| // Copyright 2013 the V8 project authors. All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #if V8_TARGET_ARCH_ARM64 |
| |
| #include "src/codegen/arm64/assembler-arm64.h" |
| |
| #include "src/base/bits.h" |
| #include "src/base/cpu.h" |
| #include "src/codegen/arm64/assembler-arm64-inl.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/codegen/safepoint-table.h" |
| #include "src/codegen/string-constants.h" |
| #include "src/execution/frame-constants.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| namespace { |
| |
| #ifdef USE_SIMULATOR |
| static unsigned SimulatorFeaturesFromCommandLine() { |
| if (strcmp(FLAG_sim_arm64_optional_features, "none") == 0) { |
| return 0; |
| } |
| if (strcmp(FLAG_sim_arm64_optional_features, "all") == 0) { |
| return (1u << NUMBER_OF_CPU_FEATURES) - 1; |
| } |
| fprintf( |
| stderr, |
| "Error: unrecognised value for --sim-arm64-optional-features ('%s').\n", |
| FLAG_sim_arm64_optional_features); |
| fprintf(stderr, |
| "Supported values are: none\n" |
| " all\n"); |
| FATAL("sim-arm64-optional-features"); |
| } |
| #endif // USE_SIMULATOR |
| |
| static constexpr unsigned CpuFeaturesFromCompiler() { |
| unsigned features = 0; |
| #if defined(__ARM_FEATURE_JCVT) |
| features |= 1u << JSCVT; |
| #endif |
| return features; |
| } |
| |
| } // namespace |
| |
| // ----------------------------------------------------------------------------- |
| // CpuFeatures implementation. |
| |
| void CpuFeatures::ProbeImpl(bool cross_compile) { |
| // Only use statically determined features for cross compile (snapshot). |
| if (cross_compile) { |
| supported_ |= CpuFeaturesFromCompiler(); |
| return; |
| } |
| |
| // We used to probe for coherent cache support, but on older CPUs it |
| // causes crashes (crbug.com/524337), and newer CPUs don't even have |
| // the feature any more. |
| |
| #ifdef USE_SIMULATOR |
| supported_ |= SimulatorFeaturesFromCommandLine(); |
| #else |
| // Probe for additional features at runtime. |
| base::CPU cpu; |
| unsigned runtime = 0; |
| if (cpu.has_jscvt()) { |
| runtime |= 1u << JSCVT; |
| } |
| |
| // Use the best of the features found by CPU detection and those inferred from |
| // the build system. |
| supported_ |= CpuFeaturesFromCompiler(); |
| supported_ |= runtime; |
| #endif // USE_SIMULATOR |
| } |
| |
| void CpuFeatures::PrintTarget() {} |
| void CpuFeatures::PrintFeatures() {} |
| |
| // ----------------------------------------------------------------------------- |
| // CPURegList utilities. |
| |
| CPURegister CPURegList::PopLowestIndex() { |
| if (IsEmpty()) { |
| return NoCPUReg; |
| } |
| int index = base::bits::CountTrailingZeros(list_); |
| DCHECK((1LL << index) & list_); |
| Remove(index); |
| return CPURegister::Create(index, size_, type_); |
| } |
| |
| CPURegister CPURegList::PopHighestIndex() { |
| if (IsEmpty()) { |
| return NoCPUReg; |
| } |
| int index = CountLeadingZeros(list_, kRegListSizeInBits); |
| index = kRegListSizeInBits - 1 - index; |
| DCHECK((1LL << index) & list_); |
| Remove(index); |
| return CPURegister::Create(index, size_, type_); |
| } |
| |
| void CPURegList::Align() { |
| // Use padreg, if necessary, to maintain stack alignment. |
| if (Count() % 2 != 0) { |
| if (IncludesAliasOf(padreg)) { |
| Remove(padreg); |
| } else { |
| Combine(padreg); |
| } |
| } |
| |
| DCHECK_EQ(Count() % 2, 0); |
| } |
| |
| CPURegList CPURegList::GetCalleeSaved(int size) { |
| return CPURegList(CPURegister::kRegister, size, 19, 28); |
| } |
| |
| CPURegList CPURegList::GetCalleeSavedV(int size) { |
| return CPURegList(CPURegister::kVRegister, size, 8, 15); |
| } |
| |
| CPURegList CPURegList::GetCallerSaved(int size) { |
| // x18 is the platform register and is reserved for the use of platform ABIs. |
| // Registers x0-x17 are caller-saved. |
| CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 17); |
| return list; |
| } |
| |
| CPURegList CPURegList::GetCallerSavedV(int size) { |
| // Registers d0-d7 and d16-d31 are caller-saved. |
| CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7); |
| list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31)); |
| return list; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| const int RelocInfo::kApplyMask = |
| RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | |
| RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | |
| RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE); |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on ARM64 means that it is an immediate branch. |
| Instruction* instr = reinterpret_cast<Instruction*>(pc_); |
| if (instr->IsLdrLiteralX()) { |
| return false; |
| } else { |
| DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); |
| return true; |
| } |
| } |
| |
| bool RelocInfo::IsInConstantPool() { |
| Instruction* instr = reinterpret_cast<Instruction*>(pc_); |
| DCHECK_IMPLIES(instr->IsLdrLiteralW(), COMPRESS_POINTERS_BOOL); |
| return instr->IsLdrLiteralX() || |
| (COMPRESS_POINTERS_BOOL && instr->IsLdrLiteralW()); |
| } |
| |
| uint32_t RelocInfo::wasm_call_tag() const { |
| DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); |
| Instruction* instr = reinterpret_cast<Instruction*>(pc_); |
| if (instr->IsLdrLiteralX()) { |
| return static_cast<uint32_t>( |
| Memory<Address>(Assembler::target_pointer_address_at(pc_))); |
| } else { |
| DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); |
| return static_cast<uint32_t>(instr->ImmPCOffset() / kInstrSize); |
| } |
| } |
| |
| bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, |
| const CPURegister& reg3, const CPURegister& reg4, |
| const CPURegister& reg5, const CPURegister& reg6, |
| const CPURegister& reg7, const CPURegister& reg8) { |
| int number_of_valid_regs = 0; |
| int number_of_valid_fpregs = 0; |
| |
| RegList unique_regs = 0; |
| RegList unique_fpregs = 0; |
| |
| const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}; |
| |
| for (unsigned i = 0; i < arraysize(regs); i++) { |
| if (regs[i].IsRegister()) { |
| number_of_valid_regs++; |
| unique_regs |= regs[i].bit(); |
| } else if (regs[i].IsVRegister()) { |
| number_of_valid_fpregs++; |
| unique_fpregs |= regs[i].bit(); |
| } else { |
| DCHECK(!regs[i].is_valid()); |
| } |
| } |
| |
| int number_of_unique_regs = |
| CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte); |
| int number_of_unique_fpregs = |
| CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte); |
| |
| DCHECK(number_of_valid_regs >= number_of_unique_regs); |
| DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs); |
| |
| return (number_of_valid_regs != number_of_unique_regs) || |
| (number_of_valid_fpregs != number_of_unique_fpregs); |
| } |
| |
| bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, |
| const CPURegister& reg3, const CPURegister& reg4, |
| const CPURegister& reg5, const CPURegister& reg6, |
| const CPURegister& reg7, const CPURegister& reg8) { |
| DCHECK(reg1.is_valid()); |
| bool match = true; |
| match &= !reg2.is_valid() || reg2.IsSameSizeAndType(reg1); |
| match &= !reg3.is_valid() || reg3.IsSameSizeAndType(reg1); |
| match &= !reg4.is_valid() || reg4.IsSameSizeAndType(reg1); |
| match &= !reg5.is_valid() || reg5.IsSameSizeAndType(reg1); |
| match &= !reg6.is_valid() || reg6.IsSameSizeAndType(reg1); |
| match &= !reg7.is_valid() || reg7.IsSameSizeAndType(reg1); |
| match &= !reg8.is_valid() || reg8.IsSameSizeAndType(reg1); |
| return match; |
| } |
| |
| bool AreSameFormat(const VRegister& reg1, const VRegister& reg2, |
| const VRegister& reg3, const VRegister& reg4) { |
| DCHECK(reg1.is_valid()); |
| return (!reg2.is_valid() || reg2.IsSameFormat(reg1)) && |
| (!reg3.is_valid() || reg3.IsSameFormat(reg1)) && |
| (!reg4.is_valid() || reg4.IsSameFormat(reg1)); |
| } |
| |
| bool AreConsecutive(const VRegister& reg1, const VRegister& reg2, |
| const VRegister& reg3, const VRegister& reg4) { |
| DCHECK(reg1.is_valid()); |
| if (!reg2.is_valid()) { |
| DCHECK(!reg3.is_valid() && !reg4.is_valid()); |
| return true; |
| } else if (reg2.code() != ((reg1.code() + 1) % kNumberOfVRegisters)) { |
| return false; |
| } |
| |
| if (!reg3.is_valid()) { |
| DCHECK(!reg4.is_valid()); |
| return true; |
| } else if (reg3.code() != ((reg2.code() + 1) % kNumberOfVRegisters)) { |
| return false; |
| } |
| |
| if (!reg4.is_valid()) { |
| return true; |
| } else if (reg4.code() != ((reg3.code() + 1) % kNumberOfVRegisters)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Operand::NeedsRelocation(const Assembler* assembler) const { |
| RelocInfo::Mode rmode = immediate_.rmode(); |
| |
| if (RelocInfo::IsOnlyForSerializer(rmode)) { |
| return assembler->options().record_reloc_info_for_serialization; |
| } |
| |
| return !RelocInfo::IsNone(rmode); |
| } |
| |
| // Assembler |
| Assembler::Assembler(const AssemblerOptions& options, |
| std::unique_ptr<AssemblerBuffer> buffer) |
| : AssemblerBase(options, std::move(buffer)), |
| unresolved_branches_(), |
| constpool_(this) { |
| veneer_pool_blocked_nesting_ = 0; |
| Reset(); |
| |
| #if defined(V8_OS_WIN) |
| if (options.collect_win64_unwind_info) { |
| xdata_encoder_ = std::make_unique<win64_unwindinfo::XdataEncoder>(*this); |
| } |
| #endif |
| } |
| |
| Assembler::~Assembler() { |
| DCHECK(constpool_.IsEmpty()); |
| DCHECK_EQ(veneer_pool_blocked_nesting_, 0); |
| } |
| |
| void Assembler::AbortedCodeGeneration() { constpool_.Clear(); } |
| |
| void Assembler::Reset() { |
| #ifdef DEBUG |
| DCHECK((pc_ >= buffer_start_) && (pc_ < buffer_start_ + buffer_->size())); |
| DCHECK_EQ(veneer_pool_blocked_nesting_, 0); |
| DCHECK(unresolved_branches_.empty()); |
| memset(buffer_start_, 0, pc_ - buffer_start_); |
| #endif |
| pc_ = buffer_start_; |
| reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); |
| constpool_.Clear(); |
| next_veneer_pool_check_ = kMaxInt; |
| } |
| |
| #if defined(V8_OS_WIN) |
| win64_unwindinfo::BuiltinUnwindInfo Assembler::GetUnwindInfo() const { |
| DCHECK(options().collect_win64_unwind_info); |
| DCHECK_NOT_NULL(xdata_encoder_); |
| return xdata_encoder_->unwinding_info(); |
| } |
| #endif |
| |
| void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { |
| DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); |
| for (auto& request : heap_object_requests_) { |
| Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset(); |
| switch (request.kind()) { |
| case HeapObjectRequest::kHeapNumber: { |
| Handle<HeapObject> object = |
| isolate->factory()->NewHeapNumber<AllocationType::kOld>( |
| request.heap_number()); |
| EmbeddedObjectIndex index = AddEmbeddedObject(object); |
| set_embedded_object_index_referenced_from(pc, index); |
| break; |
| } |
| case HeapObjectRequest::kStringConstant: { |
| const StringConstantBase* str = request.string(); |
| CHECK_NOT_NULL(str); |
| EmbeddedObjectIndex index = |
| AddEmbeddedObject(str->AllocateStringConstant(isolate)); |
| set_embedded_object_index_referenced_from(pc, index); |
| break; |
| } |
| } |
| } |
| } |
| |
| void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, |
| SafepointTableBuilder* safepoint_table_builder, |
| int handler_table_offset) { |
| // As a crutch to avoid having to add manual Align calls wherever we use a |
| // raw workflow to create Code objects (mostly in tests), add another Align |
| // call here. It does no harm - the end of the Code object is aligned to the |
| // (larger) kCodeAlignment anyways. |
| // TODO(jgruber): Consider moving responsibility for proper alignment to |
| // metadata table builders (safepoint, handler, constant pool, code |
| // comments). |
| DataAlign(Code::kMetadataAlignment); |
| |
| // Emit constant pool if necessary. |
| ForceConstantPoolEmissionWithoutJump(); |
| DCHECK(constpool_.IsEmpty()); |
| |
| int code_comments_size = WriteCodeComments(); |
| |
| AllocateAndInstallRequestedHeapObjects(isolate); |
| |
| // Set up code descriptor. |
| // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to |
| // this point to make CodeDesc initialization less fiddly. |
| |
| static constexpr int kConstantPoolSize = 0; |
| const int instruction_size = pc_offset(); |
| const int code_comments_offset = instruction_size - code_comments_size; |
| const int constant_pool_offset = code_comments_offset - kConstantPoolSize; |
| const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) |
| ? constant_pool_offset |
| : handler_table_offset; |
| const int safepoint_table_offset = |
| (safepoint_table_builder == kNoSafepointTable) |
| ? handler_table_offset2 |
| : safepoint_table_builder->GetCodeOffset(); |
| const int reloc_info_offset = |
| static_cast<int>(reloc_info_writer.pos() - buffer_->start()); |
| CodeDesc::Initialize(desc, this, safepoint_table_offset, |
| handler_table_offset2, constant_pool_offset, |
| code_comments_offset, reloc_info_offset); |
| } |
| |
| void Assembler::Align(int m) { |
| // If not, the loop below won't terminate. |
| DCHECK(IsAligned(pc_offset(), kInstrSize)); |
| DCHECK(m >= kInstrSize && base::bits::IsPowerOfTwo(m)); |
| while ((pc_offset() & (m - 1)) != 0) { |
| nop(); |
| } |
| } |
| |
| void Assembler::CodeTargetAlign() { |
| // Preferred alignment of jump targets on some ARM chips. |
| Align(8); |
| } |
| |
| void Assembler::CheckLabelLinkChain(Label const* label) { |
| #ifdef DEBUG |
| if (label->is_linked()) { |
| static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour. |
| int links_checked = 0; |
| int64_t linkoffset = label->pos(); |
| bool end_of_chain = false; |
| while (!end_of_chain) { |
| if (++links_checked > kMaxLinksToCheck) break; |
| Instruction* link = InstructionAt(linkoffset); |
| int64_t linkpcoffset = link->ImmPCOffset(); |
| int64_t prevlinkoffset = linkoffset + linkpcoffset; |
| |
| end_of_chain = (linkoffset == prevlinkoffset); |
| linkoffset = linkoffset + linkpcoffset; |
| } |
| } |
| #endif |
| } |
| |
| void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch, |
| Label* label, |
| Instruction* label_veneer) { |
| DCHECK(label->is_linked()); |
| |
| CheckLabelLinkChain(label); |
| |
| Instruction* link = InstructionAt(label->pos()); |
| Instruction* prev_link = link; |
| Instruction* next_link; |
| bool end_of_chain = false; |
| |
| while (link != branch && !end_of_chain) { |
| next_link = link->ImmPCOffsetTarget(); |
| end_of_chain = (link == next_link); |
| prev_link = link; |
| link = next_link; |
| } |
| |
| DCHECK(branch == link); |
| next_link = branch->ImmPCOffsetTarget(); |
| |
| if (branch == prev_link) { |
| // The branch is the first instruction in the chain. |
| if (branch == next_link) { |
| // It is also the last instruction in the chain, so it is the only branch |
| // currently referring to this label. |
| label->Unuse(); |
| } else { |
| label->link_to( |
| static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_start_)); |
| } |
| |
| } else if (branch == next_link) { |
| // The branch is the last (but not also the first) instruction in the chain. |
| prev_link->SetImmPCOffsetTarget(options(), prev_link); |
| |
| } else { |
| // The branch is in the middle of the chain. |
| if (prev_link->IsTargetInImmPCOffsetRange(next_link)) { |
| prev_link->SetImmPCOffsetTarget(options(), next_link); |
| } else if (label_veneer != nullptr) { |
| // Use the veneer for all previous links in the chain. |
| prev_link->SetImmPCOffsetTarget(options(), prev_link); |
| |
| end_of_chain = false; |
| link = next_link; |
| while (!end_of_chain) { |
| next_link = link->ImmPCOffsetTarget(); |
| end_of_chain = (link == next_link); |
| link->SetImmPCOffsetTarget(options(), label_veneer); |
| link = next_link; |
| } |
| } else { |
| // The assert below will fire. |
| // Some other work could be attempted to fix up the chain, but it would be |
| // rather complicated. If we crash here, we may want to consider using an |
| // other mechanism than a chain of branches. |
| // |
| // Note that this situation currently should not happen, as we always call |
| // this function with a veneer to the target label. |
| // However this could happen with a MacroAssembler in the following state: |
| // [previous code] |
| // B(label); |
| // [20KB code] |
| // Tbz(label); // First tbz. Pointing to unconditional branch. |
| // [20KB code] |
| // Tbz(label); // Second tbz. Pointing to the first tbz. |
| // [more code] |
| // and this function is called to remove the first tbz from the label link |
| // chain. Since tbz has a range of +-32KB, the second tbz cannot point to |
| // the unconditional branch. |
| CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link)); |
| UNREACHABLE(); |
| } |
| } |
| |
| CheckLabelLinkChain(label); |
| } |
| |
| void Assembler::bind(Label* label) { |
| // Bind label to the address at pc_. All instructions (most likely branches) |
| // that are linked to this label will be updated to point to the newly-bound |
| // label. |
| |
| DCHECK(!label->is_near_linked()); |
| DCHECK(!label->is_bound()); |
| |
| DeleteUnresolvedBranchInfoForLabel(label); |
| |
| // If the label is linked, the link chain looks something like this: |
| // |
| // |--I----I-------I-------L |
| // |---------------------->| pc_offset |
| // |-------------->| linkoffset = label->pos() |
| // |<------| link->ImmPCOffset() |
| // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset() |
| // |
| // On each iteration, the last link is updated and then removed from the |
| // chain until only one remains. At that point, the label is bound. |
| // |
| // If the label is not linked, no preparation is required before binding. |
| while (label->is_linked()) { |
| int linkoffset = label->pos(); |
| Instruction* link = InstructionAt(linkoffset); |
| int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset()); |
| |
| CheckLabelLinkChain(label); |
| |
| DCHECK_GE(linkoffset, 0); |
| DCHECK(linkoffset < pc_offset()); |
| DCHECK((linkoffset > prevlinkoffset) || |
| (linkoffset - prevlinkoffset == kStartOfLabelLinkChain)); |
| DCHECK_GE(prevlinkoffset, 0); |
| |
| // Update the link to point to the label. |
| if (link->IsUnresolvedInternalReference()) { |
| // Internal references do not get patched to an instruction but directly |
| // to an address. |
| internal_reference_positions_.push_back(linkoffset); |
| PatchingAssembler patcher(options(), reinterpret_cast<byte*>(link), 2); |
| patcher.dc64(reinterpret_cast<uintptr_t>(pc_)); |
| } else { |
| link->SetImmPCOffsetTarget(options(), |
| reinterpret_cast<Instruction*>(pc_)); |
| } |
| |
| // Link the label to the previous link in the chain. |
