blob: 5744a4f2ac129f2c425d16089d88a2eb3a1caec7 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkPoint3.h"
#include "src/sksl/SkSLByteCode.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLExternalValue.h"
#include "src/utils/SkJSON.h"
#include "tests/Test.h"
static bool nearly_equal(const float a[], const float b[], int count) {
for (int i = 0; i < count; ++i) {
if (!SkScalarNearlyEqual(a[i], b[i])) {
return false;
}
}
return true;
}
void test(skiatest::Reporter* r, const char* src, float* in, float* expected,
bool exactCompare = true) {
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind,
SkSL::String(src), settings);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
program.reset();
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
int returnCount = main->getReturnCount();
std::unique_ptr<float[]> out = std::unique_ptr<float[]>(new float[returnCount]);
SkAssertResult(byteCode->run(main, in, main->getParameterCount(), out.get(), returnCount,
nullptr, 0));
bool valid = exactCompare ? !memcmp(out.get(), expected, sizeof(float) * returnCount)
: nearly_equal(out.get(), expected, returnCount);
if (!valid) {
printf("for program: %s\n", src);
printf(" expected (");
const char* separator = "";
for (int i = 0; i < returnCount; ++i) {
printf("%s%f", separator, expected[i]);
separator = ", ";
}
printf("), but received (");
separator = "";
for (int i = 0; i < returnCount; ++i) {
printf("%s%f", separator, out.get()[i]);
separator = ", ";
}
printf(")\n");
main->disassemble();
}
REPORTER_ASSERT(r, valid);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
}
void vec_test(skiatest::Reporter* r, const char* src) {
SkSL::Compiler compiler;
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind, SkSL::String(src), SkSL::Program::Settings());
if (!program) {
REPORT_FAILURE(r, "!program", SkString(compiler.errorText().c_str()));
return;
}
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
if (compiler.errorCount() > 0) {
REPORT_FAILURE(r, "!toByteCode", SkString(compiler.errorText().c_str()));
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
// Test on four different vectors (with varying orderings to get divergent control flow)
const float input[16] = { 1, 2, 3, 4,
4, 3, 2, 1,
7, 5, 8, 6,
6, 8, 5, 7 };
float out_s[16], out_v[16];
memcpy(out_s, input, sizeof(out_s));
memcpy(out_v, input, sizeof(out_v));
// First run in scalar mode to determine the expected output
for (int i = 0; i < 4; ++i) {
SkAssertResult(byteCode->run(main, out_s + i * 4, 4, nullptr, 0, nullptr, 0));
}
// Need to transpose input vectors for striped execution
auto transpose = [](float* v) {
for (int r = 0; r < 4; ++r)
for (int c = 0; c < r; ++c)
std::swap(v[r*4 + c], v[c*4 + r]);
};
// Need to transpose input vectors for striped execution
transpose(out_v);
float* args[] = { out_v, out_v + 4, out_v + 8, out_v + 12 };
// Now run in parallel and compare results
SkAssertResult(byteCode->runStriped(main, 4, args, 4, nullptr, 0, nullptr, 0));
// Transpose striped outputs back
transpose(out_v);
if (memcmp(out_s, out_v, sizeof(out_s)) != 0) {
printf("for program: %s\n", src);
for (int i = 0; i < 4; ++i) {
printf("(%g %g %g %g) -> (%g %g %g %g), expected (%g %g %g %g)\n",
input[4*i + 0], input[4*i + 1], input[4*i + 2], input[4*i + 3],
out_v[4*i + 0], out_v[4*i + 1], out_v[4*i + 2], out_v[4*i + 3],
out_s[4*i + 0], out_s[4*i + 1], out_s[4*i + 2], out_s[4*i + 3]);
}
main->disassemble();
REPORT_FAILURE(r, "VecInterpreter mismatch", SkString());
}
}
void test(skiatest::Reporter* r, const char* src, float inR, float inG, float inB, float inA,
float expectedR, float expectedG, float expectedB, float expectedA) {
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind,
SkSL::String(src), settings);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
program.reset();
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
float inoutColor[4] = { inR, inG, inB, inA };
SkAssertResult(byteCode->run(main, inoutColor, 4, nullptr, 0, nullptr, 0));
if (inoutColor[0] != expectedR || inoutColor[1] != expectedG ||
inoutColor[2] != expectedB || inoutColor[3] != expectedA) {
printf("for program: %s\n", src);
printf(" expected (%f, %f, %f, %f), but received (%f, %f, %f, %f)\n", expectedR,
expectedG, expectedB, expectedA, inoutColor[0], inoutColor[1], inoutColor[2],
inoutColor[3]);
main->disassemble();
}
REPORTER_ASSERT(r, inoutColor[0] == expectedR);
REPORTER_ASSERT(r, inoutColor[1] == expectedG);
REPORTER_ASSERT(r, inoutColor[2] == expectedB);
REPORTER_ASSERT(r, inoutColor[3] == expectedA);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
// Do additional testing of 4x1 vs 1x4 to stress divergent control flow, etc.
