| // Copyright 2017 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_OBJECTS_STRING_H_ |
| #define V8_OBJECTS_STRING_H_ |
| |
| #include <memory> |
| |
| #include "src/base/bits.h" |
| #include "src/base/export-template.h" |
| #include "src/objects/instance-type.h" |
| #include "src/objects/name.h" |
| #include "src/objects/smi.h" |
| #include "src/strings/unicode-decoder.h" |
| #include "torque-generated/field-offsets.h" |
| |
| // Has to be the last include (doesn't have include guards): |
| #include "src/objects/object-macros.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class SharedStringAccessGuardIfNeeded; |
| |
| enum InstanceType : uint16_t; |
| |
| enum AllowNullsFlag { ALLOW_NULLS, DISALLOW_NULLS }; |
| enum RobustnessFlag { ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL }; |
| |
| // The characteristics of a string are stored in its map. Retrieving these |
| // few bits of information is moderately expensive, involving two memory |
| // loads where the second is dependent on the first. To improve efficiency |
| // the shape of the string is given its own class so that it can be retrieved |
| // once and used for several string operations. A StringShape is small enough |
| // to be passed by value and is immutable, but be aware that flattening a |
| // string can potentially alter its shape. Also be aware that a GC caused by |
| // something else can alter the shape of a string due to ConsString |
| // shortcutting. Keeping these restrictions in mind has proven to be error- |
| // prone and so we no longer put StringShapes in variables unless there is a |
| // concrete performance benefit at that particular point in the code. |
| class StringShape { |
| public: |
| inline explicit StringShape(const String s); |
| inline explicit StringShape(Map s); |
| inline explicit StringShape(InstanceType t); |
| inline bool IsSequential(); |
| inline bool IsExternal(); |
| inline bool IsCons(); |
| inline bool IsSliced(); |
| inline bool IsThin(); |
| inline bool IsIndirect(); |
| inline bool IsExternalOneByte(); |
| inline bool IsExternalTwoByte(); |
| inline bool IsSequentialOneByte(); |
| inline bool IsSequentialTwoByte(); |
| inline bool IsInternalized(); |
| inline StringRepresentationTag representation_tag(); |
| inline uint32_t encoding_tag(); |
| inline uint32_t full_representation_tag(); |
| #ifdef DEBUG |
| inline uint32_t type() { return type_; } |
| inline void invalidate() { valid_ = false; } |
| inline bool valid() { return valid_; } |
| #else |
| inline void invalidate() {} |
| #endif |
| |
| // Run different behavior for each concrete string class type, as defined by |
| // the dispatcher. |
| template <typename TDispatcher, typename TResult, typename... TArgs> |
| inline TResult DispatchToSpecificTypeWithoutCast(TArgs&&... args); |
| template <typename TDispatcher, typename TResult, typename... TArgs> |
| inline TResult DispatchToSpecificType(String str, TArgs&&... args); |
| |
| private: |
| uint32_t type_; |
| #ifdef DEBUG |
| inline void set_valid() { valid_ = true; } |
| bool valid_; |
| #else |
| inline void set_valid() {} |
| #endif |
| }; |
| |
| #include "torque-generated/src/objects/string-tq.inc" |
| |
| // The String abstract class captures JavaScript string values: |
| // |
| // Ecma-262: |
| // 4.3.16 String Value |
| // A string value is a member of the type String and is a finite |
| // ordered sequence of zero or more 16-bit unsigned integer values. |
| // |
| // All string values have a length field. |
| class String : public TorqueGeneratedString<String, Name> { |
| public: |
| enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING }; |
| |
| // Representation of the flat content of a String. |
| // A non-flat string doesn't have flat content. |
| // A flat string has content that's encoded as a sequence of either |
| // one-byte chars or two-byte UC16. |
| // Returned by String::GetFlatContent(). |
| // Not safe to use from concurrent background threads. |
| // TODO(solanes): Move FlatContent into FlatStringReader, and make it private. |
| // This would de-duplicate code, as well as taking advantage of the fact that |
| // FlatStringReader is relocatable. |
| class FlatContent { |
| public: |
| // Returns true if the string is flat and this structure contains content. |
| bool IsFlat() const { return state_ != NON_FLAT; } |
| // Returns true if the structure contains one-byte content. |
| bool IsOneByte() const { return state_ == ONE_BYTE; } |
| // Returns true if the structure contains two-byte content. |
| bool IsTwoByte() const { return state_ == TWO_BYTE; } |
| |
| // Return the one byte content of the string. Only use if IsOneByte() |
| // returns true. |
| Vector<const uint8_t> ToOneByteVector() const { |
| DCHECK_EQ(ONE_BYTE, state_); |
| return Vector<const uint8_t>(onebyte_start, length_); |
