| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_ARM |
| |
| #include "src/regexp/arm/regexp-macro-assembler-arm.h" |
| |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/heap/factory.h" |
| #include "src/logging/log.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| #include "src/regexp/regexp-stack.h" |
| #include "src/snapshot/embedded/embedded-data.h" |
| #include "src/strings/unicode.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| /* |
| * This assembler uses the following register assignment convention |
| * - r4 : Temporarily stores the index of capture start after a matching pass |
| * for a global regexp. |
| * - r5 : Pointer to current Code object including heap object tag. |
| * - r6 : Current position in input, as negative offset from end of string. |
| * Please notice that this is the byte offset, not the character offset! |
| * - r7 : Currently loaded character. Must be loaded using |
| * LoadCurrentCharacter before using any of the dispatch methods. |
| * - r8 : Points to tip of backtrack stack |
| * - r9 : Unused, might be used by C code and expected unchanged. |
| * - r10 : End of input (points to byte after last character in input). |
| * - r11 : Frame pointer. Used to access arguments, local variables and |
| * RegExp registers. |
| * - r12 : IP register, used by assembler. Very volatile. |
| * - r13/sp : Points to tip of C stack. |
| * |
| * The remaining registers are free for computations. |
| * Each call to a public method should retain this convention. |
| * |
| * The stack will have the following structure: |
| * - fp[56] Address regexp (address of the JSRegExp object; unused in |
| * native code, passed to match signature of |
| * the interpreter) |
| * - fp[52] Isolate* isolate (address of the current isolate) |
| * - fp[48] direct_call (if 1, direct call from JavaScript code, |
| * if 0, call through the runtime system). |
| * - fp[44] stack_area_base (high end of the memory area to use as |
| * backtracking stack). |
| * - fp[40] capture array size (may fit multiple sets of matches) |
| * - fp[36] int* capture_array (int[num_saved_registers_], for output). |
| * --- sp when called --- |
| * - fp[32] return address (lr). |
| * - fp[28] old frame pointer (r11). |
| * - fp[0..24] backup of registers r4..r10. |
| * --- frame pointer ---- |
| * - fp[-4] end of input (address of end of string). |
| * - fp[-8] start of input (address of first character in string). |
| * - fp[-12] start index (character index of start). |
| * - fp[-16] void* input_string (location of a handle containing the string). |
| * - fp[-20] success counter (only for global regexps to count matches). |
| * - fp[-24] Offset of location before start of input (effectively character |
| * string start - 1). Used to initialize capture registers to a |
| * non-position. |
| * - fp[-28] At start (if 1, we are starting at the start of the |
| * string, otherwise 0) |
| * - fp[-32] register 0 (Only positions must be stored in the first |
| * - register 1 num_saved_registers_ registers) |
| * - ... |
| * - register num_registers-1 |
| * --- sp --- |
| * |
| * The first num_saved_registers_ registers are initialized to point to |
| * "character -1" in the string (i.e., char_size() bytes before the first |
| * character of the string). The remaining registers start out as garbage. |
| * |
| * The data up to the return address must be placed there by the calling |
| * code and the remaining arguments are passed in registers, e.g. by calling the |
| * code entry as cast to a function with the signature: |
| * int (*match)(String input_string, |
| * int start_index, |
| * Address start, |
| * Address end, |
| * int* capture_output_array, |
| * int num_capture_registers, |
| * byte* stack_area_base, |
| * bool direct_call = false, |
| * Isolate* isolate, |
| * Address regexp); |
| * The call is performed by NativeRegExpMacroAssembler::Execute() |
| * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper. |
| */ |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| const int RegExpMacroAssemblerARM::kRegExpCodeSize; |
| |
| RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone, |
| Mode mode, |
| int registers_to_save) |
| : NativeRegExpMacroAssembler(isolate, zone), |
| masm_(new MacroAssembler(isolate, CodeObjectRequired::kYes, |
| NewAssemblerBuffer(kRegExpCodeSize))), |
| mode_(mode), |
| num_registers_(registers_to_save), |
| num_saved_registers_(registers_to_save), |
| entry_label_(), |
| start_label_(), |
| success_label_(), |
| backtrack_label_(), |
| exit_label_() { |
| masm_->set_root_array_available(false); |
| |
| DCHECK_EQ(0, registers_to_save % 2); |
| __ jmp(&entry_label_); // We'll write the entry code later. |
| __ bind(&start_label_); // And then continue from here. |
| } |
| |
| RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() { |
| delete masm_; |
| // Unuse labels in case we throw away the assembler without calling GetCode. |
| entry_label_.Unuse(); |
| start_label_.Unuse(); |
| success_label_.Unuse(); |
| backtrack_label_.Unuse(); |
| exit_label_.Unuse(); |
| check_preempt_label_.Unuse(); |