vec_test(r, src);
}
DEF_TEST(SkSLInterpreterAdd, r) {
test(r, "void main(inout half4 color) { color.r = color.r + color.g; }", 0.25, 0.75, 0, 0, 1,
0.75, 0, 0);
test(r, "void main(inout half4 color) { color += half4(1, 2, 3, 4); }", 4, 3, 2, 1, 5, 5, 5, 5);
test(r, "void main(inout half4 color) { half4 c = color; color += c; }", 0.25, 0.5, 0.75, 1,
0.5, 1, 1.5, 2);
test(r, "void main(inout half4 color) { color.r = int(color.r) + int(color.g); }", 1, 3, 0, 0,
4, 3, 0, 0);
}
DEF_TEST(SkSLInterpreterSubtract, r) {
test(r, "void main(inout half4 color) { color.r = color.r - color.g; }", 1, 0.75, 0, 0, 0.25,
0.75, 0, 0);
test(r, "void main(inout half4 color) { color -= half4(1, 2, 3, 4); }", 5, 5, 5, 5, 4, 3, 2, 1);
test(r, "void main(inout half4 color) { half4 c = color; color -= c; }", 4, 3, 2, 1,
0, 0, 0, 0);
test(r, "void main(inout half4 color) { color.x = -color.x; }", 4, 3, 2, 1, -4, 3, 2, 1);
test(r, "void main(inout half4 color) { color = -color; }", 4, 3, 2, 1, -4, -3, -2, -1);
test(r, "void main(inout half4 color) { color.r = int(color.r) - int(color.g); }", 3, 1, 0, 0,
2, 1, 0, 0);
}
DEF_TEST(SkSLInterpreterMultiply, r) {
test(r, "void main(inout half4 color) { color.r = color.r * color.g; }", 2, 3, 0, 0, 6, 3, 0,
0);
test(r, "void main(inout half4 color) { color *= half4(1, 2, 3, 4); }", 2, 3, 4, 5, 2, 6, 12,
20);
test(r, "void main(inout half4 color) { half4 c = color; color *= c; }", 4, 3, 2, 1,
16, 9, 4, 1);
test(r, "void main(inout half4 color) { color.r = int(color.r) * int(color.g); }", 3, -2, 0, 0,
-6, -2, 0, 0);
}
DEF_TEST(SkSLInterpreterDivide, r) {
test(r, "void main(inout half4 color) { color.r = color.r / color.g; }", 1, 2, 0, 0, 0.5, 2, 0,
0);
test(r, "void main(inout half4 color) { color /= half4(1, 2, 3, 4); }", 12, 12, 12, 12, 12, 6,
4, 3);
test(r, "void main(inout half4 color) { half4 c = color; color /= c; }", 4, 3, 2, 1,
1, 1, 1, 1);
test(r, "void main(inout half4 color) { color.r = int(color.r) / int(color.g); }", 8, -2, 0, 0,
-4, -2, 0, 0);
}
DEF_TEST(SkSLInterpreterRemainder, r) {
test(r, "void main(inout half4 color) { color.r = color.r % color.g; }", 3.125, 2, 0, 0,
1.125, 2, 0, 0);
test(r, "void main(inout half4 color) { color %= half4(1, 2, 3, 4); }", 9.5, 9.5, 9.5, 9.5,
0.5, 1.5, 0.5, 1.5);
test(r, "void main(inout half4 color) { color.r = int(color.r) % int(color.g); }", 8, 3, 0, 0,
2, 3, 0, 0);
test(r, "void main(inout half4 color) { color.rg = half2(int2(int(color.r), int(color.g)) % "
"int(color.b)); }", 8, 10, 6, 0, 2, 4, 6, 0);
}
DEF_TEST(SkSLInterpreterAnd, r) {
test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) "
"color = half4(color.a); }", 2, 1, 0, 3, 3, 3, 3, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) "
"color = half4(color.a); }", 1, 1, 0, 3, 1, 1, 0, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g && color.g > color.b) "
"color = half4(color.a); }", 2, 1, 1, 3, 2, 1, 1, 3);
test(r, "int global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g && update()) "
"color = half4(color.a); color.a = global; }", 2, 1, 1, 3, 3, 3, 3, 123);
test(r, "int global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g && update()) "
"color = half4(color.a); color.a = global; }", 1, 1, 1, 3, 1, 1, 1, 0);
}
DEF_TEST(SkSLInterpreterOr, r) {
test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) "
"color = half4(color.a); }", 2, 1, 0, 3, 3, 3, 3, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) "
"color = half4(color.a); }", 1, 1, 0, 3, 3, 3, 3, 3);
test(r, "void main(inout half4 color) { if (color.r > color.g || color.g > color.b) "
"color = half4(color.a); }", 1, 1, 1, 3, 1, 1, 1, 3);
test(r, "int global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g || update()) "
"color = half4(color.a); color.a = global; }", 1, 1, 1, 3, 3, 3, 3, 123);
test(r, "int global; bool update() { global = 123; return true; }"
"void main(inout half4 color) { global = 0; if (color.r > color.g || update()) "
"color = half4(color.a); color.a = global; }", 2, 1, 1, 3, 3, 3, 3, 0);
}
DEF_TEST(SkSLInterpreterBitwise, r) {
test(r, "void main(inout half4 color) { color.r = half(int(color.r) | 3); }",
5, 0, 0, 0, 7, 0, 0, 0);
test(r, "void main(inout half4 color) { color.r = half(int(color.r) & 3); }",
6, 0, 0, 0, 2, 0, 0, 0);
test(r, "void main(inout half4 color) { color.r = half(int(color.r) ^ 3); }",
5, 0, 0, 0, 6, 0, 0, 0);
test(r, "void main(inout half4 color) { color.r = half(~int(color.r) & 3); }",
6, 0, 0, 0, 1, 0, 0, 0);
test(r, "void main(inout half4 color) { color.r = half(uint(color.r) | 3); }",
5, 0, 0, 0, 7, 0, 0, 0);
test(r, "void main(inout half4 color) { color.r = half(uint(color.r) & 3); }",
6, 0, 0, 0, 2, 0, 0, 0);
test(r, "void main(inout half4 color) { color.r = half(uint(color.r) ^ 3); }",
5, 0, 0, 0, 6, 0, 0, 0);
test(r, "void main(inout half4 color) { color.r = half(~uint(color.r) & 3); }",