| } |
| // Return the two-byte content of the string. Only use if IsTwoByte() |
| // returns true. |
| Vector<const uc16> ToUC16Vector() const { |
| DCHECK_EQ(TWO_BYTE, state_); |
| return Vector<const uc16>(twobyte_start, length_); |
| } |
| |
| uc16 Get(int i) const { |
| DCHECK(i < length_); |
| DCHECK(state_ != NON_FLAT); |
| if (state_ == ONE_BYTE) return onebyte_start[i]; |
| return twobyte_start[i]; |
| } |
| |
| bool UsesSameString(const FlatContent& other) const { |
| return onebyte_start == other.onebyte_start; |
| } |
| |
| private: |
| enum State { NON_FLAT, ONE_BYTE, TWO_BYTE }; |
| |
| // Constructors only used by String::GetFlatContent(). |
| FlatContent(const uint8_t* start, int length, |
| const DisallowHeapAllocation& no_gc) |
| : onebyte_start(start), |
| length_(length), |
| state_(ONE_BYTE), |
| no_gc_(no_gc) {} |
| FlatContent(const uc16* start, int length, |
| const DisallowHeapAllocation& no_gc) |
| : twobyte_start(start), |
| length_(length), |
| state_(TWO_BYTE), |
| no_gc_(no_gc) {} |
| explicit FlatContent(const DisallowHeapAllocation& no_gc) |
| : onebyte_start(nullptr), length_(0), state_(NON_FLAT), no_gc_(no_gc) {} |
| |
| union { |
| const uint8_t* onebyte_start; |
| const uc16* twobyte_start; |
| }; |
| int length_; |
| State state_; |
| const DisallowHeapAllocation& no_gc_; |
| |
| friend class String; |
| friend class IterableSubString; |
| }; |
| |
| void MakeThin(Isolate* isolate, String canonical); |
| |
| template <typename Char> |
| V8_INLINE Vector<const Char> GetCharVector( |
| const DisallowHeapAllocation& no_gc); |
| |
| // Get chars from sequential or external strings. May only be called when a |
| // SharedStringAccessGuard is not needed (i.e. on the main thread or on |
| // read-only strings). |
| template <typename Char> |
| inline const Char* GetChars(const DisallowHeapAllocation& no_gc); |
| |
| // Get chars from sequential or external strings. |
| template <typename Char> |
| inline const Char* GetChars( |
| const DisallowHeapAllocation& no_gc, |
| const SharedStringAccessGuardIfNeeded& access_guard); |
| |
| // Returns the address of the character at an offset into this string. |
| // Requires: this->IsFlat() |
| const byte* AddressOfCharacterAt(int start_index, |
| const DisallowHeapAllocation& no_gc); |
| |
| // Get and set the length of the string using acquire loads and release |
| // stores. |
| DECL_SYNCHRONIZED_INT_ACCESSORS(length) |
| |
| // Returns whether this string has only one-byte chars, i.e. all of them can |
| // be one-byte encoded. This might be the case even if the string is |
| // two-byte. Such strings may appear when the embedder prefers |
| // two-byte external representations even for one-byte data. |
| DECL_GETTER(IsOneByteRepresentation, bool) |
| DECL_GETTER(IsTwoByteRepresentation, bool) |
| |
| // Cons and slices have an encoding flag that may not represent the actual |
| // encoding of the underlying string. This is taken into account here. |
| // This function is static because that helps it get inlined. |
| // Requires: string.IsFlat() |
| static inline bool IsOneByteRepresentationUnderneath(String string); |
| |
| // Get and set individual two byte chars in the string. |
| inline void Set(int index, uint16_t value); |
| // Get individual two byte char in the string. Repeated calls |
| // to this method are not efficient unless the string is flat. |
| V8_INLINE uint16_t Get(int index); |
| |
| // ES6 section 7.1.3.1 ToNumber Applied to the String Type |
| static Handle<Object> ToNumber(Isolate* isolate, Handle<String> subject); |
| |
| // Flattens the string. Checks first inline to see if it is |
| // necessary. Does nothing if the string is not a cons string. |
| // Flattening allocates a sequential string with the same data as |
| // the given string and mutates the cons string to a degenerate |
| // form, where the first component is the new sequential string and |
| // the second component is the empty string. If allocation fails, |
| // this function returns a failure. If flattening succeeds, this |
| // function returns the sequential string that is now the first |
| // component of the cons string. |
| // |
| // Degenerate cons strings are handled specially by the garbage |
| // collector (see IsShortcutCandidate). |
| |
| static inline Handle<String> Flatten( |
| Isolate* isolate, Handle<String> string, |
| AllocationType allocation = AllocationType::kYoung); |
| static inline Handle<String> Flatten( |
| LocalIsolate* isolate, Handle<String> string, |
| AllocationType allocation = AllocationType::kYoung); |
| |
| // Tries to return the content of a flat string as a structure holding either |
| // a flat vector of char or of uc16. |
| // If the string isn't flat, and therefore doesn't have flat content, the |
