| // Copyright 2016 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <cstdint> |
| #include <cstring> |
| #include <limits> |
| #include <tuple> |
| #include <type_traits> |
| #include <vector> |
| |
| #include "src/base/bits.h" |
| #include "src/base/logging.h" |
| #include "src/base/macros.h" |
| #include "src/base/memory.h" |
| #include "src/base/overflowing-math.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/cpu-features.h" |
| #include "src/codegen/machine-type.h" |
| #include "src/common/globals.h" |
| #include "src/flags/flags.h" |
| #include "src/utils/utils.h" |
| #include "src/utils/vector.h" |
| #include "src/wasm/compilation-environment.h" |
| #include "src/wasm/value-type.h" |
| #include "src/wasm/wasm-constants.h" |
| #include "src/wasm/wasm-opcodes.h" |
| #include "test/cctest/cctest.h" |
| #include "test/cctest/compiler/value-helper.h" |
| #include "test/cctest/wasm/wasm-run-utils.h" |
| #include "test/common/flag-utils.h" |
| #include "test/common/wasm/flag-utils.h" |
| #include "test/common/wasm/wasm-macro-gen.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace wasm { |
| namespace test_run_wasm_simd { |
| |
| namespace { |
| |
| using DoubleUnOp = double (*)(double); |
| using DoubleBinOp = double (*)(double, double); |
| using DoubleCompareOp = int64_t (*)(double, double); |
| using FloatUnOp = float (*)(float); |
| using FloatBinOp = float (*)(float, float); |
| using FloatCompareOp = int (*)(float, float); |
| using Int64UnOp = int64_t (*)(int64_t); |
| using Int64BinOp = int64_t (*)(int64_t, int64_t); |
| using Int64ShiftOp = int64_t (*)(int64_t, int); |
| using Int32UnOp = int32_t (*)(int32_t); |
| using Int32BinOp = int32_t (*)(int32_t, int32_t); |
| using Int32CompareOp = int (*)(int32_t, int32_t); |
| using Int32ShiftOp = int32_t (*)(int32_t, int); |
| using Int16UnOp = int16_t (*)(int16_t); |
| using Int16BinOp = int16_t (*)(int16_t, int16_t); |
| using Int16CompareOp = int (*)(int16_t, int16_t); |
| using Int16ShiftOp = int16_t (*)(int16_t, int); |
| using Int8UnOp = int8_t (*)(int8_t); |
| using Int8BinOp = int8_t (*)(int8_t, int8_t); |
| using Int8CompareOp = int (*)(int8_t, int8_t); |
| using Int8ShiftOp = int8_t (*)(int8_t, int); |
| |
| #define WASM_SIMD_TEST(name) \ |
| void RunWasm_##name##_Impl(LowerSimd lower_simd, \ |
| TestExecutionTier execution_tier); \ |
| TEST(RunWasm_##name##_turbofan) { \ |
| EXPERIMENTAL_FLAG_SCOPE(simd); \ |
| RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \ |
| } \ |
| TEST(RunWasm_##name##_liftoff) { \ |
| EXPERIMENTAL_FLAG_SCOPE(simd); \ |
| RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \ |
| } \ |
| TEST(RunWasm_##name##_interpreter) { \ |
| EXPERIMENTAL_FLAG_SCOPE(simd); \ |
| RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \ |
| } \ |
| TEST(RunWasm_##name##_simd_lowered) { \ |
| EXPERIMENTAL_FLAG_SCOPE(simd); \ |
| RunWasm_##name##_Impl(kLowerSimd, TestExecutionTier::kTurbofan); \ |
| } \ |
| void RunWasm_##name##_Impl(LowerSimd lower_simd, \ |
| TestExecutionTier execution_tier) |
| |
| // Generic expected value functions. |
| template <typename T, typename = typename std::enable_if< |
| std::is_floating_point<T>::value>::type> |
| T Negate(T a) { |
| return -a; |
| } |
| |
| // For signed integral types, use base::AddWithWraparound. |
| template <typename T, typename = typename std::enable_if< |
| std::is_floating_point<T>::value>::type> |
| T Add(T a, T b) { |
| return a + b; |
| } |
| |
| // For signed integral types, use base::SubWithWraparound. |
| template <typename T, typename = typename std::enable_if< |
| std::is_floating_point<T>::value>::type> |
| T Sub(T a, T b) { |
| return a - b; |
| } |
| |
| // For signed integral types, use base::MulWithWraparound. |
| template <typename T, typename = typename std::enable_if< |
| std::is_floating_point<T>::value>::type> |
| T Mul(T a, T b) { |
| return a * b; |
| } |
| |
| template <typename T> |
| T Minimum(T a, T b) { |
| return std::min(a, b); |
| } |
| |
| template <typename T> |
| T Maximum(T a, T b) { |
| return std::max(a, b); |
| } |
| |
| template <typename T> |
| T UnsignedMinimum(T a, T b) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b; |
| } |
| |
| template <typename T> |
| T UnsignedMaximum(T a, T b) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b; |
| } |
| |
| int Equal(float a, float b) { return a == b ? -1 : 0; } |
| |
| template <typename T> |
| T Equal(T a, T b) { |
| return a == b ? -1 : 0; |
| } |
| |
| int NotEqual(float a, float b) { return a != b ? -1 : 0; } |
| |
| template <typename T> |
| T NotEqual(T a, T b) { |
| return a != b ? -1 : 0; |
| } |
| |
| int Less(float a, float b) { return a < b ? -1 : 0; } |
| |
| template <typename T> |
| T Less(T a, T b) { |
| return a < b ? -1 : 0; |
| } |
| |
| int LessEqual(float a, float b) { return a <= b ? -1 : 0; } |
| |
| template <typename T> |
| T LessEqual(T a, T b) { |
| return a <= b ? -1 : 0; |
| } |
| |
| int Greater(float a, float b) { return a > b ? -1 : 0; } |
| |
| template <typename T> |
| T Greater(T a, T b) { |
| return a > b ? -1 : 0; |
| } |
| |
| int GreaterEqual(float a, float b) { return a >= b ? -1 : 0; } |
| |
| template <typename T> |
| T GreaterEqual(T a, T b) { |
| return a >= b ? -1 : 0; |
| } |
| |
| template <typename T> |
| T UnsignedLess(T a, T b) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? -1 : 0; |
| } |
| |
| template <typename T> |
| T UnsignedLessEqual(T a, T b) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? -1 : 0; |
| } |
| |
| template <typename T> |
| T UnsignedGreater(T a, T b) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? -1 : 0; |
| } |
| |
| template <typename T> |
| T UnsignedGreaterEqual(T a, T b) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? -1 : 0; |
| } |
| |
| template <typename T> |
| T LogicalShiftLeft(T a, int shift) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) << (shift % (sizeof(T) * 8)); |
| } |
| |
| template <typename T> |
| T LogicalShiftRight(T a, int shift) { |
| using UnsignedT = typename std::make_unsigned<T>::type; |
| return static_cast<UnsignedT>(a) >> (shift % (sizeof(T) * 8)); |
| } |
| |
| // Define our own ArithmeticShiftRight instead of using the one from utils.h |
| // because the shift amount needs to be taken modulo lane width. |
| template <typename T> |
| T ArithmeticShiftRight(T a, int shift) { |
| return a >> (shift % (sizeof(T) * 8)); |
| } |
| |
| template <typename T> |
| T Abs(T a) { |
| return std::abs(a); |
| } |
| |
| // only used for F64x2 tests below |
| int64_t Equal(double a, double b) { return a == b ? -1 : 0; } |
| |
| int64_t NotEqual(double a, double b) { return a != b ? -1 : 0; } |
| |
| int64_t Greater(double a, double b) { return a > b ? -1 : 0; } |
| |
| int64_t GreaterEqual(double a, double b) { return a >= b ? -1 : 0; } |
| |
| int64_t Less(double a, double b) { return a < b ? -1 : 0; } |
| |
| int64_t LessEqual(double a, double b) { return a <= b ? -1 : 0; } |
| |
| #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| // Only used for qfma and qfms tests below. |
| |
| // FMOperation holds the params (a, b, c) for a Multiply-Add or |
| // Multiply-Subtract operation, and the expected result if the operation was |
| // fused, rounded only once for the entire operation, or unfused, rounded after |
| // multiply and again after add/subtract. |
| template <typename T> |
| struct FMOperation { |
| const T a; |
| const T b; |
| const T c; |
| const T fused_result; |
| const T unfused_result; |
| }; |
| |
| // large_n is large number that overflows T when multiplied by itself, this is a |
| // useful constant to test fused/unfused behavior. |
| template <typename T> |
| constexpr T large_n = T(0); |
| |
| template <> |
| constexpr double large_n<double> = 1e200; |
| |
| template <> |
| constexpr float large_n<float> = 1e20; |
| |
| // Fused Multiply-Add performs a + b * c. |
| template <typename T> |
| static constexpr FMOperation<T> qfma_array[] = { |
| {1.0f, 2.0f, 3.0f, 7.0f, 7.0f}, |
| // fused: a + b * c = -inf + (positive overflow) = -inf |
| // unfused: a + b * c = -inf + inf = NaN |
| {-std::numeric_limits<T>::infinity(), large_n<T>, large_n<T>, |
| -std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()}, |
| // fused: a + b * c = inf + (negative overflow) = inf |
| // unfused: a + b * c = inf + -inf = NaN |
| {std::numeric_limits<T>::infinity(), -large_n<T>, large_n<T>, |
| std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()}, |
| // NaN |
| {std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f, |
| std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}, |
| // -NaN |
| {-std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f, |
| std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}}; |
| |
| template <typename T> |
| static constexpr Vector<const FMOperation<T>> qfma_vector() { |
| return ArrayVector(qfma_array<T>); |
| } |
| |
| // Fused Multiply-Subtract performs a - b * c. |
| template <typename T> |
| static constexpr FMOperation<T> qfms_array[]{ |
| {1.0f, 2.0f, 3.0f, -5.0f, -5.0f}, |
| // fused: a - b * c = inf - (positive overflow) = inf |
| // unfused: a - b * c = inf - inf = NaN |
| {std::numeric_limits<T>::infinity(), large_n<T>, large_n<T>, |
| std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()}, |
| // fused: a - b * c = -inf - (negative overflow) = -inf |
| // unfused: a - b * c = -inf - -inf = NaN |
| {-std::numeric_limits<T>::infinity(), -large_n<T>, large_n<T>, |
| -std::numeric_limits<T>::infinity(), std::numeric_limits<T>::quiet_NaN()}, |
| // NaN |
| {std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f, |
| std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}, |
| // -NaN |
| {-std::numeric_limits<T>::quiet_NaN(), 2.0f, 3.0f, |
| std::numeric_limits<T>::quiet_NaN(), std::numeric_limits<T>::quiet_NaN()}}; |
| |
| template <typename T> |
| static constexpr Vector<const FMOperation<T>> qfms_vector() { |
| return ArrayVector(qfms_array<T>); |
| } |
| |
| // Fused results only when fma3 feature is enabled, and running on TurboFan or |
| // Liftoff (which can fall back to TurboFan if FMA is not implemented). |
| bool ExpectFused(TestExecutionTier tier) { |
| #ifdef V8_TARGET_ARCH_X64 |
| return CpuFeatures::IsSupported(FMA3) && |
| (tier == TestExecutionTier::kTurbofan || |
| tier == TestExecutionTier::kLiftoff); |
| #else |
| return (tier == TestExecutionTier::kTurbofan || |
| tier == TestExecutionTier::kLiftoff); |
| #endif |
| } |
| #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| |
| } // namespace |
| |
| #define WASM_SIMD_CHECK_LANE_S(TYPE, value, LANE_TYPE, lane_value, lane_index) \ |
| WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \ |
| WASM_SIMD_##TYPE##_EXTRACT_LANE( \ |
| lane_index, WASM_GET_LOCAL(value))), \ |