6, 0, 0, 0, 1, 0, 0, 0);
// Shift operators
unsigned in = 0x80000011;
unsigned out;
out = 0x00000088;
test(r, "int main(int x) { return x << 3; }", (float*)&in, (float*)&out);
out = 0xF0000002;
test(r, "int main(int x) { return x >> 3; }", (float*)&in, (float*)&out);
out = 0x10000002;
test(r, "uint main(uint x) { return x >> 3; }", (float*)&in, (float*)&out);
}
DEF_TEST(SkSLInterpreterMatrix, r) {
float in[16];
float expected[16];
// Constructing matrix from scalar produces a diagonal matrix
in[0] = 1.0f;
expected[0] = 2.0f;
test(r, "float main(float x) { float4x4 m = float4x4(x); return m[1][1] + m[1][2] + m[2][2]; }",
in, expected);
// With non-square matrix
test(r, "float main(float x) { float3x2 m = float3x2(x); return m[0][0] + m[1][1] + m[2][1]; }",
in, expected);
// Constructing from a different-sized matrix fills the remaining space with the identity matrix
test(r, "float main(float x) {"
"float3x2 m = float3x2(x);"
"float4x4 m2 = float4x4(m);"
"return m2[0][0] + m2[3][3]; }",
in, expected);
// Constructing a matrix from vectors or scalars fills in values in column-major order
in[0] = 1.0f;
in[1] = 2.0f;
in[2] = 4.0f;
in[3] = 8.0f;
expected[0] = 6.0f;
test(r, "float main(float4 v) { float2x2 m = float2x2(v); return m[0][1] + m[1][0]; }",
in, expected);
expected[0] = 10.0f;
test(r, "float main(float4 v) {"
"float2x2 m = float2x2(v.x, v.y, v.w, v.z);"
"return m[0][1] + m[1][0]; }",
in, expected);
// Initialize 16 values to be used as inputs to matrix tests
for (int i = 0; i < 16; ++i) { in[i] = (float)i; }
// M+M, M-S, S-M
for (int i = 0; i < 16; ++i) { expected[i] = (float)(2 * i); }
test(r, "float4x4 main(float4x4 m) { return m + m; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i + 3); }
test(r, "float4x4 main(float4x4 m) { return m + 3.0; }", in, expected);
test(r, "float4x4 main(float4x4 m) { return 3.0 + m; }", in, expected);
// M-M, M-S, S-M
for (int i = 0; i < 8; ++i) { expected[i] = 8.0f; }
test(r, "float4x2 main(float4x2 m1, float4x2 m2) { return m2 - m1; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i - 3); }
test(r, "float4x4 main(float4x4 m) { return m - 3.0; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(3 - i); }
test(r, "float4x4 main(float4x4 m) { return 3.0 - m; }", in, expected);
// M*S, S*M, M/S, S/M
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i * 3); }
test(r, "float4x4 main(float4x4 m) { return m * 3.0; }", in, expected);
test(r, "float4x4 main(float4x4 m) { return 3.0 * m; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = (float)(i) / 2.0f; }
test(r, "float4x4 main(float4x4 m) { return m / 2.0; }", in, expected);
for (int i = 0; i < 16; ++i) { expected[i] = 1.0f / (float)(i + 1); }
test(r, "float4x4 main(float4x4 m) { return 1.0 / (m + 1); }", in, expected);
#if 0
// Matrix negation - legal in GLSL, not in SkSL?
for (int i = 0; i < 16; ++i) { expected[i] = (float)(-i); }
test(r, "float4x4 main(float4x4 m) { return -m; }", in, 16, expected);
#endif
// M*V, V*M
for (int i = 0; i < 4; ++i) {
expected[i] = 12.0f*i + 13.0f*(i+4) + 14.0f*(i+8);
}
test(r, "float4 main(float3x4 m, float3 v) { return m * v; }", in, expected);
for (int i = 0; i < 4; ++i) {
expected[i] = 12.0f*(3*i) + 13.0f*(3*i+1) + 14.0f*(3*i+2);
}
test(r, "float4 main(float4x3 m, float3 v) { return v * m; }", in, expected);
// M*M
{
SkMatrix44 m;
m.setColMajorf(in);
SkMatrix44 m2;
for (int i = 0; i < 16; ++i) {
m2.set(i % 4, i / 4, (i + 4) % 16);
}
m.setConcat(m, m2);
// Rearrange the columns on the RHS so we detect left-hand/right-hand errors
test(r, "float4x4 main(float4x4 m) { return m * float4x4(m[1], m[2], m[3], m[0]); }",
in, (float*)&m);
}
}
DEF_TEST(SkSLInterpreterTernary, r) {
test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }",
0, 1, 2, 0, 2, 1, 2, 0);
test(r, "void main(inout half4 color) { color.r = color.g > color.b ? color.g : color.b; }",
0, 3, 2, 0, 3, 3, 2, 0);
}
DEF_TEST(SkSLInterpreterCast, r) {
union Val {
float f;
uint32_t u;
int32_t s;
};
Val input[2];
Val expected[2];
input[0].s = 3;
input[1].s = -5;
expected[0].f = 3.0f;
expected[1].f = -5.0f;
test(r, "float main(int x) { return float (x); }", (float*)input, (float*)expected);
test(r, "float2 main(int2 x) { return float2(x); }", (float*)input, (float*)expected);
input[0].u = 3;
input[1].u = 5;
expected[0].f = 3.0f;
expected[1].f = 5.0f;
test(r, "float main(uint x) { return float (x); }", (float*)input, (float*)expected);
test(r, "float2 main(uint2 x) { return float2(x); }", (float*)input, (float*)expected);
input[0].f = 3.0f;
input[1].f = -5.0f;
expected[0].s = 3;
expected[1].s = -5;
test(r, "int main(float x) { return int (x); }", (float*)input, (float*)expected);
test(r, "int2 main(float2 x) { return int2(x); }", (float*)input, (float*)expected);
input[0].s = 3;
expected[0].f = 3.0f;
