| for(auto verb : verbs) { |
| switch (verb) { |
| case kMove: |
| path.moveTo(points[pointIndex++]); |
| break; |
| case kLine: |
| path.lineTo(points[pointIndex++]); |
| break; |
| case kClose: |
| default: |
| path.close(); |
| break; |
| } |
| } |
| test_draw_AA_path(250, 125, path); |
| } |
| |
| static void test_skbug_7015() { |
| SkPath path; |
| path.setFillType(SkPath::kWinding_FillType); |
| path.moveTo(SkBits2Float(0x4388c000), SkBits2Float(0x43947c08)); // 273.5f, 296.969f |
| path.lineTo(SkBits2Float(0x4386c000), SkBits2Float(0x43947c08)); // 269.5f, 296.969f |
| // 269.297f, 292.172f, 273.695f, 292.172f, 273.5f, 296.969f |
| path.cubicTo(SkBits2Float(0x4386a604), SkBits2Float(0x43921604), |
| SkBits2Float(0x4388d8f6), SkBits2Float(0x43921604), |
| SkBits2Float(0x4388c000), SkBits2Float(0x43947c08)); |
| path.close(); |
| test_draw_AA_path(500, 500, path); |
| } |
| |
| static void test_skbug_7051() { |
| SkPath path; |
| path.moveTo(10, 10); |
| path.cubicTo(10, 20, 10, 30, 30, 30); |
| path.lineTo(50, 20); |
| path.lineTo(50, 10); |
| path.close(); |
| test_draw_AA_path(100, 100, path); |
| } |
| |
| static void test_skbug_7435() { |
| SkPaint paint; |
| SkPath path; |
| path.setFillType(SkPath::kWinding_FillType); |
| path.moveTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f |
| path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f |
| path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f |
| path.lineTo(SkBits2Float(0x7ef348e9), SkBits2Float(0xfef403c6)); // 1.6169e+38f, -1.62176e+38f |
| path.lineTo(SkBits2Float(0x7ef74c4e), SkBits2Float(0xfef803cb)); // 1.64358e+38f, -1.64834e+38f |
| path.conicTo(SkBits2Float(0x7ef74f23), SkBits2Float(0xfef8069e), SkBits2Float(0x7ef751f6), SkBits2Float(0xfef803c9), SkBits2Float(0x3f3504f3)); // 1.64365e+38f, -1.64841e+38f, 1.64372e+38f, -1.64834e+38f, 0.707107f |
| path.conicTo(SkBits2Float(0x7ef754c8), SkBits2Float(0xfef800f5), SkBits2Float(0x7ef751f5), SkBits2Float(0xfef7fe22), SkBits2Float(0x3f353472)); // 1.6438e+38f, -1.64827e+38f, 1.64372e+38f, -1.64819e+38f, 0.707832f |
| path.lineTo(SkBits2Float(0x7edb57a9), SkBits2Float(0xfedbfe06)); // 1.45778e+38f, -1.4621e+38f |
| path.lineTo(SkBits2Float(0x7e875976), SkBits2Float(0xfe87fdb3)); // 8.99551e+37f, -9.03815e+37f |
| path.lineTo(SkBits2Float(0x7ded5c2b), SkBits2Float(0xfdeff59e)); // 3.94382e+37f, -3.98701e+37f |
| path.lineTo(SkBits2Float(0x7d7a78a7), SkBits2Float(0xfd7fda0f)); // 2.08083e+37f, -2.12553e+37f |
| path.lineTo(SkBits2Float(0x7d7a6403), SkBits2Float(0xfd7fe461)); // 2.08016e+37f, -2.12587e+37f |
| path.conicTo(SkBits2Float(0x7d7a4764), SkBits2Float(0xfd7ff2b0), SkBits2Float(0x7d7a55b4), SkBits2Float(0xfd8007a8), SkBits2Float(0x3f3504f3)); // 2.07924e+37f, -2.12633e+37f, 2.0797e+37f, -2.12726e+37f, 0.707107f |
| path.conicTo(SkBits2Float(0x7d7a5803), SkBits2Float(0xfd8009f7), SkBits2Float(0x7d7a5ba9), SkBits2Float(0xfd800bcc), SkBits2Float(0x3f7cba66)); // 2.07977e+37f, -2.12741e+37f, 2.07989e+37f, -2.12753e+37f, 0.987219f |
| path.lineTo(SkBits2Float(0x7d8d2067), SkBits2Float(0xfd900bdb)); // 2.34487e+37f, -2.39338e+37f |
| path.lineTo(SkBits2Float(0x7ddd137a), SkBits2Float(0xfde00c2d)); // 3.67326e+37f, -3.72263e+37f |
| path.lineTo(SkBits2Float(0x7ddd2a1b), SkBits2Float(0xfddff58e)); // 3.67473e+37f, -3.72116e+37f |
| path.lineTo(SkBits2Float(0x7c694ae5), SkBits2Float(0xfc7fa67c)); // 4.8453e+36f, -5.30965e+36f |
| path.lineTo(SkBits2Float(0xfc164a8b), SkBits2Float(0x7c005af5)); // -3.12143e+36f, 2.66584e+36f |
| path.lineTo(SkBits2Float(0xfc8ae983), SkBits2Float(0x7c802da7)); // -5.77019e+36f, 5.32432e+36f |
| path.lineTo(SkBits2Float(0xfc8b16d9), SkBits2Float(0x7c80007b)); // -5.77754e+36f, 5.31699e+36f |
| path.lineTo(SkBits2Float(0xfc8b029c), SkBits2Float(0x7c7f8788)); // -5.77426e+36f, 5.30714e+36f |
| path.lineTo(SkBits2Float(0xfc8b0290), SkBits2Float(0x7c7f8790)); // -5.77425e+36f, 5.30714e+36f |
| path.lineTo(SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.77753e+36f, 5.31699e+36f |
| path.lineTo(SkBits2Float(0xfc8b4409), SkBits2Float(0x7c7fa672)); // -5.78487e+36f, 5.30965e+36f |
| path.lineTo(SkBits2Float(0x7d7aa2ba), SkBits2Float(0xfd800bd1)); // 2.0822e+37f, -2.12753e+37f |
| path.lineTo(SkBits2Float(0x7e8757ee), SkBits2Float(0xfe88035b)); // 8.99512e+37f, -9.03962e+37f |
| path.lineTo(SkBits2Float(0x7ef7552d), SkBits2Float(0xfef803ca)); // 1.64381e+38f, -1.64834e+38f |
| path.lineTo(SkBits2Float(0x7f0fa653), SkBits2Float(0xff1001f9)); // 1.90943e+38f, -1.91419e+38f |
| path.lineTo(SkBits2Float(0x7f0fa926), SkBits2Float(0xff0fff24)); // 1.90958e+38f, -1.91404e+38f |
| path.lineTo(SkBits2Float(0x7f0da75c), SkBits2Float(0xff0dff22)); // 1.8829e+38f, -1.88746e+38f |
| path.lineTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f |
| path.close(); |
| path.moveTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f |
| path.lineTo(SkBits2Float(0x7f0da48a), SkBits2Float(0xff0e01f8)); // 1.88275e+38f, -1.88761e+38f |
| path.lineTo(SkBits2Float(0x7f0fa654), SkBits2Float(0xff1001fa)); // 1.90943e+38f, -1.91419e+38f |
| path.lineTo(SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90951e+38f, -1.91412e+38f |
| path.lineTo(SkBits2Float(0x7f0fa927), SkBits2Float(0xff0fff25)); // 1.90958e+38f, -1.91404e+38f |
| path.lineTo(SkBits2Float(0x7ef75ad5), SkBits2Float(0xfef7fe22)); // 1.64395e+38f, -1.64819e+38f |
| path.lineTo(SkBits2Float(0x7e875d96), SkBits2Float(0xfe87fdb3)); // 8.99659e+37f, -9.03815e+37f |
| path.lineTo(SkBits2Float(0x7d7acff6), SkBits2Float(0xfd7fea5b)); // 2.08367e+37f, -2.12606e+37f |
| path.lineTo(SkBits2Float(0xfc8b0588), SkBits2Float(0x7c8049b7)); // -5.77473e+36f, 5.32887e+36f |
| path.lineTo(SkBits2Float(0xfc8b2b16), SkBits2Float(0x7c803d32)); // -5.78083e+36f, 5.32684e+36f |
| path.conicTo(SkBits2Float(0xfc8b395c), SkBits2Float(0x7c803870), SkBits2Float(0xfc8b4405), SkBits2Float(0x7c802dd1), SkBits2Float(0x3f79349d)); // -5.78314e+36f, 5.32607e+36f, -5.78487e+36f, 5.32435e+36f, 0.973459f |
| path.conicTo(SkBits2Float(0xfc8b715b), SkBits2Float(0x7c8000a5), SkBits2Float(0xfc8b442f), SkBits2Float(0x7c7fa69e), SkBits2Float(0x3f3504f3)); // -5.79223e+36f, 5.31702e+36f, -5.7849e+36f, 5.30966e+36f, 0.707107f |
| path.lineTo(SkBits2Float(0xfc16ffaa), SkBits2Float(0x7bff4c12)); // -3.13612e+36f, 2.65116e+36f |
| path.lineTo(SkBits2Float(0x7c6895e0), SkBits2Float(0xfc802dc0)); // 4.83061e+36f, -5.32434e+36f |
| path.lineTo(SkBits2Float(0x7ddd137b), SkBits2Float(0xfde00c2e)); // 3.67326e+37f, -3.72263e+37f |