| // returned structure will report so, and can't provide a vector of either |
| // kind. |
| V8_EXPORT_PRIVATE FlatContent |
| GetFlatContent(const DisallowHeapAllocation& no_gc); |
| |
| // Returns the parent of a sliced string or first part of a flat cons string. |
| // Requires: StringShape(this).IsIndirect() && this->IsFlat() |
| inline String GetUnderlying(); |
| |
| // String relational comparison, implemented according to ES6 section 7.2.11 |
| // Abstract Relational Comparison (step 5): The comparison of Strings uses a |
| // simple lexicographic ordering on sequences of code unit values. There is no |
| // attempt to use the more complex, semantically oriented definitions of |
| // character or string equality and collating order defined in the Unicode |
| // specification. Therefore String values that are canonically equal according |
| // to the Unicode standard could test as unequal. In effect this algorithm |
| // assumes that both Strings are already in normalized form. Also, note that |
| // for strings containing supplementary characters, lexicographic ordering on |
| // sequences of UTF-16 code unit values differs from that on sequences of code |
| // point values. |
| V8_WARN_UNUSED_RESULT static ComparisonResult Compare(Isolate* isolate, |
| Handle<String> x, |
| Handle<String> y); |
| |
| // Perform ES6 21.1.3.8, including checking arguments. |
| static Object IndexOf(Isolate* isolate, Handle<Object> receiver, |
| Handle<Object> search, Handle<Object> position); |
| // Perform string match of pattern on subject, starting at start index. |
| // Caller must ensure that 0 <= start_index <= sub->length(), as this does not |
| // check any arguments. |
| static int IndexOf(Isolate* isolate, Handle<String> receiver, |
| Handle<String> search, int start_index); |
| |
| static Object LastIndexOf(Isolate* isolate, Handle<Object> receiver, |
| Handle<Object> search, Handle<Object> position); |
| |
| // Encapsulates logic related to a match and its capture groups as required |
| // by GetSubstitution. |
| class Match { |
| public: |
| virtual Handle<String> GetMatch() = 0; |
| virtual Handle<String> GetPrefix() = 0; |
| virtual Handle<String> GetSuffix() = 0; |
| |
| // A named capture can be unmatched (either not specified in the pattern, |
| // or specified but unmatched in the current string), or matched. |
| enum CaptureState { UNMATCHED, MATCHED }; |
| |
| virtual int CaptureCount() = 0; |
| virtual bool HasNamedCaptures() = 0; |
| virtual MaybeHandle<String> GetCapture(int i, bool* capture_exists) = 0; |
| virtual MaybeHandle<String> GetNamedCapture(Handle<String> name, |
| CaptureState* state) = 0; |
| |
| virtual ~Match() = default; |
| }; |
| |
| // ES#sec-getsubstitution |
| // GetSubstitution(matched, str, position, captures, replacement) |
| // Expand the $-expressions in the string and return a new string with |
| // the result. |
| // A {start_index} can be passed to specify where to start scanning the |
| // replacement string. |
| V8_WARN_UNUSED_RESULT static MaybeHandle<String> GetSubstitution( |
| Isolate* isolate, Match* match, Handle<String> replacement, |
| int start_index = 0); |
| |
| // String equality operations. |
| inline bool Equals(String other); |
| inline static bool Equals(Isolate* isolate, Handle<String> one, |
| Handle<String> two); |
| |
| // Dispatches to Is{One,Two}ByteEqualTo. |
| template <typename Char> |
| bool IsEqualTo(Vector<const Char> str); |
| |
| V8_EXPORT_PRIVATE bool HasOneBytePrefix(Vector<const char> str); |
| V8_EXPORT_PRIVATE bool IsOneByteEqualTo(Vector<const uint8_t> str); |
| V8_EXPORT_PRIVATE bool IsOneByteEqualTo(Vector<const char> str) { |
| return IsOneByteEqualTo(Vector<const uint8_t>::cast(str)); |
| } |
| bool IsTwoByteEqualTo(Vector<const uc16> str); |
| |
| // Return a UTF8 representation of the string. The string is null |
| // terminated but may optionally contain nulls. Length is returned |
| // in length_output if length_output is not a null pointer The string |
| // should be nearly flat, otherwise the performance of this method may |
| // be very slow (quadratic in the length). Setting robustness_flag to |
| // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it |
| // handles unexpected data without causing assert failures and it does not |
| // do any heap allocations. This is useful when printing stack traces. |
| std::unique_ptr<char[]> ToCString(AllowNullsFlag allow_nulls, |
| RobustnessFlag robustness_flag, int offset, |
| int length, int* length_output = nullptr); |
| V8_EXPORT_PRIVATE std::unique_ptr<char[]> ToCString( |
| AllowNullsFlag allow_nulls = DISALLOW_NULLS, |
| RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL, |
| int* length_output = nullptr); |
| |
| // Externalization. |
| V8_EXPORT_PRIVATE bool MakeExternal( |
| v8::String::ExternalStringResource* resource); |