| stack_overflow_label_.Unuse(); |
| fallback_label_.Unuse(); |
| } |
| |
| |
| int RegExpMacroAssemblerARM::stack_limit_slack() { |
| return RegExpStack::kStackLimitSlack; |
| } |
| |
| |
| void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) { |
| if (by != 0) { |
| __ add(current_input_offset(), |
| current_input_offset(), Operand(by * char_size())); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) { |
| DCHECK_LE(0, reg); |
| DCHECK_GT(num_registers_, reg); |
| if (by != 0) { |
| __ ldr(r0, register_location(reg)); |
| __ add(r0, r0, Operand(by)); |
| __ str(r0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Backtrack() { |
| CheckPreemption(); |
| if (has_backtrack_limit()) { |
| Label next; |
| __ ldr(r0, MemOperand(frame_pointer(), kBacktrackCount)); |
| __ add(r0, r0, Operand(1)); |
| __ str(r0, MemOperand(frame_pointer(), kBacktrackCount)); |
| __ cmp(r0, Operand(backtrack_limit())); |
| __ b(ne, &next); |
| |
| // Backtrack limit exceeded. |
| if (can_fallback()) { |
| __ jmp(&fallback_label_); |
| } else { |
| // Can't fallback, so we treat it as a failed match. |
| Fail(); |
| } |
| |
| __ bind(&next); |
| } |
| // Pop Code offset from backtrack stack, add Code and jump to location. |
| Pop(r0); |
| __ add(pc, r0, Operand(code_pointer())); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Bind(Label* label) { |
| __ bind(label); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) { |
| __ cmp(current_character(), Operand(c)); |
| BranchOrBacktrack(eq, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) { |
| __ cmp(current_character(), Operand(limit)); |
| BranchOrBacktrack(gt, on_greater); |
| } |
| |
| void RegExpMacroAssemblerARM::CheckAtStart(int cp_offset, Label* on_at_start) { |
| __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| __ add(r0, current_input_offset(), |
| Operand(-char_size() + cp_offset * char_size())); |
| __ cmp(r0, r1); |
| BranchOrBacktrack(eq, on_at_start); |
| } |
| |
| void RegExpMacroAssemblerARM::CheckNotAtStart(int cp_offset, |
| Label* on_not_at_start) { |
| __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| __ add(r0, current_input_offset(), |
| Operand(-char_size() + cp_offset * char_size())); |
| __ cmp(r0, r1); |
| BranchOrBacktrack(ne, on_not_at_start); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) { |
| __ cmp(current_character(), Operand(limit)); |
| BranchOrBacktrack(lt, on_less); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) { |
| __ ldr(r0, MemOperand(backtrack_stackpointer(), 0)); |
| __ cmp(current_input_offset(), r0); |
| __ add(backtrack_stackpointer(), |
| backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq); |
| BranchOrBacktrack(eq, on_equal); |
| } |
| |
| void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase( |
| int start_reg, bool read_backward, bool unicode, Label* on_no_match) { |
| Label fallthrough; |
| __ ldr(r0, register_location(start_reg)); // Index of start of capture |
| __ ldr(r1, register_location(start_reg + 1)); // Index of end of capture |
| __ sub(r1, r1, r0, SetCC); // Length of capture. |
| |
| // At this point, the capture registers are either both set or both cleared. |
| // If the capture length is zero, then the capture is either empty or cleared. |
| // Fall through in both cases. |
| __ b(eq, &fallthrough); |
| |
| // Check that there are enough characters left in the input. |
| if (read_backward) { |
| __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| __ add(r3, r3, r1); |
| __ cmp(current_input_offset(), r3); |
| BranchOrBacktrack(le, on_no_match); |
| } else { |
| __ cmn(r1, Operand(current_input_offset())); |
| BranchOrBacktrack(gt, on_no_match); |
| } |
| |
| if (mode_ == LATIN1) { |
| Label success; |
| Label fail; |
| Label loop_check; |
| |
| // r0 - offset of start of capture |
| // r1 - length of capture |
| __ add(r0, r0, end_of_input_address()); |
| __ add(r2, end_of_input_address(), current_input_offset()); |
| if (read_backward) { |
| __ sub(r2, r2, r1); // Offset by length when matching backwards. |
| } |
| __ add(r1, r0, r1); |
| |
| // r0 - Address of start of capture. |
| // r1 - Address of end of capture |
| // r2 - Address of current input position. |
| |
| Label loop; |
| __ bind(&loop); |
| __ ldrb(r3, MemOperand(r0, char_size(), PostIndex)); |
| __ ldrb(r4, MemOperand(r2, char_size(), PostIndex)); |
| __ cmp(r4, r3); |
| __ b(eq, &loop_check); |
| |
| // Mismatch, try case-insensitive match (converting letters to lower-case). |
| __ orr(r3, r3, Operand(0x20)); // Convert capture character to lower-case. |
| __ orr(r4, r4, Operand(0x20)); // Also convert input character. |
| __ cmp(r4, r3); |
| __ b(ne, &fail); |
| __ sub(r3, r3, Operand('a')); |
| __ cmp(r3, Operand('z' - 'a')); // Is r3 a lowercase letter? |
| __ b(ls, &loop_check); // In range 'a'-'z'. |
| // Latin-1: Check for values in range [224,254] but not 247. |
| __ sub(r3, r3, Operand(224 - 'a')); |
| __ cmp(r3, Operand(254 - 224)); |
| __ b(hi, &fail); // Weren't Latin-1 letters. |
| __ cmp(r3, Operand(247 - 224)); // Check for 247. |
| __ b(eq, &fail); |
| |
| __ bind(&loop_check); |