| path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f |
| path.lineTo(SkBits2Float(0x7ddd2a1c), SkBits2Float(0xfddff58f)); // 3.67473e+37f, -3.72116e+37f |
| path.lineTo(SkBits2Float(0x7d8d3711), SkBits2Float(0xfd8ff543)); // 2.34634e+37f, -2.39191e+37f |
| path.lineTo(SkBits2Float(0x7d7a88fe), SkBits2Float(0xfd7fea69)); // 2.08136e+37f, -2.12606e+37f |
| path.lineTo(SkBits2Float(0x7d7a7254), SkBits2Float(0xfd800080)); // 2.08063e+37f, -2.1268e+37f |
| path.lineTo(SkBits2Float(0x7d7a80a4), SkBits2Float(0xfd800ed0)); // 2.08109e+37f, -2.12773e+37f |
| path.lineTo(SkBits2Float(0x7d7a80a8), SkBits2Float(0xfd800ecf)); // 2.08109e+37f, -2.12773e+37f |
| path.lineTo(SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08063e+37f, -2.1268e+37f |
| path.lineTo(SkBits2Float(0x7d7a5bb9), SkBits2Float(0xfd800bd0)); // 2.0799e+37f, -2.12753e+37f |
| path.lineTo(SkBits2Float(0x7ded458b), SkBits2Float(0xfdf00c3e)); // 3.94235e+37f, -3.98848e+37f |
| path.lineTo(SkBits2Float(0x7e8753ce), SkBits2Float(0xfe88035b)); // 8.99405e+37f, -9.03962e+37f |
| path.lineTo(SkBits2Float(0x7edb5201), SkBits2Float(0xfedc03ae)); // 1.45763e+38f, -1.46225e+38f |
| path.lineTo(SkBits2Float(0x7ef74c4d), SkBits2Float(0xfef803ca)); // 1.64358e+38f, -1.64834e+38f |
| path.lineTo(SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64365e+38f, -1.64827e+38f |
| path.lineTo(SkBits2Float(0x7ef751f4), SkBits2Float(0xfef7fe21)); // 1.64372e+38f, -1.64819e+38f |
| path.lineTo(SkBits2Float(0x7ef34e91), SkBits2Float(0xfef3fe1e)); // 1.61705e+38f, -1.62161e+38f |
| path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f |
| path.lineTo(SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.48397e+38f, -1.48876e+38f |
| path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f |
| path.lineTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f |
| path.close(); |
| path.moveTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f |
| path.lineTo(SkBits2Float(0xfd6597e5), SkBits2Float(0x7d60177f)); // -1.90739e+37f, 1.86168e+37f |
| path.lineTo(SkBits2Float(0xfde2cea1), SkBits2Float(0x7de00c2e)); // -3.76848e+37f, 3.72263e+37f |
| path.lineTo(SkBits2Float(0xfe316511), SkBits2Float(0x7e300657)); // -5.89495e+37f, 5.84943e+37f |
| path.lineTo(SkBits2Float(0xfe415da1), SkBits2Float(0x7e400666)); // -6.42568e+37f, 6.38112e+37f |
| path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4000be)); // -6.42641e+37f, 6.38039e+37f |
| path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f |
| path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f |
| path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e3ff8be)); // -6.42591e+37f, 6.37935e+37f |
| path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e3ff8be)); // -6.42544e+37f, 6.37935e+37f |
| path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f |
| path.lineTo(SkBits2Float(0xfe416171), SkBits2Float(0x7e3ffb16)); // -6.42617e+37f, 6.37966e+37f |
| path.lineTo(SkBits2Float(0xfe016131), SkBits2Float(0x7dfff5ae)); // -4.29938e+37f, 4.25286e+37f |
| path.lineTo(SkBits2Float(0xfe0155e2), SkBits2Float(0x7e000628)); // -4.29791e+37f, 4.25433e+37f |
| path.lineTo(SkBits2Float(0xfe0958ea), SkBits2Float(0x7e080630)); // -4.56415e+37f, 4.52018e+37f |
| path.lineTo(SkBits2Float(0xfe115c92), SkBits2Float(0x7e100638)); // -4.83047e+37f, 4.78603e+37f |
| path.conicTo(SkBits2Float(0xfe11623c), SkBits2Float(0x7e100bdf), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e100636), SkBits2Float(0x3f3504f3)); // -4.8312e+37f, 4.78676e+37f, -4.83194e+37f, 4.78603e+37f, 0.707107f |
| path.conicTo(SkBits2Float(0xfe116d87), SkBits2Float(0x7e10008e), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e0ffae8), SkBits2Float(0x3f35240a)); // -4.83267e+37f, 4.78529e+37f, -4.83194e+37f, 4.78456e+37f, 0.707581f |
| path.lineTo(SkBits2Float(0xfe016b92), SkBits2Float(0x7dfff5af)); // -4.30072e+37f, 4.25286e+37f |
| path.lineTo(SkBits2Float(0xfdc2d963), SkBits2Float(0x7dbff56e)); // -3.23749e+37f, 3.18946e+37f |
| path.lineTo(SkBits2Float(0xfd65ae25), SkBits2Float(0x7d5fea3d)); // -1.90811e+37f, 1.86021e+37f |
| path.lineTo(SkBits2Float(0xfab448de), SkBits2Float(0xf7b50a19)); // -4.68046e+35f, -7.34383e+33f |
| path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200 |
| path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x7800007f)); // -4.60703e+35f, 1.03848e+34f |
| path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x7800007f)); // -4.67194e+35f, 1.03848e+34f |
| path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200 |
| path.lineTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f |
| path.close(); |
| path.moveTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f |
| path.lineTo(SkBits2Float(0xfaa7cc52), SkBits2Float(0xf800007f)); // -4.35629e+35f, -1.03848e+34f |
| path.lineTo(SkBits2Float(0xfd6580e5), SkBits2Float(0x7d60177f)); // -1.90664e+37f, 1.86168e+37f |
| path.lineTo(SkBits2Float(0xfdc2c2c1), SkBits2Float(0x7dc00c0f)); // -3.23602e+37f, 3.19093e+37f |
| path.lineTo(SkBits2Float(0xfe016040), SkBits2Float(0x7e000626)); // -4.29925e+37f, 4.25433e+37f |
| path.lineTo(SkBits2Float(0xfe115c90), SkBits2Float(0x7e100636)); // -4.83047e+37f, 4.78603e+37f |
| path.lineTo(SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.8312e+37f, 4.78529e+37f |
| path.lineTo(SkBits2Float(0xfe1167e0), SkBits2Float(0x7e0ffae6)); // -4.83194e+37f, 4.78456e+37f |
| path.lineTo(SkBits2Float(0xfe096438), SkBits2Float(0x7e07fade)); // -4.56562e+37f, 4.51871e+37f |
| path.lineTo(SkBits2Float(0xfe016130), SkBits2Float(0x7dfff5ac)); // -4.29938e+37f, 4.25286e+37f |
| path.lineTo(SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29864e+37f, 4.25359e+37f |
| path.lineTo(SkBits2Float(0xfe0155e1), SkBits2Float(0x7e000627)); // -4.29791e+37f, 4.25433e+37f |
| path.lineTo(SkBits2Float(0xfe415879), SkBits2Float(0x7e4008bf)); // -6.42501e+37f, 6.38143e+37f |
| path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e4008bf)); // -6.42591e+37f, 6.38143e+37f |
| path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f |
| path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f |
| path.conicTo(SkBits2Float(0xfe416699), SkBits2Float(0x7e4008bf), SkBits2Float(0xfe4168f1), SkBits2Float(0x7e400668), SkBits2Float(0x3f6c8ed9)); // -6.42684e+37f, 6.38143e+37f, -6.42715e+37f, 6.38113e+37f, 0.924055f |
| path.conicTo(SkBits2Float(0xfe416e9a), SkBits2Float(0x7e4000c2), SkBits2Float(0xfe4168f3), SkBits2Float(0x7e3ffb17), SkBits2Float(0x3f3504f3)); // -6.42788e+37f, 6.38039e+37f, -6.42715e+37f, 6.37966e+37f, 0.707107f |