expected[1].f = 3.0f;
test(r, "float2 main(int x) { return float2(x); }", (float*)input, (float*)expected);
}
DEF_TEST(SkSLInterpreterIf, r) {
test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 3, 0, 0,
5, 3, 0, 1);
test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r > color.g) color.a = 1; }", 5, 6, 0, 0,
5, 6, 0, 0);
test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 3, 5, 0, 0,
3, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r < color.g) color.a = 1; }", 6, 5, 0, 0,
6, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 3, 0, 0,
5, 3, 0, 1);
test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r >= color.g) color.a = 1; }", 5, 6, 0, 0,
5, 6, 0, 0);
test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 3, 5, 0, 0,
3, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 5, 5, 0, 0,
5, 5, 0, 1);
test(r, "void main(inout half4 color) { if (color.r <= color.g) color.a = 1; }", 6, 5, 0, 0,
6, 5, 0, 0);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, 2, 0, 0,
2, 2, 0, 1);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; }", 2, -2, 0, 0,
2, -2, 0, 0);
test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, 2, 0, 0,
2, 2, 0, 0);
test(r, "void main(inout half4 color) { if (color.r != color.g) color.a = 1; }", 2, -2, 0, 0,
2, -2, 0, 1);
test(r, "void main(inout half4 color) { if (!(color.r == color.g)) color.a = 1; }", 2, 2, 0, 0,
2, 2, 0, 0);
test(r, "void main(inout half4 color) { if (!(color.r == color.g)) color.a = 1; }", 2, -2, 0, 0,
2, -2, 0, 1);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else "
"color.a = 2; }", 1, 1, 0, 0, 1, 1, 0, 1);
test(r, "void main(inout half4 color) { if (color.r == color.g) color.a = 1; else "
"color.a = 2; }", 2, -2, 0, 0, 2, -2, 0, 2);
}
DEF_TEST(SkSLInterpreterIfVector, r) {
test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }",
1, 2, 1, 2, 1, 2, 1, 1);
test(r, "void main(inout half4 color) { if (color.rg == color.ba) color.a = 1; }",
1, 2, 3, 2, 1, 2, 3, 2);
test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }",
1, 2, 1, 2, 1, 2, 1, 2);
test(r, "void main(inout half4 color) { if (color.rg != color.ba) color.a = 1; }",
1, 2, 3, 2, 1, 2, 3, 1);
}
DEF_TEST(SkSLInterpreterWhile, r) {
test(r, "void main(inout half4 color) { while (color.r < 8) { color.r++; } }",
1, 2, 3, 4, 8, 2, 3, 4);
test(r, "void main(inout half4 color) { while (color.r < 1) color.r += 0.25; }", 0, 0, 0, 0, 1,
0, 0, 0);
test(r, "void main(inout half4 color) { while (color.r > 1) color.r -= 0.25; }", 0, 0, 0, 0, 0,
0, 0, 0);
test(r, "void main(inout half4 color) { while (true) { color.r += 0.5; "
"if (color.r > 5) break; } }", 0, 0, 0, 0, 5.5, 0, 0, 0);
test(r, "void main(inout half4 color) { while (color.r < 10) { color.r += 0.5; "
"if (color.r < 5) continue; break; } }", 0, 0, 0, 0, 5, 0, 0, 0);
test(r,
"void main(inout half4 color) {"
" while (true) {"
" if (color.r > 4) { break; }"
" while (true) { color.a = 1; break; }"
" break;"
" }"
"}",
6, 5, 4, 3, 6, 5, 4, 3);
}
DEF_TEST(SkSLInterpreterDo, r) {
test(r, "void main(inout half4 color) { do color.r += 0.25; while (color.r < 1); }", 0, 0, 0, 0,
1, 0, 0, 0);
test(r, "void main(inout half4 color) { do color.r -= 0.25; while (color.r > 1); }", 0, 0, 0, 0,
-0.25, 0, 0, 0);
test(r, "void main(inout half4 color) { do { color.r += 0.5; if (color.r > 1) break; } while "
"(true); }", 0, 0, 0, 0, 1.5, 0, 0, 0);
test(r, "void main(inout half4 color) {do { color.r += 0.5; if (color.r < 5) "
"continue; if (color.r >= 5) break; } while (true); }", 0, 0, 0, 0, 5, 0, 0, 0);
test(r, "void main(inout half4 color) { do { color.r += 0.5; } while (false); }",
0, 0, 0, 0, 0.5, 0, 0, 0);
}
DEF_TEST(SkSLInterpreterFor, r) {
test(r, "void main(inout half4 color) { for (int i = 1; i <= 10; ++i) color.r += i; }", 0, 0, 0,
0, 55, 0, 0, 0);
test(r,
"void main(inout half4 color) {"
" for (int i = 1; i <= 10; ++i)"
" for (int j = i; j <= 10; ++j)"
" color.r += j;"
"}",
0, 0, 0, 0,
385, 0, 0, 0);
test(r,
"void main(inout half4 color) {"
" for (int i = 1; i <= 10; ++i)"
" for (int j = 1; ; ++j) {"
" if (i == j) continue;"
" if (j > 10) break;"
" color.r += j;"
" }"
"}",
0, 0, 0, 0,
495, 0, 0, 0);
}
DEF_TEST(SkSLInterpreterPrefixPostfix, r) {
test(r, "void main(inout half4 color) { color.r = ++color.g; }", 1, 2, 3, 4, 3, 3, 3, 4);
test(r, "void main(inout half4 color) { color.r = color.g++; }", 1, 2, 3, 4, 2, 3, 3, 4);
}
DEF_TEST(SkSLInterpreterSwizzle, r) {
test(r, "void main(inout half4 color) { color = color.abgr; }", 1, 2, 3, 4, 4, 3, 2, 1);
test(r, "void main(inout half4 color) { color.rgb = half4(5, 6, 7, 8).bbg; }", 1, 2, 3, 4, 7, 7,
6, 4);
test(r, "void main(inout half4 color) { color.bgr = int3(5, 6, 7); }", 1, 2, 3, 4, 7, 6,
5, 4);
}
DEF_TEST(SkSLInterpreterGlobal, r) {
test(r, "int x; void main(inout half4 color) { x = 10; color.b = x; }", 1, 2, 3, 4, 1, 2, 10,