| if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) { |
| // We hit kStartOfLabelLinkChain, so the chain is fully processed. |
| label->Unuse(); |
| } else { |
| // Update the label for the next iteration. |
| label->link_to(prevlinkoffset); |
| } |
| } |
| label->bind_to(pc_offset()); |
| |
| DCHECK(label->is_bound()); |
| DCHECK(!label->is_linked()); |
| } |
| |
| int Assembler::LinkAndGetByteOffsetTo(Label* label) { |
| DCHECK_EQ(sizeof(*pc_), 1); |
| CheckLabelLinkChain(label); |
| |
| int offset; |
| if (label->is_bound()) { |
| // The label is bound, so it does not need to be updated. Referring |
| // instructions must link directly to the label as they will not be |
| // updated. |
| // |
| // In this case, label->pos() returns the offset of the label from the |
| // start of the buffer. |
| // |
| // Note that offset can be zero for self-referential instructions. (This |
| // could be useful for ADR, for example.) |
| offset = label->pos() - pc_offset(); |
| DCHECK_LE(offset, 0); |
| } else { |
| if (label->is_linked()) { |
| // The label is linked, so the referring instruction should be added onto |
| // the end of the label's link chain. |
| // |
| // In this case, label->pos() returns the offset of the last linked |
| // instruction from the start of the buffer. |
| offset = label->pos() - pc_offset(); |
| DCHECK_NE(offset, kStartOfLabelLinkChain); |
| // Note that the offset here needs to be PC-relative only so that the |
| // first instruction in a buffer can link to an unbound label. Otherwise, |
| // the offset would be 0 for this case, and 0 is reserved for |
| // kStartOfLabelLinkChain. |
| } else { |
| // The label is unused, so it now becomes linked and the referring |
| // instruction is at the start of the new link chain. |
| offset = kStartOfLabelLinkChain; |
| } |
| // The instruction at pc is now the last link in the label's chain. |
| label->link_to(pc_offset()); |
| } |
| |
| return offset; |
| } |
| |
| void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) { |
| DCHECK(label->is_linked()); |
| CheckLabelLinkChain(label); |
| |
| int link_offset = label->pos(); |
| int link_pcoffset; |
| bool end_of_chain = false; |
| |
| while (!end_of_chain) { |
| Instruction* link = InstructionAt(link_offset); |
| link_pcoffset = static_cast<int>(link->ImmPCOffset()); |
| |
| // ADR instructions are not handled by veneers. |
| if (link->IsImmBranch()) { |
| int max_reachable_pc = |
| static_cast<int>(InstructionOffset(link) + |
| Instruction::ImmBranchRange(link->BranchType())); |
| using unresolved_info_it = std::multimap<int, FarBranchInfo>::iterator; |
| std::pair<unresolved_info_it, unresolved_info_it> range; |
| range = unresolved_branches_.equal_range(max_reachable_pc); |
| unresolved_info_it it; |
| for (it = range.first; it != range.second; ++it) { |
| if (it->second.pc_offset_ == link_offset) { |
| unresolved_branches_.erase(it); |
| break; |
| } |
| } |
| } |
| |
| end_of_chain = (link_pcoffset == 0); |
| link_offset = link_offset + link_pcoffset; |
| } |
| } |
| |
| void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) { |
| if (unresolved_branches_.empty()) { |
| DCHECK_EQ(next_veneer_pool_check_, kMaxInt); |
| return; |
| } |
| |
| if (label->is_linked()) { |
| // Branches to this label will be resolved when the label is bound, normally |
| // just after all the associated info has been deleted. |
| DeleteUnresolvedBranchInfoForLabelTraverse(label); |
| } |
| if (unresolved_branches_.empty()) { |
| next_veneer_pool_check_ = kMaxInt; |
| } else { |
| next_veneer_pool_check_ = |
| unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; |
| } |
| } |
| |
| bool Assembler::IsConstantPoolAt(Instruction* instr) { |
| // The constant pool marker is made of two instructions. These instructions |
| // will never be emitted by the JIT, so checking for the first one is enough: |
| // 0: ldr xzr, #<size of pool> |
| bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode); |
| |
| // It is still worth asserting the marker is complete. |
| // 4: blr xzr |
| DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() && |
| instr->following()->Rn() == kZeroRegCode)); |
| |
| return result; |
| } |
| |
| int Assembler::ConstantPoolSizeAt(Instruction* instr) { |
| #ifdef USE_SIMULATOR |
| // Assembler::debug() embeds constants directly into the instruction stream. |
| // Although this is not a genuine constant pool, treat it like one to avoid |
| // disassembling the constants. |
| if ((instr->Mask(ExceptionMask) == HLT) && |
| (instr->ImmException() == kImmExceptionIsDebug)) { |
| const char* message = reinterpret_cast<const char*>( |
| instr->InstructionAtOffset(kDebugMessageOffset)); |
| int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1); |
| return RoundUp(size, kInstrSize) / kInstrSize; |
| } |
| // Same for printf support, see MacroAssembler::CallPrintf(). |
| if ((instr->Mask(ExceptionMask) == HLT) && |
| (instr->ImmException() == kImmExceptionIsPrintf)) { |
| return kPrintfLength / kInstrSize; |
| } |
| #endif |
| if (IsConstantPoolAt(instr)) { |
| return instr->ImmLLiteral(); |
| } else { |
| return -1; |
| } |
| } |
| |
| void Assembler::EmitPoolGuard() { |
| // We must generate only one instruction as this is used in scopes that |
| // control the size of the code generated. |
| Emit(BLR | Rn(xzr)); |
| } |
| |
| void Assembler::StartBlockVeneerPool() { ++veneer_pool_blocked_nesting_; } |
| |
| void Assembler::EndBlockVeneerPool() { |
| if (--veneer_pool_blocked_nesting_ == 0) { |
| // Check the veneer pool hasn't been blocked for too long. |
| DCHECK(unresolved_branches_.empty() || |
| (pc_offset() < unresolved_branches_first_limit())); |
| } |
| } |
| |
| void Assembler::br(const Register& xn) { |
| DCHECK(xn.Is64Bits()); |
| Emit(BR | Rn(xn)); |
| } |
| |
| void Assembler::blr(const Register& xn) { |
| DCHECK(xn.Is64Bits()); |
| // The pattern 'blr xzr' is used as a guard to detect when execution falls |
| // through the constant pool. It should not be emitted. |
| DCHECK_NE(xn, xzr); |
| Emit(BLR | Rn(xn)); |
| } |
| |
| void Assembler::ret(const Register& xn) { |
| DCHECK(xn.Is64Bits()); |
| Emit(RET | Rn(xn)); |
| } |
| |
| void Assembler::b(int imm26) { Emit(B | ImmUncondBranch(imm26)); } |
| |
| void Assembler::b(Label* label) { b(LinkAndGetInstructionOffsetTo(label)); } |
| |
| void Assembler::b(int imm19, Condition cond) { |
| Emit(B_cond | ImmCondBranch(imm19) | cond); |
| } |
| |
| void Assembler::b(Label* label, Condition cond) { |
| b(LinkAndGetInstructionOffsetTo(label), cond); |
| } |
| |
| void Assembler::bl(int imm26) { Emit(BL | ImmUncondBranch(imm26)); } |
| |
| void Assembler::bl(Label* label) { bl(LinkAndGetInstructionOffsetTo(label)); } |
| |
| void Assembler::cbz(const Register& rt, int imm19) { |
| Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt)); |
| } |
| |
| void Assembler::cbz(const Register& rt, Label* label) { |
| cbz(rt, LinkAndGetInstructionOffsetTo(label)); |
| } |
| |
| void Assembler::cbnz(const Register& rt, int imm19) { |
| Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt)); |
| } |
| |
| void Assembler::cbnz(const Register& rt, Label* label) { |
| cbnz(rt, LinkAndGetInstructionOffsetTo(label)); |
| } |
| |
| void Assembler::tbz(const Register& rt, unsigned bit_pos, int imm14) { |
| DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits))); |
| Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); |
| } |
| |
| void Assembler::tbz(const Register& rt, unsigned bit_pos, Label* label) { |
| tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); |
| } |
| |
| void Assembler::tbnz(const Register& rt, unsigned bit_pos, int imm14) { |
| DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits))); |
| Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt)); |
| } |
| |
| void Assembler::tbnz(const Register& rt, unsigned bit_pos, Label* label) { |
| tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label)); |
| } |
| |
| void Assembler::adr(const Register& rd, int imm21) { |
| DCHECK(rd.Is64Bits()); |
| Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd)); |
| } |
| |
| void Assembler::adr(const Register& rd, Label* label) { |
| adr(rd, LinkAndGetByteOffsetTo(label)); |
| } |
| |
| void Assembler::nop(NopMarkerTypes n) { |
| DCHECK((FIRST_NOP_MARKER <= n) && (n <= LAST_NOP_MARKER)); |
| mov(Register::XRegFromCode(n), Register::XRegFromCode(n)); |
| } |
| |
| void Assembler::add(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSub(rd, rn, operand, LeaveFlags, ADD); |
| } |
| |
| void Assembler::adds(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSub(rd, rn, operand, SetFlags, ADD); |
| } |
| |
| void Assembler::cmn(const Register& rn, const Operand& operand) { |
| Register zr = AppropriateZeroRegFor(rn); |
| adds(zr, rn, operand); |
| } |
| |
| void Assembler::sub(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSub(rd, rn, operand, LeaveFlags, SUB); |
| } |
| |
| void Assembler::subs(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSub(rd, rn, operand, SetFlags, SUB); |
| } |
| |
| void Assembler::cmp(const Register& rn, const Operand& operand) { |
| Register zr = AppropriateZeroRegFor(rn); |
| subs(zr, rn, operand); |
| } |
| |
| void Assembler::neg(const Register& rd, const Operand& operand) { |
| Register zr = AppropriateZeroRegFor(rd); |
| sub(rd, zr, operand); |
| } |
| |
| void Assembler::negs(const Register& rd, const Operand& operand) { |
| Register zr = AppropriateZeroRegFor(rd); |
| subs(rd, zr, operand); |
| } |
| |
| void Assembler::adc(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC); |
| } |
| |
| void Assembler::adcs(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSubWithCarry(rd, rn, operand, SetFlags, ADC); |
| } |
| |
| void Assembler::sbc(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC); |
| } |
| |
| void Assembler::sbcs(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| AddSubWithCarry(rd, rn, operand, SetFlags, SBC); |
| } |
| |
| void Assembler::ngc(const Register& rd, const Operand& operand) { |
| Register zr = AppropriateZeroRegFor(rd); |
| sbc(rd, zr, operand); |
| } |
| |
| void Assembler::ngcs(const Register& rd, const Operand& operand) { |
| Register zr = AppropriateZeroRegFor(rd); |
| sbcs(rd, zr, operand); |
| } |
| |
| // Logical instructions. |
| void Assembler::and_(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, AND); |
| } |
| |
| void Assembler::ands(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, ANDS); |
| } |
| |
| void Assembler::tst(const Register& rn, const Operand& operand) { |
| ands(AppropriateZeroRegFor(rn), rn, operand); |
| } |
| |
| void Assembler::bic(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, BIC); |
| } |
| |
| void Assembler::bics(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, BICS); |
| } |
| |
| void Assembler::orr(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, ORR); |
| } |
| |
| void Assembler::orn(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, ORN); |
| } |
| |
| void Assembler::eor(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, EOR); |
| } |
| |
| void Assembler::eon(const Register& rd, const Register& rn, |
| const Operand& operand) { |
| Logical(rd, rn, operand, EON); |
| } |
| |
| void Assembler::lslv(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::lsrv(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::asrv(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::rorv(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd)); |
| } |
| |
| // Bitfield operations. |
| void Assembler::bfm(const Register& rd, const Register& rn, int immr, |
| int imms) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| Emit(SF(rd) | BFM | N | ImmR(immr, rd.SizeInBits()) | |
| ImmS(imms, rn.SizeInBits()) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::sbfm(const Register& rd, const Register& rn, int immr, |
| int imms) { |
| DCHECK(rd.Is64Bits() || rn.Is32Bits()); |
| Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| Emit(SF(rd) | SBFM | N | ImmR(immr, rd.SizeInBits()) | |
| ImmS(imms, rn.SizeInBits()) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::ubfm(const Register& rd, const Register& rn, int immr, |
| int imms) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| Emit(SF(rd) | UBFM | N | ImmR(immr, rd.SizeInBits()) | |
| ImmS(imms, rn.SizeInBits()) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::extr(const Register& rd, const Register& rn, const Register& rm, |
| int lsb) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); |
| Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.SizeInBits()) | Rn(rn) | |
| Rd(rd)); |
| } |
| |
| void Assembler::csel(const Register& rd, const Register& rn, const Register& rm, |
| Condition cond) { |
| ConditionalSelect(rd, rn, rm, cond, CSEL); |
| } |
| |
| void Assembler::csinc(const Register& rd, const Register& rn, |
| const Register& rm, Condition cond) { |
| ConditionalSelect(rd, rn, rm, cond, CSINC); |
| } |
| |
| void Assembler::csinv(const Register& rd, const Register& rn, |
| const Register& rm, Condition cond) { |
| ConditionalSelect(rd, rn, rm, cond, CSINV); |
| } |
| |
| void Assembler::csneg(const Register& rd, const Register& rn, |
| const Register& rm, Condition cond) { |
| ConditionalSelect(rd, rn, rm, cond, CSNEG); |
| } |
| |
| void Assembler::cset(const Register& rd, Condition cond) { |
| DCHECK((cond != al) && (cond != nv)); |
| Register zr = AppropriateZeroRegFor(rd); |
| csinc(rd, zr, zr, NegateCondition(cond)); |
| } |
| |
| void Assembler::csetm(const Register& rd, Condition cond) { |
| DCHECK((cond != al) && (cond != nv)); |
| Register zr = AppropriateZeroRegFor(rd); |
| csinv(rd, zr, zr, NegateCondition(cond)); |
| } |
| |
| void Assembler::cinc(const Register& rd, const Register& rn, Condition cond) { |
| DCHECK((cond != al) && (cond != nv)); |
| csinc(rd, rn, rn, NegateCondition(cond)); |
| } |
| |
| void Assembler::cinv(const Register& rd, const Register& rn, Condition cond) { |
| DCHECK((cond != al) && (cond != nv)); |
| csinv(rd, rn, rn, NegateCondition(cond)); |
| } |
| |
| void Assembler::cneg(const Register& rd, const Register& rn, Condition cond) { |
| DCHECK((cond != al) && (cond != nv)); |
| csneg(rd, rn, rn, NegateCondition(cond)); |
| } |
| |
| void Assembler::ConditionalSelect(const Register& rd, const Register& rn, |
| const Register& rm, Condition cond, |
| ConditionalSelectOp op) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::ccmn(const Register& rn, const Operand& operand, |
| StatusFlags nzcv, Condition cond) { |
| ConditionalCompare(rn, operand, nzcv, cond, CCMN); |
| } |
| |
| void Assembler::ccmp(const Register& rn, const Operand& operand, |
| StatusFlags nzcv, Condition cond) { |
| ConditionalCompare(rn, operand, nzcv, cond, CCMP); |
| } |
| |
| void Assembler::DataProcessing3Source(const Register& rd, const Register& rn, |
| const Register& rm, const Register& ra, |
| DataProcessing3SourceOp op) { |
| Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::mul(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(AreSameSizeAndType(rd, rn, rm)); |
| Register zr = AppropriateZeroRegFor(rn); |
| DataProcessing3Source(rd, rn, rm, zr, MADD); |
| } |
| |
| void Assembler::madd(const Register& rd, const Register& rn, const Register& rm, |
| const Register& ra) { |
| DCHECK(AreSameSizeAndType(rd, rn, rm, ra)); |
| DataProcessing3Source(rd, rn, rm, ra, MADD); |
| } |
| |
| void Assembler::mneg(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(AreSameSizeAndType(rd, rn, rm)); |
| Register zr = AppropriateZeroRegFor(rn); |
| DataProcessing3Source(rd, rn, rm, zr, MSUB); |
| } |
| |
| void Assembler::msub(const Register& rd, const Register& rn, const Register& rm, |
| const Register& ra) { |
| DCHECK(AreSameSizeAndType(rd, rn, rm, ra)); |
| DataProcessing3Source(rd, rn, rm, ra, MSUB); |
| } |
| |
| void Assembler::smaddl(const Register& rd, const Register& rn, |
| const Register& rm, const Register& ra) { |
| DCHECK(rd.Is64Bits() && ra.Is64Bits()); |
| DCHECK(rn.Is32Bits() && rm.Is32Bits()); |
| DataProcessing3Source(rd, rn, rm, ra, SMADDL_x); |
| } |
| |
| void Assembler::smsubl(const Register& rd, const Register& rn, |
| const Register& rm, const Register& ra) { |
| DCHECK(rd.Is64Bits() && ra.Is64Bits()); |
| DCHECK(rn.Is32Bits() && rm.Is32Bits()); |
| DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x); |
| } |
| |
| void Assembler::umaddl(const Register& rd, const Register& rn, |
| const Register& rm, const Register& ra) { |
| DCHECK(rd.Is64Bits() && ra.Is64Bits()); |
| DCHECK(rn.Is32Bits() && rm.Is32Bits()); |
| DataProcessing3Source(rd, rn, rm, ra, UMADDL_x); |
| } |
| |
| void Assembler::umsubl(const Register& rd, const Register& rn, |
| const Register& rm, const Register& ra) { |
| DCHECK(rd.Is64Bits() && ra.Is64Bits()); |
| DCHECK(rn.Is32Bits() && rm.Is32Bits()); |
| DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x); |
| } |
| |
| void Assembler::smull(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(rd.Is64Bits()); |
| DCHECK(rn.Is32Bits() && rm.Is32Bits()); |
| DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x); |
| } |
| |
| void Assembler::smulh(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(AreSameSizeAndType(rd, rn, rm)); |
| DataProcessing3Source(rd, rn, rm, xzr, SMULH_x); |
| } |
| |
| void Assembler::sdiv(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::udiv(const Register& rd, const Register& rn, |
| const Register& rm) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(rd.SizeInBits() == rm.SizeInBits()); |
| Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::rbit(const Register& rd, const Register& rn) { |
| DataProcessing1Source(rd, rn, RBIT); |
| } |
| |
| void Assembler::rev16(const Register& rd, const Register& rn) { |
| DataProcessing1Source(rd, rn, REV16); |
| } |
| |
| void Assembler::rev32(const Register& rd, const Register& rn) { |
| DCHECK(rd.Is64Bits()); |
| DataProcessing1Source(rd, rn, REV); |
| } |
| |
| void Assembler::rev(const Register& rd, const Register& rn) { |
| DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w); |
| } |
| |
| void Assembler::clz(const Register& rd, const Register& rn) { |
| DataProcessing1Source(rd, rn, CLZ); |
| } |
| |
| void Assembler::cls(const Register& rd, const Register& rn) { |
| DataProcessing1Source(rd, rn, CLS); |
| } |
| |
| void Assembler::pacib1716() { Emit(PACIB1716); } |
| void Assembler::autib1716() { Emit(AUTIB1716); } |
| void Assembler::pacibsp() { Emit(PACIBSP); } |