| __ cmp(r0, r1); |
| __ b(lt, &loop); |
| __ jmp(&success); |
| |
| __ bind(&fail); |
| BranchOrBacktrack(al, on_no_match); |
| |
| __ bind(&success); |
| // Compute new value of character position after the matched part. |
| __ sub(current_input_offset(), r2, end_of_input_address()); |
| if (read_backward) { |
| __ ldr(r0, register_location(start_reg)); // Index of start of capture |
| __ ldr(r1, register_location(start_reg + 1)); // Index of end of capture |
| __ add(current_input_offset(), current_input_offset(), r0); |
| __ sub(current_input_offset(), current_input_offset(), r1); |
| } |
| } else { |
| DCHECK(mode_ == UC16); |
| int argument_count = 4; |
| __ PrepareCallCFunction(argument_count); |
| |
| // r0 - offset of start of capture |
| // r1 - length of capture |
| |
| // Put arguments into arguments registers. |
| // Parameters are |
| // r0: Address byte_offset1 - Address captured substring's start. |
| // r1: Address byte_offset2 - Address of current character position. |
| // r2: size_t byte_length - length of capture in bytes(!) |
| // r3: Isolate* isolate. |
| |
| // Address of start of capture. |
| __ add(r0, r0, Operand(end_of_input_address())); |
| // Length of capture. |
| __ mov(r2, Operand(r1)); |
| // Save length in callee-save register for use on return. |
| __ mov(r4, Operand(r1)); |
| // Address of current input position. |
| __ add(r1, current_input_offset(), end_of_input_address()); |
| if (read_backward) { |
| __ sub(r1, r1, r4); |
| } |
| // Isolate. |
| __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
| |
| { |
| AllowExternalCallThatCantCauseGC scope(masm_); |
| ExternalReference function = |
| unicode ? ExternalReference::re_case_insensitive_compare_unicode( |
| isolate()) |
| : ExternalReference::re_case_insensitive_compare_non_unicode( |
| isolate()); |
| __ CallCFunction(function, argument_count); |
| } |
| |
| // Check if function returned non-zero for success or zero for failure. |
| __ cmp(r0, Operand::Zero()); |
| BranchOrBacktrack(eq, on_no_match); |
| |
| // On success, advance position by length of capture. |
| if (read_backward) { |
| __ sub(current_input_offset(), current_input_offset(), r4); |
| } else { |
| __ add(current_input_offset(), current_input_offset(), r4); |
| } |
| } |
| |
| __ bind(&fallthrough); |
| } |
| |
| void RegExpMacroAssemblerARM::CheckNotBackReference(int start_reg, |
| bool read_backward, |
| Label* on_no_match) { |
| Label fallthrough; |
| |
| // Find length of back-referenced capture. |
| __ ldr(r0, register_location(start_reg)); |
| __ ldr(r1, register_location(start_reg + 1)); |
| __ sub(r1, r1, r0, SetCC); // Length to check. |
| |
| // At this point, the capture registers are either both set or both cleared. |
| // If the capture length is zero, then the capture is either empty or cleared. |
| // Fall through in both cases. |
| __ b(eq, &fallthrough); |
| |
| // Check that there are enough characters left in the input. |
| if (read_backward) { |
| __ ldr(r3, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| __ add(r3, r3, r1); |
| __ cmp(current_input_offset(), r3); |
| BranchOrBacktrack(le, on_no_match); |
| } else { |
| __ cmn(r1, Operand(current_input_offset())); |
| BranchOrBacktrack(gt, on_no_match); |
| } |
| |
| // r0 - offset of start of capture |
| // r1 - length of capture |
| __ add(r0, r0, end_of_input_address()); |
| __ add(r2, end_of_input_address(), current_input_offset()); |
| if (read_backward) { |
| __ sub(r2, r2, r1); // Offset by length when matching backwards. |
| } |
| __ add(r1, r0, r1); |
| |
| Label loop; |
| __ bind(&loop); |
| if (mode_ == LATIN1) { |
| __ ldrb(r3, MemOperand(r0, char_size(), PostIndex)); |
| __ ldrb(r4, MemOperand(r2, char_size(), PostIndex)); |
| } else { |
| DCHECK(mode_ == UC16); |
| __ ldrh(r3, MemOperand(r0, char_size(), PostIndex)); |
| __ ldrh(r4, MemOperand(r2, char_size(), PostIndex)); |
| } |
| __ cmp(r3, r4); |
| BranchOrBacktrack(ne, on_no_match); |
| __ cmp(r0, r1); |
| __ b(lt, &loop); |
| |
| // Move current character position to position after match. |
| __ sub(current_input_offset(), r2, end_of_input_address()); |
| if (read_backward) { |
| __ ldr(r0, register_location(start_reg)); // Index of start of capture |
| __ ldr(r1, register_location(start_reg + 1)); // Index of end of capture |
| __ add(current_input_offset(), current_input_offset(), r0); |
| __ sub(current_input_offset(), current_input_offset(), r1); |
| } |
| |
| __ bind(&fallthrough); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c, |
| Label* on_not_equal) { |
| __ cmp(current_character(), Operand(c)); |
| BranchOrBacktrack(ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c, |
| uint32_t mask, |
| Label* on_equal) { |
| if (c == 0) { |
| __ tst(current_character(), Operand(mask)); |
| } else { |
| __ and_(r0, current_character(), Operand(mask)); |
| __ cmp(r0, Operand(c)); |
| } |
| BranchOrBacktrack(eq, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c, |
| unsigned mask, |
| Label* on_not_equal) { |
| if (c == 0) { |
| __ tst(current_character(), Operand(mask)); |
| } else { |