4);
test(r, "float4 x; void main(inout float4 color) { x = color * 2; color = x; }",
1, 2, 3, 4, 2, 4, 6, 8);
test(r, "float4 x; void main(inout float4 color) { x = float4(5, 6, 7, 8); color = x.wzyx; }",
1, 2, 3, 4, 8, 7, 6, 5);
test(r, "float4 x; void main(inout float4 color) { x.wzyx = float4(5, 6, 7, 8); color = x; }",
1, 2, 3, 4, 8, 7, 6, 5);
}
DEF_TEST(SkSLInterpreterGeneric, r) {
float value1 = 5;
float expected1 = 25;
test(r, "float main(float x) { return x * x; }", &value1, &expected1);
float value2[2] = { 5, 25 };
float expected2[2] = { 25, 625 };
test(r, "float2 main(float x, float y) { return float2(x * x, y * y); }", value2, expected2);
}
DEF_TEST(SkSLInterpreterCompound, r) {
struct RectAndColor { SkIRect fRect; SkColor4f fColor; };
struct ManyRects { int fNumRects; RectAndColor fRects[4]; };
const char* src =
// Some struct definitions
"struct Point { int x; int y; };\n"
"struct Rect { Point p0; Point p1; };\n"
"struct RectAndColor { Rect r; float4 color; };\n"
// Structs as globals, parameters, return values
"RectAndColor temp;\n"
"int rect_height(Rect r) { return r.p1.y - r.p0.y; }\n"
"RectAndColor make_blue_rect(int w, int h) {\n"
" temp.r.p0.x = temp.r.p0.y = 0;\n"
" temp.r.p1.x = w; temp.r.p1.y = h;\n"
" temp.color = float4(0, 1, 0, 1);\n"
" return temp;\n"
"}\n"
// Initialization and assignment of types larger than 4 slots
"RectAndColor init_big(RectAndColor r) { RectAndColor s = r; return s; }\n"
"RectAndColor copy_big(RectAndColor r) { RectAndColor s; s = r; return s; }\n"
// Same for arrays, including some non-constant indexing
"float tempFloats[8];\n"
"int median(int a[15]) { return a[7]; }\n"
"float[8] sums(float a[8]) {\n"
" float tempFloats[8];\n"
" tempFloats[0] = a[0];\n"
" for (int i = 1; i < 8; ++i) { tempFloats[i] = tempFloats[i - 1] + a[i]; }\n"
" return tempFloats;\n"
"}\n"
// Uniforms, array-of-structs, dynamic indices
"uniform Rect gRects[4];\n"
"Rect get_rect(int i) { return gRects[i]; }\n"
// Kitchen sink (swizzles, inout, SoAoS)
"struct ManyRects { int numRects; RectAndColor rects[4]; };\n"
"void fill_rects(inout ManyRects mr) {\n"
" for (int i = 0; i < mr.numRects; ++i) {\n"
" mr.rects[i].r = gRects[i];\n"
" float b = mr.rects[i].r.p1.y;\n"
" mr.rects[i].color = float4(b, b, b, b);\n"
" }\n"
"}\n";
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind,
SkSL::String(src), settings);
REPORTER_ASSERT(r, program);
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
auto rect_height = byteCode->getFunction("rect_height"),
make_blue_rect = byteCode->getFunction("make_blue_rect"),
median = byteCode->getFunction("median"),
sums = byteCode->getFunction("sums"),
get_rect = byteCode->getFunction("get_rect"),
fill_rects = byteCode->getFunction("fill_rects");
SkIRect gRects[4] = { { 1,2,3,4 }, { 5,6,7,8 }, { 9,10,11,12 }, { 13,14,15,16 } };
const float* fRects = (const float*)gRects;
{
SkIRect in = SkIRect::MakeXYWH(10, 10, 20, 30);
int out = 0;
SkAssertResult(byteCode->run(rect_height, (float*)&in, 4, (float*)&out, 1, fRects, 16));
REPORTER_ASSERT(r, out == 30);
}
{
int in[2] = { 15, 25 };
RectAndColor out;
SkAssertResult(byteCode->run(make_blue_rect, (float*)in, 2, (float*)&out, 8, fRects, 16));
REPORTER_ASSERT(r, out.fRect.width() == 15);
REPORTER_ASSERT(r, out.fRect.height() == 25);
SkColor4f blue = { 0.0f, 1.0f, 0.0f, 1.0f };
REPORTER_ASSERT(r, out.fColor == blue);
}
{
int in[15] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
int out = 0;
SkAssertResult(byteCode->run(median, (float*)in, 15, (float*)&out, 1, fRects, 16));
REPORTER_ASSERT(r, out == 8);
}
{
float in[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
float out[8] = { 0 };
SkAssertResult(byteCode->run(sums, in, 8, out, 8, fRects, 16));
for (int i = 0; i < 8; ++i) {
REPORTER_ASSERT(r, out[i] == static_cast<float>((i + 1) * (i + 2) / 2));
}
}
{
int in = 2;
SkIRect out = SkIRect::MakeEmpty();
SkAssertResult(byteCode->run(get_rect, (float*)&in, 1, (float*)&out, 4, fRects, 16));
REPORTER_ASSERT(r, out == gRects[2]);
}
{
ManyRects in;
memset(&in, 0, sizeof(in));
in.fNumRects = 2;
SkAssertResult(byteCode->run(fill_rects, (float*)&in, 33, nullptr, 0, fRects, 16));
ManyRects expected;
memset(&expected, 0, sizeof(expected));
expected.fNumRects = 2;
for (int i = 0; i < 2; ++i) {
expected.fRects[i].fRect = gRects[i];
float c = gRects[i].fBottom;
expected.fRects[i].fColor = { c, c, c, c };
}
REPORTER_ASSERT(r, memcmp(&in, &expected, sizeof(in)) == 0);
}
}
static void expect_failure(skiatest::Reporter* r, const char* src) {
SkSL::Compiler compiler;
auto program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src),
SkSL::Program::Settings());
REPORTER_ASSERT(r, program);
auto byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, compiler.errorCount() > 0);
REPORTER_ASSERT(r, !byteCode);