| V8_EXPORT_PRIVATE bool MakeExternal( |
| v8::String::ExternalOneByteStringResource* resource); |
| bool SupportsExternalization(); |
| |
| // Conversion. |
| // "array index": an index allowed by the ES spec for JSArrays. |
| inline bool AsArrayIndex(uint32_t* index); |
| |
| // This is used for calculating array indices but differs from an |
| // Array Index in the regard that this does not support the full |
| // array index range. This only supports positive numbers less than |
| // or equal to INT_MAX. |
| // |
| // String::AsArrayIndex might be a better fit if you're looking to |
| // calculate the array index. |
| // |
| // if val < 0 or val > INT_MAX, returns -1 |
| // if 0 <= val <= INT_MAX, returns val |
| static int32_t ToArrayIndex(Address addr); |
| |
| uint32_t inline ToValidIndex(Object number); |
| // "integer index": the string is the decimal representation of an |
| // integer in the range of a size_t. Useful for TypedArray accesses. |
| inline bool AsIntegerIndex(size_t* index); |
| |
| // Trimming. |
| enum TrimMode { kTrim, kTrimStart, kTrimEnd }; |
| static Handle<String> Trim(Isolate* isolate, Handle<String> string, |
| TrimMode mode); |
| |
| V8_EXPORT_PRIVATE void PrintOn(FILE* out); |
| |
| // For use during stack traces. Performs rudimentary sanity check. |
| bool LooksValid(); |
| |
| // Printing utility functions. |
| // - PrintUC16 prints the raw string contents to the given stream. |
| // Non-printable characters are formatted as hex, but otherwise the string |
| // is printed as-is. |
| // - StringShortPrint and StringPrint have extra formatting: they add a |
| // prefix and suffix depending on the string kind, may add other information |
| // such as the string heap object address, may truncate long strings, etc. |
| const char* PrefixForDebugPrint() const; |
| const char* SuffixForDebugPrint() const; |
| void StringShortPrint(StringStream* accumulator); |
| void PrintUC16(std::ostream& os, int start = 0, int end = -1); // NOLINT |
| void PrintUC16(StringStream* accumulator, int start, int end); |
| |
| // Dispatched behavior. |
| #if defined(DEBUG) || defined(OBJECT_PRINT) |
| char* ToAsciiArray(); |
| #endif |
| DECL_PRINTER(String) |
| DECL_VERIFIER(String) |
| |
| inline bool IsFlat(); |
| |
| // Max char codes. |
| static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar; |
| static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar; |
| static const int kMaxUtf16CodeUnit = 0xffff; |
| static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit; |
| static const uc32 kMaxCodePoint = 0x10ffff; |
| |
| // Maximal string length. |
| // The max length is different on 32 and 64 bit platforms. Max length for |
| // 32-bit platforms is ~268.4M chars. On 64-bit platforms, max length is |
| // ~536.8M chars. |
| // See include/v8.h for the definition. |
| static const int kMaxLength = v8::String::kMaxLength; |
| // There are several defining limits imposed by our current implementation: |
| // - any string's length must fit into a Smi. |
| static_assert(kMaxLength <= kSmiMaxValue, |
| "String length must fit into a Smi"); |
| // - adding two string lengths must still fit into a 32-bit int without |
| // overflow |
| static_assert(kMaxLength * 2 <= kMaxInt, |
| "String::kMaxLength * 2 must fit into an int32"); |
| // - any heap object's size in bytes must be able to fit into a Smi, because |
| // its space on the heap might be filled with a Filler; for strings this |
| // means SeqTwoByteString::kMaxSize must be able to fit into a Smi. |
| static_assert(kMaxLength * 2 + kHeaderSize <= kSmiMaxValue, |
| "String object size in bytes must fit into a Smi"); |
| // - any heap object's size in bytes must be able to fit into an int, because |
| // that's what our object handling code uses almost everywhere. |
| static_assert(kMaxLength * 2 + kHeaderSize <= kMaxInt, |
| "String object size in bytes must fit into an int"); |
| |
| // Max length for computing hash. For strings longer than this limit the |
| // string length is used as the hash value. |
| static const int kMaxHashCalcLength = 16383; |
| |
| // Limit for truncation in short printing. |
| static const int kMaxShortPrintLength = 1024; |
| |
| // Helper function for flattening strings. |
| template <typename sinkchar> |
| EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE) |
| static void WriteToFlat(String source, sinkchar* sink, int from, int to); |
| |
| static inline bool IsAscii(const char* chars, int length) { |
| return IsAscii(reinterpret_cast<const uint8_t*>(chars), length); |
| } |
| |
| static inline bool IsAscii(const uint8_t* chars, int length) { |
| return NonAsciiStart(chars, length) >= length; |
| } |
| |
| static inline int NonOneByteStart(const uc16* chars, int length) { |
| DCHECK(IsAligned(reinterpret_cast<Address>(chars), sizeof(uc16))); |