| WASM_RETURN1(WASM_ZERO)) |
| |
| // Unsigned Extracts are only available for I8x16, I16x8 types |
| #define WASM_SIMD_CHECK_LANE_U(TYPE, value, LANE_TYPE, lane_value, lane_index) \ |
| WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \ |
| WASM_SIMD_##TYPE##_EXTRACT_LANE_U( \ |
| lane_index, WASM_GET_LOCAL(value))), \ |
| WASM_RETURN1(WASM_ZERO)) |
| |
| // The macro below disables tests lowering for certain nodes where the simd |
| // lowering doesn't work correctly. Early return here if the CPU does not |
| // support SIMD as the graph will be implicitly lowered in that case. |
| #define WASM_SIMD_TEST_NO_LOWERING(name) \ |
| void RunWasm_##name##_Impl(LowerSimd lower_simd, \ |
| TestExecutionTier execution_tier); \ |
| TEST(RunWasm_##name##_turbofan) { \ |
| if (!CpuFeatures::SupportsWasmSimd128()) return; \ |
| EXPERIMENTAL_FLAG_SCOPE(simd); \ |
| RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kTurbofan); \ |
| } \ |
| TEST(RunWasm_##name##_liftoff) { \ |
| if (!CpuFeatures::SupportsWasmSimd128()) return; \ |
| EXPERIMENTAL_FLAG_SCOPE(simd); \ |
| RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kLiftoff); \ |
| } \ |
| TEST(RunWasm_##name##_interpreter) { \ |
| EXPERIMENTAL_FLAG_SCOPE(simd); \ |
| RunWasm_##name##_Impl(kNoLowerSimd, TestExecutionTier::kInterpreter); \ |
| } \ |
| void RunWasm_##name##_Impl(LowerSimd lower_simd, \ |
| TestExecutionTier execution_tier) |
| |
| // Returns true if the platform can represent the result. |
| template <typename T> |
| bool PlatformCanRepresent(T x) { |
| #if V8_TARGET_ARCH_ARM |
| return std::fpclassify(x) != FP_SUBNORMAL; |
| #else |
| return true; |
| #endif |
| } |
| |
| // Returns true for very small and very large numbers. We skip these test |
| // values for the approximation instructions, which don't work at the extremes. |
| bool IsExtreme(float x) { |
| float abs_x = std::fabs(x); |
| const float kSmallFloatThreshold = 1.0e-32f; |
| const float kLargeFloatThreshold = 1.0e32f; |
| return abs_x != 0.0f && // 0 or -0 are fine. |
| (abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold); |
| } |
| |
| #if V8_OS_AIX |
| template <typename T> |
| bool MightReverseSign(T float_op) { |
| return float_op == static_cast<T>(Negate) || |
| float_op == static_cast<T>(std::abs); |
| } |
| #endif |
| |
| WASM_SIMD_TEST(S128Globals) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold input and output vectors. |
| int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| BUILD(r, WASM_SET_GLOBAL(1, WASM_GET_GLOBAL(0)), WASM_ONE); |
| |
| FOR_INT32_INPUTS(x) { |
| for (int i = 0; i < 4; i++) { |
| WriteLittleEndianValue<int32_t>(&g0[i], x); |
| } |
| r.Call(); |
| int32_t expected = x; |
| for (int i = 0; i < 4; i++) { |
| int32_t actual = ReadLittleEndianValue<int32_t>(&g1[i]); |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F32x4Splat) { |
| WasmRunner<int32_t, float> r(execution_tier, lower_simd); |
| // Set up a global to hold output vector. |
| float* g = r.builder().AddGlobal<float>(kWasmS128); |
| byte param1 = 0; |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(param1))), |
| WASM_ONE); |
| |
| FOR_FLOAT32_INPUTS(x) { |
| r.Call(x); |
| float expected = x; |
| for (int i = 0; i < 4; i++) { |
| float actual = ReadLittleEndianValue<float>(&g[i]); |
| if (std::isnan(expected)) { |
| CHECK(std::isnan(actual)); |
| } else { |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F32x4ReplaceLane) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold input/output vector. |
| float* g = r.builder().AddGlobal<float>(kWasmS128); |
| // Build function to replace each lane with its (FP) index. |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_F32(3.14159f))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(temp1), WASM_F32(0.0f))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(temp1), WASM_F32(1.0f))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE( |
| 2, WASM_GET_LOCAL(temp1), WASM_F32(2.0f))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE( |
| 3, WASM_GET_LOCAL(temp1), WASM_F32(3.0f))), |
| WASM_ONE); |
| |
| r.Call(); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(static_cast<float>(i), ReadLittleEndianValue<float>(&g[i])); |
| } |
| } |
| |
| // Tests both signed and unsigned conversion. |
| WASM_SIMD_TEST(F32x4ConvertI32x4) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Create two output vectors to hold signed and unsigned results. |
| float* g0 = r.builder().AddGlobal<float>(kWasmS128); |
| float* g1 = r.builder().AddGlobal<float>(kWasmS128); |
| // Build fn to splat test value, perform conversions, and write the results. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4, WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL( |
| 1, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT32_INPUTS(x) { |
| r.Call(x); |
| float expected_signed = static_cast<float>(x); |
| float expected_unsigned = static_cast<float>(static_cast<uint32_t>(x)); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<float>(&g0[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<float>(&g1[i])); |
| } |
| } |
| } |
| |
| bool IsSameNan(float expected, float actual) { |
| // Sign is non-deterministic. |
| uint32_t expected_bits = bit_cast<uint32_t>(expected) & ~0x80000000; |
| uint32_t actual_bits = bit_cast<uint32_t>(actual) & ~0x80000000; |
| // Some implementations convert signaling NaNs to quiet NaNs. |
| return (expected_bits == actual_bits) || |
| ((expected_bits | 0x00400000) == actual_bits); |
| } |
| |
| bool IsCanonical(float actual) { |
| uint32_t actual_bits = bit_cast<uint32_t>(actual); |
| // Canonical NaN has quiet bit and no payload. |
| return (actual_bits & 0xFFC00000) == actual_bits; |
| } |
| |
| void CheckFloatResult(float x, float y, float expected, float actual, |
| bool exact = true) { |
| if (std::isnan(expected)) { |
| CHECK(std::isnan(actual)); |
| if (std::isnan(x) && IsSameNan(x, actual)) return; |
| if (std::isnan(y) && IsSameNan(y, actual)) return; |
| if (IsSameNan(expected, actual)) return; |
| if (IsCanonical(actual)) return; |
| // This is expected to assert; it's useful for debugging. |
| CHECK_EQ(bit_cast<uint32_t>(expected), bit_cast<uint32_t>(actual)); |
| } else { |
| if (exact) { |
| CHECK_EQ(expected, actual); |
| // The sign of 0's must match. |
| CHECK_EQ(std::signbit(expected), std::signbit(actual)); |
| return; |
| } |
| // Otherwise, perform an approximate equality test. First check for |
| // equality to handle +/-Infinity where approximate equality doesn't work. |
| if (expected == actual) return; |
| |
| // 1% error allows all platforms to pass easily. |
| constexpr float kApproximationError = 0.01f; |
| float abs_error = std::abs(expected) * kApproximationError, |
| min = expected - abs_error, max = expected + abs_error; |
| CHECK_LE(min, actual); |
| CHECK_GE(max, actual); |
| } |
| } |
| |
| // Test some values not included in the float inputs from value_helper. These |
| // tests are useful for opcodes that are synthesized during code gen, like Min |
| // and Max on ia32 and x64. |
| static constexpr uint32_t nan_test_array[] = { |
| // Bit patterns of quiet NaNs and signaling NaNs, with or without |
| // additional payload. |
| 0x7FC00000, 0xFFC00000, 0x7FFFFFFF, 0xFFFFFFFF, 0x7F876543, 0xFF876543, |
| // NaN with top payload bit unset. |
| 0x7FA00000, |
| // Both Infinities. |
| 0x7F800000, 0xFF800000, |
| // Some "normal" numbers, 1 and -1. |
| 0x3F800000, 0xBF800000}; |
| |
| #define FOR_FLOAT32_NAN_INPUTS(i) \ |
| for (size_t i = 0; i < arraysize(nan_test_array); ++i) |
| |
| void RunF32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, FloatUnOp expected_op, |
| bool exact = true) { |
| WasmRunner<int32_t, float> r(execution_tier, lower_simd); |
| // Global to hold output. |
| float* g = r.builder().AddGlobal<float>(kWasmS128); |
| // Build fn to splat test value, perform unop, and write the result. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_FLOAT32_INPUTS(x) { |
| if (!PlatformCanRepresent(x)) continue; |
| // Extreme values have larger errors so skip them for approximation tests. |
| if (!exact && IsExtreme(x)) continue; |
| float expected = expected_op(x); |
| #if V8_OS_AIX |
| if (!MightReverseSign<FloatUnOp>(expected_op)) |
| expected = FpOpWorkaround<float>(x, expected); |
| #endif |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x); |
| for (int i = 0; i < 4; i++) { |
| float actual = ReadLittleEndianValue<float>(&g[i]); |
| CheckFloatResult(x, x, expected, actual, exact); |
| } |
| } |
| |
| FOR_FLOAT32_NAN_INPUTS(i) { |
| float x = bit_cast<float>(nan_test_array[i]); |
| if (!PlatformCanRepresent(x)) continue; |
| // Extreme values have larger errors so skip them for approximation tests. |
| if (!exact && IsExtreme(x)) continue; |
| float expected = expected_op(x); |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x); |
| for (int i = 0; i < 4; i++) { |
| float actual = ReadLittleEndianValue<float>(&g[i]); |
| CheckFloatResult(x, x, expected, actual, exact); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F32x4Abs) { |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Abs, std::abs); |
| } |
| |
| WASM_SIMD_TEST(F32x4Neg) { |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Neg, Negate); |
| } |
| |
| WASM_SIMD_TEST(F32x4Sqrt) { |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Sqrt, std::sqrt); |
| } |
| |
| WASM_SIMD_TEST(F32x4RecipApprox) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipApprox, |
| base::Recip, false /* !exact */); |
| } |
| |
| WASM_SIMD_TEST(F32x4RecipSqrtApprox) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipSqrtApprox, |
| base::RecipSqrt, false /* !exact */); |
| } |
| |
| WASM_SIMD_TEST(F32x4Ceil) { |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Ceil, ceilf, true); |
| } |
| |
| WASM_SIMD_TEST(F32x4Floor) { |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Floor, floorf, true); |
| } |
| |
| WASM_SIMD_TEST(F32x4Trunc) { |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Trunc, truncf, true); |
| } |
| |
| WASM_SIMD_TEST(F32x4NearestInt) { |
| RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4NearestInt, nearbyintf, |
| true); |
| } |
| |
| void RunF32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, FloatBinOp expected_op) { |
| WasmRunner<int32_t, float, float> r(execution_tier, lower_simd); |
| // Global to hold output. |
| float* g = r.builder().AddGlobal<float>(kWasmS128); |
| // Build fn to splat test values, perform binop, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| FOR_FLOAT32_INPUTS(x) { |
| if (!PlatformCanRepresent(x)) continue; |
| FOR_FLOAT32_INPUTS(y) { |
| if (!PlatformCanRepresent(y)) continue; |
| float expected = expected_op(x, y); |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x, y); |