}
static void expect_run_failure(skiatest::Reporter* r, const char* src, float* in) {
SkSL::Compiler compiler;
auto program = compiler.convertProgram(SkSL::Program::kGeneric_Kind, SkSL::String(src),
SkSL::Program::Settings());
REPORTER_ASSERT(r, program);
auto byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, byteCode);
auto fun = byteCode->getFunction("main");
bool result = byteCode->run(fun, in, fun->getParameterCount(), nullptr, 0, nullptr, 0);
REPORTER_ASSERT(r, !result);
}
DEF_TEST(SkSLInterpreterRestrictFunctionCalls, r) {
// Ensure that simple recursion is not allowed
expect_failure(r, "float main() { return main() + 1; }");
// Ensure that calls to undefined functions are not allowed (to prevent mutual recursion)
expect_failure(r, "float foo(); float bar() { return foo(); } float foo() { return bar(); }");
// returns are not allowed inside conditionals (or loops, which are effectively the same thing)
expect_failure(r, "float main(float x, float y) { if (x < y) { return x; } return y; }");
expect_failure(r, "float main(float x) { while (x > 1) { return x; } return 0; }");
}
DEF_TEST(SkSLInterpreterArrayBounds, r) {
// Out of bounds array access at compile time
expect_failure(r, "float main(float x[4]) { return x[-1]; }");
expect_failure(r, "float2 main(float2 x[2]) { return x[2]; }");
// Out of bounds array access at runtime is pinned, and we don't update any inout data
float in[3] = { -1.0f, 1.0f, 2.0f };
expect_run_failure(r, "void main(inout float data[3]) { data[int(data[0])] = 0; }", in);
REPORTER_ASSERT(r, in[0] == -1.0f && in[1] == 1.0f && in[2] == 2.0f);
in[0] = 3.0f;
expect_run_failure(r, "void main(inout float data[3]) { data[int(data[0])] = 0; }", in);
REPORTER_ASSERT(r, in[0] == 3.0f && in[1] == 1.0f && in[2] == 2.0f);
}
DEF_TEST(SkSLInterpreterFunctions, r) {
const char* src =
"float sqr(float x) { return x * x; }\n"
"float sub(float x, float y) { return x - y; }\n"
"float main(float x) { return sub(sqr(x), x); }\n"
// Different signatures
"float dot(float2 a, float2 b) { return a.x*b.x + a.y*b.y; }\n"
"float dot(float3 a, float3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; }\n"
"float dot3_test(float x) { return dot(float3(x, x + 1, x + 2), float3(1, -1, 2)); }\n"
"float dot2_test(float x) { return dot(float2(x, x + 1), float2(1, -1)); }\n";
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind,
SkSL::String(src), settings);
REPORTER_ASSERT(r, program);
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
auto sub = byteCode->getFunction("sub");
auto sqr = byteCode->getFunction("sqr");
auto main = byteCode->getFunction("main");
auto tan = byteCode->getFunction("tan");
auto dot3 = byteCode->getFunction("dot3_test");
auto dot2 = byteCode->getFunction("dot2_test");
REPORTER_ASSERT(r, sub);
REPORTER_ASSERT(r, sqr);
REPORTER_ASSERT(r, main);
REPORTER_ASSERT(r, !tan);
REPORTER_ASSERT(r, dot3);
REPORTER_ASSERT(r, dot2);
float out = 0.0f;
float in = 3.0f;
SkAssertResult(byteCode->run(main, &in, 1, &out, 1, nullptr, 0));
REPORTER_ASSERT(r, out = 6.0f);
SkAssertResult(byteCode->run(dot3, &in, 1, &out, 1, nullptr, 0));
REPORTER_ASSERT(r, out = 9.0f);
SkAssertResult(byteCode->run(dot2, &in, 1, &out, 1, nullptr, 0));
REPORTER_ASSERT(r, out = -1.0f);
}
DEF_TEST(SkSLInterpreterOutParams, r) {
test(r,
"void oneAlpha(inout half4 color) { color.a = 1; }"
"void main(inout half4 color) { oneAlpha(color); }",
0, 0, 0, 0, 0, 0, 0, 1);
test(r,
"half2 tricky(half x, half y, inout half2 color, half z) {"
" color.xy = color.yx;"
" return half2(x + y, z);"
"}"
"void main(inout half4 color) {"
" half2 t = tricky(1, 2, color.rb, 5);"
" color.ga = t;"
"}",
1, 2, 3, 4, 3, 3, 1, 5);
}
DEF_TEST(SkSLInterpreterMathFunctions, r) {
float value[4], expected[4];
value[0] = 0.0f; expected[0] = 0.0f;
test(r, "float main(float x) { return sin(x); }", value, expected);
test(r, "float main(float x) { return tan(x); }", value, expected);
value[0] = 0.0f; expected[0] = 1.0f;
test(r, "float main(float x) { return cos(x); }", value, expected);
value[0] = 25.0f; expected[0] = 5.0f;
test(r, "float main(float x) { return sqrt(x); }", value, expected);
value[0] = 90.0f; expected[0] = sk_float_degrees_to_radians(value[0]);
test(r, "float main(float x) { return radians(x); }", value, expected);
value[0] = 1.0f; value[1] = -1.0f;
expected[0] = 1.0f / SK_FloatSqrt2; expected[1] = -1.0f / SK_FloatSqrt2;
test(r, "float2 main(float2 x) { return normalize(x); }", value, expected);
}
DEF_TEST(SkSLInterpreterVoidFunction, r) {
test(r,
"half x; void foo() { x = 1.0; }"
"void main(inout half4 color) { foo(); color.r = x; }",
0, 0, 0, 0, 1, 0, 0, 0);
}
DEF_TEST(SkSLInterpreterMix, r) {
float value, expected;
value = 0.5f; expected = 0.0f;
test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected);
value = 0.75f; expected = 5.0f;