| __ and_(r0, current_character(), Operand(mask)); |
| __ cmp(r0, Operand(c)); |
| } |
| BranchOrBacktrack(ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd( |
| uc16 c, |
| uc16 minus, |
| uc16 mask, |
| Label* on_not_equal) { |
| DCHECK_GT(String::kMaxUtf16CodeUnit, minus); |
| __ sub(r0, current_character(), Operand(minus)); |
| __ and_(r0, r0, Operand(mask)); |
| __ cmp(r0, Operand(c)); |
| BranchOrBacktrack(ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_in_range) { |
| __ sub(r0, current_character(), Operand(from)); |
| __ cmp(r0, Operand(to - from)); |
| BranchOrBacktrack(ls, on_in_range); // Unsigned lower-or-same condition. |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckCharacterNotInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_not_in_range) { |
| __ sub(r0, current_character(), Operand(from)); |
| __ cmp(r0, Operand(to - from)); |
| BranchOrBacktrack(hi, on_not_in_range); // Unsigned higher condition. |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckBitInTable( |
| Handle<ByteArray> table, |
| Label* on_bit_set) { |
| __ mov(r0, Operand(table)); |
| if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { |
| __ and_(r1, current_character(), Operand(kTableSize - 1)); |
| __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag)); |
| } else { |
| __ add(r1, |
| current_character(), |
| Operand(ByteArray::kHeaderSize - kHeapObjectTag)); |
| } |
| __ ldrb(r0, MemOperand(r0, r1)); |
| __ cmp(r0, Operand::Zero()); |
| BranchOrBacktrack(ne, on_bit_set); |
| } |
| |
| |
| bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type, |
| Label* on_no_match) { |
| // Range checks (c in min..max) are generally implemented by an unsigned |
| // (c - min) <= (max - min) check |
| switch (type) { |
| case 's': |
| // Match space-characters |
| if (mode_ == LATIN1) { |
| // One byte space characters are '\t'..'\r', ' ' and \u00a0. |
| Label success; |
| __ cmp(current_character(), Operand(' ')); |
| __ b(eq, &success); |
| // Check range 0x09..0x0D |
| __ sub(r0, current_character(), Operand('\t')); |
| __ cmp(r0, Operand('\r' - '\t')); |
| __ b(ls, &success); |
| // \u00a0 (NBSP). |
| __ cmp(r0, Operand(0x00A0 - '\t')); |
| BranchOrBacktrack(ne, on_no_match); |
| __ bind(&success); |
| return true; |
| } |
| return false; |
| case 'S': |
| // The emitted code for generic character classes is good enough. |
| return false; |
| case 'd': |
| // Match ASCII digits ('0'..'9') |
| __ sub(r0, current_character(), Operand('0')); |
| __ cmp(r0, Operand('9' - '0')); |
| BranchOrBacktrack(hi, on_no_match); |
| return true; |
| case 'D': |
| // Match non ASCII-digits |
| __ sub(r0, current_character(), Operand('0')); |
| __ cmp(r0, Operand('9' - '0')); |
| BranchOrBacktrack(ls, on_no_match); |
| return true; |
| case '.': { |
| // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) |
| __ eor(r0, current_character(), Operand(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C |
| __ sub(r0, r0, Operand(0x0B)); |
| __ cmp(r0, Operand(0x0C - 0x0B)); |
| BranchOrBacktrack(ls, on_no_match); |
| if (mode_ == UC16) { |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0B). I.e., check for |
| // 0x201D (0x2028 - 0x0B) or 0x201E. |
| __ sub(r0, r0, Operand(0x2028 - 0x0B)); |
| __ cmp(r0, Operand(1)); |
| BranchOrBacktrack(ls, on_no_match); |
| } |
| return true; |
| } |
| case 'n': { |
| // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029) |
| __ eor(r0, current_character(), Operand(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C |
| __ sub(r0, r0, Operand(0x0B)); |
| __ cmp(r0, Operand(0x0C - 0x0B)); |
| if (mode_ == LATIN1) { |
| BranchOrBacktrack(hi, on_no_match); |
| } else { |
| Label done; |
| __ b(ls, &done); |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0B). I.e., check for |
| // 0x201D (0x2028 - 0x0B) or 0x201E. |
| __ sub(r0, r0, Operand(0x2028 - 0x0B)); |
| __ cmp(r0, Operand(1)); |
| BranchOrBacktrack(hi, on_no_match); |
| __ bind(&done); |
| } |
| return true; |
| } |
| case 'w': { |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| __ cmp(current_character(), Operand('z')); |
| BranchOrBacktrack(hi, on_no_match); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(isolate()); |
| __ mov(r0, Operand(map)); |
| __ ldrb(r0, MemOperand(r0, current_character())); |
| __ cmp(r0, Operand::Zero()); |
| BranchOrBacktrack(eq, on_no_match); |
| return true; |
| } |
| case 'W': { |
| Label done; |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| __ cmp(current_character(), Operand('z')); |
| __ b(hi, &done); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(isolate()); |
| __ mov(r0, Operand(map)); |
| __ ldrb(r0, MemOperand(r0, current_character())); |
| __ cmp(r0, Operand::Zero()); |
| BranchOrBacktrack(ne, on_no_match); |
| if (mode_ != LATIN1) { |
| __ bind(&done); |
| } |
| return true; |
| } |
| case '*': |
| // Match any character. |
| return true; |
| // No custom implementation (yet): s(UC16), S(UC16). |
| default: |
| return false; |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Fail() { |
| __ mov(r0, Operand(FAILURE)); |
| __ jmp(&exit_label_); |
| } |