| void Assembler::autibsp() { Emit(AUTIBSP); } |
| |
| void Assembler::bti(BranchTargetIdentifier id) { |
| SystemHint op; |
| switch (id) { |
| case BranchTargetIdentifier::kBti: |
| op = BTI; |
| break; |
| case BranchTargetIdentifier::kBtiCall: |
| op = BTI_c; |
| break; |
| case BranchTargetIdentifier::kBtiJump: |
| op = BTI_j; |
| break; |
| case BranchTargetIdentifier::kBtiJumpCall: |
| op = BTI_jc; |
| break; |
| case BranchTargetIdentifier::kNone: |
| case BranchTargetIdentifier::kPacibsp: |
| // We always want to generate a BTI instruction here, so disallow |
| // skipping its generation or generating a PACIBSP instead. |
| UNREACHABLE(); |
| } |
| hint(op); |
| } |
| |
| void Assembler::ldp(const CPURegister& rt, const CPURegister& rt2, |
| const MemOperand& src) { |
| LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2)); |
| } |
| |
| void Assembler::stp(const CPURegister& rt, const CPURegister& rt2, |
| const MemOperand& dst) { |
| LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2)); |
| |
| #if defined(V8_OS_WIN) |
| if (xdata_encoder_ && rt == x29 && rt2 == lr && dst.base().IsSP()) { |
| xdata_encoder_->onSaveFpLr(); |
| } |
| #endif |
| } |
| |
| void Assembler::ldpsw(const Register& rt, const Register& rt2, |
| const MemOperand& src) { |
| DCHECK(rt.Is64Bits()); |
| LoadStorePair(rt, rt2, src, LDPSW_x); |
| } |
| |
| void Assembler::LoadStorePair(const CPURegister& rt, const CPURegister& rt2, |
| const MemOperand& addr, LoadStorePairOp op) { |
| // 'rt' and 'rt2' can only be aliased for stores. |
| DCHECK(((op & LoadStorePairLBit) == 0) || rt != rt2); |
| DCHECK(AreSameSizeAndType(rt, rt2)); |
| DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op))); |
| int offset = static_cast<int>(addr.offset()); |
| |
| Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | |
| ImmLSPair(offset, CalcLSPairDataSize(op)); |
| |
| Instr addrmodeop; |
| if (addr.IsImmediateOffset()) { |
| addrmodeop = LoadStorePairOffsetFixed; |
| } else { |
| // Pre-index and post-index modes. |
| DCHECK_NE(rt, addr.base()); |
| DCHECK_NE(rt2, addr.base()); |
| DCHECK_NE(addr.offset(), 0); |
| if (addr.IsPreIndex()) { |
| addrmodeop = LoadStorePairPreIndexFixed; |
| } else { |
| DCHECK(addr.IsPostIndex()); |
| addrmodeop = LoadStorePairPostIndexFixed; |
| } |
| } |
| Emit(addrmodeop | memop); |
| } |
| |
| // Memory instructions. |
| void Assembler::ldrb(const Register& rt, const MemOperand& src) { |
| LoadStore(rt, src, LDRB_w); |
| } |
| |
| void Assembler::strb(const Register& rt, const MemOperand& dst) { |
| LoadStore(rt, dst, STRB_w); |
| } |
| |
| void Assembler::ldrsb(const Register& rt, const MemOperand& src) { |
| LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w); |
| } |
| |
| void Assembler::ldrh(const Register& rt, const MemOperand& src) { |
| LoadStore(rt, src, LDRH_w); |
| } |
| |
| void Assembler::strh(const Register& rt, const MemOperand& dst) { |
| LoadStore(rt, dst, STRH_w); |
| } |
| |
| void Assembler::ldrsh(const Register& rt, const MemOperand& src) { |
| LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w); |
| } |
| |
| void Assembler::ldr(const CPURegister& rt, const MemOperand& src) { |
| LoadStore(rt, src, LoadOpFor(rt)); |
| } |
| |
| void Assembler::str(const CPURegister& rt, const MemOperand& src) { |
| LoadStore(rt, src, StoreOpFor(rt)); |
| } |
| |
| void Assembler::ldrsw(const Register& rt, const MemOperand& src) { |
| DCHECK(rt.Is64Bits()); |
| LoadStore(rt, src, LDRSW_x); |
| } |
| |
| void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) { |
| // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a |
| // constant pool. It should not be emitted. |
| DCHECK(!rt.IsZero()); |
| Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt)); |
| } |
| |
| Operand Operand::EmbeddedNumber(double number) { |
| int32_t smi; |
| if (DoubleToSmiInteger(number, &smi)) { |
| return Operand(Immediate(Smi::FromInt(smi))); |
| } |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.heap_object_request_.emplace(number); |
| DCHECK(result.IsHeapObjectRequest()); |
| return result; |
| } |
| |
| Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.heap_object_request_.emplace(str); |
| DCHECK(result.IsHeapObjectRequest()); |
| return result; |
| } |
| |
| void Assembler::ldr(const CPURegister& rt, const Operand& operand) { |
| if (operand.IsHeapObjectRequest()) { |
| BlockPoolsScope no_pool_before_ldr_of_heap_object_request(this); |
| RequestHeapObject(operand.heap_object_request()); |
| ldr(rt, operand.immediate_for_heap_object_request()); |
| } else { |
| ldr(rt, operand.immediate()); |
| } |
| } |
| |
| void Assembler::ldr(const CPURegister& rt, const Immediate& imm) { |
| BlockPoolsScope no_pool_before_ldr_pcrel_instr(this); |
| RecordRelocInfo(imm.rmode(), imm.value()); |
| // The load will be patched when the constpool is emitted, patching code |
| // expect a load literal with offset 0. |
| ldr_pcrel(rt, 0); |
| } |
| |
| void Assembler::ldar(const Register& rt, const Register& rn) { |
| DCHECK(rn.Is64Bits()); |
| LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x; |
| Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::ldaxr(const Register& rt, const Register& rn) { |
| DCHECK(rn.Is64Bits()); |
| LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x; |
| Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::stlr(const Register& rt, const Register& rn) { |
| DCHECK(rn.Is64Bits()); |
| LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x; |
| Emit(op | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::stlxr(const Register& rs, const Register& rt, |
| const Register& rn) { |
| DCHECK(rn.Is64Bits()); |
| DCHECK(rs != rt && rs != rn); |
| LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x; |
| Emit(op | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::ldarb(const Register& rt, const Register& rn) { |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| Emit(LDAR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::ldaxrb(const Register& rt, const Register& rn) { |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| Emit(LDAXR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::stlrb(const Register& rt, const Register& rn) { |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| Emit(STLR_b | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::stlxrb(const Register& rs, const Register& rt, |
| const Register& rn) { |
| DCHECK(rs.Is32Bits()); |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| DCHECK(rs != rt && rs != rn); |
| Emit(STLXR_b | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::ldarh(const Register& rt, const Register& rn) { |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| Emit(LDAR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::ldaxrh(const Register& rt, const Register& rn) { |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| Emit(LDAXR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::stlrh(const Register& rt, const Register& rn) { |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| Emit(STLR_h | Rs(x31) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::stlxrh(const Register& rs, const Register& rt, |
| const Register& rn) { |
| DCHECK(rs.Is32Bits()); |
| DCHECK(rt.Is32Bits()); |
| DCHECK(rn.Is64Bits()); |
| DCHECK(rs != rt && rs != rn); |
| Emit(STLXR_h | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt)); |
| } |
| |
| void Assembler::NEON3DifferentL(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, NEON3DifferentOp vop) { |
| DCHECK(AreSameFormat(vn, vm)); |
| DCHECK((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) || |
| (vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || |
| (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) || |
| (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); |
| Instr format, op = vop; |
| if (vd.IsScalar()) { |
| op |= NEON_Q | NEONScalar; |
| format = SFormat(vn); |
| } else { |
| format = VFormat(vn); |
| } |
| Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEON3DifferentW(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, NEON3DifferentOp vop) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) || |
| (vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H()) || |
| (vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D())); |
| Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEON3DifferentHN(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, NEON3DifferentOp vop) { |
| DCHECK(AreSameFormat(vm, vn)); |
| DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || |
| (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || |
| (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); |
| Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| #define NEON_3DIFF_LONG_LIST(V) \ |
| V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \ |
| V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \ |
| V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \ |
| V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \ |
| V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \ |
| V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \ |
| V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \ |
| V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \ |
| V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \ |
| V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \ |
| V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \ |
| V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \ |
| V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \ |
| V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \ |
| V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \ |
| V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \ |
| V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \ |
| V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \ |
| V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \ |
| V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \ |
| V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \ |
| V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \ |
| V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \ |
| V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \ |
| V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \ |
| V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \ |
| V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \ |
| V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \ |
| V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \ |
| V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \ |
| V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ |
| V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ |
| V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ |
| V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ |
| V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ |
| V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) |
| |
| #define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| const VRegister& vm) { \ |
| DCHECK(AS); \ |
| NEON3DifferentL(vd, vn, vm, OP); \ |
| } |
| NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| #define NEON_3DIFF_HN_LIST(V) \ |
| V(addhn, NEON_ADDHN, vd.IsD()) \ |
| V(addhn2, NEON_ADDHN2, vd.IsQ()) \ |
| V(raddhn, NEON_RADDHN, vd.IsD()) \ |
| V(raddhn2, NEON_RADDHN2, vd.IsQ()) \ |
| V(subhn, NEON_SUBHN, vd.IsD()) \ |
| V(subhn2, NEON_SUBHN2, vd.IsQ()) \ |
| V(rsubhn, NEON_RSUBHN, vd.IsD()) \ |
| V(rsubhn2, NEON_RSUBHN2, vd.IsQ()) |
| |
| #define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| const VRegister& vm) { \ |
| DCHECK(AS); \ |
| NEON3DifferentHN(vd, vn, vm, OP); \ |
| } |
| NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| void Assembler::NEONPerm(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, NEONPermOp op) { |
| DCHECK(AreSameFormat(vd, vn, vm)); |
| DCHECK(!vd.Is1D()); |
| Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::trn1(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONPerm(vd, vn, vm, NEON_TRN1); |
| } |
| |
| void Assembler::trn2(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONPerm(vd, vn, vm, NEON_TRN2); |
| } |
| |
| void Assembler::uzp1(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONPerm(vd, vn, vm, NEON_UZP1); |
| } |
| |
| void Assembler::uzp2(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONPerm(vd, vn, vm, NEON_UZP2); |
| } |
| |
| void Assembler::zip1(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONPerm(vd, vn, vm, NEON_ZIP1); |
| } |
| |
| void Assembler::zip2(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONPerm(vd, vn, vm, NEON_ZIP2); |
| } |
| |
| void Assembler::NEONShiftImmediate(const VRegister& vd, const VRegister& vn, |
| NEONShiftImmediateOp op, int immh_immb) { |
| DCHECK(AreSameFormat(vd, vn)); |
| Instr q, scalar; |
| if (vn.IsScalar()) { |
| q = NEON_Q; |
| scalar = NEONScalar; |
| } else { |
| q = vd.IsD() ? 0 : NEON_Q; |
| scalar = 0; |
| } |
| Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEONShiftLeftImmediate(const VRegister& vd, const VRegister& vn, |
| int shift, NEONShiftImmediateOp op) { |
| int laneSizeInBits = vn.LaneSizeInBits(); |
| DCHECK((shift >= 0) && (shift < laneSizeInBits)); |
| NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16); |
| } |
| |
| void Assembler::NEONShiftRightImmediate(const VRegister& vd, |
| const VRegister& vn, int shift, |
| NEONShiftImmediateOp op) { |
| int laneSizeInBits = vn.LaneSizeInBits(); |
| DCHECK((shift >= 1) && (shift <= laneSizeInBits)); |
| NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16); |
| } |
| |
| void Assembler::NEONShiftImmediateL(const VRegister& vd, const VRegister& vn, |
| int shift, NEONShiftImmediateOp op) { |
| int laneSizeInBits = vn.LaneSizeInBits(); |
| DCHECK((shift >= 0) && (shift < laneSizeInBits)); |
| int immh_immb = (laneSizeInBits + shift) << 16; |
| |
| DCHECK((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) || |
| (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) || |
| (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); |
| Instr q; |
| q = vn.IsD() ? 0 : NEON_Q; |
| Emit(q | op | immh_immb | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEONShiftImmediateN(const VRegister& vd, const VRegister& vn, |
| int shift, NEONShiftImmediateOp op) { |
| Instr q, scalar; |
| int laneSizeInBits = vd.LaneSizeInBits(); |
| DCHECK((shift >= 1) && (shift <= laneSizeInBits)); |
| int immh_immb = (2 * laneSizeInBits - shift) << 16; |
| |
| if (vn.IsScalar()) { |
| DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || |
| (vd.Is1S() && vn.Is1D())); |
| q = NEON_Q; |
| scalar = NEONScalar; |
| } else { |
| DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || |
| (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || |
| (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); |
| scalar = 0; |
| q = vd.IsD() ? 0 : NEON_Q; |
| } |
| Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL); |
| } |
| |
| void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI); |
| } |
| |
| void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) { |
| NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm); |
| } |
| |
| void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) { |
| NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU); |
| } |
| |
| void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) { |
| NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm); |
| } |
| |
| void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsD()); |
| NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); |
| } |
| |
| void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsQ()); |
| NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); |
| } |
| |
| void Assembler::sxtl(const VRegister& vd, const VRegister& vn) { |
| sshll(vd, vn, 0); |
| } |
| |
| void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) { |
| sshll2(vd, vn, 0); |
| } |
| |
| void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsD()); |
| NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); |
| } |
| |
| void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsQ()); |
| NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); |
| } |
| |
| void Assembler::uxtl(const VRegister& vd, const VRegister& vn) { |
| ushll(vd, vn, 0); |
| } |
| |
| void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) { |
| ushll2(vd, vn, 0); |
| } |
| |
| void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_SRI); |
| } |
| |
| void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR); |
| } |
| |
| void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_USHR); |
| } |
| |
| void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR); |
| } |
| |
| void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR); |
| } |
| |
| void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA); |
| } |
| |
| void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_USRA); |
| } |
| |
| void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA); |
| } |
| |
| void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA); |
| } |
| |
| void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsD()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); |
| } |
| |
| void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); |
| } |
| |
| void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsD()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); |
| } |
| |
| void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); |
| } |
| |
| void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); |
| } |
| |
| void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); |
| } |
| |
| void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); |
| } |
| |
| void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); |
| } |
| |
| void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); |
| } |
| |
| void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); |
| } |
| |
| void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); |
| } |
| |
| void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); |
| } |
| |
| void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); |
| } |
| |
| void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); |
| } |
| |
| void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); |
| NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); |
| } |
| |
| void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK(vn.IsVector() && vd.IsQ()); |
| NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); |
