blob: 7c30e1a045a04cd5b7f3866aea610f2a294fe49a [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/objects/feedback-vector.h"
#include "src/diagnostics/code-tracer.h"
#include "src/heap/heap-inl.h"
#include "src/heap/local-factory-inl.h"
#include "src/ic/handler-configuration-inl.h"
#include "src/ic/ic-inl.h"
#include "src/objects/data-handler-inl.h"
#include "src/objects/feedback-vector-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/map-inl.h"
#include "src/objects/object-macros.h"
#include "src/objects/objects.h"
namespace v8 {
namespace internal {
FeedbackSlot FeedbackVectorSpec::AddSlot(FeedbackSlotKind kind) {
int slot = slot_count();
int entries_per_slot = FeedbackMetadata::GetSlotSize(kind);
append(kind);
for (int i = 1; i < entries_per_slot; i++) {
append(FeedbackSlotKind::kInvalid);
}
return FeedbackSlot(slot);
}
FeedbackSlot FeedbackVectorSpec::AddTypeProfileSlot() {
FeedbackSlot slot = AddSlot(FeedbackSlotKind::kTypeProfile);
CHECK_EQ(FeedbackVectorSpec::kTypeProfileSlotIndex,
FeedbackVector::GetIndex(slot));
return slot;
}
bool FeedbackVectorSpec::HasTypeProfileSlot() const {
FeedbackSlot slot =
FeedbackVector::ToSlot(FeedbackVectorSpec::kTypeProfileSlotIndex);
if (slot_count() <= slot.ToInt()) return false;
return GetKind(slot) == FeedbackSlotKind::kTypeProfile;
}
static bool IsPropertyNameFeedback(MaybeObject feedback) {
HeapObject heap_object;
if (!feedback->GetHeapObjectIfStrong(&heap_object)) return false;
if (heap_object.IsString()) {
DCHECK(heap_object.IsInternalizedString());
return true;
}
if (!heap_object.IsSymbol()) return false;
Symbol symbol = Symbol::cast(heap_object);
ReadOnlyRoots roots = symbol.GetReadOnlyRoots();
return symbol != roots.uninitialized_symbol() &&
symbol != roots.megamorphic_symbol();
}
std::ostream& operator<<(std::ostream& os, FeedbackSlotKind kind) {
return os << FeedbackMetadata::Kind2String(kind);
}
FeedbackSlotKind FeedbackMetadata::GetKind(FeedbackSlot slot) const {
int index = VectorICComputer::index(0, slot.ToInt());
int data = get(index);
return VectorICComputer::decode(data, slot.ToInt());
}
void FeedbackMetadata::SetKind(FeedbackSlot slot, FeedbackSlotKind kind) {
int index = VectorICComputer::index(0, slot.ToInt());
int data = get(index);
int new_data = VectorICComputer::encode(data, slot.ToInt(), kind);
set(index, new_data);
}
// static
template <typename LocalIsolate>
Handle<FeedbackMetadata> FeedbackMetadata::New(LocalIsolate* isolate,
const FeedbackVectorSpec* spec) {
auto* factory = isolate->factory();
const int slot_count = spec == nullptr ? 0 : spec->slot_count();
const int create_closure_slot_count =
spec == nullptr ? 0 : spec->create_closure_slot_count();
if (slot_count == 0 && create_closure_slot_count == 0) {
return factory->empty_feedback_metadata();
}
#ifdef DEBUG
for (int i = 0; i < slot_count;) {
DCHECK(spec);
FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i));
int entry_size = FeedbackMetadata::GetSlotSize(kind);
for (int j = 1; j < entry_size; j++) {
FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i + j));
DCHECK_EQ(FeedbackSlotKind::kInvalid, kind);
}
i += entry_size;
}
#endif
Handle<FeedbackMetadata> metadata =
factory->NewFeedbackMetadata(slot_count, create_closure_slot_count);
// Initialize the slots. The raw data section has already been pre-zeroed in
// NewFeedbackMetadata.
for (int i = 0; i < slot_count; i++) {
DCHECK(spec);
FeedbackSlot slot(i);
FeedbackSlotKind kind = spec->GetKind(slot);
metadata->SetKind(slot, kind);
}
return metadata;
}
template Handle<FeedbackMetadata> FeedbackMetadata::New(
Isolate* isolate, const FeedbackVectorSpec* spec);
template Handle<FeedbackMetadata> FeedbackMetadata::New(
LocalIsolate* isolate, const FeedbackVectorSpec* spec);
bool FeedbackMetadata::SpecDiffersFrom(
const FeedbackVectorSpec* other_spec) const {
if (other_spec->slot_count() != slot_count()) {
return true;
}
int slots = slot_count();
for (int i = 0; i < slots;) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = GetKind(slot);
int entry_size = FeedbackMetadata::GetSlotSize(kind);
if (kind != other_spec->GetKind(slot)) {
return true;
}
i += entry_size;
}
return false;
}
const char* FeedbackMetadata::Kind2String(FeedbackSlotKind kind) {
switch (kind) {
case FeedbackSlotKind::kInvalid:
return "Invalid";
case FeedbackSlotKind::kCall:
return "Call";
case FeedbackSlotKind::kLoadProperty:
return "LoadProperty";
case FeedbackSlotKind::kLoadGlobalInsideTypeof:
return "LoadGlobalInsideTypeof";
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof:
return "LoadGlobalNotInsideTypeof";
case FeedbackSlotKind::kLoadKeyed:
return "LoadKeyed";
case FeedbackSlotKind::kHasKeyed:
return "HasKeyed";
case FeedbackSlotKind::kStoreNamedSloppy:
return "StoreNamedSloppy";
case FeedbackSlotKind::kStoreNamedStrict:
return "StoreNamedStrict";
case FeedbackSlotKind::kStoreOwnNamed:
return "StoreOwnNamed";
case FeedbackSlotKind::kStoreGlobalSloppy:
return "StoreGlobalSloppy";
case FeedbackSlotKind::kStoreGlobalStrict:
return "StoreGlobalStrict";
case FeedbackSlotKind::kStoreKeyedSloppy:
return "StoreKeyedSloppy";
case FeedbackSlotKind::kStoreKeyedStrict:
return "StoreKeyedStrict";
case FeedbackSlotKind::kStoreInArrayLiteral:
return "StoreInArrayLiteral";
case FeedbackSlotKind::kBinaryOp:
return "BinaryOp";
case FeedbackSlotKind::kCompareOp:
return "CompareOp";
case FeedbackSlotKind::kStoreDataPropertyInLiteral:
return "StoreDataPropertyInLiteral";
case FeedbackSlotKind::kLiteral:
return "Literal";
case FeedbackSlotKind::kTypeProfile:
return "TypeProfile";
case FeedbackSlotKind::kForIn:
return "ForIn";
case FeedbackSlotKind::kInstanceOf:
return "InstanceOf";
case FeedbackSlotKind::kCloneObject:
return "CloneObject";
case FeedbackSlotKind::kKindsNumber:
break;
}
UNREACHABLE();
}
bool FeedbackMetadata::HasTypeProfileSlot() const {
FeedbackSlot slot =
FeedbackVector::ToSlot(FeedbackVectorSpec::kTypeProfileSlotIndex);
return slot.ToInt() < slot_count() &&
GetKind(slot) == FeedbackSlotKind::kTypeProfile;
}
FeedbackSlotKind FeedbackVector::GetKind(FeedbackSlot slot) const {
DCHECK(!is_empty());
return metadata().GetKind(slot);
}
FeedbackSlot FeedbackVector::GetTypeProfileSlot() const {