| |
| |
| Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) { |
| Label return_r0; |
| // Finalize code - write the entry point code now we know how many |
| // registers we need. |
| |
| // Entry code: |
| __ bind(&entry_label_); |
| |
| // Tell the system that we have a stack frame. Because the type is MANUAL, no |
| // is generated. |
| FrameScope scope(masm_, StackFrame::MANUAL); |
| |
| // Actually emit code to start a new stack frame. |
| // Push arguments |
| // Save callee-save registers. |
| // Start new stack frame. |
| // Store link register in existing stack-cell. |
| // Order here should correspond to order of offset constants in header file. |
| RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() | |
| r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit(); |
| RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit(); |
| __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit()); |
| // Set frame pointer in space for it if this is not a direct call |
| // from generated code. |
| __ add(frame_pointer(), sp, Operand(4 * kPointerSize)); |
| |
| STATIC_ASSERT(kSuccessfulCaptures == kInputString - kSystemPointerSize); |
| __ mov(r0, Operand::Zero()); |
| __ push(r0); // Make room for success counter and initialize it to 0. |
| STATIC_ASSERT(kStringStartMinusOne == |
| kSuccessfulCaptures - kSystemPointerSize); |
| __ push(r0); // Make room for "string start - 1" constant. |
| STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize); |
| __ push(r0); // The backtrack counter. |
| |
| // Check if we have space on the stack for registers. |
| Label stack_limit_hit; |
| Label stack_ok; |
| |
| ExternalReference stack_limit = |
| ExternalReference::address_of_jslimit(isolate()); |
| __ mov(r0, Operand(stack_limit)); |
| __ ldr(r0, MemOperand(r0)); |
| __ sub(r0, sp, r0, SetCC); |
| // Handle it if the stack pointer is already below the stack limit. |
| __ b(ls, &stack_limit_hit); |
| // Check if there is room for the variable number of registers above |
| // the stack limit. |
| __ cmp(r0, Operand(num_registers_ * kPointerSize)); |
| __ b(hs, &stack_ok); |
| // Exit with OutOfMemory exception. There is not enough space on the stack |
| // for our working registers. |
| __ mov(r0, Operand(EXCEPTION)); |
| __ jmp(&return_r0); |
| |
| __ bind(&stack_limit_hit); |
| CallCheckStackGuardState(); |
| __ cmp(r0, Operand::Zero()); |
| // If returned value is non-zero, we exit with the returned value as result. |
| __ b(ne, &return_r0); |
| |
| __ bind(&stack_ok); |
| |
| // Allocate space on stack for registers. |
| __ AllocateStackSpace(num_registers_ * kPointerSize); |
| // Load string end. |
| __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| // Load input start. |
| __ ldr(r0, MemOperand(frame_pointer(), kInputStart)); |
| // Find negative length (offset of start relative to end). |
| __ sub(current_input_offset(), r0, end_of_input_address()); |
| // Set r0 to address of char before start of the input string |
| // (effectively string position -1). |
| __ ldr(r1, MemOperand(frame_pointer(), kStartIndex)); |
| __ sub(r0, current_input_offset(), Operand(char_size())); |
| __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0)); |
| // Store this value in a local variable, for use when clearing |
| // position registers. |
| __ str(r0, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| |
| // Initialize code pointer register |
| __ mov(code_pointer(), Operand(masm_->CodeObject())); |
| |
| Label load_char_start_regexp, start_regexp; |
| // Load newline if index is at start, previous character otherwise. |
| __ cmp(r1, Operand::Zero()); |
| __ b(ne, &load_char_start_regexp); |
| __ mov(current_character(), Operand('\n'), LeaveCC, eq); |
| __ jmp(&start_regexp); |
| |
| // Global regexp restarts matching here. |
| __ bind(&load_char_start_regexp); |
| // Load previous char as initial value of current character register. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ bind(&start_regexp); |
| |
| // Initialize on-stack registers. |
| if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. |
| // Fill saved registers with initial value = start offset - 1 |
| if (num_saved_registers_ > 8) { |
| // Address of register 0. |
| __ add(r1, frame_pointer(), Operand(kRegisterZero)); |
| __ mov(r2, Operand(num_saved_registers_)); |
| Label init_loop; |
| __ bind(&init_loop); |
| __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex)); |
| __ sub(r2, r2, Operand(1), SetCC); |
| __ b(ne, &init_loop); |
| } else { |
| for (int i = 0; i < num_saved_registers_; i++) { |
| __ str(r0, register_location(i)); |
| } |
| } |
| } |
| |
| // Initialize backtrack stack pointer. |
| __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); |
| |
| __ jmp(&start_label_); |
| |
| // Exit code: |
| if (success_label_.is_linked()) { |
| // Save captures when successful. |
| __ bind(&success_label_); |
| if (num_saved_registers_ > 0) { |
| // copy captures to output |
| __ ldr(r1, MemOperand(frame_pointer(), kInputStart)); |
| __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput)); |