| path.lineTo(SkBits2Float(0xfe317061), SkBits2Float(0x7e2ffb07)); // -5.89642e+37f, 5.84796e+37f |
| path.lineTo(SkBits2Float(0xfde2e542), SkBits2Float(0x7ddff58e)); // -3.76995e+37f, 3.72116e+37f |
| path.lineTo(SkBits2Float(0xfd65c525), SkBits2Float(0x7d5fea3d)); // -1.90886e+37f, 1.86021e+37f |
| path.lineTo(SkBits2Float(0xfab6c8db), SkBits2Float(0xf7b50b4f)); // -4.74536e+35f, -7.34402e+33f |
| path.lineTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f |
| path.close(); |
| path.moveTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200 |
| path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200 |
| path.quadTo(SkBits2Float(0xfd0593a5), SkBits2Float(0x7d00007f), SkBits2Float(0xfd659785), SkBits2Float(0x7d6000de)); // -1.10971e+37f, 1.0634e+37f, -1.90737e+37f, 1.86095e+37f |
| path.quadTo(SkBits2Float(0xfda2cdf2), SkBits2Float(0x7da0009f), SkBits2Float(0xfdc2ce12), SkBits2Float(0x7dc000be)); // -2.70505e+37f, 2.6585e+37f, -3.23675e+37f, 3.1902e+37f |
| path.quadTo(SkBits2Float(0xfde2ce31), SkBits2Float(0x7de000de), SkBits2Float(0xfe0165e9), SkBits2Float(0x7e00007f)); // -3.76845e+37f, 3.72189e+37f, -4.29999e+37f, 4.25359e+37f |
| path.quadTo(SkBits2Float(0xfe1164b9), SkBits2Float(0x7e10008f), SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.83153e+37f, 4.78529e+37f, -4.8312e+37f, 4.78529e+37f |
| path.quadTo(SkBits2Float(0xfe116039), SkBits2Float(0x7e10008f), SkBits2Float(0xfe095e91), SkBits2Float(0x7e080087)); // -4.83094e+37f, 4.78529e+37f, -4.56488e+37f, 4.51944e+37f |
| path.quadTo(SkBits2Float(0xfe015d09), SkBits2Float(0x7e00007f), SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29884e+37f, 4.25359e+37f, -4.29864e+37f, 4.25359e+37f |
| path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f |
| path.quadTo(SkBits2Float(0xfe415da9), SkBits2Float(0x7e4000be), SkBits2Float(0xfe415f69), SkBits2Float(0x7e4000be)); // -6.42568e+37f, 6.38039e+37f, -6.42591e+37f, 6.38039e+37f |
| path.quadTo(SkBits2Float(0xfe416149), SkBits2Float(0x7e4000be), SkBits2Float(0xfe416349), SkBits2Float(0x7e4000be)); // -6.42615e+37f, 6.38039e+37f, -6.42641e+37f, 6.38039e+37f |
| path.quadTo(SkBits2Float(0xfe416849), SkBits2Float(0x7e4000be), SkBits2Float(0xfe316ab9), SkBits2Float(0x7e3000af)); // -6.42706e+37f, 6.38039e+37f, -5.89569e+37f, 5.84869e+37f |
| path.quadTo(SkBits2Float(0xfe216d29), SkBits2Float(0x7e20009f), SkBits2Float(0xfde2d9f2), SkBits2Float(0x7de000de)); // -5.36431e+37f, 5.31699e+37f, -3.76921e+37f, 3.72189e+37f |
| path.quadTo(SkBits2Float(0xfda2d9b2), SkBits2Float(0x7da0009f), SkBits2Float(0xfd65ae85), SkBits2Float(0x7d6000de)); // -2.70582e+37f, 2.6585e+37f, -1.90812e+37f, 1.86095e+37f |
| path.quadTo(SkBits2Float(0xfd05a9a6), SkBits2Float(0x7d00007f), SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -1.11043e+37f, 1.0634e+37f, -4.67194e+35f, 200 |
| path.close(); |
| path.moveTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f |
| path.quadTo(SkBits2Float(0x7f0ba519), SkBits2Float(0xff0c008b), SkBits2Float(0x7f0da5f3), SkBits2Float(0xff0e008d)); // 1.8562e+38f, -1.86095e+38f, 1.88283e+38f, -1.88753e+38f |
| path.quadTo(SkBits2Float(0x7f0fa6d5), SkBits2Float(0xff10008f), SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90946e+38f, -1.91412e+38f, 1.90951e+38f, -1.91412e+38f |
| path.quadTo(SkBits2Float(0x7f0faa7d), SkBits2Float(0xff10008f), SkBits2Float(0x7ef75801), SkBits2Float(0xfef800f6)); // 1.90965e+38f, -1.91412e+38f, 1.64388e+38f, -1.64827e+38f |
| path.quadTo(SkBits2Float(0x7ecf5b09), SkBits2Float(0xfed000ce), SkBits2Float(0x7e875ac2), SkBits2Float(0xfe880087)); // 1.37811e+38f, -1.38242e+38f, 8.99585e+37f, -9.03889e+37f |
| path.quadTo(SkBits2Float(0x7e0eb505), SkBits2Float(0xfe10008f), SkBits2Float(0x7d7ab958), SkBits2Float(0xfd80007f)); // 4.74226e+37f, -4.78529e+37f, 2.08293e+37f, -2.1268e+37f |
| path.quadTo(SkBits2Float(0xfc8ac1cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.76374e+36f, 5.31699e+36f, -5.77753e+36f, 5.31699e+36f |
| path.quadTo(SkBits2Float(0xfc8b36cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc16a51a), SkBits2Float(0x7c00007f)); // -5.78273e+36f, 5.31699e+36f, -3.12877e+36f, 2.6585e+36f |
| path.quadTo(SkBits2Float(0xfab6e4de), SkBits2Float(0x43480000), SkBits2Float(0x7c68f062), SkBits2Float(0xfc80007f)); // -4.7482e+35f, 200, 4.83795e+36f, -5.31699e+36f |
| path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f |
| path.quadTo(SkBits2Float(0x7d9d254b), SkBits2Float(0xfda0009f), SkBits2Float(0x7d8d2bbc), SkBits2Float(0xfd90008f)); // 2.61103e+37f, -2.6585e+37f, 2.3456e+37f, -2.39265e+37f |
| path.quadTo(SkBits2Float(0x7d7a64d8), SkBits2Float(0xfd80007f), SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08019e+37f, -2.1268e+37f, 2.08063e+37f, -2.1268e+37f |
| path.quadTo(SkBits2Float(0x7d7a9058), SkBits2Float(0xfd80007f), SkBits2Float(0x7ded50db), SkBits2Float(0xfdf000ee)); // 2.0816e+37f, -2.1268e+37f, 3.94309e+37f, -3.98774e+37f |
| path.quadTo(SkBits2Float(0x7e2eace5), SkBits2Float(0xfe3000af), SkBits2Float(0x7e8756a2), SkBits2Float(0xfe880087)); // 5.80458e+37f, -5.84869e+37f, 8.99478e+37f, -9.03889e+37f |
| path.quadTo(SkBits2Float(0x7ebf56d9), SkBits2Float(0xfec000be), SkBits2Float(0x7edb54d5), SkBits2Float(0xfedc00da)); // 1.27167e+38f, -1.27608e+38f, 1.45771e+38f, -1.46217e+38f |
| path.quadTo(SkBits2Float(0x7ef752e1), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64375e+38f, -1.64827e+38f, 1.64365e+38f, -1.64827e+38f |
| path.quadTo(SkBits2Float(0x7ef74d71), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef34bbd), SkBits2Float(0xfef400f2)); // 1.64361e+38f, -1.64827e+38f, 1.61698e+38f, -1.62168e+38f |
| path.quadTo(SkBits2Float(0x7eef4a19), SkBits2Float(0xfef000ee), SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.59035e+38f, -1.5951e+38f, 1.48397e+38f, -1.48876e+38f |
| path.lineTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f |
| path.close(); |
| SkSurface::MakeRasterN32Premul(250, 250, nullptr)->getCanvas()->drawPath(path, paint); |
| } |
| |
| static void test_interp(skiatest::Reporter* reporter) { |
| SkPath p1, p2, out; |
| REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); |
| REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out)); |
| REPORTER_ASSERT(reporter, p1 == out); |
| REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out)); |
| REPORTER_ASSERT(reporter, p1 == out); |
| p1.moveTo(0, 2); |
| p1.lineTo(0, 4); |
| REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); |
| REPORTER_ASSERT(reporter, !p1.interpolate(p2, 1, &out)); |
| p2.moveTo(6, 0); |