DCHECK(metadata().HasTypeProfileSlot());
FeedbackSlot slot =
FeedbackVector::ToSlot(FeedbackVectorSpec::kTypeProfileSlotIndex);
DCHECK_EQ(FeedbackSlotKind::kTypeProfile, GetKind(slot));
return slot;
}
// static
Handle<ClosureFeedbackCellArray> ClosureFeedbackCellArray::New(
Isolate* isolate, Handle<SharedFunctionInfo> shared) {
Factory* factory = isolate->factory();
int num_feedback_cells =
shared->feedback_metadata().create_closure_slot_count();
Handle<ClosureFeedbackCellArray> feedback_cell_array =
factory->NewClosureFeedbackCellArray(num_feedback_cells);
for (int i = 0; i < num_feedback_cells; i++) {
Handle<FeedbackCell> cell =
factory->NewNoClosuresCell(factory->undefined_value());
feedback_cell_array->set(i, *cell);
}
return feedback_cell_array;
}
// static
Handle<FeedbackVector> FeedbackVector::New(
Isolate* isolate, Handle<SharedFunctionInfo> shared,
Handle<ClosureFeedbackCellArray> closure_feedback_cell_array,
IsCompiledScope* is_compiled_scope) {
DCHECK(is_compiled_scope->is_compiled());
Factory* factory = isolate->factory();
Handle<FeedbackMetadata> feedback_metadata(shared->feedback_metadata(),
isolate);
const int slot_count = feedback_metadata->slot_count();
Handle<FeedbackVector> vector =
factory->NewFeedbackVector(shared, closure_feedback_cell_array);
DCHECK_EQ(vector->length(), slot_count);
DCHECK_EQ(vector->shared_function_info(), *shared);
DCHECK_EQ(vector->optimization_marker(),
FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution
: OptimizationMarker::kNone);
// TODO(mythria): This might change if NCI code is installed on feedback
// vector. Update this accordingly.
DCHECK_EQ(vector->optimization_tier(), OptimizationTier::kNone);
DCHECK_EQ(vector->invocation_count(), 0);
DCHECK_EQ(vector->profiler_ticks(), 0);
DCHECK(vector->maybe_optimized_code()->IsCleared());
// Ensure we can skip the write barrier
Handle<Symbol> uninitialized_sentinel = UninitializedSentinel(isolate);
DCHECK_EQ(ReadOnlyRoots(isolate).uninitialized_symbol(),
*uninitialized_sentinel);
for (int i = 0; i < slot_count;) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = feedback_metadata->GetKind(slot);
int entry_size = FeedbackMetadata::GetSlotSize(kind);
MaybeObject extra_value = MaybeObject::FromObject(*uninitialized_sentinel);
switch (kind) {
case FeedbackSlotKind::kLoadGlobalInsideTypeof:
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof:
case FeedbackSlotKind::kStoreGlobalSloppy:
case FeedbackSlotKind::kStoreGlobalStrict:
vector->Set(slot, HeapObjectReference::ClearedValue(isolate),
SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kForIn:
case FeedbackSlotKind::kCompareOp:
case FeedbackSlotKind::kBinaryOp:
vector->Set(slot, Smi::zero(), SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kLiteral:
vector->Set(slot, Smi::zero(), SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kCall:
vector->Set(slot, *uninitialized_sentinel, SKIP_WRITE_BARRIER);
extra_value = MaybeObject::FromObject(Smi::zero());
break;
case FeedbackSlotKind::kCloneObject:
case FeedbackSlotKind::kLoadProperty:
case FeedbackSlotKind::kLoadKeyed:
case FeedbackSlotKind::kHasKeyed:
case FeedbackSlotKind::kStoreNamedSloppy:
case FeedbackSlotKind::kStoreNamedStrict:
case FeedbackSlotKind::kStoreOwnNamed:
case FeedbackSlotKind::kStoreKeyedSloppy:
case FeedbackSlotKind::kStoreKeyedStrict:
case FeedbackSlotKind::kStoreInArrayLiteral:
case FeedbackSlotKind::kStoreDataPropertyInLiteral:
case FeedbackSlotKind::kTypeProfile:
case FeedbackSlotKind::kInstanceOf:
vector->Set(slot, *uninitialized_sentinel, SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::kInvalid:
case FeedbackSlotKind::kKindsNumber:
UNREACHABLE();
break;
}
for (int j = 1; j < entry_size; j++) {
vector->Set(slot.WithOffset(j), extra_value, SKIP_WRITE_BARRIER);
}
i += entry_size;
}
Handle<FeedbackVector> result = Handle<FeedbackVector>::cast(vector);
if (!isolate->is_best_effort_code_coverage() ||
isolate->is_collecting_type_profile()) {
AddToVectorsForProfilingTools(isolate, result);
}
return result;
}
namespace {
Handle<FeedbackVector> NewFeedbackVectorForTesting(
Isolate* isolate, const FeedbackVectorSpec* spec) {
Handle<FeedbackMetadata> metadata = FeedbackMetadata::New(isolate, spec);
Handle<SharedFunctionInfo> shared =
isolate->factory()->NewSharedFunctionInfoForBuiltin(
isolate->factory()->empty_string(), Builtins::kIllegal);
// Set the raw feedback metadata to circumvent checks that we are not
// overwriting existing metadata.
shared->set_raw_outer_scope_info_or_feedback_metadata(*metadata);
Handle<ClosureFeedbackCellArray> closure_feedback_cell_array =
ClosureFeedbackCellArray::New(isolate, shared);
IsCompiledScope is_compiled_scope(shared->is_compiled_scope(isolate));
return FeedbackVector::New(isolate, shared, closure_feedback_cell_array,
&is_compiled_scope);
}
} // namespace
// static
Handle<FeedbackVector> FeedbackVector::NewWithOneBinarySlotForTesting(
Zone* zone, Isolate* isolate) {
FeedbackVectorSpec one_slot(zone);
one_slot.AddBinaryOpICSlot();
return NewFeedbackVectorForTesting(isolate, &one_slot);
}
// static
Handle<FeedbackVector> FeedbackVector::NewWithOneCompareSlotForTesting(
Zone* zone, Isolate* isolate) {
FeedbackVectorSpec one_slot(zone);
one_slot.AddCompareICSlot();
return NewFeedbackVectorForTesting(isolate, &one_slot);
}
// static
void FeedbackVector::AddToVectorsForProfilingTools(
Isolate* isolate, Handle<FeedbackVector> vector) {
DCHECK(!isolate->is_best_effort_code_coverage() ||
isolate->is_collecting_type_profile());
if (!vector->shared_function_info().IsSubjectToDebugging()) return;
Handle<ArrayList> list = Handle<ArrayList>::cast(
isolate->factory()->feedback_vectors_for_profiling_tools());
list = ArrayList::Add(isolate, list, vector);
isolate->SetFeedbackVectorsForProfilingTools(*list);
}
void FeedbackVector::SaturatingIncrementProfilerTicks() {
int ticks = profiler_ticks();
if (ticks < Smi::kMaxValue) set_profiler_ticks(ticks + 1);
}
// static
void FeedbackVector::SetOptimizedCode(Handle<FeedbackVector> vector,
Handle<Code> code) {
DCHECK(CodeKindIsOptimizedJSFunction(code->kind()));
// We should only set optimized code only when there is no valid optimized
// code or we are tiering up.