| } |
| |
| void Assembler::uaddw(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsD()); |
| NEON3DifferentW(vd, vn, vm, NEON_UADDW); |
| } |
| |
| void Assembler::uaddw2(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsQ()); |
| NEON3DifferentW(vd, vn, vm, NEON_UADDW2); |
| } |
| |
| void Assembler::saddw(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsD()); |
| NEON3DifferentW(vd, vn, vm, NEON_SADDW); |
| } |
| |
| void Assembler::saddw2(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsQ()); |
| NEON3DifferentW(vd, vn, vm, NEON_SADDW2); |
| } |
| |
| void Assembler::usubw(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsD()); |
| NEON3DifferentW(vd, vn, vm, NEON_USUBW); |
| } |
| |
| void Assembler::usubw2(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsQ()); |
| NEON3DifferentW(vd, vn, vm, NEON_USUBW2); |
| } |
| |
| void Assembler::ssubw(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsD()); |
| NEON3DifferentW(vd, vn, vm, NEON_SSUBW); |
| } |
| |
| void Assembler::ssubw2(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(vm.IsQ()); |
| NEON3DifferentW(vd, vn, vm, NEON_SSUBW2); |
| } |
| |
| void Assembler::mov(const Register& rd, const Register& rm) { |
| // Moves involving the stack pointer are encoded as add immediate with |
| // second operand of zero. Otherwise, orr with first operand zr is |
| // used. |
| if (rd.IsSP() || rm.IsSP()) { |
| add(rd, rm, 0); |
| } else { |
| orr(rd, AppropriateZeroRegFor(rd), rm); |
| } |
| } |
| |
| void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) { |
| // We support vd arguments of the form vd.VxT() or vd.T(), where x is the |
| // number of lanes, and T is b, h, s or d. |
| int lane_size = vd.LaneSizeInBytes(); |
| NEONFormatField format; |
| switch (lane_size) { |
| case 1: |
| format = NEON_16B; |
| DCHECK(rn.IsW()); |
| break; |
| case 2: |
| format = NEON_8H; |
| DCHECK(rn.IsW()); |
| break; |
| case 4: |
| format = NEON_4S; |
| DCHECK(rn.IsW()); |
| break; |
| default: |
| DCHECK_EQ(lane_size, 8); |
| DCHECK(rn.IsX()); |
| format = NEON_2D; |
| break; |
| } |
| |
| DCHECK((0 <= vd_index) && |
| (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd)); |
| } |
| |
| void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) { |
| DCHECK_GE(vn.SizeInBytes(), 4); |
| umov(rd, vn, vn_index); |
| } |
| |
| void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) { |
| // We support vn arguments of the form vn.VxT() or vn.T(), where x is the |
| // number of lanes, and T is b, h, s. |
| int lane_size = vn.LaneSizeInBytes(); |
| NEONFormatField format; |
| Instr q = 0; |
| switch (lane_size) { |
| case 1: |
| format = NEON_16B; |
| break; |
| case 2: |
| format = NEON_8H; |
| break; |
| default: |
| DCHECK_EQ(lane_size, 4); |
| DCHECK(rd.IsX()); |
| format = NEON_4S; |
| break; |
| } |
| q = rd.IsW() ? 0 : NEON_Q; |
| DCHECK((0 <= vn_index) && |
| (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); |
| } |
| |
| void Assembler::cls(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(!vd.Is1D() && !vd.Is2D()); |
| Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::clz(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(!vd.Is1D() && !vd.Is2D()); |
| Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::cnt(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is8B() || vd.Is16B()); |
| Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::rev16(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is8B() || vd.Is16B()); |
| Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::rev32(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H()); |
| Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::rev64(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(!vd.Is1D() && !vd.Is2D()); |
| Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is2S() || vd.Is4S()); |
| Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::urecpe(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is2S() || vd.Is4S()); |
| Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEONAddlp(const VRegister& vd, const VRegister& vn, |
| NEON2RegMiscOp op) { |
| DCHECK((op == NEON_SADDLP) || (op == NEON_UADDLP) || (op == NEON_SADALP) || |
| (op == NEON_UADALP)); |
| |
| DCHECK((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) || |
| (vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H()) || |
| (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D())); |
| Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::saddlp(const VRegister& vd, const VRegister& vn) { |
| NEONAddlp(vd, vn, NEON_SADDLP); |
| } |
| |
| void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) { |
| NEONAddlp(vd, vn, NEON_UADDLP); |
| } |
| |
| void Assembler::sadalp(const VRegister& vd, const VRegister& vn) { |
| NEONAddlp(vd, vn, NEON_SADALP); |
| } |
| |
| void Assembler::uadalp(const VRegister& vd, const VRegister& vn) { |
| NEONAddlp(vd, vn, NEON_UADALP); |
| } |
| |
| void Assembler::NEONAcrossLanesL(const VRegister& vd, const VRegister& vn, |
| NEONAcrossLanesOp op) { |
| DCHECK((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) || |
| (vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) || |
| (vn.Is4S() && vd.Is1D())); |
| Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::saddlv(const VRegister& vd, const VRegister& vn) { |
| NEONAcrossLanesL(vd, vn, NEON_SADDLV); |
| } |
| |
| void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) { |
| NEONAcrossLanesL(vd, vn, NEON_UADDLV); |
| } |
| |
| void Assembler::NEONAcrossLanes(const VRegister& vd, const VRegister& vn, |
| NEONAcrossLanesOp op) { |
| DCHECK((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) || |
| (vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) || |
| (vn.Is4S() && vd.Is1S())); |
| if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) { |
| Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } else { |
| Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| } |
| |
| #define NEON_ACROSSLANES_LIST(V) \ |
| V(fmaxv, NEON_FMAXV, vd.Is1S()) \ |
| V(fminv, NEON_FMINV, vd.Is1S()) \ |
| V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \ |
| V(fminnmv, NEON_FMINNMV, vd.Is1S()) \ |
| V(addv, NEON_ADDV, true) \ |
| V(smaxv, NEON_SMAXV, true) \ |
| V(sminv, NEON_SMINV, true) \ |
| V(umaxv, NEON_UMAXV, true) \ |
| V(uminv, NEON_UMINV, true) |
| |
| #define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ |
| DCHECK(AS); \ |
| NEONAcrossLanes(vd, vn, OP); \ |
| } |
| NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) { |
| ins(vd, vd_index, rn); |
| } |
| |
| void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) { |
| // We support vn arguments of the form vn.VxT() or vn.T(), where x is the |
| // number of lanes, and T is b, h, s or d. |
| int lane_size = vn.LaneSizeInBytes(); |
| NEONFormatField format; |
| Instr q = 0; |
| switch (lane_size) { |
| case 1: |
| format = NEON_16B; |
| DCHECK(rd.IsW()); |
| break; |
| case 2: |
| format = NEON_8H; |
| DCHECK(rd.IsW()); |
| break; |
| case 4: |
| format = NEON_4S; |
| DCHECK(rd.IsW()); |
| break; |
| default: |
| DCHECK_EQ(lane_size, 8); |
| DCHECK(rd.IsX()); |
| format = NEON_2D; |
| q = NEON_Q; |
| break; |
| } |
| |
| DCHECK((0 <= vn_index) && |
| (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); |
| } |
| |
| void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) { |
| DCHECK(vd.IsScalar()); |
| dup(vd, vn, vn_index); |
| } |
| |
| void Assembler::dup(const VRegister& vd, const Register& rn) { |
| DCHECK(!vd.Is1D()); |
| DCHECK_EQ(vd.Is2D(), rn.IsX()); |
| Instr q = vd.IsD() ? 0 : NEON_Q; |
| Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd)); |
| } |
| |
| void Assembler::ins(const VRegister& vd, int vd_index, const VRegister& vn, |
| int vn_index) { |
| DCHECK(AreSameFormat(vd, vn)); |
| // We support vd arguments of the form vd.VxT() or vd.T(), where x is the |
| // number of lanes, and T is b, h, s or d. |
| int lane_size = vd.LaneSizeInBytes(); |
| NEONFormatField format; |
| switch (lane_size) { |
| case 1: |
| format = NEON_16B; |
| break; |
| case 2: |
| format = NEON_8H; |
| break; |
| case 4: |
| format = NEON_4S; |
| break; |
| default: |
| DCHECK_EQ(lane_size, 8); |
| format = NEON_2D; |
| break; |
| } |
| |
| DCHECK((0 <= vd_index) && |
| (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| DCHECK((0 <= vn_index) && |
| (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); |
| Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) | |
| ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEONTable(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, NEONTableOp op) { |
| DCHECK(vd.Is16B() || vd.Is8B()); |
| DCHECK(vn.Is16B()); |
| DCHECK(AreSameFormat(vd, vm)); |
| Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONTable(vd, vn, vm, NEON_TBL_1v); |
| } |
| |
| void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| const VRegister& vn2, const VRegister& vm) { |
| USE(vn2); |
| DCHECK(AreSameFormat(vn, vn2)); |
| DCHECK(AreConsecutive(vn, vn2)); |
| NEONTable(vd, vn, vm, NEON_TBL_2v); |
| } |
| |
| void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| const VRegister& vn2, const VRegister& vn3, |
| const VRegister& vm) { |
| USE(vn2); |
| USE(vn3); |
| DCHECK(AreSameFormat(vn, vn2, vn3)); |
| DCHECK(AreConsecutive(vn, vn2, vn3)); |
| NEONTable(vd, vn, vm, NEON_TBL_3v); |
| } |
| |
| void Assembler::tbl(const VRegister& vd, const VRegister& vn, |
| const VRegister& vn2, const VRegister& vn3, |
| const VRegister& vn4, const VRegister& vm) { |
| USE(vn2); |
| USE(vn3); |
| USE(vn4); |
| DCHECK(AreSameFormat(vn, vn2, vn3, vn4)); |
| DCHECK(AreConsecutive(vn, vn2, vn3, vn4)); |
| NEONTable(vd, vn, vm, NEON_TBL_4v); |
| } |
| |
| void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| NEONTable(vd, vn, vm, NEON_TBX_1v); |
| } |
| |
| void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| const VRegister& vn2, const VRegister& vm) { |
| USE(vn2); |
| DCHECK(AreSameFormat(vn, vn2)); |
| DCHECK(AreConsecutive(vn, vn2)); |
| NEONTable(vd, vn, vm, NEON_TBX_2v); |
| } |
| |
| void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| const VRegister& vn2, const VRegister& vn3, |
| const VRegister& vm) { |
| USE(vn2); |
| USE(vn3); |
| DCHECK(AreSameFormat(vn, vn2, vn3)); |
| DCHECK(AreConsecutive(vn, vn2, vn3)); |
| NEONTable(vd, vn, vm, NEON_TBX_3v); |
| } |
| |
| void Assembler::tbx(const VRegister& vd, const VRegister& vn, |
| const VRegister& vn2, const VRegister& vn3, |
| const VRegister& vn4, const VRegister& vm) { |
| USE(vn2); |
| USE(vn3); |
| USE(vn4); |
| DCHECK(AreSameFormat(vn, vn2, vn3, vn4)); |
| DCHECK(AreConsecutive(vn, vn2, vn3, vn4)); |
| NEONTable(vd, vn, vm, NEON_TBX_4v); |
| } |
| |
| void Assembler::mov(const VRegister& vd, int vd_index, const VRegister& vn, |
| int vn_index) { |
| ins(vd, vd_index, vn, vn_index); |
| } |
| |
| void Assembler::mvn(const Register& rd, const Operand& operand) { |
| orn(rd, AppropriateZeroRegFor(rd), operand); |
| } |
| |
| void Assembler::mrs(const Register& rt, SystemRegister sysreg) { |
| DCHECK(rt.Is64Bits()); |
| Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); |
| } |
| |
| void Assembler::msr(SystemRegister sysreg, const Register& rt) { |
| DCHECK(rt.Is64Bits()); |
| Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); |
| } |
| |
| void Assembler::hint(SystemHint code) { Emit(HINT | ImmHint(code) | Rt(xzr)); } |
| |
| // NEON structure loads and stores. |
| Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) { |
| Instr addr_field = RnSP(addr.base()); |
| |
| if (addr.IsPostIndex()) { |
| static_assert(NEONLoadStoreMultiStructPostIndex == |
| static_cast<NEONLoadStoreMultiStructPostIndexOp>( |
| NEONLoadStoreSingleStructPostIndex), |
| "Opcodes must match for NEON post index memop."); |
| |
| addr_field |= NEONLoadStoreMultiStructPostIndex; |
| if (addr.offset() == 0) { |
| addr_field |= RmNot31(addr.regoffset()); |
| } else { |
| // The immediate post index addressing mode is indicated by rm = 31. |
| // The immediate is implied by the number of vector registers used. |
| addr_field |= (0x1F << Rm_offset); |
| } |
| } else { |
| DCHECK(addr.IsImmediateOffset() && (addr.offset() == 0)); |
| } |
| return addr_field; |
| } |
| |
| void Assembler::LoadStoreStructVerify(const VRegister& vt, |
| const MemOperand& addr, Instr op) { |
| #ifdef DEBUG |
| // Assert that addressing mode is either offset (with immediate 0), post |
| // index by immediate of the size of the register list, or post index by a |
| // value in a core register. |
| if (addr.IsImmediateOffset()) { |
| DCHECK_EQ(addr.offset(), 0); |
| } else { |
| int offset = vt.SizeInBytes(); |
| switch (op) { |
| case NEON_LD1_1v: |
| case NEON_ST1_1v: |
| offset *= 1; |
| break; |
| case NEONLoadStoreSingleStructLoad1: |
| case NEONLoadStoreSingleStructStore1: |
| case NEON_LD1R: |
| offset = (offset / vt.LaneCount()) * 1; |
| break; |
| |
| case NEON_LD1_2v: |
| case NEON_ST1_2v: |
| case NEON_LD2: |
| case NEON_ST2: |
| offset *= 2; |
| break; |
| case NEONLoadStoreSingleStructLoad2: |
| case NEONLoadStoreSingleStructStore2: |
| case NEON_LD2R: |
| offset = (offset / vt.LaneCount()) * 2; |
| break; |
| |
| case NEON_LD1_3v: |
| case NEON_ST1_3v: |
| case NEON_LD3: |
| case NEON_ST3: |
| offset *= 3; |
| break; |
| case NEONLoadStoreSingleStructLoad3: |
| case NEONLoadStoreSingleStructStore3: |
| case NEON_LD3R: |
| offset = (offset / vt.LaneCount()) * 3; |
| break; |
| |
| case NEON_LD1_4v: |
| case NEON_ST1_4v: |
| case NEON_LD4: |
| case NEON_ST4: |
| offset *= 4; |
| break; |
| case NEONLoadStoreSingleStructLoad4: |
| case NEONLoadStoreSingleStructStore4: |
| case NEON_LD4R: |
| offset = (offset / vt.LaneCount()) * 4; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| DCHECK(addr.regoffset() != NoReg || addr.offset() == offset); |
| } |
| #else |
| USE(vt); |
| USE(addr); |
| USE(op); |
| #endif |
| } |
| |
| void Assembler::LoadStoreStruct(const VRegister& vt, const MemOperand& addr, |
| NEONLoadStoreMultiStructOp op) { |
| LoadStoreStructVerify(vt, addr, op); |
| DCHECK(vt.IsVector() || vt.Is1D()); |
| Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); |
| } |
| |
| void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt, |
| const MemOperand& addr, |
| NEONLoadStoreSingleStructOp op) { |
| LoadStoreStructVerify(vt, addr, op); |
| Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); |
| } |
| |
| void Assembler::ld1(const VRegister& vt, const MemOperand& src) { |
| LoadStoreStruct(vt, src, NEON_LD1_1v); |
| } |
| |
| void Assembler::ld1(const VRegister& vt, const VRegister& vt2, |
| const MemOperand& src) { |
| USE(vt2); |
| DCHECK(AreSameFormat(vt, vt2)); |
| DCHECK(AreConsecutive(vt, vt2)); |
| LoadStoreStruct(vt, src, NEON_LD1_2v); |
| } |
| |
| void Assembler::ld1(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| DCHECK(AreSameFormat(vt, vt2, vt3)); |
| DCHECK(AreConsecutive(vt, vt2, vt3)); |
| LoadStoreStruct(vt, src, NEON_LD1_3v); |
| } |
| |
| void Assembler::ld1(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const VRegister& vt4, |
| const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| USE(vt4); |
| DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| LoadStoreStruct(vt, src, NEON_LD1_4v); |
| } |
| |
| void Assembler::ld2(const VRegister& vt, const VRegister& vt2, |
| const MemOperand& src) { |
| USE(vt2); |
| DCHECK(AreSameFormat(vt, vt2)); |
| DCHECK(AreConsecutive(vt, vt2)); |
| LoadStoreStruct(vt, src, NEON_LD2); |
| } |
| |
| void Assembler::ld2(const VRegister& vt, const VRegister& vt2, int lane, |
| const MemOperand& src) { |
| USE(vt2); |
| DCHECK(AreSameFormat(vt, vt2)); |
| DCHECK(AreConsecutive(vt, vt2)); |
| LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2); |
| } |
| |
| void Assembler::ld2r(const VRegister& vt, const VRegister& vt2, |
| const MemOperand& src) { |
| USE(vt2); |
| DCHECK(AreSameFormat(vt, vt2)); |
| DCHECK(AreConsecutive(vt, vt2)); |
| LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R); |
| } |
| |
| void Assembler::ld3(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| DCHECK(AreSameFormat(vt, vt2, vt3)); |
| DCHECK(AreConsecutive(vt, vt2, vt3)); |
| LoadStoreStruct(vt, src, NEON_LD3); |
| } |
| |
| void Assembler::ld3(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, int lane, const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| DCHECK(AreSameFormat(vt, vt2, vt3)); |
| DCHECK(AreConsecutive(vt, vt2, vt3)); |
| LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3); |
| } |
| |
| void Assembler::ld3r(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| DCHECK(AreSameFormat(vt, vt2, vt3)); |
| DCHECK(AreConsecutive(vt, vt2, vt3)); |
| LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R); |
| } |
| |
| void Assembler::ld4(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const VRegister& vt4, |
| const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| USE(vt4); |
| DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| LoadStoreStruct(vt, src, NEON_LD4); |
| } |
| |
| void Assembler::ld4(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const VRegister& vt4, int lane, |
| const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| USE(vt4); |
| DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4); |
| } |
| |
| void Assembler::ld4r(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const VRegister& vt4, |
| const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| USE(vt4); |
| DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R); |
| } |
| |
| void Assembler::st1(const VRegister& vt, const MemOperand& src) { |
| LoadStoreStruct(vt, src, NEON_ST1_1v); |
| } |
| |
| void Assembler::st1(const VRegister& vt, const VRegister& vt2, |
| const MemOperand& src) { |
| USE(vt2); |
| DCHECK(AreSameFormat(vt, vt2)); |
| DCHECK(AreConsecutive(vt, vt2)); |
| LoadStoreStruct(vt, src, NEON_ST1_2v); |
| } |
| |
| void Assembler::st1(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| DCHECK(AreSameFormat(vt, vt2, vt3)); |
| DCHECK(AreConsecutive(vt, vt2, vt3)); |
| LoadStoreStruct(vt, src, NEON_ST1_3v); |
| } |
| |
| void Assembler::st1(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const VRegister& vt4, |
| const MemOperand& src) { |
| USE(vt2); |
| USE(vt3); |
| USE(vt4); |
| DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| LoadStoreStruct(vt, src, NEON_ST1_4v); |
| } |
| |
| void Assembler::st2(const VRegister& vt, const VRegister& vt2, |
| const MemOperand& dst) { |
| USE(vt2); |
| DCHECK(AreSameFormat(vt, vt2)); |