| p2.lineTo(8, 0); |
| REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); |
| REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out)); |
| REPORTER_ASSERT(reporter, p2 == out); |
| REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out)); |
| REPORTER_ASSERT(reporter, p1 == out); |
| REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out)); |
| REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(3, 1, 4, 2)); |
| p1.reset(); |
| p1.moveTo(4, 4); |
| p1.conicTo(5, 4, 5, 5, 1 / SkScalarSqrt(2)); |
| p2.reset(); |
| p2.moveTo(4, 2); |
| p2.conicTo(7, 2, 7, 5, 1 / SkScalarSqrt(2)); |
| REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); |
| REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out)); |
| REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(4, 3, 6, 5)); |
| p2.reset(); |
| p2.moveTo(4, 2); |
| p2.conicTo(6, 3, 6, 5, 1); |
| REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); |
| p2.reset(); |
| p2.moveTo(4, 4); |
| p2.conicTo(5, 4, 5, 5, 0.5f); |
| REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); |
| } |
| |
| DEF_TEST(PathInterp, reporter) { |
| test_interp(reporter); |
| } |
| |
| #include "include/core/SkSurface.h" |
| DEF_TEST(PathBigCubic, reporter) { |
| SkPath path; |
| path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 |
| path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f |
| path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), SkBits2Float(0x00000100), SkBits2Float(0x00000000), SkBits2Float(0x00000100), SkBits2Float(0x00000000)); // 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0 |
| path.moveTo(0, 512); |
| |
| // this call should not assert |
| SkSurface::MakeRasterN32Premul(255, 255, nullptr)->getCanvas()->drawPath(path, SkPaint()); |
| } |
| |
| DEF_TEST(PathContains, reporter) { |
| test_contains(reporter); |
| } |
| |
| DEF_TEST(Paths, reporter) { |
| test_fuzz_crbug_647922(); |
| test_fuzz_crbug_643933(); |
| test_sect_with_horizontal_needs_pinning(); |
| test_crbug_629455(reporter); |
| test_fuzz_crbug_627414(reporter); |
| test_path_crbug364224(); |
| test_fuzz_crbug_662952(reporter); |
| test_fuzz_crbug_662730(reporter); |
| test_fuzz_crbug_662780(); |
| test_mask_overflow(); |
| test_path_crbugskia6003(); |
| test_fuzz_crbug_668907(); |
| test_skbug_6947(); |
| test_skbug_7015(); |
| test_skbug_7051(); |
| test_skbug_7435(); |
| |
| SkSize::Make(3, 4); |
| |
| SkPath p, empty; |
| SkRect bounds, bounds2; |
| test_empty(reporter, p); |
| |
| REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); |
| |
| // this triggers a code path in SkPath::operator= which is otherwise unexercised |
| SkPath& self = p; |
| p = self; |
| |
| // this triggers a code path in SkPath::swap which is otherwise unexercised |
| p.swap(self); |
| |
| bounds.setLTRB(0, 0, SK_Scalar1, SK_Scalar1); |
| |
| p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); |
| check_convex_bounds(reporter, p, bounds); |
| // we have quads or cubics |
| REPORTER_ASSERT(reporter, |
| p.getSegmentMasks() & (kCurveSegmentMask | SkPath::kConic_SegmentMask)); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| |
| p.reset(); |
| test_empty(reporter, p); |
| |
| p.addOval(bounds); |
| check_convex_bounds(reporter, p, bounds); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| |
| p.rewind(); |
| test_empty(reporter, p); |
| |
| p.addRect(bounds); |
| check_convex_bounds(reporter, p, bounds); |
| // we have only lines |
| REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| |
| REPORTER_ASSERT(reporter, p != empty); |
| REPORTER_ASSERT(reporter, !(p == empty)); |
| |
| // do getPoints and getVerbs return the right result |
| REPORTER_ASSERT(reporter, p.getPoints(nullptr, 0) == 4); |
| REPORTER_ASSERT(reporter, p.getVerbs(nullptr, 0) == 5); |
| SkPoint pts[4]; |
| int count = p.getPoints(pts, 4); |
| REPORTER_ASSERT(reporter, count == 4); |
| uint8_t verbs[6]; |
| verbs[5] = 0xff; |
| p.getVerbs(verbs, 5); |
| REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]); |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]); |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]); |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]); |
| REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]); |
| REPORTER_ASSERT(reporter, 0xff == verbs[5]); |
| bounds2.setBounds(pts, 4); |
| REPORTER_ASSERT(reporter, bounds == bounds2); |
| |
| bounds.offset(SK_Scalar1*3, SK_Scalar1*4); |
| p.offset(SK_Scalar1*3, SK_Scalar1*4); |
| REPORTER_ASSERT(reporter, bounds == p.getBounds()); |
| |
| REPORTER_ASSERT(reporter, p.isRect(nullptr)); |
| bounds2.setEmpty(); |
| REPORTER_ASSERT(reporter, p.isRect(&bounds2)); |
| REPORTER_ASSERT(reporter, bounds == bounds2); |
| |
| // now force p to not be a rect |
| bounds.setWH(SK_Scalar1/2, SK_Scalar1/2); |
| p.addRect(bounds); |
| REPORTER_ASSERT(reporter, !p.isRect(nullptr)); |
| |
| // Test an edge case w.r.t. the bound returned by isRect (i.e., the |
| // path has a trailing moveTo. Please see crbug.com\445368) |
| { |
| SkRect r; |
| p.reset(); |
| p.addRect(bounds); |
| REPORTER_ASSERT(reporter, p.isRect(&r)); |
| REPORTER_ASSERT(reporter, r == bounds); |
| // add a moveTo outside of our bounds |
| p.moveTo(bounds.fLeft + 10, bounds.fBottom + 10); |
| REPORTER_ASSERT(reporter, p.isRect(&r)); |
| REPORTER_ASSERT(reporter, r == bounds); |
| } |
| |
| test_operatorEqual(reporter); |
| test_isLine(reporter); |
| test_isRect(reporter); |
| test_is_simple_closed_rect(reporter); |
| test_isNestedFillRects(reporter); |
| test_zero_length_paths(reporter); |
| test_direction(reporter); |
| test_convexity(reporter); |
| test_convexity2(reporter); |
| test_convexity_doubleback(reporter); |
| test_conservativelyContains(reporter); |
| test_close(reporter); |
| test_segment_masks(reporter); |
| test_flattening(reporter); |
| test_transform(reporter); |
| test_bounds(reporter); |
| test_iter(reporter); |
| test_raw_iter(reporter); |
| test_circle(reporter); |
| test_oval(reporter); |
| test_strokerec(reporter); |
| test_addPoly(reporter); |
| test_isfinite(reporter); |
| test_isfinite_after_transform(reporter); |
| test_islastcontourclosed(reporter); |
| test_arb_round_rect_is_convex(reporter); |
| test_arb_zero_rad_round_rect_is_rect(reporter); |
| test_addrect(reporter); |
| test_addrect_isfinite(reporter); |
| test_tricky_cubic(); |
| test_clipped_cubic(); |
| test_crbug_170666(); |
| test_crbug_493450(reporter); |
| test_crbug_495894(reporter); |
| test_crbug_613918(); |
| test_bad_cubic_crbug229478(); |