DCHECK(!vector->has_optimized_code() ||
vector->optimized_code().marked_for_deoptimization() ||
(vector->optimized_code().kind() == CodeKind::TURBOPROP &&
code->kind() == CodeKind::TURBOFAN));
// TODO(mythria): We could see a CompileOptimized marker here either from
// tests that use %OptimizeFunctionOnNextCall or because we re-mark the
// function for non-concurrent optimization after an OSR. We should avoid
// these cases and also check that marker isn't kCompileOptimized.
DCHECK(vector->optimization_marker() !=
OptimizationMarker::kCompileOptimizedConcurrent);
vector->set_maybe_optimized_code(HeapObjectReference::Weak(*code));
int32_t state = vector->flags();
state = OptimizationTierBits::update(state, GetTierForCodeKind(code->kind()));
state = OptimizationMarkerBits::update(state, OptimizationMarker::kNone);
vector->set_flags(state);
}
void FeedbackVector::ClearOptimizedCode() {
DCHECK(has_optimized_code());
DCHECK_NE(optimization_tier(), OptimizationTier::kNone);
set_maybe_optimized_code(HeapObjectReference::ClearedValue(GetIsolate()));
ClearOptimizationTier();
}
void FeedbackVector::ClearOptimizationMarker() {
SetOptimizationMarker(OptimizationMarker::kNone);
}
void FeedbackVector::SetOptimizationMarker(OptimizationMarker marker) {
int32_t state = flags();
state = OptimizationMarkerBits::update(state, marker);
set_flags(state);
}
void FeedbackVector::ClearOptimizationTier() {
int32_t state = flags();
state = OptimizationTierBits::update(state, OptimizationTier::kNone);
set_flags(state);
}
void FeedbackVector::InitializeOptimizationState() {
int32_t state = 0;
state = OptimizationMarkerBits::update(
state, FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution
: OptimizationMarker::kNone);
state = OptimizationTierBits::update(state, OptimizationTier::kNone);
set_flags(state);
}
void FeedbackVector::EvictOptimizedCodeMarkedForDeoptimization(
SharedFunctionInfo shared, const char* reason) {
MaybeObject slot = maybe_optimized_code();
if (slot->IsCleared()) {
ClearOptimizationTier();
return;
}
Code code = Code::cast(slot->GetHeapObject());
if (code.marked_for_deoptimization()) {
Deoptimizer::TraceEvictFromOptimizedCodeCache(shared, reason);
if (!code.deopt_already_counted()) {
code.set_deopt_already_counted(true);
}
ClearOptimizedCode();
}
}
bool FeedbackVector::ClearSlots(Isolate* isolate) {
if (!shared_function_info().HasFeedbackMetadata()) return false;
MaybeObject uninitialized_sentinel = MaybeObject::FromObject(
FeedbackVector::RawUninitializedSentinel(isolate));
bool feedback_updated = false;
FeedbackMetadataIterator iter(metadata());
while (iter.HasNext()) {
FeedbackSlot slot = iter.Next();
MaybeObject obj = Get(slot);
if (obj != uninitialized_sentinel) {
FeedbackNexus nexus(*this, slot);
feedback_updated |= nexus.Clear();
}
}
return feedback_updated;
}
MaybeObjectHandle NexusConfig::NewHandle(MaybeObject object) const {
if (mode() == Mode::MainThread) {
return handle(object, isolate_);
}
DCHECK_EQ(mode(), Mode::BackgroundThread);
return handle(object, local_heap_);
}
template <typename T>
Handle<T> NexusConfig::NewHandle(T object) const {
if (mode() == Mode::MainThread) {
return handle(object, isolate_);
}
DCHECK_EQ(mode(), Mode::BackgroundThread);
return handle(object, local_heap_);
}
void NexusConfig::SetFeedbackPair(FeedbackVector vector,
FeedbackSlot start_slot, MaybeObject feedback,
WriteBarrierMode mode,
MaybeObject feedback_extra,
WriteBarrierMode mode_extra) const {
CHECK(can_write());
CHECK_GT(vector.length(), start_slot.WithOffset(1).ToInt());
base::SharedMutexGuard<base::kExclusive> shared_mutex_guard(
isolate()->feedback_vector_access());
vector.Set(start_slot, feedback, mode);
vector.Set(start_slot.WithOffset(1), feedback_extra, mode_extra);
}
std::pair<MaybeObject, MaybeObject> NexusConfig::GetFeedbackPair(
FeedbackVector vector, FeedbackSlot slot) const {
if (mode() == BackgroundThread) {
isolate()->feedback_vector_access()->LockShared();
}
MaybeObject feedback = vector.Get(slot);
MaybeObject feedback_extra = vector.Get(slot.WithOffset(1));
auto return_value = std::make_pair(feedback, feedback_extra);
if (mode() == BackgroundThread) {
isolate()->feedback_vector_access()->UnlockShared();
}
return return_value;
}
FeedbackNexus::FeedbackNexus(Handle<FeedbackVector> vector, FeedbackSlot slot)
: vector_handle_(vector),
slot_(slot),
config_(NexusConfig::FromMainThread(
vector.is_null() ? nullptr : vector->GetIsolate())) {
kind_ = vector.is_null() ? FeedbackSlotKind::kInvalid : vector->GetKind(slot);
}
FeedbackNexus::FeedbackNexus(FeedbackVector vector, FeedbackSlot slot)
: vector_(vector),
slot_(slot),
config_(NexusConfig::FromMainThread(
vector.is_null() ? nullptr : vector.GetIsolate())) {
kind_ = vector.is_null() ? FeedbackSlotKind::kInvalid : vector.GetKind(slot);
}
FeedbackNexus::FeedbackNexus(Handle<FeedbackVector> vector, FeedbackSlot slot,
const NexusConfig& config)
: vector_handle_(vector),
slot_(slot),
kind_(vector->GetKind(slot)),
config_(config) {}
Handle<WeakFixedArray> FeedbackNexus::CreateArrayOfSize(int length) {
DCHECK(config()->can_write());
Handle<WeakFixedArray> array =
GetIsolate()->factory()->NewWeakFixedArray(length);
return array;
}
void FeedbackNexus::ConfigureUninitialized() {
Isolate* isolate = GetIsolate();
switch (kind()) {
case FeedbackSlotKind::kStoreGlobalSloppy:
case FeedbackSlotKind::kStoreGlobalStrict:
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof:
case FeedbackSlotKind::kLoadGlobalInsideTypeof: {
SetFeedback(HeapObjectReference::ClearedValue(isolate),
SKIP_WRITE_BARRIER, UninitializedSentinel(),
SKIP_WRITE_BARRIER);
break;
}
case FeedbackSlotKind::kCloneObject:
case FeedbackSlotKind::kCall: {
SetFeedback(UninitializedSentinel(), SKIP_WRITE_BARRIER, Smi::zero(),
SKIP_WRITE_BARRIER);
break;
}
case FeedbackSlotKind::kInstanceOf: {
SetFeedback(UninitializedSentinel(), SKIP_WRITE_BARRIER);
break;
}
case FeedbackSlotKind::kStoreNamedSloppy:
case FeedbackSlotKind::kStoreNamedStrict:
case FeedbackSlotKind::kStoreKeyedSloppy:
case FeedbackSlotKind::kStoreKeyedStrict:
case FeedbackSlotKind::kStoreInArrayLiteral:
case FeedbackSlotKind::kStoreOwnNamed:
case FeedbackSlotKind::kLoadProperty:
case FeedbackSlotKind::kLoadKeyed:
case FeedbackSlotKind::kHasKeyed:
case FeedbackSlotKind::kStoreDataPropertyInLiteral: {
SetFeedback(UninitializedSentinel(), SKIP_WRITE_BARRIER,
UninitializedSentinel(), SKIP_WRITE_BARRIER);
break;
}
default:
UNREACHABLE();
}
}
bool FeedbackNexus::Clear() {
bool feedback_updated = false;
switch (kind()) {
case FeedbackSlotKind::kTypeProfile:
// We don't clear these kinds ever.