| for (int i = 0; i < 4; i++) { |
| float actual = ReadLittleEndianValue<float>(&g[i]); |
| CheckFloatResult(x, y, expected, actual, true /* exact */); |
| } |
| } |
| } |
| |
| FOR_FLOAT32_NAN_INPUTS(i) { |
| float x = bit_cast<float>(nan_test_array[i]); |
| if (!PlatformCanRepresent(x)) continue; |
| FOR_FLOAT32_NAN_INPUTS(j) { |
| float y = bit_cast<float>(nan_test_array[j]); |
| if (!PlatformCanRepresent(y)) continue; |
| float expected = expected_op(x, y); |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x, y); |
| for (int i = 0; i < 4; i++) { |
| float actual = ReadLittleEndianValue<float>(&g[i]); |
| CheckFloatResult(x, y, expected, actual, true /* exact */); |
| } |
| } |
| } |
| } |
| |
| #undef FOR_FLOAT32_NAN_INPUTS |
| |
| WASM_SIMD_TEST(F32x4Add) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Add, Add); |
| } |
| WASM_SIMD_TEST(F32x4Sub) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Sub, Sub); |
| } |
| WASM_SIMD_TEST(F32x4Mul) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Mul, Mul); |
| } |
| WASM_SIMD_TEST(F32x4Div) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Div, base::Divide); |
| } |
| WASM_SIMD_TEST(F32x4Min) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Min, JSMin); |
| } |
| WASM_SIMD_TEST(F32x4Max) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Max, JSMax); |
| } |
| |
| WASM_SIMD_TEST(F32x4Pmin) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmin, Minimum); |
| } |
| |
| WASM_SIMD_TEST(F32x4Pmax) { |
| RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Pmax, Maximum); |
| } |
| |
| void RunF32x4CompareOpTest(TestExecutionTier execution_tier, |
| LowerSimd lower_simd, WasmOpcode opcode, |
| FloatCompareOp expected_op) { |
| WasmRunner<int32_t, float, float> r(execution_tier, lower_simd); |
| // Set up global to hold mask output. |
| int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128); |
| // Build fn to splat test values, perform compare op, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| FOR_FLOAT32_INPUTS(x) { |
| if (!PlatformCanRepresent(x)) continue; |
| FOR_FLOAT32_INPUTS(y) { |
| if (!PlatformCanRepresent(y)) continue; |
| float diff = x - y; // Model comparison as subtraction. |
| if (!PlatformCanRepresent(diff)) continue; |
| r.Call(x, y); |
| int32_t expected = expected_op(x, y); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F32x4Eq) { |
| RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Eq, Equal); |
| } |
| |
| WASM_SIMD_TEST(F32x4Ne) { |
| RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ne, NotEqual); |
| } |
| |
| WASM_SIMD_TEST(F32x4Gt) { |
| RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Gt, Greater); |
| } |
| |
| WASM_SIMD_TEST(F32x4Ge) { |
| RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ge, GreaterEqual); |
| } |
| |
| WASM_SIMD_TEST(F32x4Lt) { |
| RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Lt, Less); |
| } |
| |
| WASM_SIMD_TEST(F32x4Le) { |
| RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Le, LessEqual); |
| } |
| |
| #if V8_TARGET_ARCH_X64 |
| // TODO(v8:10983) Prototyping sign select. |
| template <typename T> |
| void RunSignSelect(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode signselect, WasmOpcode splat, |
| std::array<int8_t, kSimd128Size> mask) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, T, T> r(execution_tier, lower_simd); |
| T* output = r.builder().template AddGlobal<T>(kWasmS128); |
| |
| // Splat 2 constant values, then use a mask that selects alternate lanes. |
| BUILD(r, WASM_GET_LOCAL(0), WASM_SIMD_OP(splat), WASM_GET_LOCAL(1), |
| WASM_SIMD_OP(splat), WASM_SIMD_CONSTANT(mask), WASM_SIMD_OP(signselect), |
| kExprGlobalSet, 0, WASM_ONE); |
| |
| r.Call(1, 2); |
| |
| constexpr int lanes = kSimd128Size / sizeof(T); |
| for (int i = 0; i < lanes; i += 2) { |
| CHECK_EQ(1, ReadLittleEndianValue<T>(&output[i])); |
| } |
| for (int i = 1; i < lanes; i += 2) { |
| CHECK_EQ(2, ReadLittleEndianValue<T>(&output[i])); |
| } |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I8x16SignSelect) { |
| std::array<int8_t, kSimd128Size> mask = {0x80, 0, -1, 0, 0x80, 0, -1, 0, |
| 0x80, 0, -1, 0, 0x80, 0, -1, 0}; |
| RunSignSelect<int8_t>(execution_tier, lower_simd, kExprI8x16SignSelect, |
| kExprI8x16Splat, mask); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I16x8SignSelect) { |
| std::array<int16_t, kSimd128Size / 2> selection = {0x8000, 0, -1, 0, |
| 0x8000, 0, -1, 0}; |
| std::array<int8_t, kSimd128Size> mask; |
| memcpy(mask.data(), selection.data(), kSimd128Size); |
| RunSignSelect<int16_t>(execution_tier, lower_simd, kExprI16x8SignSelect, |
| kExprI16x8Splat, mask); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I32x4SignSelect) { |
| std::array<int32_t, kSimd128Size / 4> selection = {0x80000000, 0, -1, 0}; |
| std::array<int8_t, kSimd128Size> mask; |
| memcpy(mask.data(), selection.data(), kSimd128Size); |
| RunSignSelect<int32_t>(execution_tier, lower_simd, kExprI32x4SignSelect, |
| kExprI32x4Splat, mask); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I64x2SignSelect) { |
| std::array<int64_t, kSimd128Size / 8> selection = {0x8000000000000000, 0}; |
| std::array<int8_t, kSimd128Size> mask; |
| memcpy(mask.data(), selection.data(), kSimd128Size); |
| RunSignSelect<int64_t>(execution_tier, lower_simd, kExprI64x2SignSelect, |
| kExprI64x2Splat, mask); |
| } |
| #endif // V8_TARGET_ARCH_X64 |
| |
| #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| WASM_SIMD_TEST_NO_LOWERING(F32x4Qfma) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, float, float, float> r(execution_tier, lower_simd); |
| // Set up global to hold mask output. |
| float* g = r.builder().AddGlobal<float>(kWasmS128); |
| // Build fn to splat test values, perform compare op, and write the result. |
| byte value1 = 0, value2 = 1, value3 = 2; |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_QFMA( |
| WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1)), |
| WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2)), |
| WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value3)))), |
| WASM_ONE); |
| |
| for (FMOperation<float> x : qfma_vector<float>()) { |
| r.Call(x.a, x.b, x.c); |
| float expected = |
| ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; |
| for (int i = 0; i < 4; i++) { |
| float actual = ReadLittleEndianValue<float>(&g[i]); |
| CheckFloatResult(x.a, x.b, expected, actual, true /* exact */); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(F32x4Qfms) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, float, float, float> r(execution_tier, lower_simd); |
| // Set up global to hold mask output. |
| float* g = r.builder().AddGlobal<float>(kWasmS128); |
| // Build fn to splat test values, perform compare op, and write the result. |
| byte value1 = 0, value2 = 1, value3 = 2; |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_QFMS( |
| WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1)), |
| WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2)), |
| WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value3)))), |
| WASM_ONE); |
| |
| for (FMOperation<float> x : qfms_vector<float>()) { |
| r.Call(x.a, x.b, x.c); |
| float expected = |
| ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; |
| for (int i = 0; i < 4; i++) { |
| float actual = ReadLittleEndianValue<float>(&g[i]); |
| CheckFloatResult(x.a, x.b, expected, actual, true /* exact */); |
| } |
| } |
| } |
| #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| |
| WASM_SIMD_TEST(I64x2Splat) { |
| WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd); |
| // Set up a global to hold output vector. |
| int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128); |
| byte param1 = 0; |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(param1))), |
| WASM_ONE); |
| |
| FOR_INT64_INPUTS(x) { |
| r.Call(x); |
| int64_t expected = x; |
| for (int i = 0; i < 2; i++) { |
| int64_t actual = ReadLittleEndianValue<int64_t>(&g[i]); |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I64x2ExtractLane) { |
| WasmRunner<int64_t> r(execution_tier, lower_simd); |
| r.AllocateLocal(kWasmI64); |
| r.AllocateLocal(kWasmS128); |
| BUILD( |
| r, |
| WASM_SET_LOCAL(0, WASM_SIMD_I64x2_EXTRACT_LANE( |
| 0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(0xFFFFFFFFFF)))), |
| WASM_SET_LOCAL(1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SIMD_I64x2_EXTRACT_LANE(1, WASM_GET_LOCAL(1))); |
| CHECK_EQ(0xFFFFFFFFFF, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(I64x2ReplaceLane) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold input/output vector. |
| int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128); |
| // Build function to replace each lane with its index. |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_SPLAT(WASM_I64V(-1))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(temp1), WASM_I64V(0))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_I64x2_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(temp1), WASM_I64V(1))), |
| WASM_ONE); |
| |
| r.Call(); |
| for (int64_t i = 0; i < 2; i++) { |
| CHECK_EQ(i, ReadLittleEndianValue<int64_t>(&g[i])); |
| } |
| } |
| |
| void RunI64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int64UnOp expected_op) { |
| WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd); |
| // Global to hold output. |
| int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128); |
| // Build fn to splat test value, perform unop, and write the result. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT64_INPUTS(x) { |
| r.Call(x); |
| int64_t expected = expected_op(x); |
| for (int i = 0; i < 2; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g[i])); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I64x2Neg) { |
| RunI64x2UnOpTest(execution_tier, lower_simd, kExprI64x2Neg, |
| base::NegateWithWraparound); |
| } |
| |
| void RunI64x2ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int64ShiftOp expected_op) { |
| // Intentionally shift by 64, should be no-op. |
| for (int shift = 1; shift <= 64; shift++) { |
| WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd); |
| int32_t* memory = r.builder().AddMemoryElems<int32_t>(1); |
| int64_t* g_imm = r.builder().AddGlobal<int64_t>(kWasmS128); |
| int64_t* g_mem = r.builder().AddGlobal<int64_t>(kWasmS128); |
| byte value = 0; |
| byte simd = r.AllocateLocal(kWasmS128); |
| // Shift using an immediate, and shift using a value loaded from memory. |
| BUILD( |
| r, WASM_SET_LOCAL(simd, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd), |
| WASM_I32V(shift))), |
| WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP( |
| opcode, WASM_GET_LOCAL(simd), |
| WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), |
| WASM_ONE); |
| |