| test_bad_cubic_crbug234190(); |
| test_gen_id(reporter); |
| test_path_close_issue1474(reporter); |
| test_path_to_region(reporter); |
| test_rrect(reporter); |
| test_arc(reporter); |
| test_arc_ovals(reporter); |
| test_arcTo(reporter); |
| test_addPath(reporter); |
| test_addPathMode(reporter, false, false); |
| test_addPathMode(reporter, true, false); |
| test_addPathMode(reporter, false, true); |
| test_addPathMode(reporter, true, true); |
| test_extendClosedPath(reporter); |
| test_addEmptyPath(reporter, SkPath::kExtend_AddPathMode); |
| test_addEmptyPath(reporter, SkPath::kAppend_AddPathMode); |
| test_conicTo_special_case(reporter); |
| test_get_point(reporter); |
| test_contains(reporter); |
| PathTest_Private::TestPathTo(reporter); |
| PathRefTest_Private::TestPathRef(reporter); |
| PathTest_Private::TestPathrefListeners(reporter); |
| test_dump(reporter); |
| test_path_crbug389050(reporter); |
| test_path_crbugskia2820(reporter); |
| test_path_crbugskia5995(); |
| test_skbug_3469(reporter); |
| test_skbug_3239(reporter); |
| test_bounds_crbug_513799(reporter); |
| test_fuzz_crbug_638223(); |
| } |
| |
| DEF_TEST(conservatively_contains_rect, reporter) { |
| SkPath path; |
| |
| path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f |
| // 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0 |
| path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), |
| SkBits2Float(0x00000100), SkBits2Float(0x00000000), |
| SkBits2Float(0x00000100), SkBits2Float(0x00000000)); |
| path.moveTo(0, 0); |
| |
| // this guy should not assert |
| path.conservativelyContainsRect({ -211747, 12.1115f, -197893, 25.0321f }); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static void rand_path(SkPath* path, SkRandom& rand, SkPath::Verb verb, int n) { |
| for (int i = 0; i < n; ++i) { |
| switch (verb) { |
| case SkPath::kLine_Verb: |
| path->lineTo(rand.nextF()*100, rand.nextF()*100); |
| break; |
| case SkPath::kQuad_Verb: |
| path->quadTo(rand.nextF()*100, rand.nextF()*100, |
| rand.nextF()*100, rand.nextF()*100); |
| break; |
| case SkPath::kConic_Verb: |
| path->conicTo(rand.nextF()*100, rand.nextF()*100, |
| rand.nextF()*100, rand.nextF()*100, rand.nextF()*10); |
| break; |
| case SkPath::kCubic_Verb: |
| path->cubicTo(rand.nextF()*100, rand.nextF()*100, |
| rand.nextF()*100, rand.nextF()*100, |
| rand.nextF()*100, rand.nextF()*100); |
| break; |
| default: |
| SkASSERT(false); |
| } |
| } |
| } |
| |
| #include "include/pathops/SkPathOps.h" |
| DEF_TEST(path_tight_bounds, reporter) { |
| SkRandom rand; |
| |
| const SkPath::Verb verbs[] = { |
| SkPath::kLine_Verb, SkPath::kQuad_Verb, SkPath::kConic_Verb, SkPath::kCubic_Verb, |
| }; |
| for (int i = 0; i < 1000; ++i) { |
| for (int n = 1; n <= 10; n += 9) { |
| for (SkPath::Verb verb : verbs) { |
| SkPath path; |
| rand_path(&path, rand, verb, n); |
| SkRect bounds = path.getBounds(); |
| SkRect tight = path.computeTightBounds(); |
| REPORTER_ASSERT(reporter, bounds.contains(tight)); |
| |
| SkRect tight2; |
| TightBounds(path, &tight2); |
| REPORTER_ASSERT(reporter, nearly_equal(tight, tight2)); |
| } |
| } |
| } |
| } |
| |
| DEF_TEST(skbug_6450, r) { |
| SkRect ri = { 0.18554693f, 195.26283f, 0.185784385f, 752.644409f }; |
| SkVector rdi[4] = { |
| { 1.81159976e-09f, 7.58768801e-05f }, |
| { 0.000118725002f, 0.000118725002f }, |
| { 0.000118725002f, 0.000118725002f }, |
| { 0.000118725002f, 0.486297607f } |
| }; |
| SkRRect irr; |
| irr.setRectRadii(ri, rdi); |
| SkRect ro = { 9.18354821e-39f, 2.1710848e+9f, 2.16945843e+9f, 3.47808128e+9f }; |
| SkVector rdo[4] = { |
| { 0, 0 }, |
| { 0.0103298295f, 0.185887396f }, |
| { 2.52999727e-29f, 169.001938f }, |
| { 195.262741f, 195.161255f } |
| }; |
| SkRRect orr; |
| orr.setRectRadii(ro, rdo); |
| SkMakeNullCanvas()->drawDRRect(orr, irr, SkPaint()); |
| } |
| |
| DEF_TEST(PathRefSerialization, reporter) { |
| SkPath path; |
| const size_t numMoves = 5; |
| const size_t numConics = 7; |
| const size_t numPoints = numMoves + 2 * numConics; |
| const size_t numVerbs = numMoves + numConics; |
| for (size_t i = 0; i < numMoves; ++i) path.moveTo(1, 2); |
| for (size_t i = 0; i < numConics; ++i) path.conicTo(1, 2, 3, 4, 5); |
| REPORTER_ASSERT(reporter, path.countPoints() == numPoints); |
| REPORTER_ASSERT(reporter, path.countVerbs() == numVerbs); |
| |
| // Verify that path serializes/deserializes properly. |
| sk_sp<SkData> data = path.serialize(); |
| size_t bytesWritten = data->size(); |
| |
| { |
| SkPath readBack; |
| REPORTER_ASSERT(reporter, readBack != path); |
| size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten); |
| REPORTER_ASSERT(reporter, bytesRead == bytesWritten); |
| REPORTER_ASSERT(reporter, readBack == path); |
| } |
| |
| // One less byte (rounded down to alignment) than was written will also |
| // fail to be deserialized. |
| { |
| SkPath readBack; |
| size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten - 4); |
| REPORTER_ASSERT(reporter, !bytesRead); |
| } |
| } |
| |
| DEF_TEST(NonFinitePathIteration, reporter) { |
| SkPath path; |
| path.moveTo(SK_ScalarInfinity, SK_ScalarInfinity); |
| |
| int verbs = 0; |
| |
| SkPath::RawIter iter(path); |
| SkPoint pts[4]; |
| while (iter.next(pts) != SkPath::kDone_Verb) { |
| verbs++; |
| } |
| |
| REPORTER_ASSERT(reporter, verbs == 0); |
| } |
| |
| DEF_TEST(AndroidArc, reporter) { |
| const char* tests[] = { |
| "M50,0A50,50,0,0 1 100,50 L100,85 A15,15,0,0 1 85,100 L50,100 A50,50,0,0 1 50,0z", |
| "M50,0L92,0 A8,8,0,0 1 100,8 L100,92 A8,8,0,0 1 92,100 L8,100" |
| " A8,8,0,0 1 0,92 L 0,8 A8,8,0,0 1 8,0z", |
| "M50 0A50 50,0,1,1,50 100A50 50,0,1,1,50 0" |
| }; |
| for (auto test : tests) { |
| SkPath aPath; |
| SkAssertResult(SkParsePath::FromSVGString(test, &aPath)); |
| SkASSERT(aPath.isConvex()); |
| for (SkScalar scale = 1; scale < 1000; scale *= 1.1f) { |
| SkPath scalePath = aPath; |
| SkMatrix matrix; |
| matrix.setScale(scale, scale); |
| scalePath.transform(matrix); |
| SkASSERT(scalePath.isConvex()); |
| } |
| for (SkScalar scale = 1; scale < .001; scale /= 1.1f) { |
| SkPath scalePath = aPath; |
| SkMatrix matrix; |
| matrix.setScale(scale, scale); |
| scalePath.transform(matrix); |
| SkASSERT(scalePath.isConvex()); |
| } |
| } |
| } |
| |
| /* |
| * Try a range of crazy values, just to ensure that we don't assert/crash. |
| */ |
| DEF_TEST(HugeGeometry, reporter) { |
| auto surf = SkSurface::MakeRasterN32Premul(100, 100); |
| auto canvas = surf->getCanvas(); |
| |
| const bool aas[] = { false, true }; |
| const SkPaint::Style styles[] = { |