break;
case FeedbackSlotKind::kCompareOp:
case FeedbackSlotKind::kForIn:
case FeedbackSlotKind::kBinaryOp:
// We don't clear these, either.
break;
case FeedbackSlotKind::kLiteral:
SetFeedback(Smi::zero(), SKIP_WRITE_BARRIER);
feedback_updated = true;
break;
case FeedbackSlotKind::kStoreNamedSloppy:
case FeedbackSlotKind::kStoreNamedStrict:
case FeedbackSlotKind::kStoreKeyedSloppy:
case FeedbackSlotKind::kStoreKeyedStrict:
case FeedbackSlotKind::kStoreInArrayLiteral:
case FeedbackSlotKind::kStoreOwnNamed:
case FeedbackSlotKind::kLoadProperty:
case FeedbackSlotKind::kLoadKeyed:
case FeedbackSlotKind::kHasKeyed:
case FeedbackSlotKind::kStoreGlobalSloppy:
case FeedbackSlotKind::kStoreGlobalStrict:
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof:
case FeedbackSlotKind::kLoadGlobalInsideTypeof:
case FeedbackSlotKind::kCall:
case FeedbackSlotKind::kInstanceOf:
case FeedbackSlotKind::kStoreDataPropertyInLiteral:
case FeedbackSlotKind::kCloneObject:
if (!IsCleared()) {
ConfigureUninitialized();
feedback_updated = true;
}
break;
case FeedbackSlotKind::kInvalid:
case FeedbackSlotKind::kKindsNumber:
UNREACHABLE();
}
return feedback_updated;
}
bool FeedbackNexus::ConfigureMegamorphic() {
DisallowHeapAllocation no_gc;
Isolate* isolate = GetIsolate();
MaybeObject sentinel = MegamorphicSentinel();
if (GetFeedback() != sentinel) {
SetFeedback(sentinel, SKIP_WRITE_BARRIER,
HeapObjectReference::ClearedValue(isolate));
return true;
}
return false;
}
bool FeedbackNexus::ConfigureMegamorphic(IcCheckType property_type) {
DisallowHeapAllocation no_gc;
MaybeObject sentinel = MegamorphicSentinel();
MaybeObject maybe_extra =
MaybeObject::FromSmi(Smi::FromInt(static_cast<int>(property_type)));
auto feedback = GetFeedbackPair();
bool update_required =
feedback.first != sentinel || feedback.second != maybe_extra;
if (update_required) {
SetFeedback(sentinel, SKIP_WRITE_BARRIER, maybe_extra, SKIP_WRITE_BARRIER);
}
return update_required;
}
Map FeedbackNexus::GetFirstMap() const {
FeedbackIterator it(this);
if (!it.done()) {
return it.map();
}
return Map();
}
InlineCacheState FeedbackNexus::ic_state() const {
MaybeObject feedback, extra;
std::tie(feedback, extra) = GetFeedbackPair();
switch (kind()) {
case FeedbackSlotKind::kLiteral:
if (feedback->IsSmi()) return UNINITIALIZED;
return MONOMORPHIC;
case FeedbackSlotKind::kStoreGlobalSloppy:
case FeedbackSlotKind::kStoreGlobalStrict:
case FeedbackSlotKind::kLoadGlobalNotInsideTypeof:
case FeedbackSlotKind::kLoadGlobalInsideTypeof: {
if (feedback->IsSmi()) return MONOMORPHIC;
DCHECK(feedback->IsWeakOrCleared());
if (!feedback->IsCleared() || extra != UninitializedSentinel()) {
return MONOMORPHIC;
}
return UNINITIALIZED;
}
case FeedbackSlotKind::kStoreNamedSloppy:
case FeedbackSlotKind::kStoreNamedStrict:
case FeedbackSlotKind::kStoreKeyedSloppy:
case FeedbackSlotKind::kStoreKeyedStrict:
case FeedbackSlotKind::kStoreInArrayLiteral:
case FeedbackSlotKind::kStoreOwnNamed:
case FeedbackSlotKind::kLoadProperty:
case FeedbackSlotKind::kLoadKeyed:
case FeedbackSlotKind::kHasKeyed: {
if (feedback == UninitializedSentinel()) {
return UNINITIALIZED;
}
if (feedback == MegamorphicSentinel()) {
return MEGAMORPHIC;
}
if (feedback->IsWeakOrCleared()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
HeapObject heap_object;
if (feedback->GetHeapObjectIfStrong(&heap_object)) {
if (heap_object.IsWeakFixedArray()) {
// Determine state purely by our structure, don't check if the maps
// are cleared.