| DCHECK(AreConsecutive(vt, vt2)); |
| LoadStoreStruct(vt, dst, NEON_ST2); |
| } |
| |
| void Assembler::st2(const VRegister& vt, const VRegister& vt2, int lane, |
| const MemOperand& dst) { |
| USE(vt2); |
| DCHECK(AreSameFormat(vt, vt2)); |
| DCHECK(AreConsecutive(vt, vt2)); |
| LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2); |
| } |
| |
| void Assembler::st3(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const MemOperand& dst) { |
| USE(vt2); |
| USE(vt3); |
| DCHECK(AreSameFormat(vt, vt2, vt3)); |
| DCHECK(AreConsecutive(vt, vt2, vt3)); |
| LoadStoreStruct(vt, dst, NEON_ST3); |
| } |
| |
| void Assembler::st3(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, int lane, const MemOperand& dst) { |
| USE(vt2); |
| USE(vt3); |
| DCHECK(AreSameFormat(vt, vt2, vt3)); |
| DCHECK(AreConsecutive(vt, vt2, vt3)); |
| LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3); |
| } |
| |
| void Assembler::st4(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const VRegister& vt4, |
| const MemOperand& dst) { |
| USE(vt2); |
| USE(vt3); |
| USE(vt4); |
| DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| LoadStoreStruct(vt, dst, NEON_ST4); |
| } |
| |
| void Assembler::st4(const VRegister& vt, const VRegister& vt2, |
| const VRegister& vt3, const VRegister& vt4, int lane, |
| const MemOperand& dst) { |
| USE(vt2); |
| USE(vt3); |
| USE(vt4); |
| DCHECK(AreSameFormat(vt, vt2, vt3, vt4)); |
| DCHECK(AreConsecutive(vt, vt2, vt3, vt4)); |
| LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4); |
| } |
| |
| void Assembler::LoadStoreStructSingle(const VRegister& vt, uint32_t lane, |
| const MemOperand& addr, |
| NEONLoadStoreSingleStructOp op) { |
| LoadStoreStructVerify(vt, addr, op); |
| |
| // We support vt arguments of the form vt.VxT() or vt.T(), where x is the |
| // number of lanes, and T is b, h, s or d. |
| unsigned lane_size = vt.LaneSizeInBytes(); |
| DCHECK_LT(lane, kQRegSize / lane_size); |
| |
| // Lane size is encoded in the opcode field. Lane index is encoded in the Q, |
| // S and size fields. |
| lane *= lane_size; |
| |
| // Encodings for S[0]/D[0] and S[2]/D[1] are distinguished using the least- |
| // significant bit of the size field, so we increment lane here to account for |
| // that. |
| if (lane_size == 8) lane++; |
| |
| Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask; |
| Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask; |
| Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask; |
| |
| Instr instr = op; |
| switch (lane_size) { |
| case 1: |
| instr |= NEONLoadStoreSingle_b; |
| break; |
| case 2: |
| instr |= NEONLoadStoreSingle_h; |
| break; |
| case 4: |
| instr |= NEONLoadStoreSingle_s; |
| break; |
| default: |
| DCHECK_EQ(lane_size, 8U); |
| instr |= NEONLoadStoreSingle_d; |
| } |
| |
| Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt)); |
| } |
| |
| void Assembler::ld1(const VRegister& vt, int lane, const MemOperand& src) { |
| LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1); |
| } |
| |
| void Assembler::ld1r(const VRegister& vt, const MemOperand& src) { |
| LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R); |
| } |
| |
| void Assembler::st1(const VRegister& vt, int lane, const MemOperand& dst) { |
| LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1); |
| } |
| |
| void Assembler::dmb(BarrierDomain domain, BarrierType type) { |
| Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| } |
| |
| void Assembler::dsb(BarrierDomain domain, BarrierType type) { |
| Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); |
| } |
| |
| void Assembler::isb() { |
| Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); |
| } |
| |
| void Assembler::csdb() { hint(CSDB); } |
| |
| void Assembler::fmov(const VRegister& vd, double imm) { |
| if (vd.IsScalar()) { |
| DCHECK(vd.Is1D()); |
| Emit(FMOV_d_imm | Rd(vd) | ImmFP(imm)); |
| } else { |
| DCHECK(vd.Is2D()); |
| Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit; |
| Emit(NEON_Q | op | ImmNEONFP(imm) | NEONCmode(0xF) | Rd(vd)); |
| } |
| } |
| |
| void Assembler::fmov(const VRegister& vd, float imm) { |
| if (vd.IsScalar()) { |
| DCHECK(vd.Is1S()); |
| Emit(FMOV_s_imm | Rd(vd) | ImmFP(imm)); |
| } else { |
| DCHECK(vd.Is2S() | vd.Is4S()); |
| Instr op = NEONModifiedImmediate_MOVI; |
| Instr q = vd.Is4S() ? NEON_Q : 0; |
| Emit(q | op | ImmNEONFP(imm) | NEONCmode(0xF) | Rd(vd)); |
| } |
| } |
| |
| void Assembler::fmov(const Register& rd, const VRegister& fn) { |
| DCHECK_EQ(rd.SizeInBits(), fn.SizeInBits()); |
| FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; |
| Emit(op | Rd(rd) | Rn(fn)); |
| } |
| |
| void Assembler::fmov(const VRegister& vd, const Register& rn) { |
| DCHECK_EQ(vd.SizeInBits(), rn.SizeInBits()); |
| FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx; |
| Emit(op | Rd(vd) | Rn(rn)); |
| } |
| |
| void Assembler::fmov(const VRegister& vd, const VRegister& vn) { |
| DCHECK_EQ(vd.SizeInBits(), vn.SizeInBits()); |
| Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn)); |
| } |
| |
| void Assembler::fmov(const VRegister& vd, int index, const Register& rn) { |
| DCHECK((index == 1) && vd.Is1D() && rn.IsX()); |
| USE(index); |
| Emit(FMOV_d1_x | Rd(vd) | Rn(rn)); |
| } |
| |
| void Assembler::fmov(const Register& rd, const VRegister& vn, int index) { |
| DCHECK((index == 1) && vn.Is1D() && rd.IsX()); |
| USE(index); |
| Emit(FMOV_x_d1 | Rd(rd) | Rn(vn)); |
| } |
| |
| void Assembler::fmadd(const VRegister& fd, const VRegister& fn, |
| const VRegister& fm, const VRegister& fa) { |
| FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d); |
| } |
| |
| void Assembler::fmsub(const VRegister& fd, const VRegister& fn, |
| const VRegister& fm, const VRegister& fa) { |
| FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d); |
| } |
| |
| void Assembler::fnmadd(const VRegister& fd, const VRegister& fn, |
| const VRegister& fm, const VRegister& fa) { |
| FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d); |
| } |
| |
| void Assembler::fnmsub(const VRegister& fd, const VRegister& fn, |
| const VRegister& fm, const VRegister& fa) { |
| FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d); |
| } |
| |
| void Assembler::fnmul(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm) { |
| DCHECK(AreSameSizeAndType(vd, vn, vm)); |
| Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d; |
| Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcmp(const VRegister& fn, const VRegister& fm) { |
| DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits()); |
| Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn)); |
| } |
| |
| void Assembler::fcmp(const VRegister& fn, double value) { |
| USE(value); |
| // Although the fcmp instruction can strictly only take an immediate value of |
| // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't |
| // affect the result of the comparison. |
| DCHECK_EQ(value, 0.0); |
| Emit(FPType(fn) | FCMP_zero | Rn(fn)); |
| } |
| |
| void Assembler::fccmp(const VRegister& fn, const VRegister& fm, |
| StatusFlags nzcv, Condition cond) { |
| DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits()); |
| Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv)); |
| } |
| |
| void Assembler::fcsel(const VRegister& fd, const VRegister& fn, |
| const VRegister& fm, Condition cond) { |
| DCHECK_EQ(fd.SizeInBits(), fn.SizeInBits()); |
| DCHECK_EQ(fd.SizeInBits(), fm.SizeInBits()); |
| Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd)); |
| } |
| |
| void Assembler::NEONFPConvertToInt(const Register& rd, const VRegister& vn, |
| Instr op) { |
| Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd)); |
| } |
| |
| void Assembler::NEONFPConvertToInt(const VRegister& vd, const VRegister& vn, |
| Instr op) { |
| if (vn.IsScalar()) { |
| DCHECK((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D())); |
| op |= NEON_Q | NEONScalar; |
| } |
| Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcvt(const VRegister& vd, const VRegister& vn) { |
| FPDataProcessing1SourceOp op; |
| if (vd.Is1D()) { |
| DCHECK(vn.Is1S() || vn.Is1H()); |
| op = vn.Is1S() ? FCVT_ds : FCVT_dh; |
| } else if (vd.Is1S()) { |
| DCHECK(vn.Is1D() || vn.Is1H()); |
| op = vn.Is1D() ? FCVT_sd : FCVT_sh; |
| } else { |
| DCHECK(vd.Is1H()); |
| DCHECK(vn.Is1D() || vn.Is1S()); |
| op = vn.Is1D() ? FCVT_hd : FCVT_hs; |
| } |
| FPDataProcessing1Source(vd, vn, op); |
| } |
| |
| void Assembler::fcvtl(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is4S() && vn.Is4H()) || (vd.Is2D() && vn.Is2S())); |
| Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; |
| Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcvtl2(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is4S() && vn.Is8H()) || (vd.Is2D() && vn.Is4S())); |
| Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; |
| Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcvtn(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vn.Is4S() && vd.Is4H()) || (vn.Is2D() && vd.Is2S())); |
| Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; |
| Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcvtn2(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vn.Is4S() && vd.Is8H()) || (vn.Is2D() && vd.Is4S())); |
| Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; |
| Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcvtxn(const VRegister& vd, const VRegister& vn) { |
| Instr format = 1 << NEONSize_offset; |
| if (vd.IsScalar()) { |
| DCHECK(vd.Is1S() && vn.Is1D()); |
| Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd)); |
| } else { |
| DCHECK(vd.Is2S() && vn.Is2D()); |
| Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd)); |
| } |
| } |
| |
| void Assembler::fcvtxn2(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.Is4S() && vn.Is2D()); |
| Instr format = 1 << NEONSize_offset; |
| Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fjcvtzs(const Register& rd, const VRegister& vn) { |
| DCHECK(rd.IsW() && vn.Is1D()); |
| Emit(FJCVTZS | Rn(vn) | Rd(rd)); |
| } |
| |
| #define NEON_FP2REGMISC_FCVT_LIST(V) \ |
| V(fcvtnu, NEON_FCVTNU, FCVTNU) \ |
| V(fcvtns, NEON_FCVTNS, FCVTNS) \ |
| V(fcvtpu, NEON_FCVTPU, FCVTPU) \ |
| V(fcvtps, NEON_FCVTPS, FCVTPS) \ |
| V(fcvtmu, NEON_FCVTMU, FCVTMU) \ |
| V(fcvtms, NEON_FCVTMS, FCVTMS) \ |
| V(fcvtau, NEON_FCVTAU, FCVTAU) \ |
| V(fcvtas, NEON_FCVTAS, FCVTAS) |
| |
| #define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \ |
| void Assembler::FN(const Register& rd, const VRegister& vn) { \ |
| NEONFPConvertToInt(rd, vn, SCA_OP); \ |
| } \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ |
| NEONFPConvertToInt(vd, vn, VEC_OP); \ |
| } |
| NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS) |
| #undef DEFINE_ASM_FUNCS |
| |
| void Assembler::scvtf(const VRegister& vd, const VRegister& vn, int fbits) { |
| DCHECK_GE(fbits, 0); |
| if (fbits == 0) { |
| NEONFP2RegMisc(vd, vn, NEON_SCVTF); |
| } else { |
| DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm); |
| } |
| } |
| |
| void Assembler::ucvtf(const VRegister& vd, const VRegister& vn, int fbits) { |
| DCHECK_GE(fbits, 0); |
| if (fbits == 0) { |
| NEONFP2RegMisc(vd, vn, NEON_UCVTF); |
| } else { |
| DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm); |
| } |
| } |
| |
| void Assembler::scvtf(const VRegister& vd, const Register& rn, int fbits) { |
| DCHECK_GE(fbits, 0); |
| if (fbits == 0) { |
| Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd)); |
| } else { |
| Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| Rd(vd)); |
| } |
| } |
| |
| void Assembler::ucvtf(const VRegister& fd, const Register& rn, int fbits) { |
| DCHECK_GE(fbits, 0); |
| if (fbits == 0) { |
| Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd)); |
| } else { |
| Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | |
| Rd(fd)); |
| } |
| } |
| |
| void Assembler::NEON3Same(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, NEON3SameOp vop) { |
| DCHECK(AreSameFormat(vd, vn, vm)); |
| DCHECK(vd.IsVector() || !vd.IsQ()); |
| |
| Instr format, op = vop; |
| if (vd.IsScalar()) { |
| op |= NEON_Q | NEONScalar; |
| format = SFormat(vd); |
| } else { |
| format = VFormat(vd); |
| } |
| |
| Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEONFP3Same(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, Instr op) { |
| DCHECK(AreSameFormat(vd, vn, vm)); |
| Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); |
| } |
| |
| #define NEON_FP2REGMISC_LIST(V) \ |
| V(fabs, NEON_FABS, FABS) \ |
| V(fneg, NEON_FNEG, FNEG) \ |
| V(fsqrt, NEON_FSQRT, FSQRT) \ |
| V(frintn, NEON_FRINTN, FRINTN) \ |
| V(frinta, NEON_FRINTA, FRINTA) \ |
| V(frintp, NEON_FRINTP, FRINTP) \ |
| V(frintm, NEON_FRINTM, FRINTM) \ |
| V(frintx, NEON_FRINTX, FRINTX) \ |
| V(frintz, NEON_FRINTZ, FRINTZ) \ |
| V(frinti, NEON_FRINTI, FRINTI) \ |
| V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \ |
| V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar) |
| |
| #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn) { \ |
| Instr op; \ |
| if (vd.IsScalar()) { \ |
| DCHECK(vd.Is1S() || vd.Is1D()); \ |
| op = SCA_OP; \ |
| } else { \ |
| DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ |
| op = VEC_OP; \ |
| } \ |
| NEONFP2RegMisc(vd, vn, op); \ |
| } |
| NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| void Assembler::shll(const VRegister& vd, const VRegister& vn, int shift) { |
| DCHECK((vd.Is8H() && vn.Is8B() && shift == 8) || |
| (vd.Is4S() && vn.Is4H() && shift == 16) || |
| (vd.Is2D() && vn.Is2S() && shift == 32)); |
| USE(shift); |
| Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::shll2(const VRegister& vd, const VRegister& vn, int shift) { |
| USE(shift); |
| DCHECK((vd.Is8H() && vn.Is16B() && shift == 8) || |
| (vd.Is4S() && vn.Is8H() && shift == 16) || |
| (vd.Is2D() && vn.Is4S() && shift == 32)); |
| Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, |
| NEON2RegMiscOp vop, double value) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK_EQ(value, 0.0); |
| USE(value); |
| |
| Instr op = vop; |
| if (vd.IsScalar()) { |
| DCHECK(vd.Is1S() || vd.Is1D()); |
| op |= NEON_Q | NEONScalar; |
| } else { |
| DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); |
| } |
| |
| Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcmeq(const VRegister& vd, const VRegister& vn, double value) { |
| NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value); |
| } |
| |
| void Assembler::fcmge(const VRegister& vd, const VRegister& vn, double value) { |
| NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value); |
| } |
| |
| void Assembler::fcmgt(const VRegister& vd, const VRegister& vn, double value) { |
| NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value); |
| } |
| |
| void Assembler::fcmle(const VRegister& vd, const VRegister& vn, double value) { |
| NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value); |
| } |
| |
| void Assembler::fcmlt(const VRegister& vd, const VRegister& vn, double value) { |
| NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value); |
| } |
| |
| void Assembler::frecpx(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsScalar()); |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is1S() || vd.Is1D()); |
| Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fcvtzs(const Register& rd, const VRegister& vn, int fbits) { |
| DCHECK(vn.Is1S() || vn.Is1D()); |
| DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits())); |
| if (fbits == 0) { |
| Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd)); |
| } else { |
| Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) | |
| Rd(rd)); |
| } |
| } |
| |
| void Assembler::fcvtzs(const VRegister& vd, const VRegister& vn, int fbits) { |
| DCHECK_GE(fbits, 0); |
| if (fbits == 0) { |
| NEONFP2RegMisc(vd, vn, NEON_FCVTZS); |
| } else { |
| DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm); |
| } |
| } |
| |
| void Assembler::fcvtzu(const Register& rd, const VRegister& vn, int fbits) { |
| DCHECK(vn.Is1S() || vn.Is1D()); |
| DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits())); |
| if (fbits == 0) { |
| Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd)); |
| } else { |
| Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) | |
| Rd(rd)); |
| } |
| } |
| |
| void Assembler::fcvtzu(const VRegister& vd, const VRegister& vn, int fbits) { |
| DCHECK_GE(fbits, 0); |
| if (fbits == 0) { |
| NEONFP2RegMisc(vd, vn, NEON_FCVTZU); |
| } else { |
| DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); |
| NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm); |
| } |
| } |
| |
| void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn, |
| Instr op) { |
| DCHECK(AreSameFormat(vd, vn)); |
| Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEON2RegMisc(const VRegister& vd, const VRegister& vn, |
| NEON2RegMiscOp vop, int value) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK_EQ(value, 0); |
| USE(value); |
| |
| Instr format, op = vop; |
| if (vd.IsScalar()) { |
| op |= NEON_Q | NEONScalar; |
| format = SFormat(vd); |
| } else { |
| format = VFormat(vd); |
| } |
| |
| Emit(format | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::cmeq(const VRegister& vd, const VRegister& vn, int value) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value); |
| } |
| |
| void Assembler::cmge(const VRegister& vd, const VRegister& vn, int value) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEON2RegMisc(vd, vn, NEON_CMGE_zero, value); |
| } |
| |
| void Assembler::cmgt(const VRegister& vd, const VRegister& vn, int value) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEON2RegMisc(vd, vn, NEON_CMGT_zero, value); |
| } |
| |
| void Assembler::cmle(const VRegister& vd, const VRegister& vn, int value) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEON2RegMisc(vd, vn, NEON_CMLE_zero, value); |
| } |
| |
| void Assembler::cmlt(const VRegister& vd, const VRegister& vn, int value) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEON2RegMisc(vd, vn, NEON_CMLT_zero, value); |
| } |
| |
| #define NEON_3SAME_LIST(V) \ |
| V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \ |
| V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \ |
| V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \ |
| V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \ |
| V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \ |
| V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \ |
| V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \ |
| V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \ |
| V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \ |
| V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \ |
| V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \ |
| V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \ |
| V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \ |
| V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ |
| V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ |
| V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \ |
| V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \ |
| V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \ |
| V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \ |
| V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \ |
| V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \ |
| V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \ |
| V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \ |
| V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \ |
| V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \ |
| V(uqadd, NEON_UQADD, true) \ |
| V(sqadd, NEON_SQADD, true) \ |
| V(uqsub, NEON_UQSUB, true) \ |
| V(sqsub, NEON_SQSUB, true) \ |
| V(sqshl, NEON_SQSHL, true) \ |
| V(uqshl, NEON_UQSHL, true) \ |
| V(sqrshl, NEON_SQRSHL, true) \ |
| V(uqrshl, NEON_UQRSHL, true) |
| |
| #define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| const VRegister& vm) { \ |
| DCHECK(AS); \ |
| NEON3Same(vd, vn, vm, OP); \ |
| } |
| NEON_3SAME_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| #define NEON_FP3SAME_LIST_V2(V) \ |
| V(fadd, NEON_FADD, FADD) \ |
| V(fsub, NEON_FSUB, FSUB) \ |
| V(fmul, NEON_FMUL, FMUL) \ |
| V(fdiv, NEON_FDIV, FDIV) \ |
| V(fmax, NEON_FMAX, FMAX) \ |
| V(fmaxnm, NEON_FMAXNM, FMAXNM) \ |
| V(fmin, NEON_FMIN, FMIN) \ |
| V(fminnm, NEON_FMINNM, FMINNM) \ |
| V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \ |
| V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \ |
| V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \ |
| V(fabd, NEON_FABD, NEON_FABD_scalar) \ |
| V(fmla, NEON_FMLA, 0) \ |
| V(fmls, NEON_FMLS, 0) \ |
| V(facge, NEON_FACGE, NEON_FACGE_scalar) \ |
| V(facgt, NEON_FACGT, NEON_FACGT_scalar) \ |
| V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \ |
| V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \ |
| V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \ |
| V(faddp, NEON_FADDP, 0) \ |
| V(fmaxp, NEON_FMAXP, 0) \ |
| V(fminp, NEON_FMINP, 0) \ |
| V(fmaxnmp, NEON_FMAXNMP, 0) \ |
| V(fminnmp, NEON_FMINNMP, 0) |
| |
| #define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| const VRegister& vm) { \ |
| Instr op; \ |
| if ((SCA_OP != 0) && vd.IsScalar()) { \ |
| DCHECK(vd.Is1S() || vd.Is1D()); \ |
| op = SCA_OP; \ |
| } else { \ |
| DCHECK(vd.IsVector()); \ |
| DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ |
| op = VEC_OP; \ |
| } \ |
| NEONFP3Same(vd, vn, vm, op); \ |
| } |
| NEON_FP3SAME_LIST_V2(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| void Assembler::addp(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is1D() && vn.Is2D())); |
| Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::faddp(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fmaxp(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fminp(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fmaxnmp(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::fminnmp(const VRegister& vd, const VRegister& vn) { |
| DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D())); |
| Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::orr(const VRegister& vd, const int imm8, const int left_shift) { |
| NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_ORR); |
| } |
| |
| void Assembler::mov(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| if (vd.IsD()) { |
| orr(vd.V8B(), vn.V8B(), vn.V8B()); |
| } else { |
| DCHECK(vd.IsQ()); |
| orr(vd.V16B(), vn.V16B(), vn.V16B()); |
| } |
| } |
| |
| void Assembler::bic(const VRegister& vd, const int imm8, const int left_shift) { |
| NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_BIC); |
| } |
| |
| void Assembler::movi(const VRegister& vd, const uint64_t imm, Shift shift, |
| const int shift_amount) { |
| DCHECK((shift == LSL) || (shift == MSL)); |
| if (vd.Is2D() || vd.Is1D()) { |
| DCHECK_EQ(shift_amount, 0); |
| int imm8 = 0; |
| for (int i = 0; i < 8; ++i) { |
| int byte = (imm >> (i * 8)) & 0xFF; |
| DCHECK((byte == 0) || (byte == 0xFF)); |
| if (byte == 0xFF) { |
| imm8 |= (1 << i); |
| } |
| } |
| Instr q = vd.Is2D() ? NEON_Q : 0; |
| Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI | |
| ImmNEONabcdefgh(imm8) | NEONCmode(0xE) | Rd(vd)); |
| } else if (shift == LSL) { |
| DCHECK(is_uint8(imm)); |
| NEONModifiedImmShiftLsl(vd, static_cast<int>(imm), shift_amount, |
| NEONModifiedImmediate_MOVI); |
| } else { |
| DCHECK(is_uint8(imm)); |
| NEONModifiedImmShiftMsl(vd, static_cast<int>(imm), shift_amount, |
| NEONModifiedImmediate_MOVI); |
| } |
| } |
| |
| void Assembler::mvn(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| if (vd.IsD()) { |
| not_(vd.V8B(), vn.V8B()); |
| } else { |
| DCHECK(vd.IsQ()); |
| not_(vd.V16B(), vn.V16B()); |
| } |
| } |
| |
| void Assembler::mvni(const VRegister& vd, const int imm8, Shift shift, |
| const int shift_amount) { |
| DCHECK((shift == LSL) || (shift == MSL)); |
| if (shift == LSL) { |
| NEONModifiedImmShiftLsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); |
| } else { |
| NEONModifiedImmShiftMsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI); |
| } |
| } |
| |
| void Assembler::NEONFPByElement(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, int vm_index, |
| NEONByIndexedElementOp vop) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK((vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) || |
| (vd.Is1S() && vm.Is1S()) || (vd.Is2D() && vm.Is1D()) || |
| (vd.Is1D() && vm.Is1D())); |
| DCHECK((vm.Is1S() && (vm_index < 4)) || (vm.Is1D() && (vm_index < 2))); |
| |
| Instr op = vop; |
| int index_num_bits = vm.Is1S() ? 2 : 1; |
| if (vd.IsScalar()) { |
| op |= NEON_Q | NEONScalar; |
| } |
| |
| Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | |
| Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::NEONByElement(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, int vm_index, |
| NEONByIndexedElementOp vop) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK((vd.Is4H() && vm.Is1H()) || (vd.Is8H() && vm.Is1H()) || |
| (vd.Is1H() && vm.Is1H()) || (vd.Is2S() && vm.Is1S()) || |
| (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S())); |
| DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || |
| (vm.Is1S() && (vm_index < 4))); |
| |
| Instr format, op = vop; |
| int index_num_bits = vm.Is1H() ? 3 : 2; |
| if (vd.IsScalar()) { |
| op |= NEONScalar | NEON_Q; |
| format = SFormat(vn); |
| } else { |
| format = VFormat(vn); |
| } |
| Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | |
| Rd(vd)); |
| } |
| |
| void Assembler::NEONByElementL(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, int vm_index, |
| NEONByIndexedElementOp vop) { |
| DCHECK((vd.Is4S() && vn.Is4H() && vm.Is1H()) || |
| (vd.Is4S() && vn.Is8H() && vm.Is1H()) || |
| (vd.Is1S() && vn.Is1H() && vm.Is1H()) || |
| (vd.Is2D() && vn.Is2S() && vm.Is1S()) || |
| (vd.Is2D() && vn.Is4S() && vm.Is1S()) || |
| (vd.Is1D() && vn.Is1S() && vm.Is1S())); |
| |
| DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || |
| (vm.Is1S() && (vm_index < 4))); |
| |
| Instr format, op = vop; |
| int index_num_bits = vm.Is1H() ? 3 : 2; |
| if (vd.IsScalar()) { |
| op |= NEONScalar | NEON_Q; |
| format = SFormat(vn); |
| } else { |
| format = VFormat(vn); |
| } |
| Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) | |
| Rd(vd)); |
| } |
| |
| #define NEON_BYELEMENT_LIST(V) \ |
| V(mul, NEON_MUL_byelement, vn.IsVector()) \ |
| V(mla, NEON_MLA_byelement, vn.IsVector()) \ |
| V(mls, NEON_MLS_byelement, vn.IsVector()) \ |
| V(sqdmulh, NEON_SQDMULH_byelement, true) \ |
| V(sqrdmulh, NEON_SQRDMULH_byelement, true) |
| |
| #define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| const VRegister& vm, int vm_index) { \ |
| DCHECK(AS); \ |
| NEONByElement(vd, vn, vm, vm_index, OP); \ |
| } |
| NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| #define NEON_FPBYELEMENT_LIST(V) \ |
| V(fmul, NEON_FMUL_byelement) \ |
| V(fmla, NEON_FMLA_byelement) \ |
| V(fmls, NEON_FMLS_byelement) \ |
| V(fmulx, NEON_FMULX_byelement) |
| |
| #define DEFINE_ASM_FUNC(FN, OP) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| const VRegister& vm, int vm_index) { \ |
| NEONFPByElement(vd, vn, vm, vm_index, OP); \ |
| } |
| NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| #define NEON_BYELEMENT_LONG_LIST(V) \ |
| V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \ |
| V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \ |
| V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \ |
| V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \ |
| V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \ |
| V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \ |
| V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \ |
| V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \ |
| V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \ |
| V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \ |
| V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ()) |
| |
| #define DEFINE_ASM_FUNC(FN, OP, AS) \ |
| void Assembler::FN(const VRegister& vd, const VRegister& vn, \ |
| const VRegister& vm, int vm_index) { \ |
| DCHECK(AS); \ |
| NEONByElementL(vd, vn, vm, vm_index, OP); \ |
| } |
| NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC) |
| #undef DEFINE_ASM_FUNC |
| |
| void Assembler::suqadd(const VRegister& vd, const VRegister& vn) { |
| NEON2RegMisc(vd, vn, NEON_SUQADD); |
| } |
| |
| void Assembler::usqadd(const VRegister& vd, const VRegister& vn) { |
| NEON2RegMisc(vd, vn, NEON_USQADD); |
| } |
| |
| void Assembler::abs(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEON2RegMisc(vd, vn, NEON_ABS); |
| } |
| |
| void Assembler::sqabs(const VRegister& vd, const VRegister& vn) { |
| NEON2RegMisc(vd, vn, NEON_SQABS); |
| } |
| |
| void Assembler::neg(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsVector() || vd.Is1D()); |
| NEON2RegMisc(vd, vn, NEON_NEG); |
| } |
| |
| void Assembler::sqneg(const VRegister& vd, const VRegister& vn) { |
| NEON2RegMisc(vd, vn, NEON_SQNEG); |
| } |
| |
| void Assembler::NEONXtn(const VRegister& vd, const VRegister& vn, |
| NEON2RegMiscOp vop) { |
| Instr format, op = vop; |
| if (vd.IsScalar()) { |
| DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) || |
| (vd.Is1S() && vn.Is1D())); |
| op |= NEON_Q | NEONScalar; |
| format = SFormat(vd); |
| } else { |
| DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) || |
| (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) || |
| (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D())); |
| format = VFormat(vd); |
| } |
| Emit(format | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::xtn(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsVector() && vd.IsD()); |
| NEONXtn(vd, vn, NEON_XTN); |
| } |
| |
| void Assembler::xtn2(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsVector() && vd.IsQ()); |
| NEONXtn(vd, vn, NEON_XTN); |
| } |
| |
| void Assembler::sqxtn(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsScalar() || vd.IsD()); |
| NEONXtn(vd, vn, NEON_SQXTN); |
| } |
| |
| void Assembler::sqxtn2(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsVector() && vd.IsQ()); |
| NEONXtn(vd, vn, NEON_SQXTN); |
| } |
| |
| void Assembler::sqxtun(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsScalar() || vd.IsD()); |
| NEONXtn(vd, vn, NEON_SQXTUN); |
| } |
| |
| void Assembler::sqxtun2(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsVector() && vd.IsQ()); |
| NEONXtn(vd, vn, NEON_SQXTUN); |
| } |
| |
| void Assembler::uqxtn(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsScalar() || vd.IsD()); |
| NEONXtn(vd, vn, NEON_UQXTN); |
| } |
| |
| void Assembler::uqxtn2(const VRegister& vd, const VRegister& vn) { |
| DCHECK(vd.IsVector() && vd.IsQ()); |
| NEONXtn(vd, vn, NEON_UQXTN); |
| } |
| |
| // NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size". |
| void Assembler::not_(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is8B() || vd.Is16B()); |
| Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::rbit(const VRegister& vd, const VRegister& vn) { |
| DCHECK(AreSameFormat(vd, vn)); |
| DCHECK(vd.Is8B() || vd.Is16B()); |
| Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::ext(const VRegister& vd, const VRegister& vn, |
| const VRegister& vm, int index) { |
| DCHECK(AreSameFormat(vd, vn, vm)); |
| DCHECK(vd.Is8B() || vd.Is16B()); |
| DCHECK((0 <= index) && (index < vd.LaneCount())); |
| Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::dup(const VRegister& vd, const VRegister& vn, int vn_index) { |
| Instr q, scalar; |
| |
| // We support vn arguments of the form vn.VxT() or vn.T(), where x is the |
| // number of lanes, and T is b, h, s or d. |
| int lane_size = vn.LaneSizeInBytes(); |
| NEONFormatField format; |
| switch (lane_size) { |
| case 1: |
| format = NEON_16B; |
| break; |
| case 2: |
| format = NEON_8H; |
| break; |
| case 4: |
| format = NEON_4S; |
| break; |
| default: |
| DCHECK_EQ(lane_size, 8); |
| format = NEON_2D; |
| break; |
| } |
| |
| if (vd.IsScalar()) { |
| q = NEON_Q; |
| scalar = NEONScalar; |
| } else { |
| DCHECK(!vd.Is1D()); |
| q = vd.IsD() ? 0 : NEON_Q; |
| scalar = 0; |
| } |
| Emit(q | scalar | NEON_DUP_ELEMENT | ImmNEON5(format, vn_index) | Rn(vn) | |
| Rd(vd)); |
| } |
| |
| void Assembler::dcptr(Label* label) { |
| BlockPoolsScope no_pool_inbetween(this); |
| RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| if (label->is_bound()) { |
| // The label is bound, so it does not need to be updated and the internal |
| // reference should be emitted. |
| // |
| // In this case, label->pos() returns the offset of the label from the |
| // start of the buffer. |
| internal_reference_positions_.push_back(pc_offset()); |
| dc64(reinterpret_cast<uintptr_t>(buffer_start_ + label->pos())); |
| } else { |
| int32_t offset; |
| if (label->is_linked()) { |
| // The label is linked, so the internal reference should be added |
| // onto the end of the label's link chain. |
| // |
| // In this case, label->pos() returns the offset of the last linked |
| // instruction from the start of the buffer. |
| offset = label->pos() - pc_offset(); |
| DCHECK_NE(offset, kStartOfLabelLinkChain); |
| } else { |
| // The label is unused, so it now becomes linked and the internal |
| // reference is at the start of the new link chain. |
| offset = kStartOfLabelLinkChain; |
| } |
| // The instruction at pc is now the last link in the label's chain. |
| label->link_to(pc_offset()); |
| |
| // Traditionally the offset to the previous instruction in the chain is |
| // encoded in the instruction payload (e.g. branch range) but internal |
| // references are not instructions so while unbound they are encoded as |
| // two consecutive brk instructions. The two 16-bit immediates are used |
| // to encode the offset. |
| offset >>= kInstrSizeLog2; |
| DCHECK(is_int32(offset)); |
| uint32_t high16 = unsigned_bitextract_32(31, 16, offset); |
| uint32_t low16 = unsigned_bitextract_32(15, 0, offset); |
| |
| brk(high16); |
| brk(low16); |
| } |
| } |
| |
| // Below, a difference in case for the same letter indicates a |
| // negated bit. If b is 1, then B is 0. |
| uint32_t Assembler::FPToImm8(double imm) { |
| DCHECK(IsImmFP64(imm)); |
| // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| // 0000.0000.0000.0000.0000.0000.0000.0000 |
| uint64_t bits = bit_cast<uint64_t>(imm); |
| // bit7: a000.0000 |
| uint64_t bit7 = ((bits >> 63) & 0x1) << 7; |
| // bit6: 0b00.0000 |
| uint64_t bit6 = ((bits >> 61) & 0x1) << 6; |
| // bit5_to_0: 00cd.efgh |
| uint64_t bit5_to_0 = (bits >> 48) & 0x3F; |
| |
| return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0); |
| } |
| |
| Instr Assembler::ImmFP(double imm) { return FPToImm8(imm) << ImmFP_offset; } |
| Instr Assembler::ImmNEONFP(double imm) { |
| return ImmNEONabcdefgh(FPToImm8(imm)); |
| } |
| |
| // Code generation helpers. |
| void Assembler::MoveWide(const Register& rd, uint64_t imm, int shift, |
| MoveWideImmediateOp mov_op) { |
| // Ignore the top 32 bits of an immediate if we're moving to a W register. |
| if (rd.Is32Bits()) { |
| // Check that the top 32 bits are zero (a positive 32-bit number) or top |
| // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). |
| DCHECK(((imm >> kWRegSizeInBits) == 0) || |
| ((imm >> (kWRegSizeInBits - 1)) == 0x1FFFFFFFF)); |
| imm &= kWRegMask; |
| } |
| |
| if (shift >= 0) { |
| // Explicit shift specified. |
| DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); |
| DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16)); |
| shift /= 16; |
| } else { |
| // Calculate a new immediate and shift combination to encode the immediate |
| // argument. |
| shift = 0; |
| if ((imm & ~0xFFFFULL) == 0) { |
| // Nothing to do. |
| } else if ((imm & ~(0xFFFFULL << 16)) == 0) { |
| imm >>= 16; |
| shift = 1; |
| } else if ((imm & ~(0xFFFFULL << 32)) == 0) { |
| DCHECK(rd.Is64Bits()); |
| imm >>= 32; |
| shift = 2; |
| } else if ((imm & ~(0xFFFFULL << 48)) == 0) { |
| DCHECK(rd.Is64Bits()); |
| imm >>= 48; |
| shift = 3; |
| } |
| } |
| |
| DCHECK(is_uint16(imm)); |
| |
| Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) | |
| ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift)); |
| } |
| |
| void Assembler::AddSub(const Register& rd, const Register& rn, |
| const Operand& operand, FlagsUpdate S, AddSubOp op) { |
| DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits()); |
| DCHECK(!operand.NeedsRelocation(this)); |
| if (operand.IsImmediate()) { |
| int64_t immediate = operand.ImmediateValue(); |
| DCHECK(IsImmAddSub(immediate)); |
| Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); |
| Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | |
| ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn)); |
| } else if (operand.IsShiftedRegister()) { |
| DCHECK_EQ(operand.reg().SizeInBits(), rd.SizeInBits()); |
| DCHECK_NE(operand.shift(), ROR); |
| |
| // For instructions of the form: |
| // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ] |
| // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ] |