| SkPaint::kFill_Style, SkPaint::kStroke_Style, SkPaint::kStrokeAndFill_Style |
| }; |
| const SkScalar values[] = { |
| 0, 1, 1000, 1000 * 1000, 1000.f * 1000 * 10000, SK_ScalarMax / 2, SK_ScalarMax, |
| SK_ScalarInfinity |
| }; |
| |
| SkPaint paint; |
| for (auto x : values) { |
| SkRect r = { -x, -x, x, x }; |
| for (auto width : values) { |
| paint.setStrokeWidth(width); |
| for (auto aa : aas) { |
| paint.setAntiAlias(aa); |
| for (auto style : styles) { |
| paint.setStyle(style); |
| canvas->drawRect(r, paint); |
| canvas->drawOval(r, paint); |
| } |
| } |
| } |
| } |
| |
| } |
| |
| // Treat nonfinite paths as "empty" or "full", depending on inverse-filltype |
| DEF_TEST(ClipPath_nonfinite, reporter) { |
| auto surf = SkSurface::MakeRasterN32Premul(10, 10); |
| SkCanvas* canvas = surf->getCanvas(); |
| |
| REPORTER_ASSERT(reporter, !canvas->isClipEmpty()); |
| for (bool aa : {false, true}) { |
| for (SkPath::FillType ft : {SkPath::kWinding_FillType, SkPath::kInverseWinding_FillType}) { |
| for (SkScalar bad : {SK_ScalarInfinity, SK_ScalarNaN}) { |
| for (int bits = 1; bits <= 15; ++bits) { |
| SkPoint p0 = { 0, 0 }; |
| SkPoint p1 = { 0, 0 }; |
| if (bits & 1) p0.fX = -bad; |
| if (bits & 2) p0.fY = -bad; |
| if (bits & 4) p1.fX = bad; |
| if (bits & 8) p1.fY = bad; |
| |
| SkPath path; |
| path.moveTo(p0); |
| path.lineTo(p1); |
| path.setFillType(ft); |
| canvas->save(); |
| canvas->clipPath(path, aa); |
| REPORTER_ASSERT(reporter, canvas->isClipEmpty() == !path.isInverseFillType()); |
| canvas->restore(); |
| } |
| } |
| } |
| } |
| REPORTER_ASSERT(reporter, !canvas->isClipEmpty()); |
| } |
| |
| // skbug.com/7792 |
| DEF_TEST(Path_isRect, reporter) { |
| auto makePath = [](const SkPoint* points, size_t count, bool close) -> SkPath { |
| SkPath path; |
| for (size_t index = 0; index < count; ++index) { |
| index < 2 ? path.moveTo(points[index]) : path.lineTo(points[index]); |
| } |
| if (close) { |
| path.close(); |
| } |
| return path; |
| }; |
| auto makePath2 = [](const SkPoint* points, const SkPath::Verb* verbs, size_t count) -> SkPath { |
| SkPath path; |
| for (size_t index = 0; index < count; ++index) { |
| switch (verbs[index]) { |
| case SkPath::kMove_Verb: |
| path.moveTo(*points++); |
| break; |
| case SkPath::kLine_Verb: |
| path.lineTo(*points++); |
| break; |
| case SkPath::kClose_Verb: |
| path.close(); |
| break; |
| default: |
| SkASSERT(0); |
| } |
| } |
| return path; |
| }; |
| // isolated from skbug.com/7792 (bug description) |
| SkRect rect; |
| SkPoint points[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} }; |
| SkPath path = makePath(points, SK_ARRAY_COUNT(points), false); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| SkRect compare; |
| compare.setBounds(&points[1], SK_ARRAY_COUNT(points) - 1); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c3 |
| SkPoint points3[] = { {75, 50}, {100, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 50} }; |
| path = makePath(points3, SK_ARRAY_COUNT(points3), true); |
| REPORTER_ASSERT(reporter, !path.isRect(&rect)); |
| // isolated from skbug.com/7792#c9 |
| SkPoint points9[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} }; |
| path = makePath(points9, SK_ARRAY_COUNT(points9), true); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&points9[1], SK_ARRAY_COUNT(points9) - 1); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c11 |
| SkPath::Verb verbs11[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb }; |
| SkPoint points11[] = { {75, 150}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 150} }; |
| path = makePath2(points11, verbs11, SK_ARRAY_COUNT(verbs11)); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&points11[0], SK_ARRAY_COUNT(points11)); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c14 |
| SkPath::Verb verbs14[] = { SkPath::kMove_Verb, SkPath::kMove_Verb, SkPath::kMove_Verb, |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, |
| SkPath::kLine_Verb, SkPath::kClose_Verb }; |
| SkPoint points14[] = { {250, 75}, {250, 75}, {250, 75}, {100, 75}, |
| {150, 75}, {150, 150}, {75, 150}, {75, 75}, {0, 0} }; |
| path = makePath2(points14, verbs14, SK_ARRAY_COUNT(verbs14)); |
| REPORTER_ASSERT(reporter, !path.isRect(&rect)); |
| // isolated from skbug.com/7792#c15 |
| SkPath::Verb verbs15[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kMove_Verb }; |
| SkPoint points15[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {250, 75} }; |
| path = makePath2(points15, verbs15, SK_ARRAY_COUNT(verbs15)); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&points15[0], SK_ARRAY_COUNT(points15) - 1); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c17 |
| SkPoint points17[] = { {75, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10} }; |
| path = makePath(points17, SK_ARRAY_COUNT(points17), true); |
| REPORTER_ASSERT(reporter, !path.isRect(&rect)); |
| // isolated from skbug.com/7792#c19 |
| SkPath::Verb verbs19[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb }; |
| SkPoint points19[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150}, |
| {75, 150}, {10, 10}, {30, 10}, {10, 30} }; |
| path = makePath2(points19, verbs19, SK_ARRAY_COUNT(verbs19)); |
| REPORTER_ASSERT(reporter, !path.isRect(&rect)); |
| // isolated from skbug.com/7792#c23 |
| SkPath::Verb verbs23[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kClose_Verb }; |
| SkPoint points23[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150}, |
| {75, 150} }; |
| path = makePath2(points23, verbs23, SK_ARRAY_COUNT(verbs23)); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&points23[0], SK_ARRAY_COUNT(points23)); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c29 |
| SkPath::Verb verbs29[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, |
| SkPath::kClose_Verb }; |
| SkPoint points29[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 250}, {75, 75} }; |
| path = makePath2(points29, verbs29, SK_ARRAY_COUNT(verbs29)); |
| REPORTER_ASSERT(reporter, !path.isRect(&rect)); |
| // isolated from skbug.com/7792#c31 |
| SkPath::Verb verbs31[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, |
| SkPath::kClose_Verb }; |
| SkPoint points31[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10}, {75, 75} }; |
| path = makePath2(points31, verbs31, SK_ARRAY_COUNT(verbs31)); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&points31[0], 4); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c36 |
| SkPath::Verb verbs36[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; |