| __ ldr(r2, MemOperand(frame_pointer(), kStartIndex)); |
| __ sub(r1, end_of_input_address(), r1); |
| // r1 is length of input in bytes. |
| if (mode_ == UC16) { |
| __ mov(r1, Operand(r1, LSR, 1)); |
| } |
| // r1 is length of input in characters. |
| __ add(r1, r1, Operand(r2)); |
| // r1 is length of string in characters. |
| |
| DCHECK_EQ(0, num_saved_registers_ % 2); |
| // Always an even number of capture registers. This allows us to |
| // unroll the loop once to add an operation between a load of a register |
| // and the following use of that register. |
| for (int i = 0; i < num_saved_registers_; i += 2) { |
| __ ldr(r2, register_location(i)); |
| __ ldr(r3, register_location(i + 1)); |
| if (i == 0 && global_with_zero_length_check()) { |
| // Keep capture start in r4 for the zero-length check later. |
| __ mov(r4, r2); |
| } |
| if (mode_ == UC16) { |
| __ add(r2, r1, Operand(r2, ASR, 1)); |
| __ add(r3, r1, Operand(r3, ASR, 1)); |
| } else { |
| __ add(r2, r1, Operand(r2)); |
| __ add(r3, r1, Operand(r3)); |
| } |
| __ str(r2, MemOperand(r0, kPointerSize, PostIndex)); |
| __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); |
| } |
| } |
| |
| if (global()) { |
| // Restart matching if the regular expression is flagged as global. |
| __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures)); |
| __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters)); |
| __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput)); |
| // Increment success counter. |
| __ add(r0, r0, Operand(1)); |
| __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures)); |
| // Capture results have been stored, so the number of remaining global |
| // output registers is reduced by the number of stored captures. |
| __ sub(r1, r1, Operand(num_saved_registers_)); |
| // Check whether we have enough room for another set of capture results. |
| __ cmp(r1, Operand(num_saved_registers_)); |
| __ b(lt, &return_r0); |
| |
| __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters)); |
| // Advance the location for output. |
| __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize)); |
| __ str(r2, MemOperand(frame_pointer(), kRegisterOutput)); |
| |
| // Prepare r0 to initialize registers with its value in the next run. |
| __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| |
| if (global_with_zero_length_check()) { |
| // Special case for zero-length matches. |
| // r4: capture start index |
| __ cmp(current_input_offset(), r4); |
| // Not a zero-length match, restart. |
| __ b(ne, &load_char_start_regexp); |
| // Offset from the end is zero if we already reached the end. |
| __ cmp(current_input_offset(), Operand::Zero()); |
| __ b(eq, &exit_label_); |
| // Advance current position after a zero-length match. |
| Label advance; |
| __ bind(&advance); |
| __ add(current_input_offset(), |
| current_input_offset(), |
| Operand((mode_ == UC16) ? 2 : 1)); |
| if (global_unicode()) CheckNotInSurrogatePair(0, &advance); |
| } |
| |
| __ b(&load_char_start_regexp); |
| } else { |
| __ mov(r0, Operand(SUCCESS)); |
| } |
| } |
| |
| // Exit and return r0 |
| __ bind(&exit_label_); |
| if (global()) { |
| __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures)); |
| } |
| |
| __ bind(&return_r0); |
| // Skip sp past regexp registers and local variables.. |
| __ mov(sp, frame_pointer()); |
| // Restore registers r4..r11 and return (restoring lr to pc). |
| __ ldm(ia_w, sp, registers_to_retain | pc.bit()); |
| |
| // Backtrack code (branch target for conditional backtracks). |
| if (backtrack_label_.is_linked()) { |
| __ bind(&backtrack_label_); |
| Backtrack(); |
| } |
| |
| Label exit_with_exception; |
| |
| // Preempt-code |
| if (check_preempt_label_.is_linked()) { |
| SafeCallTarget(&check_preempt_label_); |
| |
| CallCheckStackGuardState(); |
| __ cmp(r0, Operand::Zero()); |
| // If returning non-zero, we should end execution with the given |
| // result as return value. |
| __ b(ne, &return_r0); |
| |
| // String might have moved: Reload end of string from frame. |
| __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| SafeReturn(); |
| } |
| |
| // Backtrack stack overflow code. |
| if (stack_overflow_label_.is_linked()) { |
| SafeCallTarget(&stack_overflow_label_); |
| // Reached if the backtrack-stack limit has been hit. |
| |
| // Call GrowStack(backtrack_stackpointer(), &stack_base) |
| static const int num_arguments = 3; |
| __ PrepareCallCFunction(num_arguments); |
| __ mov(r0, backtrack_stackpointer()); |
| __ add(r1, frame_pointer(), Operand(kStackHighEnd)); |
| __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); |
| ExternalReference grow_stack = |
| ExternalReference::re_grow_stack(isolate()); |
| __ CallCFunction(grow_stack, num_arguments); |
| // If return nullptr, we have failed to grow the stack, and |
| // must exit with a stack-overflow exception. |
| __ cmp(r0, Operand::Zero()); |
| __ b(eq, &exit_with_exception); |
| // Otherwise use return value as new stack pointer. |
| __ mov(backtrack_stackpointer(), r0); |
| // Restore saved registers and continue. |
| SafeReturn(); |
| } |
| |