return POLYMORPHIC;
}
if (heap_object.IsName()) {
DCHECK(IsKeyedLoadICKind(kind()) || IsKeyedStoreICKind(kind()) ||
IsKeyedHasICKind(kind()));
Object extra_object = extra->GetHeapObjectAssumeStrong();
WeakFixedArray extra_array = WeakFixedArray::cast(extra_object);
return extra_array.length() > 2 ? POLYMORPHIC : MONOMORPHIC;
}
}
UNREACHABLE();
}
case FeedbackSlotKind::kCall: {
HeapObject heap_object;
if (feedback == MegamorphicSentinel()) {
return GENERIC;
} else if (feedback->IsWeakOrCleared()) {
if (feedback->GetHeapObjectIfWeak(&heap_object)) {
if (heap_object.IsFeedbackCell()) {
return POLYMORPHIC;
}
CHECK(heap_object.IsJSFunction() || heap_object.IsJSBoundFunction());
}
return MONOMORPHIC;
} else if (feedback->GetHeapObjectIfStrong(&heap_object) &&
heap_object.IsAllocationSite()) {
return MONOMORPHIC;
}
CHECK_EQ(feedback, UninitializedSentinel());
return UNINITIALIZED;
}
case FeedbackSlotKind::kBinaryOp: {
BinaryOperationHint hint = GetBinaryOperationFeedback();
if (hint == BinaryOperationHint::kNone) {
return UNINITIALIZED;
} else if (hint == BinaryOperationHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
case FeedbackSlotKind::kCompareOp: {
CompareOperationHint hint = GetCompareOperationFeedback();
if (hint == CompareOperationHint::kNone) {
return UNINITIALIZED;
} else if (hint == CompareOperationHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
case FeedbackSlotKind::kForIn: {
ForInHint hint = GetForInFeedback();
if (hint == ForInHint::kNone) {
return UNINITIALIZED;
} else if (hint == ForInHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
case FeedbackSlotKind::kInstanceOf: {
if (feedback == UninitializedSentinel()) {
return UNINITIALIZED;
} else if (feedback == MegamorphicSentinel()) {
return MEGAMORPHIC;
}
return MONOMORPHIC;
}
case FeedbackSlotKind::kStoreDataPropertyInLiteral: {
if (feedback == UninitializedSentinel()) {
return UNINITIALIZED;
} else if (feedback->IsWeakOrCleared()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return MEGAMORPHIC;
}
case FeedbackSlotKind::kTypeProfile: {
if (feedback == UninitializedSentinel()) {
return UNINITIALIZED;
}
return MONOMORPHIC;
}
case FeedbackSlotKind::kCloneObject: {
if (feedback == UninitializedSentinel()) {
return UNINITIALIZED;
}
if (feedback == MegamorphicSentinel()) {
return MEGAMORPHIC;
}
if (feedback->IsWeakOrCleared()) {
return MONOMORPHIC;
}
DCHECK(feedback->GetHeapObjectAssumeStrong().IsWeakFixedArray());
return POLYMORPHIC;
}
case FeedbackSlotKind::kInvalid:
case FeedbackSlotKind::kKindsNumber:
UNREACHABLE();
}
return UNINITIALIZED;
}
void FeedbackNexus::ConfigurePropertyCellMode(Handle<PropertyCell> cell) {
DCHECK(IsGlobalICKind(kind()));
SetFeedback(HeapObjectReference::Weak(*cell), UPDATE_WRITE_BARRIER,
UninitializedSentinel(), SKIP_WRITE_BARRIER);
}
bool FeedbackNexus::ConfigureLexicalVarMode(int script_context_index,
int context_slot_index,
bool immutable) {
DCHECK(IsGlobalICKind(kind()));
DCHECK_LE(0, script_context_index);
DCHECK_LE(0, context_slot_index);
if (!ContextIndexBits::is_valid(script_context_index) ||
!SlotIndexBits::is_valid(context_slot_index) ||
!ImmutabilityBit::is_valid(immutable)) {
return false;
}
int config = ContextIndexBits::encode(script_context_index) |
SlotIndexBits::encode(context_slot_index) |
ImmutabilityBit::encode(immutable);
SetFeedback(Smi::From31BitPattern(config), SKIP_WRITE_BARRIER,
UninitializedSentinel(), SKIP_WRITE_BARRIER);
return true;
}
void FeedbackNexus::ConfigureHandlerMode(const MaybeObjectHandle& handler) {
DCHECK(IsGlobalICKind(kind()));
DCHECK(IC::IsHandler(*handler));
SetFeedback(HeapObjectReference::ClearedValue(GetIsolate()),
UPDATE_WRITE_BARRIER, *handler, UPDATE_WRITE_BARRIER);
}
void FeedbackNexus::ConfigureCloneObject(Handle<Map> source_map,
Handle<Map> result_map) {
DCHECK(config()->can_write());
Isolate* isolate = GetIsolate();
Handle<HeapObject> feedback;
{
MaybeObject maybe_feedback = GetFeedback();
if (maybe_feedback->IsStrongOrWeak()) {
feedback = handle(maybe_feedback->GetHeapObject(), isolate);
} else {
DCHECK(maybe_feedback->IsCleared());
}
}
switch (ic_state()) {
case UNINITIALIZED:
// Cache the first map seen which meets the fast case requirements.
SetFeedback(HeapObjectReference::Weak(*source_map), UPDATE_WRITE_BARRIER,
*result_map);
break;
case MONOMORPHIC:
if (feedback.is_null() || feedback.is_identical_to(source_map) ||
Map::cast(*feedback).is_deprecated()) {
SetFeedback(HeapObjectReference::Weak(*source_map),
UPDATE_WRITE_BARRIER, *result_map);
} else {
// Transition to POLYMORPHIC.
Handle<WeakFixedArray> array =
CreateArrayOfSize(2 * kCloneObjectPolymorphicEntrySize);
array->Set(0, HeapObjectReference::Weak(*feedback));
array->Set(1, GetFeedbackExtra());
array->Set(2, HeapObjectReference::Weak(*source_map));
array->Set(3, MaybeObject::FromObject(*result_map));
SetFeedback(*array, UPDATE_WRITE_BARRIER,
HeapObjectReference::ClearedValue(isolate));
}
break;
case POLYMORPHIC: {
const int kMaxElements = FLAG_max_valid_polymorphic_map_count *
kCloneObjectPolymorphicEntrySize;
Handle<WeakFixedArray> array = Handle<WeakFixedArray>::cast(feedback);
int i = 0;
for (; i < array->length(); i += kCloneObjectPolymorphicEntrySize) {
MaybeObject feedback_map = array->Get(i);
if (feedback_map->IsCleared()) break;
Handle<Map> cached_map(Map::cast(feedback_map->GetHeapObject()),
isolate);
if (cached_map.is_identical_to(source_map) ||
cached_map->is_deprecated())
break;
}
if (i >= array->length()) {
if (i == kMaxElements) {
// Transition to MEGAMORPHIC.
MaybeObject sentinel = MegamorphicSentinel();
SetFeedback(sentinel, SKIP_WRITE_BARRIER,
HeapObjectReference::ClearedValue(isolate));
break;
}
// Grow polymorphic feedback array.
Handle<WeakFixedArray> new_array = CreateArrayOfSize(
array->length() + kCloneObjectPolymorphicEntrySize);
for (int j = 0; j < array->length(); ++j) {
new_array->Set(j, array->Get(j));
}
SetFeedback(*new_array);
array = new_array;
}
array->Set(i, HeapObjectReference::Weak(*source_map));
array->Set(i + 1, MaybeObject::FromObject(*result_map));
break;
}
default:
UNREACHABLE();
}
}
int FeedbackNexus::GetCallCount() {
DCHECK(IsCallICKind(kind()));
Object call_count = GetFeedbackExtra()->cast<Object>();
CHECK(call_count.IsSmi());
uint32_t value = static_cast<uint32_t>(Smi::ToInt(call_count));
return CallCountField::decode(value);
}
void FeedbackNexus::SetSpeculationMode(SpeculationMode mode) {
DCHECK(IsCallICKind(kind()));
Object call_count = GetFeedbackExtra()->cast<Object>();
CHECK(call_count.IsSmi());
uint32_t count = static_cast<uint32_t>(Smi::ToInt(call_count));
uint32_t value = CallCountField::encode(CallCountField::decode(count));
int result = static_cast<int>(value | SpeculationModeField::encode(mode));
MaybeObject feedback = GetFeedback();
// We can skip the write barrier for {feedback} because it's not changing.