| SkPoint points36[] = { {75, 75}, {150, 75}, {150, 150}, {10, 150}, {75, 75}, {75, 75} }; |
| path = makePath2(points36, verbs36, SK_ARRAY_COUNT(verbs36)); |
| REPORTER_ASSERT(reporter, !path.isRect(&rect)); |
| // isolated from skbug.com/7792#c39 |
| SkPath::Verb verbs39[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb }; |
| SkPoint points39[] = { {150, 75}, {150, 150}, {75, 150}, {75, 100} }; |
| path = makePath2(points39, verbs39, SK_ARRAY_COUNT(verbs39)); |
| REPORTER_ASSERT(reporter, !path.isRect(&rect)); |
| // isolated from zero_length_paths_aa |
| SkPath::Verb verbsAA[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kClose_Verb }; |
| SkPoint pointsAA[] = { {32, 9.5f}, {32, 9.5f}, {32, 17}, {17, 17}, {17, 9.5f}, {17, 2}, |
| {32, 2} }; |
| path = makePath2(pointsAA, verbsAA, SK_ARRAY_COUNT(verbsAA)); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&pointsAA[0], SK_ARRAY_COUNT(pointsAA)); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c41 |
| SkPath::Verb verbs41[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, |
| SkPath::kClose_Verb }; |
| SkPoint points41[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} }; |
| path = makePath2(points41, verbs41, SK_ARRAY_COUNT(verbs41)); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&points41[1], 4); |
| REPORTER_ASSERT(reporter, rect == compare); |
| // isolated from skbug.com/7792#c53 |
| SkPath::Verb verbs53[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, |
| SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, |
| SkPath::kClose_Verb }; |
| SkPoint points53[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} }; |
| path = makePath2(points53, verbs53, SK_ARRAY_COUNT(verbs53)); |
| REPORTER_ASSERT(reporter, path.isRect(&rect)); |
| compare.setBounds(&points53[1], 4); |
| REPORTER_ASSERT(reporter, rect == compare); |
| } |
| |
| // Be sure we can safely add ourselves |
| DEF_TEST(Path_self_add, reporter) { |
| // The possible problem is that during path.add() we may have to grow the dst buffers as |
| // we append the src pts/verbs, but all the while we are iterating over the src. If src == dst |
| // we could realloc the buffer's (on behalf of dst) leaving the src iterator pointing at |
| // garbage. |
| // |
| // The test runs though verious sized src paths, since its not defined publicly what the |
| // reserve allocation strategy is for SkPath, therefore we can't know when an append operation |
| // will trigger a realloc. At the time of this writing, these loops were sufficient to trigger |
| // an ASAN error w/o the fix to SkPath::addPath(). |
| // |
| for (int count = 0; count < 10; ++count) { |
| SkPath path; |
| for (int add = 0; add < count; ++add) { |
| // just add some stuff, so we have something to copy/append in addPath() |
| path.moveTo(1, 2).lineTo(3, 4).cubicTo(1,2,3,4,5,6).conicTo(1,2,3,4,5); |
| } |
| path.addPath(path, 1, 2); |
| path.addPath(path, 3, 4); |
| } |
| } |
| |
| #include "include/core/SkVertices.h" |
| static void draw_triangle(SkCanvas* canvas, const SkPoint pts[]) { |
| // draw in different ways, looking for an assert |
| |
| { |
| SkPath path; |
| path.addPoly(pts, 3, false); |
| canvas->drawPath(path, SkPaint()); |
| } |
| |
| const SkColor colors[] = { SK_ColorBLACK, SK_ColorBLACK, SK_ColorBLACK }; |
| auto v = SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, 3, pts, nullptr, colors); |
| canvas->drawVertices(v, SkBlendMode::kSrcOver, SkPaint()); |
| } |
| |
| DEF_TEST(triangle_onehalf, reporter) { |
| auto surface(SkSurface::MakeRasterN32Premul(100, 100)); |
| |
| const SkPoint pts[] = { |
| { 0.499069244f, 9.63295173f }, |
| { 0.499402374f, 7.88207579f }, |
| { 10.2363272f, 0.49999997f } |
| }; |
| draw_triangle(surface->getCanvas(), pts); |
| } |
| |
| DEF_TEST(triangle_big, reporter) { |
| auto surface(SkSurface::MakeRasterN32Premul(4, 4304)); |
| |
| // The first two points, when sent through our fixed-point SkEdge, can walk negative beyond |
| // -0.5 due to accumulated += error of the slope. We have since make the bounds calculation |
| // be conservative, so we invoke clipping if we get in this situation. |
| // This test was added to demonstrate the need for this conservative bounds calc. |
| // (found by a fuzzer) |
| const SkPoint pts[] = { |
| { 0.327190518f, -114.945152f }, |
| { -0.5f, 1.00003874f }, |
| { 0.666425824f, 4304.26172f }, |
| }; |
| draw_triangle(surface->getCanvas(), pts); |
| } |
| |
| static void add_verbs(SkPath* path, int count) { |
| path->moveTo(0, 0); |
| for (int i = 0; i < count; ++i) { |
| switch (i & 3) { |
| case 0: path->lineTo(10, 20); break; |
| case 1: path->quadTo(5, 6, 7, 8); break; |
| case 2: path->conicTo(1, 2, 3, 4, 0.5f); break; |
| case 3: path->cubicTo(2, 4, 6, 8, 10, 12); break; |
| } |
| } |
| } |
| |
| // Make sure when we call shrinkToFit() that we always shrink (or stay the same) |
| // and that if we call twice, we stay the same. |
| DEF_TEST(Path_shrinkToFit, reporter) { |
| size_t max_free = 0; |
| for (int verbs = 0; verbs < 100; ++verbs) { |
| SkPath unique_path, shared_path; |
| add_verbs(&unique_path, verbs); |
| add_verbs(&shared_path, verbs); |
| |
| const SkPath copy = shared_path; |
| REPORTER_ASSERT(reporter, shared_path == unique_path); |
| REPORTER_ASSERT(reporter, shared_path == copy); |
| |
| #ifdef SK_DEBUG |
| size_t before = PathTest_Private::GetFreeSpace(unique_path); |
| #endif |
| unique_path.shrinkToFit(); |
| shared_path.shrinkToFit(); |
| REPORTER_ASSERT(reporter, shared_path == unique_path); |
| REPORTER_ASSERT(reporter, shared_path == copy); |
| |
| #ifdef SK_DEBUG |
| size_t after = PathTest_Private::GetFreeSpace(unique_path); |
| REPORTER_ASSERT(reporter, before >= after); |
| max_free = std::max(max_free, before - after); |
| |
| size_t after2 = PathTest_Private::GetFreeSpace(unique_path); |
| REPORTER_ASSERT(reporter, after == after2); |
| #endif |
| } |
| if (false) { |
| SkDebugf("max_free %zu\n", max_free); |
| } |
| } |
| |
| DEF_TEST(Path_setLastPt, r) { |
| // There was a time where SkPath::setLastPoint() didn't invalidate cached path bounds. |
| SkPath p; |
| p.moveTo(0,0); |
| p.moveTo(20,01); |
| p.moveTo(20,10); |
| p.moveTo(20,61); |
| REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 20,61)); |
| |
| p.setLastPt(30,01); |
| REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 30,10)); // was {0,0, 20,61} |
| |
| REPORTER_ASSERT(r, p.isValid()); |
| } |
| |
| DEF_TEST(Path_increserve_handle_neg_crbug_883666, r) { |
| SkPath path; |
| |
