blob: 75e5b060062f5c76184a5eb354110a9de8210caa [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// The LazyInstance<Type, Traits> class manages a single instance of Type,
// which will be lazily created on the first time it's accessed. This class is
// useful for places you would normally use a function-level static, but you
// need to have guaranteed thread-safety. The Type constructor will only ever
// be called once, even if two threads are racing to create the object. Get()
// and Pointer() will always return the same, completely initialized instance.
//
// LazyInstance is completely thread safe, assuming that you create it safely.
// The class was designed to be POD initialized, so it shouldn't require a
// static constructor. It really only makes sense to declare a LazyInstance as
// a global variable using the LAZY_INSTANCE_INITIALIZER initializer.
//
// LazyInstance is similar to Singleton, except it does not have the singleton
// property. You can have multiple LazyInstance's of the same type, and each
// will manage a unique instance. It also preallocates the space for Type, as
// to avoid allocating the Type instance on the heap. This may help with the
// performance of creating the instance, and reducing heap fragmentation. This
// requires that Type be a complete type so we can determine the size. See
// notes for advanced users below for more explanations.
//
// Example usage:
// static LazyInstance<MyClass>::type my_instance = LAZY_INSTANCE_INITIALIZER;
// void SomeMethod() {
// my_instance.Get().SomeMethod(); // MyClass::SomeMethod()
//
// MyClass* ptr = my_instance.Pointer();
// ptr->DoDoDo(); // MyClass::DoDoDo
// }
//
// Additionally you can override the way your instance is constructed by
// providing your own trait:
// Example usage:
// struct MyCreateTrait {
// static void Construct(void* allocated_ptr) {
// new (allocated_ptr) MyClass(/* extra parameters... */);
// }
// };
// static LazyInstance<MyClass, MyCreateTrait>::type my_instance =
// LAZY_INSTANCE_INITIALIZER;
//
// WARNINGS:
// - This implementation of LazyInstance IS THREAD-SAFE by default. See
// SingleThreadInitOnceTrait if you don't care about thread safety.
// - Lazy initialization comes with a cost. Make sure that you don't use it on
// critical path. Consider adding your initialization code to a function
// which is explicitly called once.
//
// Notes for advanced users:
// LazyInstance can actually be used in two different ways:
//
// - "Static mode" which is the default mode since it is the most efficient
// (no extra heap allocation). In this mode, the instance is statically
// allocated (stored in the global data section at compile time).
// The macro LAZY_STATIC_INSTANCE_INITIALIZER (= LAZY_INSTANCE_INITIALIZER)
// must be used to initialize static lazy instances.
//
// - "Dynamic mode". In this mode, the instance is dynamically allocated and
// constructed (using new) by default. This mode is useful if you have to
// deal with some code already allocating the instance for you (e.g.
// OS::Mutex() which returns a new private OS-dependent subclass of Mutex).
// The macro LAZY_DYNAMIC_INSTANCE_INITIALIZER must be used to initialize
// dynamic lazy instances.
#ifndef V8_BASE_LAZY_INSTANCE_H_
#define V8_BASE_LAZY_INSTANCE_H_
#include <type_traits>
#include "src/base/macros.h"
#include "src/base/once.h"
namespace v8 {
namespace base {
#define LAZY_STATIC_INSTANCE_INITIALIZER { V8_ONCE_INIT, { {} } }
#define LAZY_DYNAMIC_INSTANCE_INITIALIZER { V8_ONCE_INIT, 0 }
// Default to static mode.
#define LAZY_INSTANCE_INITIALIZER LAZY_STATIC_INSTANCE_INITIALIZER
template <typename T>
struct LeakyInstanceTrait {
static void Destroy(T* /* instance */) {}
};
// Traits that define how an instance is allocated and accessed.
template <typename T>
struct StaticallyAllocatedInstanceTrait {
using StorageType =
typename std::aligned_storage<sizeof(T), alignof(T)>::type;
static T* MutableInstance(StorageType* storage) {
return reinterpret_cast<T*>(storage);
}
template <typename ConstructTrait>
static void InitStorageUsingTrait(StorageType* storage) {
ConstructTrait::Construct(storage);
}
};
template <typename T>
struct DynamicallyAllocatedInstanceTrait {
using StorageType = T*;
static T* MutableInstance(StorageType* storage) {
return *storage;
}
template <typename CreateTrait>
static void InitStorageUsingTrait(StorageType* storage) {
*storage = CreateTrait::Create();
}
};
template <typename T>
struct DefaultConstructTrait {
// Constructs the provided object which was already allocated.