| const uint16_t* start = chars; |
| const uint16_t* limit = chars + length; |
| |
| if (static_cast<size_t>(length) >= kUIntptrSize) { |
| // Check unaligned chars. |
| while (!IsAligned(reinterpret_cast<Address>(chars), kUIntptrSize)) { |
| if (*chars > unibrow::Latin1::kMaxChar) { |
| return static_cast<int>(chars - start); |
| } |
| ++chars; |
| } |
| |
| // Check aligned words. |
| STATIC_ASSERT(unibrow::Latin1::kMaxChar == 0xFF); |
| #ifdef V8_TARGET_LITTLE_ENDIAN |
| const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFFFF * 0xFF00; |
| #else |
| const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFFFF * 0x00FF; |
| #endif |
| while (chars + sizeof(uintptr_t) <= limit) { |
| if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) { |
| break; |
| } |
| chars += (sizeof(uintptr_t) / sizeof(uc16)); |
| } |
| } |
| |
| // Check remaining unaligned chars, or find non-one-byte char in word. |
| while (chars < limit) { |
| if (*chars > unibrow::Latin1::kMaxChar) { |
| return static_cast<int>(chars - start); |
| } |
| ++chars; |
| } |
| |
| return static_cast<int>(chars - start); |
| } |
| |
| static inline bool IsOneByte(const uc16* chars, int length) { |
| return NonOneByteStart(chars, length) >= length; |
| } |
| |
| template <class Visitor> |
| static inline ConsString VisitFlat(Visitor* visitor, String string, |
| int offset = 0); |
| |
| template <typename LocalIsolate> |
| static Handle<FixedArray> CalculateLineEnds(LocalIsolate* isolate, |
| Handle<String> string, |
| bool include_ending_line); |
| |
| private: |
| friend class Name; |
| friend class StringTableInsertionKey; |
| friend class InternalizedStringKey; |
| |
| V8_EXPORT_PRIVATE static Handle<String> SlowFlatten( |
| Isolate* isolate, Handle<ConsString> cons, AllocationType allocation); |
| |
| // Slow case of String::Equals. This implementation works on any strings |
| // but it is most efficient on strings that are almost flat. |
| V8_EXPORT_PRIVATE bool SlowEquals(String other); |
| |
| V8_EXPORT_PRIVATE static bool SlowEquals(Isolate* isolate, Handle<String> one, |
| Handle<String> two); |
| |
| // Slow case of AsArrayIndex. |
| V8_EXPORT_PRIVATE bool SlowAsArrayIndex(uint32_t* index); |
| V8_EXPORT_PRIVATE bool SlowAsIntegerIndex(size_t* index); |
| |
| // Compute and set the hash code. |
| V8_EXPORT_PRIVATE uint32_t ComputeAndSetHash(); |
| |
| TQ_OBJECT_CONSTRUCTORS(String) |
| }; |
| |
| // clang-format off |
| extern template EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE) |
| void String::WriteToFlat(String source, uint16_t* sink, int from, int to); |
| // clang-format on |
| |
| class SubStringRange { |
| public: |
| inline SubStringRange(String string, const DisallowHeapAllocation& no_gc, |
| int first = 0, int length = -1); |
| class iterator; |
| inline iterator begin(); |
| inline iterator end(); |
| |
| private: |
| String string_; |
| int first_; |
| int length_; |
| const DisallowHeapAllocation& no_gc_; |
| }; |
| |
| // The SeqString abstract class captures sequential string values. |
| class SeqString : public TorqueGeneratedSeqString<SeqString, String> { |
| public: |
| // Truncate the string in-place if possible and return the result. |
| // In case of new_length == 0, the empty string is returned without |
| // truncating the original string. |
| V8_WARN_UNUSED_RESULT static Handle<String> Truncate(Handle<SeqString> string, |
| int new_length); |
| |
| TQ_OBJECT_CONSTRUCTORS(SeqString) |
| }; |
| |
| class InternalizedString |
| : public TorqueGeneratedInternalizedString<InternalizedString, String> { |
| public: |
| // TODO(neis): Possibly move some stuff from String here. |
| |
| TQ_OBJECT_CONSTRUCTORS(InternalizedString) |
| }; |
| |
| // The OneByteString class captures sequential one-byte string objects. |
| // Each character in the OneByteString is an one-byte character. |
| class SeqOneByteString |
| : public TorqueGeneratedSeqOneByteString<SeqOneByteString, SeqString> { |
| public: |
| static const bool kHasOneByteEncoding = true; |
| using Char = uint8_t; |
| |
| // Dispatched behavior. |
| inline uint8_t Get(int index); |
| inline void SeqOneByteStringSet(int index, uint16_t value); |
| |
| // Get the address of the characters in this string. |
| inline Address GetCharsAddress(); |
| |
| // Get a pointer to the characters of the string. May only be called when a |
| // SharedStringAccessGuard is not needed (i.e. on the main thread or on |
| // read-only strings). |
| inline uint8_t* GetChars(const DisallowHeapAllocation& no_gc); |
| |
| // Get a pointer to the characters of the string. |
| inline uint8_t* GetChars(const DisallowHeapAllocation& no_gc, |
| const SharedStringAccessGuardIfNeeded& access_guard); |
| |
| // Clear uninitialized padding space. This ensures that the snapshot content |