| // add/sub wsp, wsp, <Wm> [, LSL #0-3 ] |
| // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ] |
| // or their 64-bit register equivalents, convert the operand from shifted to |
| // extended register mode, and emit an add/sub extended instruction. |
| if (rn.IsSP() || rd.IsSP()) { |
| DCHECK(!(rd.IsSP() && (S == SetFlags))); |
| DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S, |
| AddSubExtendedFixed | op); |
| } else { |
| DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op); |
| } |
| } else { |
| DCHECK(operand.IsExtendedRegister()); |
| DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op); |
| } |
| } |
| |
| void Assembler::AddSubWithCarry(const Register& rd, const Register& rn, |
| const Operand& operand, FlagsUpdate S, |
| AddSubWithCarryOp op) { |
| DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits()); |
| DCHECK_EQ(rd.SizeInBits(), operand.reg().SizeInBits()); |
| DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); |
| DCHECK(!operand.NeedsRelocation(this)); |
| Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::hlt(int code) { |
| DCHECK(is_uint16(code)); |
| Emit(HLT | ImmException(code)); |
| } |
| |
| void Assembler::brk(int code) { |
| DCHECK(is_uint16(code)); |
| Emit(BRK | ImmException(code)); |
| } |
| |
| void Assembler::EmitStringData(const char* string) { |
| size_t len = strlen(string) + 1; |
| DCHECK_LE(RoundUp(len, kInstrSize), static_cast<size_t>(kGap)); |
| EmitData(string, static_cast<int>(len)); |
| // Pad with nullptr characters until pc_ is aligned. |
| const char pad[] = {'\0', '\0', '\0', '\0'}; |
| static_assert(sizeof(pad) == kInstrSize, |
| "Size of padding must match instruction size."); |
| EmitData(pad, RoundUp(pc_offset(), kInstrSize) - pc_offset()); |
| } |
| |
| void Assembler::debug(const char* message, uint32_t code, Instr params) { |
| if (options().enable_simulator_code) { |
| // The arguments to the debug marker need to be contiguous in memory, so |
| // make sure we don't try to emit pools. |
| BlockPoolsScope scope(this); |
| |
| Label start; |
| bind(&start); |
| |
| // Refer to instructions-arm64.h for a description of the marker and its |
| // arguments. |
| hlt(kImmExceptionIsDebug); |
| DCHECK_EQ(SizeOfCodeGeneratedSince(&start), kDebugCodeOffset); |
| dc32(code); |
| DCHECK_EQ(SizeOfCodeGeneratedSince(&start), kDebugParamsOffset); |
| dc32(params); |
| DCHECK_EQ(SizeOfCodeGeneratedSince(&start), kDebugMessageOffset); |
| EmitStringData(message); |
| hlt(kImmExceptionIsUnreachable); |
| |
| return; |
| } |
| |
| if (params & BREAK) { |
| brk(0); |
| } |
| } |
| |
| void Assembler::Logical(const Register& rd, const Register& rn, |
| const Operand& operand, LogicalOp op) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| DCHECK(!operand.NeedsRelocation(this)); |
| if (operand.IsImmediate()) { |
| int64_t immediate = operand.ImmediateValue(); |
| unsigned reg_size = rd.SizeInBits(); |
| |
| DCHECK_NE(immediate, 0); |
| DCHECK_NE(immediate, -1); |
| DCHECK(rd.Is64Bits() || is_uint32(immediate)); |
| |
| // If the operation is NOT, invert the operation and immediate. |
| if ((op & NOT) == NOT) { |
| op = static_cast<LogicalOp>(op & ~NOT); |
| immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask); |
| } |
| |
| unsigned n, imm_s, imm_r; |
| if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { |
| // Immediate can be encoded in the instruction. |
| LogicalImmediate(rd, rn, n, imm_s, imm_r, op); |
| } else { |
| // This case is handled in the macro assembler. |
| UNREACHABLE(); |
| } |
| } else { |
| DCHECK(operand.IsShiftedRegister()); |
| DCHECK(operand.reg().SizeInBits() == rd.SizeInBits()); |
| Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed); |
| DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op); |
| } |
| } |
| |
| void Assembler::LogicalImmediate(const Register& rd, const Register& rn, |
| unsigned n, unsigned imm_s, unsigned imm_r, |
| LogicalOp op) { |
| unsigned reg_size = rd.SizeInBits(); |
| Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd); |
| Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) | |
| ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg | |
| Rn(rn)); |
| } |
| |
| void Assembler::ConditionalCompare(const Register& rn, const Operand& operand, |
| StatusFlags nzcv, Condition cond, |
| ConditionalCompareOp op) { |
| Instr ccmpop; |
| DCHECK(!operand.NeedsRelocation(this)); |
| if (operand.IsImmediate()) { |
| int64_t immediate = operand.ImmediateValue(); |
| DCHECK(IsImmConditionalCompare(immediate)); |
| ccmpop = ConditionalCompareImmediateFixed | op | |
| ImmCondCmp(static_cast<unsigned>(immediate)); |
| } else { |
| DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); |
| ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg()); |
| } |
| Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv)); |
| } |
| |
| void Assembler::DataProcessing1Source(const Register& rd, const Register& rn, |
| DataProcessing1SourceOp op) { |
| DCHECK(rd.SizeInBits() == rn.SizeInBits()); |
| Emit(SF(rn) | op | Rn(rn) | Rd(rd)); |
| } |
| |
| void Assembler::FPDataProcessing1Source(const VRegister& vd, |
| const VRegister& vn, |
| FPDataProcessing1SourceOp op) { |
| Emit(FPType(vn) | op | Rn(vn) | Rd(vd)); |
| } |
| |
| void Assembler::FPDataProcessing2Source(const VRegister& fd, |
| const VRegister& fn, |
| const VRegister& fm, |
| FPDataProcessing2SourceOp op) { |
| DCHECK(fd.SizeInBits() == fn.SizeInBits()); |
| DCHECK(fd.SizeInBits() == fm.SizeInBits()); |
| Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd)); |
| } |
| |
| void Assembler::FPDataProcessing3Source(const VRegister& fd, |
| const VRegister& fn, |
| const VRegister& fm, |
| const VRegister& fa, |
| FPDataProcessing3SourceOp op) { |
| DCHECK(AreSameSizeAndType(fd, fn, fm, fa)); |
| Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa)); |
| } |
| |
| void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd, const int imm8, |
| const int left_shift, |
| NEONModifiedImmediateOp op) { |
| DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || vd.Is2S() || |
| vd.Is4S()); |
| DCHECK((left_shift == 0) || (left_shift == 8) || (left_shift == 16) || |
| (left_shift == 24)); |
| DCHECK(is_uint8(imm8)); |
| |
| int cmode_1, cmode_2, cmode_3; |
| if (vd.Is8B() || vd.Is16B()) { |
| DCHECK_EQ(op, NEONModifiedImmediate_MOVI); |
| cmode_1 = 1; |
| cmode_2 = 1; |
| cmode_3 = 1; |
| } else { |
| cmode_1 = (left_shift >> 3) & 1; |
| cmode_2 = left_shift >> 4; |
| cmode_3 = 0; |
| if (vd.Is4H() || vd.Is8H()) { |
| DCHECK((left_shift == 0) || (left_shift == 8)); |
| cmode_3 = 1; |
| } |
| } |
| int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1); |
| |
| Instr q = vd.IsQ() ? NEON_Q : 0; |
| |
| Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); |
| } |
| |
| void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd, const int imm8, |
| const int shift_amount, |
| NEONModifiedImmediateOp op) { |
| DCHECK(vd.Is2S() || vd.Is4S()); |
| DCHECK((shift_amount == 8) || (shift_amount == 16)); |
| DCHECK(is_uint8(imm8)); |
| |
| int cmode_0 = (shift_amount >> 4) & 1; |
| int cmode = 0xC | cmode_0; |
| |
| Instr q = vd.IsQ() ? NEON_Q : 0; |
| |
| Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); |
| } |
| |
| void Assembler::EmitShift(const Register& rd, const Register& rn, Shift shift, |
| unsigned shift_amount) { |
| switch (shift) { |
| case LSL: |
| lsl(rd, rn, shift_amount); |
| break; |
| case LSR: |
| lsr(rd, rn, shift_amount); |
| break; |
| case ASR: |
| asr(rd, rn, shift_amount); |
| break; |
| case ROR: |
| ror(rd, rn, shift_amount); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Assembler::EmitExtendShift(const Register& rd, const Register& rn, |
| Extend extend, unsigned left_shift) { |
| DCHECK(rd.SizeInBits() >= rn.SizeInBits()); |
| unsigned reg_size = rd.SizeInBits(); |
| // Use the correct size of register. |
| Register rn_ = Register::Create(rn.code(), rd.SizeInBits()); |
| // Bits extracted are high_bit:0. |
| unsigned high_bit = (8 << (extend & 0x3)) - 1; |
| // Number of bits left in the result that are not introduced by the shift. |
| unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1); |
| |
| if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) { |
| switch (extend) { |
| case UXTB: |
| case UXTH: |
| case UXTW: |
| ubfm(rd, rn_, non_shift_bits, high_bit); |
| break; |
| case SXTB: |
| case SXTH: |
| case SXTW: |
| sbfm(rd, rn_, non_shift_bits, high_bit); |
| break; |
| case UXTX: |
| case SXTX: { |
| DCHECK_EQ(rn.SizeInBits(), kXRegSizeInBits); |
| // Nothing to extend. Just shift. |
| lsl(rd, rn_, left_shift); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| // No need to extend as the extended bits would be shifted away. |
| lsl(rd, rn_, left_shift); |
| } |
| } |
| |
| void Assembler::DataProcShiftedRegister(const Register& rd, const Register& rn, |
| const Operand& operand, FlagsUpdate S, |
| Instr op) { |
| DCHECK(operand.IsShiftedRegister()); |
| DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount()))); |
| DCHECK(!operand.NeedsRelocation(this)); |
| Emit(SF(rd) | op | Flags(S) | ShiftDP(operand.shift()) | |
| ImmDPShift(operand.shift_amount()) | Rm(operand.reg()) | Rn(rn) | |
| Rd(rd)); |
| } |
| |
| void Assembler::DataProcExtendedRegister(const Register& rd, const Register& rn, |
| const Operand& operand, FlagsUpdate S, |
| Instr op) { |
| DCHECK(!operand.NeedsRelocation(this)); |
| Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); |
| Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | |
| ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) | |
| dest_reg | RnSP(rn)); |
| } |
| |
| bool Assembler::IsImmAddSub(int64_t immediate) { |
| return is_uint12(immediate) || |
| (is_uint12(immediate >> 12) && ((immediate & 0xFFF) == 0)); |
| } |
| |
| void Assembler::LoadStore(const CPURegister& rt, const MemOperand& addr, |
| LoadStoreOp op) { |
| Instr memop = op | Rt(rt) | RnSP(addr.base()); |
| |
| if (addr.IsImmediateOffset()) { |
| unsigned size = CalcLSDataSize(op); |
| if (IsImmLSScaled(addr.offset(), size)) { |
| int offset = static_cast<int>(addr.offset()); |
| // Use the scaled addressing mode. |
| Emit(LoadStoreUnsignedOffsetFixed | memop | |
| ImmLSUnsigned(offset >> size)); |
| } else if (IsImmLSUnscaled(addr.offset())) { |
| int offset = static_cast<int>(addr.offset()); |
| // Use the unscaled addressing mode. |
| Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset)); |
| } else { |
| // This case is handled in the macro assembler. |
| UNREACHABLE(); |
| } |
| } else if (addr.IsRegisterOffset()) { |
| Extend ext = addr.extend(); |
| Shift shift = addr.shift(); |
| unsigned shift_amount = addr.shift_amount(); |
| |
| // LSL is encoded in the option field as UXTX. |
| if (shift == LSL) { |
| ext = UXTX; |
| } |
| |
| // Shifts are encoded in one bit, indicating a left shift by the memory |
| // access size. |
| DCHECK((shift_amount == 0) || |
| (shift_amount == static_cast<unsigned>(CalcLSDataSize(op)))); |
| Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) | |
| ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0)); |
| } else { |
| // Pre-index and post-index modes. |
| DCHECK_NE(rt, addr.base()); |
| if (IsImmLSUnscaled(addr.offset())) { |
| int offset = static_cast<int>(addr.offset()); |
| if (addr.IsPreIndex()) { |
| Emit(LoadStorePreIndexFixed | memop | ImmLS(offset)); |
| } else { |
| DCHECK(addr.IsPostIndex()); |
| Emit(LoadStorePostIndexFixed | memop | ImmLS(offset)); |
| } |
| } else { |
| // This case is handled in the macro assembler. |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| bool Assembler::IsImmLSUnscaled(int64_t offset) { return is_int9(offset); } |
| |
| bool Assembler::IsImmLSScaled(int64_t offset, unsigned size) { |
| bool offset_is_size_multiple = |
| (static_cast<int64_t>(static_cast<uint64_t>(offset >> size) << size) == |
| offset); |
| return offset_is_size_multiple && is_uint12(offset >> size); |
| } |
| |
| bool Assembler::IsImmLSPair(int64_t offset, unsigned size) { |
| bool offset_is_size_multiple = |
| (static_cast<int64_t>(static_cast<uint64_t>(offset >> size) << size) == |
| offset); |
| return offset_is_size_multiple && is_int7(offset >> size); |
| } |
| |
| bool Assembler::IsImmLLiteral(int64_t offset) { |
| int inst_size = static_cast<int>(kInstrSizeLog2); |
| bool offset_is_inst_multiple = |
| (static_cast<int64_t>(static_cast<uint64_t>(offset >> inst_size) |
| << inst_size) == offset); |
| DCHECK_GT(offset, 0); |
| offset >>= kLoadLiteralScaleLog2; |
| return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width); |
| } |
| |
| // Test if a given value can be encoded in the immediate field of a logical |
| // instruction. |
| // If it can be encoded, the function returns true, and values pointed to by n, |
| // imm_s and imm_r are updated with immediates encoded in the format required |
| // by the corresponding fields in the logical instruction. |
| // If it can not be encoded, the function returns false, and the values pointed |
| // to by n, imm_s and imm_r are undefined. |
| bool Assembler::IsImmLogical(uint64_t value, unsigned width, unsigned* n, |
| unsigned* imm_s, unsigned* imm_r) { |
| DCHECK((n != nullptr) && (imm_s != nullptr) && (imm_r != nullptr)); |
| DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); |
| |
| bool negate = false; |
| |
| // Logical immediates are encoded using parameters n, imm_s and imm_r using |
| // the following table: |
| // |
| // N imms immr size S R |
| // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) |
| // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) |
| // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) |
| // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) |
| // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) |
| // 0 11110s xxxxxr 2 UInt(s) UInt(r) |
| // (s bits must not be all set) |
| // |
| // A pattern is constructed of size bits, where the least significant S+1 bits |
| // are set. The pattern is rotated right by R, and repeated across a 32 or |
| // 64-bit value, depending on destination register width. |
| // |
| // Put another way: the basic format of a logical immediate is a single |
| // contiguous stretch of 1 bits, repeated across the whole word at intervals |
| // given by a power of 2. To identify them quickly, we first locate the |
| // lowest stretch of 1 bits, then the next 1 bit above that; that combination |
| // is different for every logical immediate, so it gives us all the |
| // information we need to identify the only logical immediate that our input |
| // could be, and then we simply check if that's the value we actually have. |
| // |
| // (The rotation parameter does give the possibility of the stretch of 1 bits |
| // going 'round the end' of the word. To deal with that, we observe that in |
| // any situation where that happens the bitwise NOT of the value is also a |
| // valid logical immediate. So we simply invert the input whenever its low bit |
| // is set, and then we know that the rotated case can't arise.) |
| |
| if (value & 1) { |
| // If the low bit is 1, negate the value, and set a flag to remember that we |
| // did (so that we can adjust the return values appropriately). |
| negate = true; |
| value = ~value; |
| } |
| |
| if (width == kWRegSizeInBits) { |
| // To handle 32-bit logical immediates, the very easiest thing is to repeat |
| // the input value twice to make a 64-bit word. The correct encoding of that |
| // as a logical immediate will also be the correct encoding of the 32-bit |
| // value. |
| |
| // The most-significant 32 bits may not be zero (ie. negate is true) so |
| // shift the value left before duplicating it. |
| value <<= kWRegSizeInBits; |
| value |= value >> kWRegSizeInBits; |
| } |
| |
| // The basic analysis idea: imagine our input word looks like this. |
| // |
| // 0011111000111110001111100011111000111110001111100011111000111110 |
| // c b a |
| // |<--d-->| |
| // |
| // We find the lowest set bit (as an actual power-of-2 value, not its index) |
| // and call it a. Then we add a to our original number, which wipes out the |
| // bottommost stretch of set bits and replaces it with a 1 carried into the |
| // next zero bit. Then we look for the new lowest set bit, which is in |
| // position b, and subtract it, so now our number is just like the original |
| // but with the lowest stretch of set bits completely gone. Now we find the |
| // lowest set bit again, which is position c in the diagram above. Then we'll |
| // measure the distance d between bit positions a and c (using CLZ), and that |
| // tells us that the only valid logical immediate that could possibly be equal |
| // to this number is the one in which a stretch of bits running from a to just |
| // below b is replicated every d bits. |
| uint64_t a = LargestPowerOf2Divisor(value); |
| uint64_t value_plus_a = value + a; |
| uint64_t b = LargestPowerOf2Divisor(value_plus_a); |
| uint64_t value_plus_a_minus_b = value_plus_a - b; |
| uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b); |
| |
| int d, clz_a, out_n; |
| uint64_t mask; |
| |
| if (c != 0) { |
| // The general case, in which there is more than one stretch of set bits. |
| // Compute the repeat distance d, and set up a bitmask covering the basic |
| // unit of repetition (i.e. a word with the bottom d bits set). Also, in all |
| // of these cases the N bit of the output will be zero. |
| clz_a = CountLeadingZeros(a, kXRegSizeInBits); |
| int clz_c = CountLeadingZeros(c, kXRegSizeInBits); |
| d = clz_a - clz_c; |
| mask = ((uint64_t{1} << d) - 1); |
| out_n = 0; |
| } else { |
| // Handle degenerate cases. |
| // |
| // If any of those 'find lowest set bit' operations didn't find a set bit at |
| // all, then the word will have been zero thereafter, so in particular the |
| // last lowest_set_bit operation will have returned zero. So we can test for |
| // all the special case conditions in one go by seeing if c is zero. |
| if (a == 0) { |
| // The input was zero (or all 1 bits, which will come to here too after we |
| // inverted it at the start of the function), for which we just return |
| // false. |
| return false; |
| } else { |
| // Otherwise, if c was zero but a was not, then there's just one stretch |
| // of set bits in our word, meaning that we have the trivial case of |
| // d == 64 and only one 'repetition'. Set up all the same variables as in |
| // the general case above, and set the N bit in the output. |