| if (exit_with_exception.is_linked()) { |
| // If any of the code above needed to exit with an exception. |
| __ bind(&exit_with_exception); |
| // Exit with Result EXCEPTION(-1) to signal thrown exception. |
| __ mov(r0, Operand(EXCEPTION)); |
| __ jmp(&return_r0); |
| } |
| |
| if (fallback_label_.is_linked()) { |
| __ bind(&fallback_label_); |
| __ mov(r0, Operand(FALLBACK_TO_EXPERIMENTAL)); |
| __ jmp(&return_r0); |
| } |
| |
| CodeDesc code_desc; |
| masm_->GetCode(isolate(), &code_desc); |
| Handle<Code> code = |
| Factory::CodeBuilder(isolate(), code_desc, CodeKind::REGEXP) |
| .set_self_reference(masm_->CodeObject()) |
| .Build(); |
| PROFILE(masm_->isolate(), |
| RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source)); |
| return Handle<HeapObject>::cast(code); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::GoTo(Label* to) { |
| BranchOrBacktrack(al, to); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::IfRegisterGE(int reg, |
| int comparand, |
| Label* if_ge) { |
| __ ldr(r0, register_location(reg)); |
| __ cmp(r0, Operand(comparand)); |
| BranchOrBacktrack(ge, if_ge); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::IfRegisterLT(int reg, |
| int comparand, |
| Label* if_lt) { |
| __ ldr(r0, register_location(reg)); |
| __ cmp(r0, Operand(comparand)); |
| BranchOrBacktrack(lt, if_lt); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg, |
| Label* if_eq) { |
| __ ldr(r0, register_location(reg)); |
| __ cmp(r0, Operand(current_input_offset())); |
| BranchOrBacktrack(eq, if_eq); |
| } |
| |
| |
| RegExpMacroAssembler::IrregexpImplementation |
| RegExpMacroAssemblerARM::Implementation() { |
| return kARMImplementation; |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PopCurrentPosition() { |
| Pop(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PopRegister(int register_index) { |
| Pop(r0); |
| __ str(r0, register_location(register_index)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PushBacktrack(Label* label) { |
| __ mov_label_offset(r0, label); |
| Push(r0); |
| CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PushCurrentPosition() { |
| Push(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::PushRegister(int register_index, |
| StackCheckFlag check_stack_limit) { |
| __ ldr(r0, register_location(register_index)); |
| Push(r0); |
| if (check_stack_limit) CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) { |
| __ ldr(current_input_offset(), register_location(reg)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) { |
| __ ldr(backtrack_stackpointer(), register_location(reg)); |
| __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd)); |
| __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) { |
| Label after_position; |
| __ cmp(current_input_offset(), Operand(-by * char_size())); |
| __ b(ge, &after_position); |
| __ mov(current_input_offset(), Operand(-by * char_size())); |
| // On RegExp code entry (where this operation is used), the character before |
| // the current position is expected to be already loaded. |
| // We have advanced the position, so it's safe to read backwards. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ bind(&after_position); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) { |
| DCHECK(register_index >= num_saved_registers_); // Reserved for positions! |
| __ mov(r0, Operand(to)); |
| __ str(r0, register_location(register_index)); |
| } |
| |
| |
| bool RegExpMacroAssemblerARM::Succeed() { |
| __ jmp(&success_label_); |
| return global(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg, |
| int cp_offset) { |
| if (cp_offset == 0) { |
| __ str(current_input_offset(), register_location(reg)); |
| } else { |
| __ add(r0, current_input_offset(), Operand(cp_offset * char_size())); |
| __ str(r0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) { |
| DCHECK(reg_from <= reg_to); |
| __ ldr(r0, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| for (int reg = reg_from; reg <= reg_to; reg++) { |
| __ str(r0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) { |
| __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd)); |
| __ sub(r0, backtrack_stackpointer(), r1); |
| __ str(r0, register_location(reg)); |
| } |
| |
| |
| // Private methods: |
| |
| void RegExpMacroAssemblerARM::CallCheckStackGuardState() { |
| DCHECK(!isolate()->IsGeneratingEmbeddedBuiltins()); |
| DCHECK(!masm_->options().isolate_independent_code); |
| |
| __ PrepareCallCFunction(3); |
| |
| // RegExp code frame pointer. |
| __ mov(r2, frame_pointer()); |
| // Code of self. |
| __ mov(r1, Operand(masm_->CodeObject())); |
| |
| // We need to make room for the return address on the stack. |
| int stack_alignment = base::OS::ActivationFrameAlignment(); |
| DCHECK(IsAligned(stack_alignment, kPointerSize)); |
| __ AllocateStackSpace(stack_alignment); |
| |
| // r0 will point to the return address, placed by DirectCEntry. |
| __ mov(r0, sp); |
| |
| ExternalReference stack_guard_check = |
| ExternalReference::re_check_stack_guard_state(isolate()); |
| __ mov(ip, Operand(stack_guard_check)); |
| |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(Builtins::kDirectCEntry); |