| path.conicTo({0, 0}, {1, 1}, SK_FloatNegativeInfinity); |
| |
| // <== use a copy path object to force SkPathRef::copy() and SkPathRef::resetToSize() |
| SkPath shallowPath = path; |
| |
| // make sure we don't assert/crash on this. |
| shallowPath.incReserve(0xffffffff); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| * For speed, we tried to preserve useful/expensive attributes about paths, |
| * - convexity, isrect, isoval, ... |
| * Axis-aligned shapes (rect, oval, rrect) should survive, including convexity if the matrix |
| * is axis-aligned (e.g. scale+translate) |
| */ |
| |
| struct Xforms { |
| SkMatrix fIM, fTM, fSM, fRM; |
| |
| Xforms() { |
| fIM.reset(); |
| fTM.setTranslate(10, 20); |
| fSM.setScale(2, 3); |
| fRM.setRotate(30); |
| } |
| }; |
| |
| static bool conditional_convex(const SkPath& path, bool is_convex) { |
| SkPath::Convexity c = path.getConvexityOrUnknown(); |
| return is_convex ? (c == SkPath::kConvex_Convexity) : (c != SkPath::kConvex_Convexity); |
| } |
| |
| // expect axis-aligned shape to survive assignment, identity and scale/translate matrices |
| template <typename ISA> |
| void survive(SkPath* path, const Xforms& x, bool isAxisAligned, skiatest::Reporter* reporter, |
| ISA isa_proc) { |
| REPORTER_ASSERT(reporter, isa_proc(*path)); |
| // force the issue (computing convexity) the first time. |
| REPORTER_ASSERT(reporter, path->getConvexity() == SkPath::kConvex_Convexity); |
| |
| SkPath path2; |
| |
| // a path's isa and convexity should survive assignment |
| path2 = *path; |
| REPORTER_ASSERT(reporter, isa_proc(path2)); |
| REPORTER_ASSERT(reporter, path2.getConvexityOrUnknown() == SkPath::kConvex_Convexity); |
| |
| // a path's isa and convexity should identity transform |
| path->transform(x.fIM, &path2); |
| path->transform(x.fIM); |
| REPORTER_ASSERT(reporter, isa_proc(path2)); |
| REPORTER_ASSERT(reporter, path2.getConvexityOrUnknown() == SkPath::kConvex_Convexity); |
| REPORTER_ASSERT(reporter, isa_proc(*path)); |
| REPORTER_ASSERT(reporter, path->getConvexityOrUnknown() == SkPath::kConvex_Convexity); |
| |
| // a path's isa should survive translation, convexity depends on axis alignment |
| path->transform(x.fTM, &path2); |
| path->transform(x.fTM); |
| REPORTER_ASSERT(reporter, isa_proc(path2)); |
| REPORTER_ASSERT(reporter, isa_proc(*path)); |
| REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned)); |
| REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned)); |
| |
| // a path's isa should survive scaling, convexity depends on axis alignment |
| path->transform(x.fSM, &path2); |
| path->transform(x.fSM); |
| REPORTER_ASSERT(reporter, isa_proc(path2)); |
| REPORTER_ASSERT(reporter, isa_proc(*path)); |
| REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned)); |
| REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned)); |
| |
| // For security, post-rotation, we can't assume we're still convex. It might prove to be, |
| // in fact, still be convex, be we can't have cached that setting, hence the call to |
| // getConvexityOrUnknown() instead of getConvexity(). |
| path->transform(x.fRM, &path2); |
| path->transform(x.fRM); |
| if (isAxisAligned) { |
| REPORTER_ASSERT(reporter, !isa_proc(path2)); |
| REPORTER_ASSERT(reporter, !isa_proc(*path)); |
| } |
| REPORTER_ASSERT(reporter, path2.getConvexityOrUnknown() != SkPath::kConvex_Convexity); |
| REPORTER_ASSERT(reporter, path->getConvexityOrUnknown() != SkPath::kConvex_Convexity); |
| } |
| |
| DEF_TEST(Path_survive_transform, r) { |
| const Xforms x; |
| |
| SkPath path; |
| path.addRect({10, 10, 40, 50}); |
| survive(&path, x, true, r, [](const SkPath& p) { return p.isRect(nullptr); }); |
| |
| path.reset(); |
| path.addOval({10, 10, 40, 50}); |
| survive(&path, x, true, r, [](const SkPath& p) { return p.isOval(nullptr); }); |
| |
| path.reset(); |
| path.addRRect(SkRRect::MakeRectXY({10, 10, 40, 50}, 5, 5)); |
| survive(&path, x, true, r, [](const SkPath& p) { return p.isRRect(nullptr); }); |
| |
| // make a trapazoid; definitely convex, but not marked as axis-aligned (e.g. oval, rrect) |
| path.reset(); |
| path.moveTo(0, 0).lineTo(100, 0).lineTo(70, 100).lineTo(30, 100); |
| REPORTER_ASSERT(r, path.getConvexity() == SkPath::kConvex_Convexity); |
| survive(&path, x, false, r, [](const SkPath& p) { return true; }); |
| } |
| |
| DEF_TEST(path_last_move_to_index, r) { |
| // Make sure that copyPath is safe after the call to path.offset(). |
| // Previously, we would leave its fLastMoveToIndex alone after the copy, but now we should |
| // set it to path's value inside SkPath::transform() |
| |
| const char text[] = "hello"; |
| constexpr size_t len = sizeof(text) - 1; |
| SkGlyphID glyphs[len]; |
| |
| SkFont font; |
| font.textToGlyphs(text, len, SkTextEncoding::kUTF8, glyphs, len); |
| |
| SkPath copyPath; |
| SkFont().getPaths(glyphs, len, [](const SkPath* src, const SkMatrix& mx, void* ctx) { |
| if (src) { |
| ((SkPath*)ctx)->addPath(*src, mx); |
| } |
| }, ©Path); |
| |
| SkScalar radii[] = { 80, 100, 0, 0, 40, 60, 0, 0 }; |
| SkPath path; |
| path.addRoundRect({10, 10, 110, 110}, radii); |
| path.offset(0, 5, &(copyPath)); // <== change buffer copyPath.fPathRef->fPoints but not reset copyPath.fLastMoveToIndex lead to out of bound |
| |
| copyPath.rConicTo(1, 1, 3, 3, 0.707107f); |
| } |
| |
| static void test_edger(skiatest::Reporter* r, |
| const std::initializer_list<SkPath::Verb>& in, |
| const std::initializer_list<SkPath::Verb>& expected) { |
| SkPath path; |
| SkScalar x = 0, y = 0; |
| for (auto v : in) { |
| switch (v) { |
| case SkPath::kMove_Verb: path.moveTo(x++, y++); break; |
| case SkPath::kLine_Verb: path.lineTo(x++, y++); break; |
| case SkPath::kClose_Verb: path.close(); break; |
| default: SkASSERT(false); |
| } |
| } |
| |
| SkPathEdgeIter iter(path); |
| for (auto v : expected) { |
| auto e = iter.next(); |
| REPORTER_ASSERT(r, e); |
| REPORTER_ASSERT(r, SkPathEdgeIter::EdgeToVerb(e.fEdge) == v); |
| } |
| auto e = iter.next(); |
| REPORTER_ASSERT(r, !e); |
| } |
| |
| DEF_TEST(pathedger, r) { |
| auto M = SkPath::kMove_Verb; |
| auto L = SkPath::kLine_Verb; |
| auto C = SkPath::kClose_Verb; |
| |
| test_edger(r, { M }, {}); |
| test_edger(r, { M, M }, {}); |
| test_edger(r, { M, C }, {}); |
| test_edger(r, { M, M, C }, {}); |
| test_edger(r, { M, L }, { L, L }); |
| test_edger(r, { M, L, C }, { L, L }); |
| test_edger(r, { M, L, L }, { L, L, L }); |
| test_edger(r, { M, L, L, C }, { L, L, L }); |
| |
| test_edger(r, { M, L, L, M, L, L }, { L, L, L, L, L, L }); |
| } |