| r.builder().WriteMemory(&memory[0], shift); |
| FOR_INT64_INPUTS(x) { |
| r.Call(x); |
| int64_t expected = expected_op(x, shift); |
| for (int i = 0; i < 2; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g_imm[i])); |
| CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g_mem[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I64x2Shl) { |
| RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2Shl, |
| LogicalShiftLeft); |
| } |
| |
| WASM_SIMD_TEST(I64x2ShrS) { |
| RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrS, |
| ArithmeticShiftRight); |
| } |
| |
| WASM_SIMD_TEST(I64x2ShrU) { |
| RunI64x2ShiftOpTest(execution_tier, lower_simd, kExprI64x2ShrU, |
| LogicalShiftRight); |
| } |
| |
| void RunI64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int64BinOp expected_op) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, int64_t, int64_t> r(execution_tier, lower_simd); |
| // Global to hold output. |
| int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128); |
| // Build fn to splat test values, perform binop, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| FOR_INT64_INPUTS(x) { |
| FOR_INT64_INPUTS(y) { |
| r.Call(x, y); |
| int64_t expected = expected_op(x, y); |
| for (int i = 0; i < 2; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int64_t>(&g[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I64x2Add) { |
| RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Add, |
| base::AddWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I64x2Sub) { |
| RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Sub, |
| base::SubWithWraparound); |
| } |
| |
| #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| WASM_SIMD_TEST_NO_LOWERING(I64x2Eq) { |
| RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Eq, Equal); |
| } |
| #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| |
| WASM_SIMD_TEST(F64x2Splat) { |
| WasmRunner<int32_t, double> r(execution_tier, lower_simd); |
| // Set up a global to hold output vector. |
| double* g = r.builder().AddGlobal<double>(kWasmS128); |
| byte param1 = 0; |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(param1))), |
| WASM_ONE); |
| |
| FOR_FLOAT64_INPUTS(x) { |
| r.Call(x); |
| double expected = x; |
| for (int i = 0; i < 2; i++) { |
| double actual = ReadLittleEndianValue<double>(&g[i]); |
| if (std::isnan(expected)) { |
| CHECK(std::isnan(actual)); |
| } else { |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F64x2ExtractLane) { |
| WasmRunner<double, double> r(execution_tier, lower_simd); |
| byte param1 = 0; |
| byte temp1 = r.AllocateLocal(kWasmF64); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, |
| WASM_SET_LOCAL(temp1, |
| WASM_SIMD_F64x2_EXTRACT_LANE( |
| 0, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(param1)))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(temp1))), |
| WASM_SIMD_F64x2_EXTRACT_LANE(1, WASM_GET_LOCAL(temp2))); |
| FOR_FLOAT64_INPUTS(x) { |
| double actual = r.Call(x); |
| double expected = x; |
| if (std::isnan(expected)) { |
| CHECK(std::isnan(actual)); |
| } else { |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F64x2ReplaceLane) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up globals to hold input/output vector. |
| double* g0 = r.builder().AddGlobal<double>(kWasmS128); |
| double* g1 = r.builder().AddGlobal<double>(kWasmS128); |
| // Build function to replace each lane with its (FP) index. |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e100))), |
| // Replace lane 0. |
| WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(temp1), WASM_F64(0.0f))), |
| // Replace lane 1. |
| WASM_SET_GLOBAL(1, WASM_SIMD_F64x2_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(temp1), WASM_F64(1.0f))), |
| WASM_ONE); |
| |
| r.Call(); |
| CHECK_EQ(0., ReadLittleEndianValue<double>(&g0[0])); |
| CHECK_EQ(1e100, ReadLittleEndianValue<double>(&g0[1])); |
| CHECK_EQ(1e100, ReadLittleEndianValue<double>(&g1[0])); |
| CHECK_EQ(1., ReadLittleEndianValue<double>(&g1[1])); |
| } |
| |
| WASM_SIMD_TEST(F64x2ExtractLaneWithI64x2) { |
| WasmRunner<int64_t> r(execution_tier, lower_simd); |
| BUILD(r, WASM_IF_ELSE_L( |
| WASM_F64_EQ(WASM_SIMD_F64x2_EXTRACT_LANE( |
| 0, WASM_SIMD_I64x2_SPLAT(WASM_I64V(1e15))), |
| WASM_F64_REINTERPRET_I64(WASM_I64V(1e15))), |
| WASM_I64V(1), WASM_I64V(0))); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(I64x2ExtractWithF64x2) { |
| WasmRunner<int64_t> r(execution_tier, lower_simd); |
| BUILD(r, WASM_IF_ELSE_L( |
| WASM_I64_EQ(WASM_SIMD_I64x2_EXTRACT_LANE( |
| 0, WASM_SIMD_F64x2_SPLAT(WASM_F64(1e15))), |
| WASM_I64_REINTERPRET_F64(WASM_F64(1e15))), |
| WASM_I64V(1), WASM_I64V(0))); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| bool IsExtreme(double x) { |
| double abs_x = std::fabs(x); |
| const double kSmallFloatThreshold = 1.0e-298; |
| const double kLargeFloatThreshold = 1.0e298; |
| return abs_x != 0.0f && // 0 or -0 are fine. |
| (abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold); |
| } |
| |
| bool IsSameNan(double expected, double actual) { |
| // Sign is non-deterministic. |
| uint64_t expected_bits = bit_cast<uint64_t>(expected) & ~0x8000000000000000; |
| uint64_t actual_bits = bit_cast<uint64_t>(actual) & ~0x8000000000000000; |
| // Some implementations convert signaling NaNs to quiet NaNs. |
| return (expected_bits == actual_bits) || |
| ((expected_bits | 0x0008000000000000) == actual_bits); |
| } |
| |
| bool IsCanonical(double actual) { |
| uint64_t actual_bits = bit_cast<uint64_t>(actual); |
| // Canonical NaN has quiet bit and no payload. |
| return (actual_bits & 0xFFF8000000000000) == actual_bits; |
| } |
| |
| void CheckDoubleResult(double x, double y, double expected, double actual, |
| bool exact = true) { |
| if (std::isnan(expected)) { |
| CHECK(std::isnan(actual)); |
| if (std::isnan(x) && IsSameNan(x, actual)) return; |
| if (std::isnan(y) && IsSameNan(y, actual)) return; |
| if (IsSameNan(expected, actual)) return; |
| if (IsCanonical(actual)) return; |
| // This is expected to assert; it's useful for debugging. |
| CHECK_EQ(bit_cast<uint64_t>(expected), bit_cast<uint64_t>(actual)); |
| } else { |
| if (exact) { |
| CHECK_EQ(expected, actual); |
| // The sign of 0's must match. |
| CHECK_EQ(std::signbit(expected), std::signbit(actual)); |
| return; |
| } |
| // Otherwise, perform an approximate equality test. First check for |
| // equality to handle +/-Infinity where approximate equality doesn't work. |
| if (expected == actual) return; |
| |
| // 1% error allows all platforms to pass easily. |
| constexpr double kApproximationError = 0.01f; |
| double abs_error = std::abs(expected) * kApproximationError, |
| min = expected - abs_error, max = expected + abs_error; |
| CHECK_LE(min, actual); |
| CHECK_GE(max, actual); |
| } |
| } |
| |
| // Test some values not included in the double inputs from value_helper. These |
| // tests are useful for opcodes that are synthesized during code gen, like Min |
| // and Max on ia32 and x64. |
| static constexpr uint64_t double_nan_test_array[] = { |
| // quiet NaNs, + and - |
| 0x7FF8000000000001, 0xFFF8000000000001, |
| // with payload |
| 0x7FF8000000000011, 0xFFF8000000000011, |
| // signaling NaNs, + and - |
| 0x7FF0000000000001, 0xFFF0000000000001, |
| // with payload |
| 0x7FF0000000000011, 0xFFF0000000000011, |
| // Both Infinities. |
| 0x7FF0000000000000, 0xFFF0000000000000, |
| // Some "normal" numbers, 1 and -1. |
| 0x3FF0000000000000, 0xBFF0000000000000}; |
| |
| #define FOR_FLOAT64_NAN_INPUTS(i) \ |
| for (size_t i = 0; i < arraysize(double_nan_test_array); ++i) |
| |
| void RunF64x2UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, DoubleUnOp expected_op, |
| bool exact = true) { |
| WasmRunner<int32_t, double> r(execution_tier, lower_simd); |
| // Global to hold output. |
| double* g = r.builder().AddGlobal<double>(kWasmS128); |
| // Build fn to splat test value, perform unop, and write the result. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_FLOAT64_INPUTS(x) { |
| if (!PlatformCanRepresent(x)) continue; |
| // Extreme values have larger errors so skip them for approximation tests. |
| if (!exact && IsExtreme(x)) continue; |
| double expected = expected_op(x); |
| #if V8_OS_AIX |
| if (!MightReverseSign<DoubleUnOp>(expected_op)) |
| expected = FpOpWorkaround<double>(x, expected); |
| #endif |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x); |
| for (int i = 0; i < 2; i++) { |
| double actual = ReadLittleEndianValue<double>(&g[i]); |
| CheckDoubleResult(x, x, expected, actual, exact); |
| } |
| } |
| |
| FOR_FLOAT64_NAN_INPUTS(i) { |
| double x = bit_cast<double>(double_nan_test_array[i]); |
| if (!PlatformCanRepresent(x)) continue; |
| // Extreme values have larger errors so skip them for approximation tests. |
| if (!exact && IsExtreme(x)) continue; |
| double expected = expected_op(x); |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x); |
| for (int i = 0; i < 2; i++) { |
| double actual = ReadLittleEndianValue<double>(&g[i]); |
| CheckDoubleResult(x, x, expected, actual, exact); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F64x2Abs) { |
| RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Abs, std::abs); |
| } |
| |
| WASM_SIMD_TEST(F64x2Neg) { |
| RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Neg, Negate); |
| } |
| |
| WASM_SIMD_TEST(F64x2Sqrt) { |
| RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Sqrt, std::sqrt); |
| } |
| |
| WASM_SIMD_TEST(F64x2Ceil) { |
| RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Ceil, ceil, true); |
| } |
| |
| WASM_SIMD_TEST(F64x2Floor) { |
| RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Floor, floor, true); |
| } |
| |
| WASM_SIMD_TEST(F64x2Trunc) { |
| RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2Trunc, trunc, true); |
| } |
| |
| WASM_SIMD_TEST(F64x2NearestInt) { |
| RunF64x2UnOpTest(execution_tier, lower_simd, kExprF64x2NearestInt, nearbyint, |
| true); |
| } |
| |
| void RunF64x2BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, DoubleBinOp expected_op) { |
| WasmRunner<int32_t, double, double> r(execution_tier, lower_simd); |
| // Global to hold output. |
| double* g = r.builder().AddGlobal<double>(kWasmS128); |
| // Build fn to splat test value, perform binop, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| FOR_FLOAT64_INPUTS(x) { |
| if (!PlatformCanRepresent(x)) continue; |
| FOR_FLOAT64_INPUTS(y) { |
| if (!PlatformCanRepresent(x)) continue; |
| double expected = expected_op(x, y); |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x, y); |
| for (int i = 0; i < 2; i++) { |
| double actual = ReadLittleEndianValue<double>(&g[i]); |
| CheckDoubleResult(x, y, expected, actual, true /* exact */); |
| } |
| } |
| } |
| |
| FOR_FLOAT64_NAN_INPUTS(i) { |