| clz_a = CountLeadingZeros(a, kXRegSizeInBits); |
| d = 64; |
| mask = ~uint64_t{0}; |
| out_n = 1; |
| } |
| } |
| |
| // If the repeat period d is not a power of two, it can't be encoded. |
| if (!base::bits::IsPowerOfTwo(d)) { |
| return false; |
| } |
| |
| if (((b - a) & ~mask) != 0) { |
| // If the bit stretch (b - a) does not fit within the mask derived from the |
| // repeat period, then fail. |
| return false; |
| } |
| |
| // The only possible option is b - a repeated every d bits. Now we're going to |
| // actually construct the valid logical immediate derived from that |
| // specification, and see if it equals our original input. |
| // |
| // To repeat a value every d bits, we multiply it by a number of the form |
| // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can |
| // be derived using a table lookup on CLZ(d). |
| static const uint64_t multipliers[] = { |
| 0x0000000000000001UL, 0x0000000100000001UL, 0x0001000100010001UL, |
| 0x0101010101010101UL, 0x1111111111111111UL, 0x5555555555555555UL, |
| }; |
| int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57; |
| // Ensure that the index to the multipliers array is within bounds. |
| DCHECK((multiplier_idx >= 0) && |
| (static_cast<size_t>(multiplier_idx) < arraysize(multipliers))); |
| uint64_t multiplier = multipliers[multiplier_idx]; |
| uint64_t candidate = (b - a) * multiplier; |
| |
| if (value != candidate) { |
| // The candidate pattern doesn't match our input value, so fail. |
| return false; |
| } |
| |
| // We have a match! This is a valid logical immediate, so now we have to |
| // construct the bits and pieces of the instruction encoding that generates |
| // it. |
| |
| // Count the set bits in our basic stretch. The special case of clz(0) == -1 |
| // makes the answer come out right for stretches that reach the very top of |
| // the word (e.g. numbers like 0xFFFFC00000000000). |
| int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits); |
| int s = clz_a - clz_b; |
| |
| // Decide how many bits to rotate right by, to put the low bit of that basic |
| // stretch in position a. |
| int r; |
| if (negate) { |
| // If we inverted the input right at the start of this function, here's |
| // where we compensate: the number of set bits becomes the number of clear |
| // bits, and the rotation count is based on position b rather than position |
| // a (since b is the location of the 'lowest' 1 bit after inversion). |
| s = d - s; |
| r = (clz_b + 1) & (d - 1); |
| } else { |
| r = (clz_a + 1) & (d - 1); |
| } |
| |
| // Now we're done, except for having to encode the S output in such a way that |
| // it gives both the number of set bits and the length of the repeated |
| // segment. The s field is encoded like this: |
| // |
| // imms size S |
| // ssssss 64 UInt(ssssss) |
| // 0sssss 32 UInt(sssss) |
| // 10ssss 16 UInt(ssss) |
| // 110sss 8 UInt(sss) |
| // 1110ss 4 UInt(ss) |
| // 11110s 2 UInt(s) |
| // |
| // So we 'or' (-d * 2) with our computed s to form imms. |
| *n = out_n; |
| *imm_s = ((-d * 2) | (s - 1)) & 0x3F; |
| *imm_r = r; |
| |
| return true; |
| } |
| |
| bool Assembler::IsImmConditionalCompare(int64_t immediate) { |
| return is_uint5(immediate); |
| } |
| |
| bool Assembler::IsImmFP32(float imm) { |
| // Valid values will have the form: |
| // aBbb.bbbc.defg.h000.0000.0000.0000.0000 |
| uint32_t bits = bit_cast<uint32_t>(imm); |
| // bits[19..0] are cleared. |
| if ((bits & 0x7FFFF) != 0) { |
| return false; |
| } |
| |
| // bits[29..25] are all set or all cleared. |
| uint32_t b_pattern = (bits >> 16) & 0x3E00; |
| if (b_pattern != 0 && b_pattern != 0x3E00) { |
| return false; |
| } |
| |
| // bit[30] and bit[29] are opposite. |
| if (((bits ^ (bits << 1)) & 0x40000000) == 0) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Assembler::IsImmFP64(double imm) { |
| // Valid values will have the form: |
| // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| // 0000.0000.0000.0000.0000.0000.0000.0000 |
| uint64_t bits = bit_cast<uint64_t>(imm); |
| // bits[47..0] are cleared. |
| if ((bits & 0xFFFFFFFFFFFFL) != 0) { |
| return false; |
| } |
| |
| // bits[61..54] are all set or all cleared. |
| uint32_t b_pattern = (bits >> 48) & 0x3FC0; |
| if (b_pattern != 0 && b_pattern != 0x3FC0) { |
| return false; |
| } |
| |
| // bit[62] and bit[61] are opposite. |
| if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void Assembler::GrowBuffer() { |
| // Compute new buffer size. |
| int old_size = buffer_->size(); |
| int new_size = std::min(2 * old_size, old_size + 1 * MB); |
| |
| // Some internal data structures overflow for very large buffers, |
| // they must ensure that kMaximalBufferSize is not too large. |
| if (new_size > kMaximalBufferSize) { |
| V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); |
| } |
| |
| // Set up new buffer. |
| std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size); |
| DCHECK_EQ(new_size, new_buffer->size()); |
| byte* new_start = new_buffer->start(); |
| |
| // Copy the data. |
| intptr_t pc_delta = new_start - buffer_start_; |
| intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size); |
| size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos(); |
| memmove(new_start, buffer_start_, pc_offset()); |
| memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), |
| reloc_size); |
| |
| // Switch buffers. |
| buffer_ = std::move(new_buffer); |
| buffer_start_ = new_start; |
| pc_ += pc_delta; |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // None of our relocation types are pc relative pointing outside the code |
| // buffer nor pc absolute pointing inside the code buffer, so there is no need |
| // to relocate any emitted relocation entries. |
| |
| // Relocate internal references. |
| for (auto pos : internal_reference_positions_) { |
| Address address = reinterpret_cast<intptr_t>(buffer_start_) + pos; |
| intptr_t internal_ref = ReadUnalignedValue<intptr_t>(address); |
| internal_ref += pc_delta; |
| WriteUnalignedValue<intptr_t>(address, internal_ref); |
| } |
| |
| // Pending relocation entries are also relative, no need to relocate. |
| } |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data, |
| ConstantPoolMode constant_pool_mode) { |
| if ((rmode == RelocInfo::INTERNAL_REFERENCE) || |
| (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) || |
| (rmode == RelocInfo::DEOPT_SCRIPT_OFFSET) || |
| (rmode == RelocInfo::DEOPT_INLINING_ID) || |
| (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID)) { |
| // Adjust code for new modes. |
| DCHECK(RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) || |
| RelocInfo::IsDeoptPosition(rmode) || |
| RelocInfo::IsInternalReference(rmode) || |
| RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode)); |
| // These modes do not need an entry in the constant pool. |
| } else if (constant_pool_mode == NEEDS_POOL_ENTRY) { |
| if (RelocInfo::IsEmbeddedObjectMode(rmode)) { |
| Handle<HeapObject> handle(reinterpret_cast<Address*>(data)); |
| data = AddEmbeddedObject(handle); |
| } |
| if (rmode == RelocInfo::COMPRESSED_EMBEDDED_OBJECT) { |
| if (constpool_.RecordEntry(static_cast<uint32_t>(data), rmode) == |
| RelocInfoStatus::kMustOmitForDuplicate) { |
| return; |
| } |
| } else { |
| if (constpool_.RecordEntry(static_cast<uint64_t>(data), rmode) == |
| RelocInfoStatus::kMustOmitForDuplicate) { |
| return; |
| } |
| } |
| } |
| // For modes that cannot use the constant pool, a different sequence of |
| // instructions will be emitted by this function's caller. |
| |
| if (!ShouldRecordRelocInfo(rmode)) return; |
| |
| // Callers should ensure that constant pool emission is blocked until the |
| // instruction the reloc info is associated with has been emitted. |
| DCHECK(constpool_.IsBlocked()); |
| |
| // We do not try to reuse pool constants. |
| RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code()); |
| |
| DCHECK_GE(buffer_space(), kMaxRelocSize); // too late to grow buffer here |
| reloc_info_writer.Write(&rinfo); |
| } |
| |
| void Assembler::near_jump(int offset, RelocInfo::Mode rmode) { |
| BlockPoolsScope no_pool_before_b_instr(this); |
| if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode, offset, NO_POOL_ENTRY); |
| b(offset); |
| } |
| |
| void Assembler::near_call(int offset, RelocInfo::Mode rmode) { |
| BlockPoolsScope no_pool_before_bl_instr(this); |
| if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode, offset, NO_POOL_ENTRY); |
| bl(offset); |
| } |
| |
| void Assembler::near_call(HeapObjectRequest request) { |
| BlockPoolsScope no_pool_before_bl_instr(this); |
| RequestHeapObject(request); |
| EmbeddedObjectIndex index = AddEmbeddedObject(Handle<Code>()); |
| RecordRelocInfo(RelocInfo::CODE_TARGET, index, NO_POOL_ENTRY); |
| DCHECK(is_int32(index)); |
| bl(static_cast<int>(index)); |
| } |
| |
| // Constant Pool |
| |
| void ConstantPool::EmitPrologue(Alignment require_alignment) { |
| // Recorded constant pool size is expressed in number of 32-bits words, |
| // and includes prologue and alignment, but not the jump around the pool |
| // and the size of the marker itself. |
| const int marker_size = 1; |
| int word_count = |
| ComputeSize(Jump::kOmitted, require_alignment) / kInt32Size - marker_size; |
| assm_->Emit(LDR_x_lit | Assembler::ImmLLiteral(word_count) | |
| Assembler::Rt(xzr)); |
| assm_->EmitPoolGuard(); |
| } |
| |
| int ConstantPool::PrologueSize(Jump require_jump) const { |
| // Prologue is: |
| // b over ;; if require_jump |
| // ldr xzr, #pool_size |
| // blr xzr |
| int prologue_size = require_jump == Jump::kRequired ? kInstrSize : 0; |
| prologue_size += 2 * kInstrSize; |
| return prologue_size; |
| } |
| |
| void ConstantPool::SetLoadOffsetToConstPoolEntry(int load_offset, |
| Instruction* entry_offset, |
| const ConstantPoolKey& key) { |
| Instruction* instr = assm_->InstructionAt(load_offset); |
| // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0. |
| DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0); |
| instr->SetImmPCOffsetTarget(assm_->options(), entry_offset); |
| } |
| |
| void ConstantPool::Check(Emission force_emit, Jump require_jump, |
| size_t margin) { |
| // Some short sequence of instruction must not be broken up by constant pool |
| // emission, such sequences are protected by a ConstPool::BlockScope. |
| if (IsBlocked()) { |
| // Something is wrong if emission is forced and blocked at the same time. |
| DCHECK_EQ(force_emit, Emission::kIfNeeded); |
| return; |
| } |
| |
| // We emit a constant pool only if : |
| // * it is not empty |
| // * emission is forced by parameter force_emit (e.g. at function end). |
| // * emission is mandatory or opportune according to {ShouldEmitNow}. |
| if (!IsEmpty() && (force_emit == Emission::kForced || |
| ShouldEmitNow(require_jump, margin))) { |
| // Emit veneers for branches that would go out of range during emission of |
| // the constant pool. |
| int worst_case_size = ComputeSize(Jump::kRequired, Alignment::kRequired); |
| assm_->CheckVeneerPool(false, require_jump == Jump::kRequired, |
| assm_->kVeneerDistanceMargin + worst_case_size + |
| static_cast<int>(margin)); |
| |
| // Check that the code buffer is large enough before emitting the constant |
| // pool (this includes the gap to the relocation information). |
| int needed_space = worst_case_size + assm_->kGap; |
| while (assm_->buffer_space() <= needed_space) { |
| assm_->GrowBuffer(); |
| } |
| |
| EmitAndClear(require_jump); |
| } |
| // Since a constant pool is (now) empty, move the check offset forward by |
| // the standard interval. |
| SetNextCheckIn(ConstantPool::kCheckInterval); |
| } |
| |
| // Pool entries are accessed with pc relative load therefore this cannot be more |
| // than 1 * MB. Since constant pool emission checks are interval based, and we |
| // want to keep entries close to the code, we try to emit every 64KB. |
| const size_t ConstantPool::kMaxDistToPool32 = 1 * MB; |
| const size_t ConstantPool::kMaxDistToPool64 = 1 * MB; |
| const size_t ConstantPool::kCheckInterval = 128 * kInstrSize; |
| const size_t ConstantPool::kApproxDistToPool32 = 64 * KB; |
| const size_t ConstantPool::kApproxDistToPool64 = kApproxDistToPool32; |
| |
| const size_t ConstantPool::kOpportunityDistToPool32 = 64 * KB; |
| const size_t ConstantPool::kOpportunityDistToPool64 = 64 * KB; |
| const size_t ConstantPool::kApproxMaxEntryCount = 512; |
| |
| bool Assembler::ShouldEmitVeneer(int max_reachable_pc, size_t margin) { |
| // Account for the branch around the veneers and the guard. |
| int protection_offset = 2 * kInstrSize; |
| return static_cast<intptr_t>(pc_offset() + margin + protection_offset + |
| unresolved_branches_.size() * |
| kMaxVeneerCodeSize) >= max_reachable_pc; |
| } |
| |
| void Assembler::RecordVeneerPool(int location_offset, int size) { |
| Assembler::BlockPoolsScope block_pools(this, PoolEmissionCheck::kSkip); |
| RelocInfo rinfo(reinterpret_cast<Address>(buffer_start_) + location_offset, |
| RelocInfo::VENEER_POOL, static_cast<intptr_t>(size), Code()); |
| reloc_info_writer.Write(&rinfo); |
| } |
| |
| void Assembler::EmitVeneers(bool force_emit, bool need_protection, |
| size_t margin) { |
| BlockPoolsScope scope(this, PoolEmissionCheck::kSkip); |
| RecordComment("[ Veneers"); |
| |
| // The exact size of the veneer pool must be recorded (see the comment at the |
| // declaration site of RecordConstPool()), but computing the number of |
| // veneers that will be generated is not obvious. So instead we remember the |
| // current position and will record the size after the pool has been |
| // generated. |
| Label size_check; |
| bind(&size_check); |
| int veneer_pool_relocinfo_loc = pc_offset(); |
| |
| Label end; |
| if (need_protection) { |
| b(&end); |
| } |
| |
| EmitVeneersGuard(); |
| |
| #ifdef DEBUG |
| Label veneer_size_check; |
| #endif |
| |
| std::multimap<int, FarBranchInfo>::iterator it, it_to_delete; |
| |
| it = unresolved_branches_.begin(); |
| while (it != unresolved_branches_.end()) { |
| if (force_emit || ShouldEmitVeneer(it->first, margin)) { |
| Instruction* branch = InstructionAt(it->second.pc_offset_); |
| Label* label = it->second.label_; |
| |
| #ifdef DEBUG |
| bind(&veneer_size_check); |
| #endif |
| // Patch the branch to point to the current position, and emit a branch |
| // to the label. |
| Instruction* veneer = reinterpret_cast<Instruction*>(pc_); |
| RemoveBranchFromLabelLinkChain(branch, label, veneer); |
| branch->SetImmPCOffsetTarget(options(), veneer); |
| b(label); |
| #ifdef DEBUG |
| DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <= |
| static_cast<uint64_t>(kMaxVeneerCodeSize)); |
| veneer_size_check.Unuse(); |
| #endif |
| |
| it_to_delete = it++; |
| unresolved_branches_.erase(it_to_delete); |
| } else { |
| ++it; |
| } |
| } |
| |
| // Record the veneer pool size. |
| int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check)); |
| RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size); |
| |
| if (unresolved_branches_.empty()) { |
| next_veneer_pool_check_ = kMaxInt; |
| } else { |
| next_veneer_pool_check_ = |
| unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; |
| } |
| |
| bind(&end); |
| |
| RecordComment("]"); |
| } |
| |
| void Assembler::CheckVeneerPool(bool force_emit, bool require_jump, |
| size_t margin) { |
| // There is nothing to do if there are no pending veneer pool entries. |
| if (unresolved_branches_.empty()) { |
| DCHECK_EQ(next_veneer_pool_check_, kMaxInt); |
| return; |
| } |
| |
| DCHECK(pc_offset() < unresolved_branches_first_limit()); |
| |
| // Some short sequence of instruction mustn't be broken up by veneer pool |
| // emission, such sequences are protected by calls to BlockVeneerPoolFor and |
| // BlockVeneerPoolScope. |
| if (is_veneer_pool_blocked()) { |
| DCHECK(!force_emit); |
| return; |
| } |
| |
| if (!require_jump) { |
| // Prefer emitting veneers protected by an existing instruction. |
| margin *= kVeneerNoProtectionFactor; |
| } |
| if (force_emit || ShouldEmitVeneers(margin)) { |
| EmitVeneers(force_emit, require_jump, margin); |
| } else { |
| next_veneer_pool_check_ = |
| unresolved_branches_first_limit() - kVeneerDistanceCheckMargin; |
| } |
| } |
| |
| int Assembler::buffer_space() const { |
| return static_cast<int>(reloc_info_writer.pos() - pc_); |
| } |
| |
| void Assembler::RecordConstPool(int size) { |
| // We only need this for debugger support, to correctly compute offsets in the |
| // code. |
| Assembler::BlockPoolsScope block_pools(this); |
| RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size)); |
| } |
| |
| void PatchingAssembler::PatchAdrFar(int64_t target_offset) { |
| // The code at the current instruction should be: |
| // adr rd, 0 |
| // nop (adr_far) |
| // nop (adr_far) |
| // movz scratch, 0 |
| |
| // Verify the expected code. |
| Instruction* expected_adr = InstructionAt(0); |
| CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0)); |
| int rd_code = expected_adr->Rd(); |
| for (int i = 0; i < kAdrFarPatchableNNops; ++i) { |
| CHECK(InstructionAt((i + 1) * kInstrSize)->IsNop(ADR_FAR_NOP)); |
| } |
| Instruction* expected_movz = |
| InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstrSize); |
| CHECK(expected_movz->IsMovz() && (expected_movz->ImmMoveWide() == 0) && |
| (expected_movz->ShiftMoveWide() == 0)); |
| int scratch_code = expected_movz->Rd(); |
| |
| // Patch to load the correct address. |
| Register rd = Register::XRegFromCode(rd_code); |
| Register scratch = Register::XRegFromCode(scratch_code); |
| // Addresses are only 48 bits. |
| adr(rd, target_offset & 0xFFFF); |
| movz(scratch, (target_offset >> 16) & 0xFFFF, 16); |
| movk(scratch, (target_offset >> 32) & 0xFFFF, 32); |
| DCHECK_EQ(target_offset >> 48, 0); |
| add(rd, rd, scratch); |
| } |
| |
| void PatchingAssembler::PatchSubSp(uint32_t immediate) { |
| // The code at the current instruction should be: |
| // sub sp, sp, #0 |
| |
| // Verify the expected code. |
| Instruction* expected_adr = InstructionAt(0); |
| CHECK(expected_adr->IsAddSubImmediate()); |
| sub(sp, sp, immediate); |
| } |
| |
| #undef NEON_3DIFF_LONG_LIST |
| #undef NEON_3DIFF_HN_LIST |
| #undef NEON_ACROSSLANES_LIST |
| #undef NEON_FP2REGMISC_FCVT_LIST |
| #undef NEON_FP2REGMISC_LIST |
| #undef NEON_3SAME_LIST |
| #undef NEON_FP3SAME_LIST_V2 |
| #undef NEON_BYELEMENT_LIST |
| #undef NEON_FPBYELEMENT_LIST |
| #undef NEON_BYELEMENT_LONG_LIST |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_ARM64 |