| // is deterministic. |
| void clear_padding(); |
| |
| // Garbage collection support. This method is called by the |
| // garbage collector to compute the actual size of an OneByteString |
| // instance. |
| inline int SeqOneByteStringSize(InstanceType instance_type); |
| |
| // Maximal memory usage for a single sequential one-byte string. |
| static const int kMaxCharsSize = kMaxLength; |
| static const int kMaxSize = OBJECT_POINTER_ALIGN(kMaxCharsSize + kHeaderSize); |
| STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength); |
| |
| int AllocatedSize(); |
| |
| class BodyDescriptor; |
| |
| TQ_OBJECT_CONSTRUCTORS(SeqOneByteString) |
| }; |
| |
| // The TwoByteString class captures sequential unicode string objects. |
| // Each character in the TwoByteString is a two-byte uint16_t. |
| class SeqTwoByteString |
| : public TorqueGeneratedSeqTwoByteString<SeqTwoByteString, SeqString> { |
| public: |
| static const bool kHasOneByteEncoding = false; |
| using Char = uint16_t; |
| |
| // Dispatched behavior. |
| inline uint16_t Get(int index); |
| inline void SeqTwoByteStringSet(int index, uint16_t value); |
| |
| // Get the address of the characters in this string. |
| inline Address GetCharsAddress(); |
| |
| // Get a pointer to the characters of the string. May only be called when a |
| // SharedStringAccessGuard is not needed (i.e. on the main thread or on |
| // read-only strings). |
| inline uc16* GetChars(const DisallowHeapAllocation& no_gc); |
| |
| // Get a pointer to the characters of the string. |
| inline uc16* GetChars(const DisallowHeapAllocation& no_gc, |
| const SharedStringAccessGuardIfNeeded& access_guard); |
| |
| // Clear uninitialized padding space. This ensures that the snapshot content |
| // is deterministic. |
| void clear_padding(); |
| |
| // Garbage collection support. This method is called by the |
| // garbage collector to compute the actual size of a TwoByteString |
| // instance. |
| inline int SeqTwoByteStringSize(InstanceType instance_type); |
| |
| // Maximal memory usage for a single sequential two-byte string. |
| static const int kMaxCharsSize = kMaxLength * 2; |
| static const int kMaxSize = OBJECT_POINTER_ALIGN(kMaxCharsSize + kHeaderSize); |
| STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize) / sizeof(uint16_t)) >= |
| String::kMaxLength); |
| |
| int AllocatedSize(); |
| |
| class BodyDescriptor; |
| |
| TQ_OBJECT_CONSTRUCTORS(SeqTwoByteString) |
| }; |
| |
| // The ConsString class describes string values built by using the |
| // addition operator on strings. A ConsString is a pair where the |
| // first and second components are pointers to other string values. |
| // One or both components of a ConsString can be pointers to other |
| // ConsStrings, creating a binary tree of ConsStrings where the leaves |
| // are non-ConsString string values. The string value represented by |
| // a ConsString can be obtained by concatenating the leaf string |
| // values in a left-to-right depth-first traversal of the tree. |
| class ConsString : public TorqueGeneratedConsString<ConsString, String> { |
| public: |
| // Doesn't check that the result is a string, even in debug mode. This is |
| // useful during GC where the mark bits confuse the checks. |
| inline Object unchecked_first(); |
| |
| // Doesn't check that the result is a string, even in debug mode. This is |
| // useful during GC where the mark bits confuse the checks. |
| inline Object unchecked_second(); |
| |
| // Dispatched behavior. |
| V8_EXPORT_PRIVATE uint16_t Get(int index); |
| |
| // Minimum length for a cons string. |
| static const int kMinLength = 13; |
| |
| class BodyDescriptor; |
| |
| DECL_VERIFIER(ConsString) |
| |
| TQ_OBJECT_CONSTRUCTORS(ConsString) |
| }; |
| |
| // The ThinString class describes string objects that are just references |
| // to another string object. They are used for in-place internalization when |
| // the original string cannot actually be internalized in-place: in these |
| // cases, the original string is converted to a ThinString pointing at its |
| // internalized version (which is allocated as a new object). |
| // In terms of memory layout and most algorithms operating on strings, |
| // ThinStrings can be thought of as "one-part cons strings". |
| class ThinString : public TorqueGeneratedThinString<ThinString, String> { |
| public: |
| DECL_GETTER(unchecked_actual, HeapObject) |
| |
| V8_EXPORT_PRIVATE uint16_t Get(int index); |
| |
| DECL_VERIFIER(ThinString) |
| |
| class BodyDescriptor; |
| |
| TQ_OBJECT_CONSTRUCTORS(ThinString) |
| }; |
| |
| // The Sliced String class describes strings that are substrings of another |
| // sequential string. The motivation is to save time and memory when creating |
| // a substring. A Sliced String is described as a pointer to the parent, |