| double x = bit_cast<double>(double_nan_test_array[i]); |
| if (!PlatformCanRepresent(x)) continue; |
| FOR_FLOAT64_NAN_INPUTS(j) { |
| double y = bit_cast<double>(double_nan_test_array[j]); |
| double expected = expected_op(x, y); |
| if (!PlatformCanRepresent(expected)) continue; |
| r.Call(x, y); |
| for (int i = 0; i < 2; i++) { |
| double actual = ReadLittleEndianValue<double>(&g[i]); |
| CheckDoubleResult(x, y, expected, actual, true /* exact */); |
| } |
| } |
| } |
| } |
| |
| #undef FOR_FLOAT64_NAN_INPUTS |
| |
| WASM_SIMD_TEST(F64x2Add) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Add, Add); |
| } |
| |
| WASM_SIMD_TEST(F64x2Sub) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Sub, Sub); |
| } |
| |
| WASM_SIMD_TEST(F64x2Mul) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Mul, Mul); |
| } |
| |
| WASM_SIMD_TEST(F64x2Div) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Div, base::Divide); |
| } |
| |
| WASM_SIMD_TEST(F64x2Pmin) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmin, Minimum); |
| } |
| |
| WASM_SIMD_TEST(F64x2Pmax) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Pmax, Maximum); |
| } |
| |
| void RunF64x2CompareOpTest(TestExecutionTier execution_tier, |
| LowerSimd lower_simd, WasmOpcode opcode, |
| DoubleCompareOp expected_op) { |
| WasmRunner<int32_t, double, double> r(execution_tier, lower_simd); |
| // Set up global to hold mask output. |
| int64_t* g = r.builder().AddGlobal<int64_t>(kWasmS128); |
| // Build fn to splat test values, perform compare op, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| // Make the lanes of each temp compare differently: |
| // temp1 = y, x and temp2 = y, y. |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp1, |
| WASM_SIMD_F64x2_REPLACE_LANE(1, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(value2))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| FOR_FLOAT64_INPUTS(x) { |
| if (!PlatformCanRepresent(x)) continue; |
| FOR_FLOAT64_INPUTS(y) { |
| if (!PlatformCanRepresent(y)) continue; |
| double diff = x - y; // Model comparison as subtraction. |
| if (!PlatformCanRepresent(diff)) continue; |
| r.Call(x, y); |
| int64_t expected0 = expected_op(x, y); |
| int64_t expected1 = expected_op(y, y); |
| CHECK_EQ(expected0, ReadLittleEndianValue<int64_t>(&g[0])); |
| CHECK_EQ(expected1, ReadLittleEndianValue<int64_t>(&g[1])); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(F64x2Eq) { |
| RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Eq, Equal); |
| } |
| |
| WASM_SIMD_TEST(F64x2Ne) { |
| RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ne, NotEqual); |
| } |
| |
| WASM_SIMD_TEST(F64x2Gt) { |
| RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Gt, Greater); |
| } |
| |
| WASM_SIMD_TEST(F64x2Ge) { |
| RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Ge, GreaterEqual); |
| } |
| |
| WASM_SIMD_TEST(F64x2Lt) { |
| RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Lt, Less); |
| } |
| |
| WASM_SIMD_TEST(F64x2Le) { |
| RunF64x2CompareOpTest(execution_tier, lower_simd, kExprF64x2Le, LessEqual); |
| } |
| |
| WASM_SIMD_TEST(F64x2Min) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Min, JSMin); |
| } |
| |
| WASM_SIMD_TEST(F64x2Max) { |
| RunF64x2BinOpTest(execution_tier, lower_simd, kExprF64x2Max, JSMax); |
| } |
| |
| WASM_SIMD_TEST(I64x2Mul) { |
| RunI64x2BinOpTest(execution_tier, lower_simd, kExprI64x2Mul, |
| base::MulWithWraparound); |
| } |
| |
| #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| WASM_SIMD_TEST_NO_LOWERING(F64x2Qfma) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, double, double, double> r(execution_tier, lower_simd); |
| // Set up global to hold mask output. |
| double* g = r.builder().AddGlobal<double>(kWasmS128); |
| // Build fn to splat test values, perform compare op, and write the result. |
| byte value1 = 0, value2 = 1, value3 = 2; |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_QFMA( |
| WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1)), |
| WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2)), |
| WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value3)))), |
| WASM_ONE); |
| |
| for (FMOperation<double> x : qfma_vector<double>()) { |
| r.Call(x.a, x.b, x.c); |
| double expected = |
| ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; |
| for (int i = 0; i < 2; i++) { |
| double actual = ReadLittleEndianValue<double>(&g[i]); |
| CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(F64x2Qfms) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, double, double, double> r(execution_tier, lower_simd); |
| // Set up global to hold mask output. |
| double* g = r.builder().AddGlobal<double>(kWasmS128); |
| // Build fn to splat test values, perform compare op, and write the result. |
| byte value1 = 0, value2 = 1, value3 = 2; |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_F64x2_QFMS( |
| WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value1)), |
| WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value2)), |
| WASM_SIMD_F64x2_SPLAT(WASM_GET_LOCAL(value3)))), |
| WASM_ONE); |
| |
| for (FMOperation<double> x : qfms_vector<double>()) { |
| r.Call(x.a, x.b, x.c); |
| double expected = |
| ExpectFused(execution_tier) ? x.fused_result : x.unfused_result; |
| for (int i = 0; i < 2; i++) { |
| double actual = ReadLittleEndianValue<double>(&g[i]); |
| CheckDoubleResult(x.a, x.b, expected, actual, true /* exact */); |
| } |
| } |
| } |
| #endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_S390X |
| |
| WASM_SIMD_TEST(I32x4Splat) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold output vector. |
| int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128); |
| byte param1 = 0; |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(param1))), |
| WASM_ONE); |
| |
| FOR_INT32_INPUTS(x) { |
| r.Call(x); |
| int32_t expected = x; |
| for (int i = 0; i < 4; i++) { |
| int32_t actual = ReadLittleEndianValue<int32_t>(&g[i]); |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I32x4ReplaceLane) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold input/output vector. |
| int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128); |
| // Build function to replace each lane with its index. |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(-1))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(temp1), WASM_I32V(0))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(temp1), WASM_I32V(1))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE( |
| 2, WASM_GET_LOCAL(temp1), WASM_I32V(2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE( |
| 3, WASM_GET_LOCAL(temp1), WASM_I32V(3))), |
| WASM_ONE); |
| |
| r.Call(); |
| for (int32_t i = 0; i < 4; i++) { |
| CHECK_EQ(i, ReadLittleEndianValue<int32_t>(&g[i])); |
| } |
| } |
| |
| WASM_SIMD_TEST(I16x8Splat) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold output vector. |
| int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128); |
| byte param1 = 0; |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(param1))), |
| WASM_ONE); |
| |
| FOR_INT16_INPUTS(x) { |
| r.Call(x); |
| int16_t expected = x; |
| for (int i = 0; i < 8; i++) { |
| int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]); |
| CHECK_EQ(actual, expected); |
| } |
| } |
| |
| // Test values that do not fit in a int16. |
| FOR_INT32_INPUTS(x) { |
| r.Call(x); |
| int16_t expected = truncate_to_int16(x); |
| for (int i = 0; i < 8; i++) { |
| int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]); |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I16x8ReplaceLane) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold input/output vector. |
| int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128); |
| // Build function to replace each lane with its index. |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_I32V(-1))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(temp1), WASM_I32V(0))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(temp1), WASM_I32V(1))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 2, WASM_GET_LOCAL(temp1), WASM_I32V(2))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 3, WASM_GET_LOCAL(temp1), WASM_I32V(3))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 4, WASM_GET_LOCAL(temp1), WASM_I32V(4))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 5, WASM_GET_LOCAL(temp1), WASM_I32V(5))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 6, WASM_GET_LOCAL(temp1), WASM_I32V(6))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_REPLACE_LANE( |
| 7, WASM_GET_LOCAL(temp1), WASM_I32V(7))), |
| WASM_ONE); |
| |
| r.Call(); |
| for (int16_t i = 0; i < 8; i++) { |
| CHECK_EQ(i, ReadLittleEndianValue<int16_t>(&g[i])); |
| } |
| } |
| |
| WASM_SIMD_TEST(I8x16BitMask) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| byte value1 = r.AllocateLocal(kWasmS128); |
| |
| BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SET_LOCAL(value1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(value1), WASM_I32V(0))), |
| WASM_SET_LOCAL(value1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(value1), WASM_I32V(-1))), |
| WASM_SIMD_UNOP(kExprI8x16BitMask, WASM_GET_LOCAL(value1))); |
| |
| FOR_INT8_INPUTS(x) { |
| int32_t actual = r.Call(x); |
| // Lane 0 is always 0 (positive), lane 1 is always -1. |
| int32_t expected = std::signbit(static_cast<double>(x)) ? 0xFFFE : 0x0002; |
| CHECK_EQ(actual, expected); |
| } |
| } |
| |
| WASM_SIMD_TEST(I16x8BitMask) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| byte value1 = r.AllocateLocal(kWasmS128); |
| |
| BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SET_LOCAL(value1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(value1), WASM_I32V(0))), |
| WASM_SET_LOCAL(value1, WASM_SIMD_I16x8_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(value1), WASM_I32V(-1))), |
| WASM_SIMD_UNOP(kExprI16x8BitMask, WASM_GET_LOCAL(value1))); |
| |
| FOR_INT16_INPUTS(x) { |
| int32_t actual = r.Call(x); |
| // Lane 0 is always 0 (positive), lane 1 is always -1. |
| int32_t expected = std::signbit(static_cast<double>(x)) ? 0xFE : 2; |
| CHECK_EQ(actual, expected); |
| } |
| } |
| |
| WASM_SIMD_TEST(I32x4BitMask) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| byte value1 = r.AllocateLocal(kWasmS128); |
| |
| BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SET_LOCAL(value1, WASM_SIMD_I32x4_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(value1), WASM_I32V(0))), |
| WASM_SET_LOCAL(value1, WASM_SIMD_I32x4_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(value1), WASM_I32V(-1))), |
| WASM_SIMD_UNOP(kExprI32x4BitMask, WASM_GET_LOCAL(value1))); |
| |
| FOR_INT32_INPUTS(x) { |
| int32_t actual = r.Call(x); |
| // Lane 0 is always 0 (positive), lane 1 is always -1. |
| int32_t expected = std::signbit(static_cast<double>(x)) ? 0xE : 2; |