test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected);
value = 2.0f; expected = 30.0f;
test(r, "float main(float x) { return mix(-10, 10, x); }", &value, &expected);
float valueVectors[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f },
expectedVector[] = { 3.0f, 4.0f, 5.0f, 6.0f };
test(r, "float4 main(float4 x, float4 y) { return mix(x, y, 0.5); }", valueVectors,
expectedVector);
}
DEF_TEST(SkSLInterpreterCross, r) {
float args[] = { 1.0f, 4.0f, -6.0f, -2.0f, 7.0f, -3.0f };
SkPoint3 cross = SkPoint3::CrossProduct(SkPoint3::Make(args[0], args[1], args[2]),
SkPoint3::Make(args[3], args[4], args[5]));
float expected[] = { cross.fX, cross.fY, cross.fZ };
test(r, "float3 main(float3 x, float3 y) { return cross(x, y); }", args, expected);
}
DEF_TEST(SkSLInterpreterInverse, r) {
{
SkMatrix m;
m.setRotate(30).postScale(1, 2);
float args[4] = { m[0], m[3], m[1], m[4] };
SkAssertResult(m.invert(&m));
float expt[4] = { m[0], m[3], m[1], m[4] };
test(r, "float2x2 main(float2x2 m) { return inverse(m); }", args, expt, false);
}
{
SkMatrix m;
m.setRotate(30).postScale(1, 2).postTranslate(1, 2);
float args[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
SkAssertResult(m.invert(&m));
float expt[9] = { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
test(r, "float3x3 main(float3x3 m) { return inverse(m); }", args, expt, false);
}
{
float args[16], expt[16];
SkMatrix44 m;
// just some crazy thing that is invertible
m.set4x4(1, 2, 3, 4, 1, 2, 0, 3, 1, 0, 1, 4, 1, 3, 2, 0);
m.asColMajorf(args);
SkAssertResult(m.invert(&m));
m.asColMajorf(expt);
test(r, "float4x4 main(float4x4 m) { return inverse(m); }", args, expt, false);
}
}
DEF_TEST(SkSLInterpreterDot, r) {
float args[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f };
float expected = args[0] * args[2] +
args[1] * args[3];
test(r, "float main(float2 x, float2 y) { return dot(x, y); }", args, &expected);
expected = args[0] * args[3] +
args[1] * args[4] +
args[2] * args[5];
test(r, "float main(float3 x, float3 y) { return dot(x, y); }", args, &expected);
expected = args[0] * args[4] +
args[1] * args[5] +
args[2] * args[6] +
args[3] * args[7];
test(r, "float main(float4 x, float4 y) { return dot(x, y); }", args, &expected);
}
static const SkSL::Type& type_of(const skjson::Value* value, SkSL::Compiler* compiler) {
switch (value->getType()) {
case skjson::Value::Type::kNumber: {
float f = *value->as<skjson::NumberValue>();
if (f == (float) (int) f) {
return *compiler->context().fInt_Type;
}
return *compiler->context().fFloat_Type;
}
case skjson::Value::Type::kBool:
return *compiler->context().fBool_Type;
default:
return *compiler->context().fVoid_Type;
}
}
class JSONExternalValue : public SkSL::ExternalValue {
public:
JSONExternalValue(const char* name, const skjson::Value* value, SkSL::Compiler* compiler)
: INHERITED(name, type_of(value, compiler))
, fValue(*value)
, fCompiler(*compiler) {}
bool canRead() const override {
return type() != *fCompiler.context().fVoid_Type;
}
void read(int /*unusedIndex*/, float* target) override {
if (type() == *fCompiler.context().fInt_Type) {
*(int*) target = *fValue.as<skjson::NumberValue>();
} else if (type() == *fCompiler.context().fFloat_Type) {
*(float*) target = *fValue.as<skjson::NumberValue>();
} else if (type() == *fCompiler.context().fBool_Type) {
// ByteCode "booleans" are actually bit-masks
*(int*) target = *fValue.as<skjson::BoolValue>() ? ~0 : 0;
} else {
SkASSERT(false);
}
}
SkSL::ExternalValue* getChild(const char* name) const override {
if (fValue.getType() == skjson::Value::Type::kObject) {
const skjson::Value& v = fValue.as<skjson::ObjectValue>()[name];
return (SkSL::ExternalValue*) fCompiler.takeOwnership(std::unique_ptr<Symbol>(
new JSONExternalValue(name, &v, &fCompiler)));
}
return nullptr;
}
private:
const skjson::Value& fValue;
SkSL::Compiler& fCompiler;
typedef SkSL::ExternalValue INHERITED;
};
class PointerExternalValue : public SkSL::ExternalValue {
public:
PointerExternalValue(const char* name, const SkSL::Type& type, void* data, size_t size)
: INHERITED(name, type)
, fData(data)
, fSize(size) {}
bool canRead() const override {
return true;
}
bool canWrite() const override {
return true;
}
void read(int /*unusedIndex*/, float* target) override {
memcpy(target, fData, fSize);
}
void write(int /*unusedIndex*/, float* src) override {
memcpy(fData, src, fSize);
}
private:
void* fData;
size_t fSize;
typedef SkSL::ExternalValue INHERITED;
};
DEF_TEST(SkSLInterpreterExternalValues, r) {
const char* json = "{ \"value1\": 12, \"child\": { \"value2\": true, \"value3\": 5.5 } }";
skjson::DOM dom(json, strlen(json));
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
const char* src = "float main() {"
" outValue = 152;"
" return root.child.value2 ? root.value1 * root.child.value3 : -1;"
"}";
compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership(
std::unique_ptr<SkSL::Symbol>(new JSONExternalValue("root", &dom.root(), &compiler))));
int32_t outValue = -1;
compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership(
std::unique_ptr<SkSL::Symbol>(new PointerExternalValue("outValue",
*compiler.context().fInt_Type,
&outValue,
sizeof(outValue)))));
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind,
SkSL::String(src), settings);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
float out;
SkAssertResult(byteCode->run(main, nullptr, 0, &out, 1, nullptr, 0));
REPORTER_ASSERT(r, out == 66.0);
REPORTER_ASSERT(r, outValue == 152);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
}
DEF_TEST(SkSLInterpreterExternalValuesVector, r) {
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
const char* src = "void main() {"
" value *= 2;"
"}";
int32_t value[4] = { 1, 2, 3, 4 };
compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership(
std::unique_ptr<SkSL::Symbol>(new PointerExternalValue("value",
*compiler.context().fInt4_Type,
value,
sizeof(value)))));
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(SkSL::Program::kGeneric_Kind,
SkSL::String(src),
settings);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
SkAssertResult(byteCode->run(main, nullptr, 0, nullptr, 0, nullptr, 0));
REPORTER_ASSERT(r, value[0] == 2);
REPORTER_ASSERT(r, value[1] == 4);
REPORTER_ASSERT(r, value[2] == 6);
REPORTER_ASSERT(r, value[3] == 8);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
}
class FunctionExternalValue : public SkSL::ExternalValue {
public:
FunctionExternalValue(const char* name, float(*function)(float), SkSL::Compiler& compiler)
: INHERITED(name, *compiler.context().fFloat_Type)
, fCompiler(compiler)
, fFunction(function) {}
bool canCall() const override {
return true;
}
int callParameterCount() const override {
return 1;
}
void getCallParameterTypes(const SkSL::Type** outTypes) const override {
outTypes[0] = fCompiler.context().fFloat_Type.get();
}
void call(int /*unusedIndex*/, float* arguments, float* outReturn) override {
outReturn[0] = fFunction(arguments[0]);
}
private:
SkSL::Compiler& fCompiler;
float (*fFunction)(float);
typedef SkSL::ExternalValue INHERITED;
};
DEF_TEST(SkSLInterpreterExternalValuesCall, r) {
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
const char* src = "float main() {"
" return external(25);"
"}";
compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership(
std::unique_ptr<SkSL::Symbol>(new FunctionExternalValue("external",
[] (float x) {
return (float) sqrt(x);
},
compiler))));
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(SkSL::Program::kGeneric_Kind,
SkSL::String(src),
settings);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
float out;
SkAssertResult(byteCode->run(main, nullptr, 0, &out, 1, nullptr, 0));
REPORTER_ASSERT(r, out == 5.0);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
}
class VectorFunctionExternalValue : public SkSL::ExternalValue {
public:
VectorFunctionExternalValue(const char* name, void(*function)(float[4], float[4]),
SkSL::Compiler& compiler)
: INHERITED(name, *compiler.context().fFloat4_Type)
, fCompiler(compiler)
, fFunction(function) {}
bool canCall() const override {
return true;
}
int callParameterCount() const override {
return 1;
}
void getCallParameterTypes(const SkSL::Type** outTypes) const override {
outTypes[0] = fCompiler.context().fFloat4_Type.get();
}
void call(int /*unusedIndex*/, float* arguments, float* outReturn) override {
fFunction(arguments, outReturn);
}
private:
SkSL::Compiler& fCompiler;
void (*fFunction)(float[4], float[4]);
typedef SkSL::ExternalValue INHERITED;
};
DEF_TEST(SkSLInterpreterExternalValuesVectorCall, r) {
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
const char* src = "float4 main() {"
" return external(float4(1, 4, 9, 16));"
"}";
compiler.registerExternalValue((SkSL::ExternalValue*) compiler.takeOwnership(
std::unique_ptr<SkSL::Symbol>(new VectorFunctionExternalValue("external",
[] (float in[4], float out[4]) {
out[0] = sqrt(in[0]);
out[1] = sqrt(in[1]);
out[2] = sqrt(in[2]);
out[3] = sqrt(in[3]);
},
compiler))));
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(SkSL::Program::kGeneric_Kind,
SkSL::String(src),
settings);
REPORTER_ASSERT(r, program);
if (program) {
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
if (compiler.errorCount() > 0) {
printf("%s\n%s", src, compiler.errorText().c_str());
return;
}
const SkSL::ByteCodeFunction* main = byteCode->getFunction("main");
float out[4];
SkAssertResult(byteCode->run(main, nullptr, 0, out, 4, nullptr, 0));
REPORTER_ASSERT(r, out[0] == 1.0);
REPORTER_ASSERT(r, out[1] == 2.0);
REPORTER_ASSERT(r, out[2] == 3.0);
REPORTER_ASSERT(r, out[3] == 4.0);
} else {
printf("%s\n%s", src, compiler.errorText().c_str());
}
}