| // the offset from the start of the parent string and the length. Using |
| // a Sliced String therefore requires unpacking of the parent string and |
| // adding the offset to the start address. A substring of a Sliced String |
| // are not nested since the double indirection is simplified when creating |
| // such a substring. |
| // Currently missing features are: |
| // - handling externalized parent strings |
| // - external strings as parent |
| // - truncating sliced string to enable otherwise unneeded parent to be GC'ed. |
| class SlicedString : public TorqueGeneratedSlicedString<SlicedString, String> { |
| public: |
| inline void set_parent(String parent, |
| WriteBarrierMode mode = UPDATE_WRITE_BARRIER); |
| // Dispatched behavior. |
| V8_EXPORT_PRIVATE uint16_t Get(int index); |
| |
| // Minimum length for a sliced string. |
| static const int kMinLength = 13; |
| |
| class BodyDescriptor; |
| |
| DECL_VERIFIER(SlicedString) |
| |
| TQ_OBJECT_CONSTRUCTORS(SlicedString) |
| }; |
| |
| // The ExternalString class describes string values that are backed by |
| // a string resource that lies outside the V8 heap. ExternalStrings |
| // consist of the length field common to all strings, a pointer to the |
| // external resource. It is important to ensure (externally) that the |
| // resource is not deallocated while the ExternalString is live in the |
| // V8 heap. |
| // |
| // The API expects that all ExternalStrings are created through the |
| // API. Therefore, ExternalStrings should not be used internally. |
| class ExternalString : public String { |
| public: |
| DECL_CAST(ExternalString) |
| DECL_VERIFIER(ExternalString) |
| |
| DEFINE_FIELD_OFFSET_CONSTANTS(String::kHeaderSize, |
| TORQUE_GENERATED_EXTERNAL_STRING_FIELDS) |
| |
| // Size of uncached external strings. |
| static const int kUncachedSize = |
| kResourceOffset + FIELD_SIZE(kResourceOffset); |
| |
| inline void AllocateExternalPointerEntries(Isolate* isolate); |
| |
| // Return whether the external string data pointer is not cached. |
| inline bool is_uncached() const; |
| // Size in bytes of the external payload. |
| int ExternalPayloadSize() const; |
| |
| // Used in the serializer/deserializer. |
| DECL_GETTER(resource_as_address, Address) |
| inline void set_address_as_resource(Isolate* isolate, Address address); |
| inline uint32_t GetResourceRefForDeserialization(); |
| inline void SetResourceRefForSerialization(uint32_t ref); |
| |
| // Disposes string's resource object if it has not already been disposed. |
| inline void DisposeResource(Isolate* isolate); |
| |
| STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset); |
| static const int kSizeOfAllExternalStrings = kHeaderSize; |
| |
| OBJECT_CONSTRUCTORS(ExternalString, String); |
| }; |
| |
| // The ExternalOneByteString class is an external string backed by an |
| // one-byte string. |
| class ExternalOneByteString : public ExternalString { |
| public: |
| static const bool kHasOneByteEncoding = true; |
| |
| using Resource = v8::String::ExternalOneByteStringResource; |
| |
| // The underlying resource. |
| DECL_GETTER(resource, const Resource*) |
| |
| // It is assumed that the previous resource is null. If it is not null, then |
| // it is the responsability of the caller the handle the previous resource. |
| inline void SetResource(Isolate* isolate, const Resource* buffer); |
| |
| // Used only during serialization. |
| inline void set_resource(Isolate* isolate, const Resource* buffer); |
| |
| // Update the pointer cache to the external character array. |
| // The cached pointer is always valid, as the external character array does = |
| // not move during lifetime. Deserialization is the only exception, after |
| // which the pointer cache has to be refreshed. |
| inline void update_data_cache(Isolate* isolate); |
| |
| inline const uint8_t* GetChars(); |
| |
| // Dispatched behavior. |
| inline uint8_t Get(int index); |
| |
| DECL_CAST(ExternalOneByteString) |
| |
| class BodyDescriptor; |
| |
| DEFINE_FIELD_OFFSET_CONSTANTS( |
| ExternalString::kHeaderSize, |
| TORQUE_GENERATED_EXTERNAL_ONE_BYTE_STRING_FIELDS) |
| |
| STATIC_ASSERT(kSize == kSizeOfAllExternalStrings); |
| |
| OBJECT_CONSTRUCTORS(ExternalOneByteString, ExternalString); |
| }; |
| |
| // The ExternalTwoByteString class is an external string backed by a UTF-16 |
| // encoded string. |
| class ExternalTwoByteString : public ExternalString { |
| public: |
| static const bool kHasOneByteEncoding = false; |
| |
| using Resource = v8::String::ExternalStringResource; |
| |
| // The underlying string resource. |
| DECL_GETTER(resource, const Resource*) |
| |
| // It is assumed that the previous resource is null. If it is not null, then |
| // it is the responsability of the caller the handle the previous resource. |