| CHECK_EQ(actual, expected); |
| } |
| } |
| |
| // TODO(v8:10997) Prototyping i64x2.bitmask. |
| #if V8_TARGET_ARCH_X64 |
| WASM_SIMD_TEST_NO_LOWERING(I64x2BitMask) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd); |
| byte value1 = r.AllocateLocal(kWasmS128); |
| |
| BUILD(r, WASM_SET_LOCAL(value1, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SET_LOCAL(value1, WASM_SIMD_I64x2_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(value1), WASM_I64V_1(0))), |
| WASM_SIMD_UNOP(kExprI64x2BitMask, WASM_GET_LOCAL(value1))); |
| |
| for (int64_t x : compiler::ValueHelper::GetVector<int64_t>()) { |
| int32_t actual = r.Call(x); |
| // Lane 0 is always 0 (positive). |
| int32_t expected = std::signbit(static_cast<double>(x)) ? 0x2 : 0x0; |
| CHECK_EQ(actual, expected); |
| } |
| } |
| #endif // V8_TARGET_ARCH_X64 |
| |
| WASM_SIMD_TEST(I8x16Splat) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold output vector. |
| int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128); |
| byte param1 = 0; |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(param1))), |
| WASM_ONE); |
| |
| FOR_INT8_INPUTS(x) { |
| r.Call(x); |
| int8_t expected = x; |
| for (int i = 0; i < 16; i++) { |
| int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]); |
| CHECK_EQ(actual, expected); |
| } |
| } |
| |
| // Test values that do not fit in a int16. |
| FOR_INT16_INPUTS(x) { |
| r.Call(x); |
| int8_t expected = truncate_to_int8(x); |
| for (int i = 0; i < 16; i++) { |
| int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]); |
| CHECK_EQ(actual, expected); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I8x16ReplaceLane) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up a global to hold input/output vector. |
| int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128); |
| // Build function to replace each lane with its index. |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_I32V(-1))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 0, WASM_GET_LOCAL(temp1), WASM_I32V(0))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 1, WASM_GET_LOCAL(temp1), WASM_I32V(1))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 2, WASM_GET_LOCAL(temp1), WASM_I32V(2))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 3, WASM_GET_LOCAL(temp1), WASM_I32V(3))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 4, WASM_GET_LOCAL(temp1), WASM_I32V(4))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 5, WASM_GET_LOCAL(temp1), WASM_I32V(5))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 6, WASM_GET_LOCAL(temp1), WASM_I32V(6))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 7, WASM_GET_LOCAL(temp1), WASM_I32V(7))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 8, WASM_GET_LOCAL(temp1), WASM_I32V(8))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 9, WASM_GET_LOCAL(temp1), WASM_I32V(9))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 10, WASM_GET_LOCAL(temp1), WASM_I32V(10))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 11, WASM_GET_LOCAL(temp1), WASM_I32V(11))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 12, WASM_GET_LOCAL(temp1), WASM_I32V(12))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 13, WASM_GET_LOCAL(temp1), WASM_I32V(13))), |
| WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE( |
| 14, WASM_GET_LOCAL(temp1), WASM_I32V(14))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_REPLACE_LANE( |
| 15, WASM_GET_LOCAL(temp1), WASM_I32V(15))), |
| WASM_ONE); |
| |
| r.Call(); |
| for (int8_t i = 0; i < 16; i++) { |
| CHECK_EQ(i, ReadLittleEndianValue<int8_t>(&g[i])); |
| } |
| } |
| |
| // Use doubles to ensure exact conversion. |
| int32_t ConvertToInt(double val, bool unsigned_integer) { |
| if (std::isnan(val)) return 0; |
| if (unsigned_integer) { |
| if (val < 0) return 0; |
| if (val > kMaxUInt32) return kMaxUInt32; |
| return static_cast<uint32_t>(val); |
| } else { |
| if (val < kMinInt) return kMinInt; |
| if (val > kMaxInt) return kMaxInt; |
| return static_cast<int>(val); |
| } |
| } |
| |
| // Tests both signed and unsigned conversion. |
| WASM_SIMD_TEST(I32x4ConvertF32x4) { |
| WasmRunner<int32_t, float> r(execution_tier, lower_simd); |
| // Create two output vectors to hold signed and unsigned results. |
| int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| // Build fn to splat test value, perform conversions, and write the results. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4, WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL( |
| 1, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_FLOAT32_INPUTS(x) { |
| if (!PlatformCanRepresent(x)) continue; |
| r.Call(x); |
| int32_t expected_signed = ConvertToInt(x, false); |
| int32_t expected_unsigned = ConvertToInt(x, true); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g1[i])); |
| } |
| } |
| } |
| |
| // Tests both signed and unsigned conversion from I16x8 (unpacking). |
| WASM_SIMD_TEST(I32x4ConvertI16x8) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Create four output vectors to hold signed and unsigned results. |
| int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| int32_t* g2 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| int32_t* g3 = r.builder().AddGlobal<int32_t>(kWasmS128); |
| // Build fn to splat test value, perform conversions, and write the results. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8High, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8Low, |
| WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT16_INPUTS(x) { |
| r.Call(x); |
| int32_t expected_signed = static_cast<int32_t>(x); |
| int32_t expected_unsigned = static_cast<int32_t>(static_cast<uint16_t>(x)); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i])); |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g1[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g2[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g3[i])); |
| } |
| } |
| } |
| |
| // TODO(v8:10972) Prototyping i64x2 convert from i32x4. |
| // Tests both signed and unsigned conversion from I32x4 (unpacking). |
| #if V8_TARGET_ARCH_ARM64 |
| WASM_SIMD_TEST_NO_LOWERING(I64x2ConvertI32x4) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Create four output vectors to hold signed and unsigned results. |
| int64_t* g0 = r.builder().AddGlobal<int64_t>(kWasmS128); |
| int64_t* g1 = r.builder().AddGlobal<int64_t>(kWasmS128); |
| int64_t* g2 = r.builder().AddGlobal<int64_t>(kWasmS128); |
| int64_t* g3 = r.builder().AddGlobal<int64_t>(kWasmS128); |
| // Build fn to splat test value, perform conversions, and write the results. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4High, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI64x2SConvertI32x4Low, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4High, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI64x2UConvertI32x4Low, |
| WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT32_INPUTS(x) { |
| r.Call(x); |
| int64_t expected_signed = static_cast<int64_t>(x); |
| int64_t expected_unsigned = static_cast<int64_t>(static_cast<uint32_t>(x)); |
| for (int i = 0; i < 2; i++) { |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int64_t>(&g0[i])); |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int64_t>(&g1[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int64_t>(&g2[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int64_t>(&g3[i])); |
| } |
| } |
| } |
| #endif // V8_TARGET_ARCH_ARM64 |
| |
| void RunI32x4UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int32UnOp expected_op) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Global to hold output. |
| int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128); |
| // Build fn to splat test value, perform unop, and write the result. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT32_INPUTS(x) { |
| r.Call(x); |
| int32_t expected = expected_op(x); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i])); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I32x4Neg) { |
| RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Neg, |
| base::NegateWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I32x4Abs) { |
| RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Abs, std::abs); |
| } |
| |
| WASM_SIMD_TEST(S128Not) { |
| RunI32x4UnOpTest(execution_tier, lower_simd, kExprS128Not, |
| [](int32_t x) { return ~x; }); |
| } |
| |
| #if V8_TARGET_ARCH_ARM64 |
| // TODO(v8:11086) Prototype i32x4.extadd_pairwise_i16x8_{s,u} |
| template <typename Narrow, typename Wide> |
| void RunExtAddPairwiseTest(TestExecutionTier execution_tier, |
| LowerSimd lower_simd, WasmOpcode ext_add_pairwise, |
| WasmOpcode splat) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| constexpr int num_lanes = kSimd128Size / sizeof(Wide); |
| WasmRunner<int32_t, Narrow> r(execution_tier, lower_simd); |
| Wide* g = r.builder().template AddGlobal<Wide>(kWasmS128); |
| |
| // TODO(v8:11086) We splat the same value, so pairwise adding ends up adding |
| // the same value to itself, consider a more complicated test, like having 2 |
| // vectors, and shuffling them. |
| BUILD(r, WASM_GET_LOCAL(0), WASM_SIMD_OP(splat), |
| WASM_SIMD_OP(ext_add_pairwise), kExprGlobalSet, 0, WASM_ONE); |
| |
| for (Narrow x : compiler::ValueHelper::GetVector<Narrow>()) { |
| r.Call(x); |
| Wide expected = AddLong<Wide>(x, x); |
| for (int i = 0; i < num_lanes; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<Wide>(&g[i])); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8S) { |
| RunExtAddPairwiseTest<int16_t, int32_t>(execution_tier, lower_simd, |
| kExprI32x4ExtAddPairwiseI16x8S, |
| kExprI16x8Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I32x4ExtAddPairwiseI16x8U) { |
| RunExtAddPairwiseTest<uint16_t, uint32_t>(execution_tier, lower_simd, |
| kExprI32x4ExtAddPairwiseI16x8U, |
| kExprI16x8Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16S) { |
| RunExtAddPairwiseTest<int8_t, int16_t>(execution_tier, lower_simd, |
| kExprI16x8ExtAddPairwiseI8x16S, |
| kExprI8x16Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I16x8ExtAddPairwiseI8x16U) { |
| RunExtAddPairwiseTest<uint8_t, uint16_t>(execution_tier, lower_simd, |
| kExprI16x8ExtAddPairwiseI8x16U, |
| kExprI8x16Splat); |
| } |
| #endif // V8_TARGET_ARCH_ARM64 |
| |
| void RunI32x4BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int32BinOp expected_op) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd); |
| // Global to hold output. |
| int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128); |
| // Build fn to splat test values, perform binop, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| FOR_INT32_INPUTS(x) { |
| FOR_INT32_INPUTS(y) { |
| r.Call(x, y); |
| int32_t expected = expected_op(x, y); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I32x4Add) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Add, |