static void Construct(void* allocated_ptr) { new (allocated_ptr) T(); }
};
template <typename T>
struct DefaultCreateTrait {
static T* Create() {
return new T();
}
};
struct ThreadSafeInitOnceTrait {
template <typename Function, typename Storage>
static void Init(OnceType* once, Function function, Storage storage) {
CallOnce(once, function, storage);
}
};
// Initialization trait for users who don't care about thread-safety.
struct SingleThreadInitOnceTrait {
template <typename Function, typename Storage>
static void Init(OnceType* once, Function function, Storage storage) {
if (*once == ONCE_STATE_UNINITIALIZED) {
function(storage);
*once = ONCE_STATE_DONE;
}
}
};
// TODO(pliard): Handle instances destruction (using global destructors).
template <typename T, typename AllocationTrait, typename CreateTrait,
typename InitOnceTrait, typename DestroyTrait /* not used yet. */>
struct LazyInstanceImpl {
public:
using StorageType = typename AllocationTrait::StorageType;
private:
static void InitInstance(void* storage) {
AllocationTrait::template InitStorageUsingTrait<CreateTrait>(
static_cast<StorageType*>(storage));
}
void Init() const {
InitOnceTrait::Init(&once_, &InitInstance, static_cast<void*>(&storage_));
}
public:
T* Pointer() {
Init();
return AllocationTrait::MutableInstance(&storage_);
}
const T& Get() const {
Init();
return *AllocationTrait::MutableInstance(&storage_);
}
mutable OnceType once_;
// Note that the previous field, OnceType, is an AtomicWord which guarantees
// 4-byte alignment of the storage field below. If compiling with GCC (>4.2),
// the LAZY_ALIGN macro above will guarantee correctness for any alignment.
mutable StorageType storage_;
};
template <typename T,
typename CreateTrait = DefaultConstructTrait<T>,
typename InitOnceTrait = ThreadSafeInitOnceTrait,
typename DestroyTrait = LeakyInstanceTrait<T> >
struct LazyStaticInstance {
using type = LazyInstanceImpl<T, StaticallyAllocatedInstanceTrait<T>,
CreateTrait, InitOnceTrait, DestroyTrait>;
};
template <typename T,
typename CreateTrait = DefaultConstructTrait<T>,
typename InitOnceTrait = ThreadSafeInitOnceTrait,
typename DestroyTrait = LeakyInstanceTrait<T> >
struct LazyInstance {
// A LazyInstance is a LazyStaticInstance.
using type = typename LazyStaticInstance<T, CreateTrait, InitOnceTrait,
DestroyTrait>::type;
};
template <typename T,
typename CreateTrait = DefaultCreateTrait<T>,
typename InitOnceTrait = ThreadSafeInitOnceTrait,
typename DestroyTrait = LeakyInstanceTrait<T> >
struct LazyDynamicInstance {
using type = LazyInstanceImpl<T, DynamicallyAllocatedInstanceTrait<T>,
CreateTrait, InitOnceTrait, DestroyTrait>;
};
// LeakyObject<T> wraps an object of type T, which is initialized in the
// constructor but never destructed. Thus LeakyObject<T> is trivially
// destructible and can be used in static (lazily initialized) variables.
template <typename T>
class LeakyObject {
public:
template <typename... Args>
explicit LeakyObject(Args&&... args) {
new (&storage_) T(std::forward<Args>(args)...);
}
LeakyObject(const LeakyObject&) = delete;
LeakyObject& operator=(const LeakyObject&) = delete;
T* get() { return reinterpret_cast<T*>(&storage_); }
private:
typename std::aligned_storage<sizeof(T), alignof(T)>::type storage_;
};
// Define a function which returns a pointer to a lazily initialized and never
// destructed object of type T.
#define DEFINE_LAZY_LEAKY_OBJECT_GETTER(T, FunctionName, ...) \
T* FunctionName() { \
static ::v8::base::LeakyObject<T> object{__VA_ARGS__}; \
return object.get(); \
}
} // namespace base
} // namespace v8
#endif // V8_BASE_LAZY_INSTANCE_H_