| inline void SetResource(Isolate* isolate, const Resource* buffer); |
| |
| // Used only during serialization. |
| inline void set_resource(Isolate* isolate, const Resource* buffer); |
| |
| // Update the pointer cache to the external character array. |
| // The cached pointer is always valid, as the external character array does = |
| // not move during lifetime. Deserialization is the only exception, after |
| // which the pointer cache has to be refreshed. |
| inline void update_data_cache(Isolate* isolate); |
| |
| inline const uint16_t* GetChars(); |
| |
| // Dispatched behavior. |
| inline uint16_t Get(int index); |
| |
| // For regexp code. |
| inline const uint16_t* ExternalTwoByteStringGetData(unsigned start); |
| |
| DECL_CAST(ExternalTwoByteString) |
| |
| class BodyDescriptor; |
| |
| DEFINE_FIELD_OFFSET_CONSTANTS( |
| ExternalString::kHeaderSize, |
| TORQUE_GENERATED_EXTERNAL_TWO_BYTE_STRING_FIELDS) |
| |
| STATIC_ASSERT(kSize == kSizeOfAllExternalStrings); |
| |
| OBJECT_CONSTRUCTORS(ExternalTwoByteString, ExternalString); |
| }; |
| |
| // A flat string reader provides random access to the contents of a |
| // string independent of the character width of the string. The handle |
| // must be valid as long as the reader is being used. |
| // Not safe to use from concurrent background threads. |
| class V8_EXPORT_PRIVATE FlatStringReader : public Relocatable { |
| public: |
| FlatStringReader(Isolate* isolate, Handle<String> str); |
| void PostGarbageCollection() override; |
| inline uc32 Get(int index); |
| template <typename Char> |
| inline Char Get(int index); |
| int length() { return length_; } |
| |
| private: |
| Handle<String> str_; |
| bool is_one_byte_; |
| int length_; |
| const void* start_; |
| }; |
| |
| // This maintains an off-stack representation of the stack frames required |
| // to traverse a ConsString, allowing an entirely iterative and restartable |
| // traversal of the entire string |
| class ConsStringIterator { |
| public: |
| inline ConsStringIterator() = default; |
| inline explicit ConsStringIterator(ConsString cons_string, int offset = 0) { |
| Reset(cons_string, offset); |
| } |
| ConsStringIterator(const ConsStringIterator&) = delete; |
| ConsStringIterator& operator=(const ConsStringIterator&) = delete; |
| inline void Reset(ConsString cons_string, int offset = 0) { |
| depth_ = 0; |
| // Next will always return nullptr. |
| if (cons_string.is_null()) return; |
| Initialize(cons_string, offset); |
| } |
| // Returns nullptr when complete. |
| inline String Next(int* offset_out) { |
| *offset_out = 0; |
| if (depth_ == 0) return String(); |
| return Continue(offset_out); |
| } |
| |
| private: |
| static const int kStackSize = 32; |
| // Use a mask instead of doing modulo operations for stack wrapping. |
| static const int kDepthMask = kStackSize - 1; |
| static_assert(base::bits::IsPowerOfTwo(kStackSize), |
| "kStackSize must be power of two"); |
| static inline int OffsetForDepth(int depth); |
| |
| inline void PushLeft(ConsString string); |
| inline void PushRight(ConsString string); |
| inline void AdjustMaximumDepth(); |
| inline void Pop(); |
| inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; } |
| V8_EXPORT_PRIVATE void Initialize(ConsString cons_string, int offset); |
| V8_EXPORT_PRIVATE String Continue(int* offset_out); |
| String NextLeaf(bool* blew_stack); |
| String Search(int* offset_out); |
| |
| // Stack must always contain only frames for which right traversal |
| // has not yet been performed. |
| ConsString frames_[kStackSize]; |
| ConsString root_; |
| int depth_; |
| int maximum_depth_; |
| int consumed_; |
| }; |
| |
| class StringCharacterStream { |
| public: |
| inline explicit StringCharacterStream(String string, int offset = 0); |
| StringCharacterStream(const StringCharacterStream&) = delete; |
| StringCharacterStream& operator=(const StringCharacterStream&) = delete; |
| inline uint16_t GetNext(); |
| inline bool HasMore(); |
| inline void Reset(String string, int offset = 0); |
| inline void VisitOneByteString(const uint8_t* chars, int length); |
| inline void VisitTwoByteString(const uint16_t* chars, int length); |
| |
| private: |
| ConsStringIterator iter_; |
| bool is_one_byte_; |
| union { |
| const uint8_t* buffer8_; |
| const uint16_t* buffer16_; |
| }; |
| const uint8_t* end_; |
| }; |
| |
| template <typename Char> |
| struct CharTraits; |
| |
| template <> |
| struct CharTraits<uint8_t> { |
| using String = SeqOneByteString; |
| using ExternalString = ExternalOneByteString; |
| }; |
| |
| template <> |
| struct CharTraits<uint16_t> { |
| using String = SeqTwoByteString; |
| using ExternalString = ExternalTwoByteString; |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #include "src/objects/object-macros-undef.h" |
| |
| #endif // V8_OBJECTS_STRING_H_ |