| base::AddWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I32x4Sub) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Sub, |
| base::SubWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I32x4Mul) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Mul, |
| base::MulWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I32x4MinS) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinS, Minimum); |
| } |
| |
| WASM_SIMD_TEST(I32x4MaxS) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxS, Maximum); |
| } |
| |
| WASM_SIMD_TEST(I32x4MinU) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinU, |
| UnsignedMinimum); |
| } |
| WASM_SIMD_TEST(I32x4MaxU) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxU, |
| |
| UnsignedMaximum); |
| } |
| |
| WASM_SIMD_TEST(S128And) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128And, |
| [](int32_t x, int32_t y) { return x & y; }); |
| } |
| |
| WASM_SIMD_TEST(S128Or) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Or, |
| [](int32_t x, int32_t y) { return x | y; }); |
| } |
| |
| WASM_SIMD_TEST(S128Xor) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Xor, |
| [](int32_t x, int32_t y) { return x ^ y; }); |
| } |
| |
| // Bitwise operation, doesn't really matter what simd type we test it with. |
| WASM_SIMD_TEST(S128AndNot) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128AndNot, |
| [](int32_t x, int32_t y) { return x & ~y; }); |
| } |
| |
| WASM_SIMD_TEST(I32x4Eq) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Eq, Equal); |
| } |
| |
| WASM_SIMD_TEST(I32x4Ne) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Ne, NotEqual); |
| } |
| |
| WASM_SIMD_TEST(I32x4LtS) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtS, Less); |
| } |
| |
| WASM_SIMD_TEST(I32x4LeS) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeS, LessEqual); |
| } |
| |
| WASM_SIMD_TEST(I32x4GtS) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtS, Greater); |
| } |
| |
| WASM_SIMD_TEST(I32x4GeS) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeS, GreaterEqual); |
| } |
| |
| WASM_SIMD_TEST(I32x4LtU) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtU, UnsignedLess); |
| } |
| |
| WASM_SIMD_TEST(I32x4LeU) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeU, |
| UnsignedLessEqual); |
| } |
| |
| WASM_SIMD_TEST(I32x4GtU) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtU, UnsignedGreater); |
| } |
| |
| WASM_SIMD_TEST(I32x4GeU) { |
| RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeU, |
| UnsignedGreaterEqual); |
| } |
| |
| void RunI32x4ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int32ShiftOp expected_op) { |
| // Intentionally shift by 32, should be no-op. |
| for (int shift = 1; shift <= 32; shift++) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| int32_t* memory = r.builder().AddMemoryElems<int32_t>(1); |
| int32_t* g_imm = r.builder().AddGlobal<int32_t>(kWasmS128); |
| int32_t* g_mem = r.builder().AddGlobal<int32_t>(kWasmS128); |
| byte value = 0; |
| byte simd = r.AllocateLocal(kWasmS128); |
| // Shift using an immediate, and shift using a value loaded from memory. |
| BUILD( |
| r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd), |
| WASM_I32V(shift))), |
| WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP( |
| opcode, WASM_GET_LOCAL(simd), |
| WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), |
| WASM_ONE); |
| |
| r.builder().WriteMemory(&memory[0], shift); |
| FOR_INT32_INPUTS(x) { |
| r.Call(x); |
| int32_t expected = expected_op(x, shift); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g_imm[i])); |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g_mem[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I32x4Shl) { |
| RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4Shl, |
| LogicalShiftLeft); |
| } |
| |
| WASM_SIMD_TEST(I32x4ShrS) { |
| RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrS, |
| ArithmeticShiftRight); |
| } |
| |
| WASM_SIMD_TEST(I32x4ShrU) { |
| RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrU, |
| LogicalShiftRight); |
| } |
| |
| // Tests both signed and unsigned conversion from I8x16 (unpacking). |
| WASM_SIMD_TEST(I16x8ConvertI8x16) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Create four output vectors to hold signed and unsigned results. |
| int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128); |
| int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128); |
| int16_t* g2 = r.builder().AddGlobal<int16_t>(kWasmS128); |
| int16_t* g3 = r.builder().AddGlobal<int16_t>(kWasmS128); |
| // Build fn to splat test value, perform conversions, and write the results. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16High, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High, |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16Low, |
| WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT8_INPUTS(x) { |
| r.Call(x); |
| int16_t expected_signed = static_cast<int16_t>(x); |
| int16_t expected_unsigned = static_cast<int16_t>(static_cast<uint8_t>(x)); |
| for (int i = 0; i < 8; i++) { |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i])); |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g1[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g2[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g3[i])); |
| } |
| } |
| } |
| |
| // Tests both signed and unsigned conversion from I32x4 (packing). |
| WASM_SIMD_TEST(I16x8ConvertI32x4) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Create output vectors to hold signed and unsigned results. |
| int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128); |
| int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128); |
| // Build fn to splat test value, perform conversions, and write the results. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL( |
| 1, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT32_INPUTS(x) { |
| r.Call(x); |
| int16_t expected_signed = Saturate<int16_t>(x); |
| int16_t expected_unsigned = Saturate<uint16_t>(x); |
| for (int i = 0; i < 8; i++) { |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g1[i])); |
| } |
| } |
| } |
| |
| void RunI16x8UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int16UnOp expected_op) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Global to hold output. |
| int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128); |
| // Build fn to splat test value, perform unop, and write the result. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT16_INPUTS(x) { |
| r.Call(x); |
| int16_t expected = expected_op(x); |
| for (int i = 0; i < 8; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i])); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I16x8Neg) { |
| RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Neg, |
| base::NegateWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I16x8Abs) { |
| RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Abs, Abs); |
| } |
| |
| template <typename T = int16_t, typename OpType = T (*)(T, T)> |
| void RunI16x8BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, OpType expected_op) { |
| WasmRunner<int32_t, T, T> r(execution_tier, lower_simd); |
| // Global to hold output. |
| T* g = r.builder().template AddGlobal<T>(kWasmS128); |
| // Build fn to splat test values, perform binop, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| for (T x : compiler::ValueHelper::GetVector<T>()) { |
| for (T y : compiler::ValueHelper::GetVector<T>()) { |
| r.Call(x, y); |
| T expected = expected_op(x, y); |
| for (int i = 0; i < 8; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I16x8Add) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Add, |
| base::AddWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I16x8AddSatS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatS, |
| SaturateAdd<int16_t>); |
| } |
| |
| WASM_SIMD_TEST(I16x8Sub) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Sub, |
| base::SubWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I16x8SubSatS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatS, |
| SaturateSub<int16_t>); |
| } |
| |
| WASM_SIMD_TEST(I16x8Mul) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Mul, |
| base::MulWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I16x8MinS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinS, Minimum); |
| } |
| |
| WASM_SIMD_TEST(I16x8MaxS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxS, Maximum); |
| } |
| |
| WASM_SIMD_TEST(I16x8AddSatU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSatU, |
| SaturateAdd<uint16_t>); |
| } |
| |
| WASM_SIMD_TEST(I16x8SubSatU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSatU, |
| SaturateSub<uint16_t>); |
| } |
| |
| WASM_SIMD_TEST(I16x8MinU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinU, |
| UnsignedMinimum); |
| } |
| |
| WASM_SIMD_TEST(I16x8MaxU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxU, |
| UnsignedMaximum); |
| } |
| |
| WASM_SIMD_TEST(I16x8Eq) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Eq, Equal); |
| } |
| |
| WASM_SIMD_TEST(I16x8Ne) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Ne, NotEqual); |
| } |
| |
| WASM_SIMD_TEST(I16x8LtS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtS, Less); |
| } |
| |
| WASM_SIMD_TEST(I16x8LeS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeS, LessEqual); |
| } |
| |
| WASM_SIMD_TEST(I16x8GtS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtS, Greater); |
| } |
| |
| WASM_SIMD_TEST(I16x8GeS) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeS, GreaterEqual); |
| } |
| |
| WASM_SIMD_TEST(I16x8GtU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater); |
| } |
| |
| WASM_SIMD_TEST(I16x8GeU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeU, |
| UnsignedGreaterEqual); |
| } |
| |
| WASM_SIMD_TEST(I16x8LtU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess); |
| } |
| |
| WASM_SIMD_TEST(I16x8LeU) { |
| RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeU, |
| UnsignedLessEqual); |
| } |
| |
| WASM_SIMD_TEST(I16x8RoundingAverageU) { |
| RunI16x8BinOpTest<uint16_t>(execution_tier, lower_simd, |
| kExprI16x8RoundingAverageU, |
| base::RoundingAverageUnsigned); |
| } |
| |
| #if V8_TARGET_ARCH_ARM64 |
| // TODO(v8:10971) Prototype i16x8.q15mulr_sat_s |
| WASM_SIMD_TEST_NO_LOWERING(I16x8Q15MulRSatS) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| RunI16x8BinOpTest<int16_t>(execution_tier, lower_simd, kExprI16x8Q15MulRSatS, |
| SaturateRoundingQMul<int16_t>); |
| } |
| |
| // TODO(v8:11008) Prototype extended multiplication. |
| namespace { |
| enum class MulHalf { kLow, kHigh }; |
| |
| // Helper to run ext mul tests. It will splat 2 input values into 2 v128, call |