SetFeedback(feedback, SKIP_WRITE_BARRIER, Smi::FromInt(result),
SKIP_WRITE_BARRIER);
}
SpeculationMode FeedbackNexus::GetSpeculationMode() {
DCHECK(IsCallICKind(kind()));
Object call_count = GetFeedbackExtra()->cast<Object>();
CHECK(call_count.IsSmi());
uint32_t value = static_cast<uint32_t>(Smi::ToInt(call_count));
return SpeculationModeField::decode(value);
}
float FeedbackNexus::ComputeCallFrequency() {
DCHECK(IsCallICKind(kind()));
double const invocation_count = vector().invocation_count();
double const call_count = GetCallCount();
if (invocation_count == 0.0) { // Prevent division by 0.
return 0.0f;
}
return static_cast<float>(call_count / invocation_count);
}
void FeedbackNexus::ConfigureMonomorphic(Handle<Name> name,
Handle<Map> receiver_map,
const MaybeObjectHandle& handler) {
DCHECK(handler.is_null() || IC::IsHandler(*handler));
if (kind() == FeedbackSlotKind::kStoreDataPropertyInLiteral) {
SetFeedback(HeapObjectReference::Weak(*receiver_map), UPDATE_WRITE_BARRIER,
*name);
} else {
if (name.is_null()) {
SetFeedback(HeapObjectReference::Weak(*receiver_map),
UPDATE_WRITE_BARRIER, *handler);
} else {
Handle<WeakFixedArray> array = CreateArrayOfSize(2);
array->Set(0, HeapObjectReference::Weak(*receiver_map));
array->Set(1, *handler);
SetFeedback(*name, UPDATE_WRITE_BARRIER, *array);
}
}
}
void FeedbackNexus::ConfigurePolymorphic(
Handle<Name> name, std::vector<MapAndHandler> const& maps_and_handlers) {
int receiver_count = static_cast<int>(maps_and_handlers.size());
DCHECK_GT(receiver_count, 1);
Handle<WeakFixedArray> array = CreateArrayOfSize(receiver_count * 2);
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map = maps_and_handlers[current].first;
array->Set(current * 2, HeapObjectReference::Weak(*map));
MaybeObjectHandle handler = maps_and_handlers[current].second;
DCHECK(IC::IsHandler(*handler));
array->Set(current * 2 + 1, *handler);
}
if (name.is_null()) {
SetFeedback(*array, UPDATE_WRITE_BARRIER, UninitializedSentinel(),
SKIP_WRITE_BARRIER);
} else {
SetFeedback(*name, UPDATE_WRITE_BARRIER, *array);
}
}
int FeedbackNexus::ExtractMaps(MapHandles* maps) const {
DisallowHeapAllocation no_gc;
int found = 0;
for (FeedbackIterator it(this); !it.done(); it.Advance()) {
maps->push_back(config()->NewHandle(it.map()));
found++;
}
return found;
}
int FeedbackNexus::ExtractMapsAndFeedback(
std::vector<MapAndFeedback>* maps_and_feedback) const {
DisallowHeapAllocation no_gc;
int found = 0;
for (FeedbackIterator it(this); !it.done(); it.Advance()) {
Handle<Map> map = config()->NewHandle(it.map());
MaybeObject maybe_handler = it.handler();
if (!maybe_handler->IsCleared()) {
DCHECK(IC::IsHandler(maybe_handler) ||
IsStoreDataPropertyInLiteralKind(kind()));
MaybeObjectHandle handler = config()->NewHandle(maybe_handler);
maps_and_feedback->push_back(MapAndHandler(map, handler));
found++;
}
}
return found;
}
int FeedbackNexus::ExtractMapsAndHandlers(
std::vector<MapAndHandler>* maps_and_handlers,
TryUpdateHandler map_handler) const {
DCHECK(!IsStoreDataPropertyInLiteralKind(kind()));
DisallowHeapAllocation no_gc;
int found = 0;
for (FeedbackIterator it(this); !it.done(); it.Advance()) {
Handle<Map> map = config()->NewHandle(it.map());
MaybeObject maybe_handler = it.handler();
if (!maybe_handler->IsCleared()) {
DCHECK(IC::IsHandler(maybe_handler));
MaybeObjectHandle handler = config()->NewHandle(maybe_handler);
if (map_handler && !(map_handler(map).ToHandle(&map))) {
continue;
}
maps_and_handlers->push_back(MapAndHandler(map, handler));
found++;
}
}
return found;
}
MaybeObjectHandle FeedbackNexus::FindHandlerForMap(Handle<Map> map) const {
DCHECK(!IsStoreInArrayLiteralICKind(kind()));
for (FeedbackIterator it(this); !it.done(); it.Advance()) {
if (it.map() == *map && !it.handler()->IsCleared()) {
return config()->NewHandle(it.handler());
}
}
return MaybeObjectHandle();
}
Name FeedbackNexus::GetName() const {
if (IsKeyedStoreICKind(kind()) || IsKeyedLoadICKind(kind()) ||
IsKeyedHasICKind(kind())) {
MaybeObject feedback = GetFeedback();
if (IsPropertyNameFeedback(feedback)) {
return Name::cast(feedback->GetHeapObjectAssumeStrong());
}
}
if (IsStoreDataPropertyInLiteralKind(kind())) {
MaybeObject extra = GetFeedbackExtra();
if (IsPropertyNameFeedback(extra)) {
return Name::cast(extra->GetHeapObjectAssumeStrong());
}
}
return Name();
}
KeyedAccessLoadMode FeedbackNexus::GetKeyedAccessLoadMode() const {
DCHECK(IsKeyedLoadICKind(kind()) || IsKeyedHasICKind(kind()));
if (GetKeyType() == PROPERTY) return STANDARD_LOAD;
std::vector<MapAndHandler> maps_and_handlers;
ExtractMapsAndHandlers(&maps_and_handlers);
for (MapAndHandler map_and_handler : maps_and_handlers) {
KeyedAccessLoadMode mode =
LoadHandler::GetKeyedAccessLoadMode(*map_and_handler.second);
if (mode != STANDARD_LOAD) return mode;
}
return STANDARD_LOAD;
}
namespace {
bool BuiltinHasKeyedAccessStoreMode(int builtin_index) {
DCHECK(Builtins::IsBuiltinId(builtin_index));
switch (builtin_index) {
case Builtins::kKeyedStoreIC_SloppyArguments_Standard:
case Builtins::kKeyedStoreIC_SloppyArguments_GrowNoTransitionHandleCOW:
case Builtins::kKeyedStoreIC_SloppyArguments_NoTransitionIgnoreOOB:
case Builtins::kKeyedStoreIC_SloppyArguments_NoTransitionHandleCOW:
case Builtins::kStoreFastElementIC_Standard:
case Builtins::kStoreFastElementIC_GrowNoTransitionHandleCOW:
case Builtins::kStoreFastElementIC_NoTransitionIgnoreOOB:
case Builtins::kStoreFastElementIC_NoTransitionHandleCOW:
case Builtins::kElementsTransitionAndStore_Standard:
case Builtins::kElementsTransitionAndStore_GrowNoTransitionHandleCOW:
case Builtins::kElementsTransitionAndStore_NoTransitionIgnoreOOB:
case Builtins::kElementsTransitionAndStore_NoTransitionHandleCOW:
return true;
default:
return false;
}
UNREACHABLE();
}
KeyedAccessStoreMode KeyedAccessStoreModeForBuiltin(int builtin_index) {
DCHECK(BuiltinHasKeyedAccessStoreMode(builtin_index));
switch (builtin_index) {
case Builtins::kKeyedStoreIC_SloppyArguments_Standard:
case Builtins::kStoreFastElementIC_Standard:
case Builtins::kElementsTransitionAndStore_Standard:
return STANDARD_STORE;
case Builtins::kKeyedStoreIC_SloppyArguments_GrowNoTransitionHandleCOW:
case Builtins::kStoreFastElementIC_GrowNoTransitionHandleCOW:
case Builtins::kElementsTransitionAndStore_GrowNoTransitionHandleCOW:
return STORE_AND_GROW_HANDLE_COW;
case Builtins::kKeyedStoreIC_SloppyArguments_NoTransitionIgnoreOOB:
case Builtins::kStoreFastElementIC_NoTransitionIgnoreOOB:
case Builtins::kElementsTransitionAndStore_NoTransitionIgnoreOOB:
return STORE_IGNORE_OUT_OF_BOUNDS;
case Builtins::kKeyedStoreIC_SloppyArguments_NoTransitionHandleCOW:
case Builtins::kStoreFastElementIC_NoTransitionHandleCOW:
case Builtins::kElementsTransitionAndStore_NoTransitionHandleCOW:
return STORE_HANDLE_COW;
default:
UNREACHABLE();
}
}
} // namespace
KeyedAccessStoreMode FeedbackNexus::GetKeyedAccessStoreMode() const {
DCHECK(IsKeyedStoreICKind(kind()) || IsStoreInArrayLiteralICKind(kind()) ||
IsStoreDataPropertyInLiteralKind(kind()));
KeyedAccessStoreMode mode = STANDARD_STORE;
if (GetKeyType() == PROPERTY) return mode;
std::vector<MapAndHandler> maps_and_handlers;
ExtractMapsAndHandlers(&maps_and_handlers);
for (const MapAndHandler& map_and_handler : maps_and_handlers) {
const MaybeObjectHandle maybe_code_handler = map_and_handler.second;
// The first handler that isn't the slow handler will have the bits we need.
Handle<Code> handler;
if (maybe_code_handler.object()->IsStoreHandler()) {
Handle<StoreHandler> data_handler =
Handle<StoreHandler>::cast(maybe_code_handler.object());
if ((data_handler->smi_handler()).IsSmi()) {
// Decode the KeyedAccessStoreMode information from the Handler.
mode = StoreHandler::GetKeyedAccessStoreMode(
MaybeObject::FromObject(data_handler->smi_handler()));
if (mode != STANDARD_STORE) return mode;
continue;
} else {
handler = handle(Code::cast(data_handler->smi_handler()),
vector().GetIsolate());
}
} else if (maybe_code_handler.object()->IsSmi()) {
// Skip for Proxy Handlers.
if (*(maybe_code_handler.object()) ==
*StoreHandler::StoreProxy(GetIsolate()))
continue;
// Decode the KeyedAccessStoreMode information from the Handler.
mode = StoreHandler::GetKeyedAccessStoreMode(*maybe_code_handler);
if (mode != STANDARD_STORE) return mode;
continue;
} else {
// Element store without prototype chain check.
handler = Handle<Code>::cast(maybe_code_handler.object());
}
if (handler->is_builtin()) {
const int builtin_index = handler->builtin_index();
if (!BuiltinHasKeyedAccessStoreMode(builtin_index)) continue;
mode = KeyedAccessStoreModeForBuiltin(builtin_index);
break;
}
}
return mode;
}
IcCheckType FeedbackNexus::GetKeyType() const {
DCHECK(IsKeyedStoreICKind(kind()) || IsKeyedLoadICKind(kind()) ||
IsStoreInArrayLiteralICKind(kind()) || IsKeyedHasICKind(kind()) ||
IsStoreDataPropertyInLiteralKind(kind()));
auto pair = GetFeedbackPair();
MaybeObject feedback = pair.first;
if (feedback == MegamorphicSentinel()) {
return static_cast<IcCheckType>(
Smi::ToInt(pair.second->template cast<Object>()));
}
MaybeObject maybe_name =
IsStoreDataPropertyInLiteralKind(kind()) ? pair.second : feedback;
return IsPropertyNameFeedback(maybe_name) ? PROPERTY : ELEMENT;
}
BinaryOperationHint FeedbackNexus::GetBinaryOperationFeedback() const {
DCHECK_EQ(kind(), FeedbackSlotKind::kBinaryOp);
int feedback = GetFeedback().ToSmi().value();
return BinaryOperationHintFromFeedback(feedback);
}
CompareOperationHint FeedbackNexus::GetCompareOperationFeedback() const {
DCHECK_EQ(kind(), FeedbackSlotKind::kCompareOp);
int feedback = GetFeedback().ToSmi().value();
return CompareOperationHintFromFeedback(feedback);
}
ForInHint FeedbackNexus::GetForInFeedback() const {
DCHECK_EQ(kind(), FeedbackSlotKind::kForIn);
int feedback = GetFeedback().ToSmi().value();
return ForInHintFromFeedback(static_cast<ForInFeedback>(feedback));
}
MaybeHandle<JSObject> FeedbackNexus::GetConstructorFeedback() const {
DCHECK_EQ(kind(), FeedbackSlotKind::kInstanceOf);
MaybeObject feedback = GetFeedback();
HeapObject heap_object;
if (feedback->GetHeapObjectIfWeak(&heap_object)) {
return config()->NewHandle(JSObject::cast(heap_object));
}
return MaybeHandle<JSObject>();
}
namespace {
bool InList(Handle<ArrayList> types, Handle<String> type) {
for (int i = 0; i < types->Length(); i++) {
Object obj = types->Get(i);
if (String::cast(obj).Equals(*type)) {
return true;
}
}
return false;
}
} // anonymous namespace
void FeedbackNexus::Collect(Handle<String> type, int position) {
DCHECK(IsTypeProfileKind(kind()));
DCHECK_GE(position, 0);
DCHECK(config()->can_write());
Isolate* isolate = GetIsolate();
MaybeObject const feedback = GetFeedback();
// Map source position to collection of types
Handle<SimpleNumberDictionary> types;
if (feedback == UninitializedSentinel()) {
types = SimpleNumberDictionary::New(isolate, 1);
} else {
types = handle(
SimpleNumberDictionary::cast(feedback->GetHeapObjectAssumeStrong()),
isolate);
}
Handle<ArrayList> position_specific_types;
InternalIndex entry = types->FindEntry(isolate, position);
if (entry.is_not_found()) {