| __ mov(lr, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); |
| __ Call(lr); |
| |
| // Drop the return address from the stack. |
| __ add(sp, sp, Operand(stack_alignment)); |
| |
| DCHECK_NE(0, stack_alignment); |
| __ ldr(sp, MemOperand(sp, 0)); |
| |
| __ mov(code_pointer(), Operand(masm_->CodeObject())); |
| } |
| |
| |
| // Helper function for reading a value out of a stack frame. |
| template <typename T> |
| static T& frame_entry(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset)); |
| } |
| |
| |
| template <typename T> |
| static T* frame_entry_address(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T*>(re_frame + frame_offset); |
| } |
| |
| int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address, |
| Address raw_code, |
| Address re_frame) { |
| Code re_code = Code::cast(Object(raw_code)); |
| return NativeRegExpMacroAssembler::CheckStackGuardState( |
| frame_entry<Isolate*>(re_frame, kIsolate), |
| frame_entry<int>(re_frame, kStartIndex), |
| static_cast<RegExp::CallOrigin>(frame_entry<int>(re_frame, kDirectCall)), |
| return_address, re_code, |
| frame_entry_address<Address>(re_frame, kInputString), |
| frame_entry_address<const byte*>(re_frame, kInputStart), |
| frame_entry_address<const byte*>(re_frame, kInputEnd)); |
| } |
| |
| |
| MemOperand RegExpMacroAssemblerARM::register_location(int register_index) { |
| DCHECK(register_index < (1<<30)); |
| if (num_registers_ <= register_index) { |
| num_registers_ = register_index + 1; |
| } |
| return MemOperand(frame_pointer(), |
| kRegisterZero - register_index * kPointerSize); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckPosition(int cp_offset, |
| Label* on_outside_input) { |
| if (cp_offset >= 0) { |
| __ cmp(current_input_offset(), Operand(-cp_offset * char_size())); |
| BranchOrBacktrack(ge, on_outside_input); |
| } else { |
| __ ldr(r1, MemOperand(frame_pointer(), kStringStartMinusOne)); |
| __ add(r0, current_input_offset(), Operand(cp_offset * char_size())); |
| __ cmp(r0, r1); |
| BranchOrBacktrack(le, on_outside_input); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition, |
| Label* to) { |
| if (condition == al) { // Unconditional. |
| if (to == nullptr) { |
| Backtrack(); |
| return; |
| } |
| __ jmp(to); |
| return; |
| } |
| if (to == nullptr) { |
| __ b(condition, &backtrack_label_); |
| return; |
| } |
| __ b(condition, to); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) { |
| __ bl(to, cond); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SafeReturn() { |
| __ pop(lr); |
| __ add(pc, lr, Operand(masm_->CodeObject())); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) { |
| __ bind(name); |
| __ sub(lr, lr, Operand(masm_->CodeObject())); |
| __ push(lr); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Push(Register source) { |
| DCHECK(source != backtrack_stackpointer()); |
| __ str(source, |
| MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::Pop(Register target) { |
| DCHECK(target != backtrack_stackpointer()); |
| __ ldr(target, |
| MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckPreemption() { |
| // Check for preemption. |
| ExternalReference stack_limit = |
| ExternalReference::address_of_jslimit(isolate()); |
| __ mov(r0, Operand(stack_limit)); |
| __ ldr(r0, MemOperand(r0)); |
| __ cmp(sp, r0); |
| SafeCall(&check_preempt_label_, ls); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::CheckStackLimit() { |
| ExternalReference stack_limit = |
| ExternalReference::address_of_regexp_stack_limit_address(isolate()); |
| __ mov(r0, Operand(stack_limit)); |
| __ ldr(r0, MemOperand(r0)); |
| __ cmp(backtrack_stackpointer(), Operand(r0)); |
| SafeCall(&stack_overflow_label_, ls); |
| } |
| |
| |
| void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset, |
| int characters) { |
| Register offset = current_input_offset(); |
| if (cp_offset != 0) { |
| // r4 is not being used to store the capture start index at this point. |
| __ add(r4, current_input_offset(), Operand(cp_offset * char_size())); |
| offset = r4; |
| } |
| // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU |
| // and the operating system running on the target allow it. |
| // If unaligned load/stores are not supported then this function must only |
| // be used to load a single character at a time. |
| if (!CanReadUnaligned()) { |
| DCHECK_EQ(1, characters); |
| } |
| |
| if (mode_ == LATIN1) { |
| if (characters == 4) { |
| __ ldr(current_character(), MemOperand(end_of_input_address(), offset)); |
| } else if (characters == 2) { |
| __ ldrh(current_character(), MemOperand(end_of_input_address(), offset)); |
| } else { |
| DCHECK_EQ(1, characters); |
| __ ldrb(current_character(), MemOperand(end_of_input_address(), offset)); |
| } |
| } else { |
| DCHECK(mode_ == UC16); |
| if (characters == 2) { |
| __ ldr(current_character(), MemOperand(end_of_input_address(), offset)); |
| } else { |
| DCHECK_EQ(1, characters); |
| __ ldrh(current_character(), MemOperand(end_of_input_address(), offset)); |
| } |
| } |
| } |
| |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_ARM |