position_specific_types = ArrayList::New(isolate, 1);
types = SimpleNumberDictionary::Set(
isolate, types, position,
ArrayList::Add(isolate, position_specific_types, type));
} else {
DCHECK(types->ValueAt(entry).IsArrayList());
position_specific_types =
handle(ArrayList::cast(types->ValueAt(entry)), isolate);
if (!InList(position_specific_types, type)) { // Add type
types = SimpleNumberDictionary::Set(
isolate, types, position,
ArrayList::Add(isolate, position_specific_types, type));
}
}
SetFeedback(*types);
}
std::vector<int> FeedbackNexus::GetSourcePositions() const {
DCHECK(IsTypeProfileKind(kind()));
std::vector<int> source_positions;
Isolate* isolate = GetIsolate();
MaybeObject const feedback = GetFeedback();
if (feedback == UninitializedSentinel()) {
return source_positions;
}
Handle<SimpleNumberDictionary> types(
SimpleNumberDictionary::cast(feedback->GetHeapObjectAssumeStrong()),
isolate);
for (int index = SimpleNumberDictionary::kElementsStartIndex;
index < types->length(); index += SimpleNumberDictionary::kEntrySize) {
int key_index = index + SimpleNumberDictionary::kEntryKeyIndex;
Object key = types->get(key_index);
if (key.IsSmi()) {
int position = Smi::cast(key).value();
source_positions.push_back(position);
}
}
return source_positions;
}
std::vector<Handle<String>> FeedbackNexus::GetTypesForSourcePositions(
uint32_t position) const {
DCHECK(IsTypeProfileKind(kind()));
Isolate* isolate = GetIsolate();
MaybeObject const feedback = GetFeedback();
std::vector<Handle<String>> types_for_position;
if (feedback == UninitializedSentinel()) {
return types_for_position;
}
Handle<SimpleNumberDictionary> types(
SimpleNumberDictionary::cast(feedback->GetHeapObjectAssumeStrong()),
isolate);
InternalIndex entry = types->FindEntry(isolate, position);
if (entry.is_not_found()) return types_for_position;
DCHECK(types->ValueAt(entry).IsArrayList());
Handle<ArrayList> position_specific_types =
Handle<ArrayList>(ArrayList::cast(types->ValueAt(entry)), isolate);
for (int i = 0; i < position_specific_types->Length(); i++) {
Object t = position_specific_types->Get(i);
types_for_position.push_back(Handle<String>(String::cast(t), isolate));
}
return types_for_position;
}
namespace {
Handle<JSObject> ConvertToJSObject(Isolate* isolate,
Handle<SimpleNumberDictionary> feedback) {
Handle<JSObject> type_profile =
isolate->factory()->NewJSObject(isolate->object_function());
for (int index = SimpleNumberDictionary::kElementsStartIndex;
index < feedback->length();
index += SimpleNumberDictionary::kEntrySize) {
int key_index = index + SimpleNumberDictionary::kEntryKeyIndex;
Object key = feedback->get(key_index);
if (key.IsSmi()) {
int value_index = index + SimpleNumberDictionary::kEntryValueIndex;
Handle<ArrayList> position_specific_types(
ArrayList::cast(feedback->get(value_index)), isolate);
int position = Smi::ToInt(key);
JSObject::AddDataElement(
type_profile, position,
isolate->factory()->NewJSArrayWithElements(
ArrayList::Elements(isolate, position_specific_types)),
PropertyAttributes::NONE);
}
}
return type_profile;
}
} // namespace
JSObject FeedbackNexus::GetTypeProfile() const {
DCHECK(IsTypeProfileKind(kind()));
Isolate* isolate = GetIsolate();
MaybeObject const feedback = GetFeedback();
if (feedback == UninitializedSentinel()) {
return *isolate->factory()->NewJSObject(isolate->object_function());
}
return *ConvertToJSObject(isolate,
handle(SimpleNumberDictionary::cast(
feedback->GetHeapObjectAssumeStrong()),
isolate));
}
void FeedbackNexus::ResetTypeProfile() {
DCHECK(IsTypeProfileKind(kind()));
SetFeedback(UninitializedSentinel());
}
FeedbackIterator::FeedbackIterator(const FeedbackNexus* nexus)
: done_(false), index_(-1), state_(kOther) {
DCHECK(IsLoadICKind(nexus->kind()) ||
IsStoreICKind(nexus->kind()) | IsKeyedLoadICKind(nexus->kind()) ||
IsKeyedStoreICKind(nexus->kind()) || IsStoreOwnICKind(nexus->kind()) ||
IsStoreDataPropertyInLiteralKind(nexus->kind()) ||
IsStoreInArrayLiteralICKind(nexus->kind()) ||
IsKeyedHasICKind(nexus->kind()));
DisallowHeapAllocation no_gc;
auto pair = nexus->GetFeedbackPair();
MaybeObject feedback = pair.first;
bool is_named_feedback = IsPropertyNameFeedback(feedback);
HeapObject heap_object;
if ((feedback->GetHeapObjectIfStrong(&heap_object) &&
heap_object.IsWeakFixedArray()) ||
is_named_feedback) {
index_ = 0;
state_ = kPolymorphic;
heap_object = feedback->GetHeapObjectAssumeStrong();
if (is_named_feedback) {
polymorphic_feedback_ = nexus->config()->NewHandle(
WeakFixedArray::cast(pair.second->GetHeapObjectAssumeStrong()));
} else {
polymorphic_feedback_ =
nexus->config()->NewHandle(WeakFixedArray::cast(heap_object));
}
AdvancePolymorphic();
} else if (feedback->GetHeapObjectIfWeak(&heap_object)) {
state_ = kMonomorphic;
MaybeObject handler = pair.second;
map_ = Map::cast(heap_object);
handler_ = handler;
} else {
done_ = true;
}
}
void FeedbackIterator::Advance() {
CHECK(!done_);
if (state_ == kMonomorphic) {
done_ = true;
return;
}
CHECK_EQ(state_, kPolymorphic);
AdvancePolymorphic();
}
void FeedbackIterator::AdvancePolymorphic() {
CHECK(!done_);
CHECK_EQ(state_, kPolymorphic);
int length = polymorphic_feedback_->length();
HeapObject heap_object;
while (index_ < length) {
if (polymorphic_feedback_->Get(index_)->GetHeapObjectIfWeak(&heap_object)) {
MaybeObject handler = polymorphic_feedback_->Get(index_ + kHandlerOffset);
map_ = Map::cast(heap_object);
handler_ = handler;
index_ += kEntrySize;
return;
}
index_ += kEntrySize;
}
CHECK_EQ(index_, length);
done_ = true;
}
} // namespace internal
} // namespace v8