| // the mul op on these operands, and set the result into a global. |
| // It will zero the top or bottom half of one of the operands, this will catch |
| // mistakes if we are multiply the incorrect halves. |
| template <typename S, typename T, typename OpType = T (*)(S, S)> |
| void RunExtMulTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, OpType expected_op, WasmOpcode splat, |
| MulHalf half) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, S, S> r(execution_tier, lower_simd); |
| int lane_to_zero = half == MulHalf::kLow ? 1 : 0; |
| T* g = r.builder().template AddGlobal<T>(kWasmS128); |
| |
| BUILD(r, |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_BINOP( |
| opcode, |
| WASM_SIMD_I64x2_REPLACE_LANE( |
| lane_to_zero, WASM_SIMD_UNOP(splat, WASM_GET_LOCAL(0)), |
| WASM_I64V_1(0)), |
| WASM_SIMD_UNOP(splat, WASM_GET_LOCAL(1)))), |
| WASM_ONE); |
| |
| constexpr int lanes = kSimd128Size / sizeof(T); |
| for (S x : compiler::ValueHelper::GetVector<S>()) { |
| for (S y : compiler::ValueHelper::GetVector<S>()) { |
| r.Call(x, y); |
| T expected = expected_op(x, y); |
| for (int i = 0; i < lanes; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i])); |
| } |
| } |
| } |
| } |
| } // namespace |
| |
| WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulLowI8x16S) { |
| RunExtMulTest<int8_t, int16_t>(execution_tier, lower_simd, |
| kExprI16x8ExtMulLowI8x16S, MultiplyLong, |
| kExprI8x16Splat, MulHalf::kLow); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulHighI8x16S) { |
| RunExtMulTest<int8_t, int16_t>(execution_tier, lower_simd, |
| kExprI16x8ExtMulHighI8x16S, MultiplyLong, |
| kExprI8x16Splat, MulHalf::kHigh); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulLowI8x16U) { |
| RunExtMulTest<uint8_t, uint16_t>(execution_tier, lower_simd, |
| kExprI16x8ExtMulLowI8x16U, MultiplyLong, |
| kExprI8x16Splat, MulHalf::kLow); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I16x8ExtMulHighI8x16U) { |
| RunExtMulTest<uint8_t, uint16_t>(execution_tier, lower_simd, |
| kExprI16x8ExtMulHighI8x16U, MultiplyLong, |
| kExprI8x16Splat, MulHalf::kHigh); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulLowI16x8S) { |
| RunExtMulTest<int16_t, int32_t>(execution_tier, lower_simd, |
| kExprI32x4ExtMulLowI16x8S, MultiplyLong, |
| kExprI16x8Splat, MulHalf::kLow); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulHighI16x8S) { |
| RunExtMulTest<int16_t, int32_t>(execution_tier, lower_simd, |
| kExprI32x4ExtMulHighI16x8S, MultiplyLong, |
| kExprI16x8Splat, MulHalf::kHigh); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulLowI16x8U) { |
| RunExtMulTest<uint16_t, uint32_t>(execution_tier, lower_simd, |
| kExprI32x4ExtMulLowI16x8U, MultiplyLong, |
| kExprI16x8Splat, MulHalf::kLow); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I32x4ExtMulHighI16x8U) { |
| RunExtMulTest<uint16_t, uint32_t>(execution_tier, lower_simd, |
| kExprI32x4ExtMulHighI16x8U, MultiplyLong, |
| kExprI16x8Splat, MulHalf::kHigh); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulLowI32x4S) { |
| RunExtMulTest<int32_t, int64_t>(execution_tier, lower_simd, |
| kExprI64x2ExtMulLowI32x4S, MultiplyLong, |
| kExprI32x4Splat, MulHalf::kLow); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulHighI32x4S) { |
| RunExtMulTest<int32_t, int64_t>(execution_tier, lower_simd, |
| kExprI64x2ExtMulHighI32x4S, MultiplyLong, |
| kExprI32x4Splat, MulHalf::kHigh); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulLowI32x4U) { |
| RunExtMulTest<uint32_t, uint64_t>(execution_tier, lower_simd, |
| kExprI64x2ExtMulLowI32x4U, MultiplyLong, |
| kExprI32x4Splat, MulHalf::kLow); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(I64x2ExtMulHighI32x4U) { |
| RunExtMulTest<uint32_t, uint64_t>(execution_tier, lower_simd, |
| kExprI64x2ExtMulHighI32x4U, MultiplyLong, |
| kExprI32x4Splat, MulHalf::kHigh); |
| } |
| #endif // V8_TARGET_ARCH_ARM64 |
| |
| WASM_SIMD_TEST(I32x4DotI16x8S) { |
| WasmRunner<int32_t, int16_t, int16_t> r(execution_tier, lower_simd); |
| int32_t* g = r.builder().template AddGlobal<int32_t>(kWasmS128); |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_BINOP(kExprI32x4DotI16x8S, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| for (int16_t x : compiler::ValueHelper::GetVector<int16_t>()) { |
| for (int16_t y : compiler::ValueHelper::GetVector<int16_t>()) { |
| r.Call(x, y); |
| // x * y * 2 can overflow (0x8000), the behavior is to wraparound. |
| int32_t expected = base::MulWithWraparound(x * y, 2); |
| for (int i = 0; i < 4; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i])); |
| } |
| } |
| } |
| } |
| |
| void RunI16x8ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int16ShiftOp expected_op) { |
| // Intentionally shift by 16, should be no-op. |
| for (int shift = 1; shift <= 16; shift++) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| int32_t* memory = r.builder().AddMemoryElems<int32_t>(1); |
| int16_t* g_imm = r.builder().AddGlobal<int16_t>(kWasmS128); |
| int16_t* g_mem = r.builder().AddGlobal<int16_t>(kWasmS128); |
| byte value = 0; |
| byte simd = r.AllocateLocal(kWasmS128); |
| // Shift using an immediate, and shift using a value loaded from memory. |
| BUILD( |
| r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd), |
| WASM_I32V(shift))), |
| WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP( |
| opcode, WASM_GET_LOCAL(simd), |
| WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), |
| WASM_ONE); |
| |
| r.builder().WriteMemory(&memory[0], shift); |
| FOR_INT16_INPUTS(x) { |
| r.Call(x); |
| int16_t expected = expected_op(x, shift); |
| for (int i = 0; i < 8; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g_imm[i])); |
| CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g_mem[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I16x8Shl) { |
| RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8Shl, |
| LogicalShiftLeft); |
| } |
| |
| WASM_SIMD_TEST(I16x8ShrS) { |
| RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrS, |
| ArithmeticShiftRight); |
| } |
| |
| WASM_SIMD_TEST(I16x8ShrU) { |
| RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrU, |
| LogicalShiftRight); |
| } |
| |
| void RunI8x16UnOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int8UnOp expected_op) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Global to hold output. |
| int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128); |
| // Build fn to splat test value, perform unop, and write the result. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT8_INPUTS(x) { |
| r.Call(x); |
| int8_t expected = expected_op(x); |
| for (int i = 0; i < 16; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i])); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I8x16Neg) { |
| RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Neg, |
| base::NegateWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I8x16Abs) { |
| RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Abs, Abs); |
| } |
| |
| #if V8_TARGET_ARCH_ARM64 |
| // TODO(v8:11002) Prototype i8x16.popcnt. |
| WASM_SIMD_TEST_NO_LOWERING(I8x16Popcnt) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Global to hold output. |
| int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128); |
| // Build fn to splat test value, perform unop, and write the result. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_UNOP(kExprI8x16Popcnt, WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_UINT8_INPUTS(x) { |
| r.Call(x); |
| unsigned expected = base::bits::CountPopulation(x); |
| for (int i = 0; i < 16; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i])); |
| } |
| } |
| } |
| #endif // V8_TARGET_ARCH_ARM64 |
| |
| // Tests both signed and unsigned conversion from I16x8 (packing). |
| WASM_SIMD_TEST(I8x16ConvertI16x8) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Create output vectors to hold signed and unsigned results. |
| int8_t* g0 = r.builder().AddGlobal<int8_t>(kWasmS128); |
| int8_t* g1 = r.builder().AddGlobal<int8_t>(kWasmS128); |
| // Build fn to splat test value, perform conversions, and write the results. |
| byte value = 0; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp1))), |
| WASM_SET_GLOBAL( |
| 1, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp1))), |
| WASM_ONE); |
| |
| FOR_INT16_INPUTS(x) { |
| r.Call(x); |
| int8_t expected_signed = Saturate<int8_t>(x); |
| int8_t expected_unsigned = Saturate<uint8_t>(x); |
| for (int i = 0; i < 16; i++) { |
| CHECK_EQ(expected_signed, ReadLittleEndianValue<int8_t>(&g0[i])); |
| CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int8_t>(&g1[i])); |
| } |
| } |
| } |
| |
| template <typename T = int8_t, typename OpType = T (*)(T, T)> |
| void RunI8x16BinOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, OpType expected_op) { |
| WasmRunner<int32_t, T, T> r(execution_tier, lower_simd); |
| // Global to hold output. |
| T* g = r.builder().template AddGlobal<T>(kWasmS128); |
| // Build fn to splat test values, perform binop, and write the result. |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_ONE); |
| |
| for (T x : compiler::ValueHelper::GetVector<T>()) { |
| for (T y : compiler::ValueHelper::GetVector<T>()) { |
| r.Call(x, y); |
| T expected = expected_op(x, y); |
| for (int i = 0; i < 16; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<T>(&g[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I8x16Add) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Add, |
| base::AddWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I8x16AddSatS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatS, |
| SaturateAdd<int8_t>); |
| } |
| |
| WASM_SIMD_TEST(I8x16Sub) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Sub, |
| base::SubWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I8x16SubSatS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatS, |
| SaturateSub<int8_t>); |
| } |
| |
| WASM_SIMD_TEST(I8x16MinS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinS, Minimum); |
| } |
| |
| WASM_SIMD_TEST(I8x16MaxS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxS, Maximum); |
| } |
| |
| WASM_SIMD_TEST(I8x16AddSatU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSatU, |
| SaturateAdd<uint8_t>); |
| } |
| |
| WASM_SIMD_TEST(I8x16SubSatU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSatU, |
| SaturateSub<uint8_t>); |
| } |
| |
| WASM_SIMD_TEST(I8x16MinU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinU, |
| UnsignedMinimum); |
| } |
| |
| WASM_SIMD_TEST(I8x16MaxU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxU, |
| UnsignedMaximum); |
| } |
| |
| WASM_SIMD_TEST(I8x16Eq) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Eq, Equal); |
| } |
| |
| WASM_SIMD_TEST(I8x16Ne) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Ne, NotEqual); |
| } |
| |
| WASM_SIMD_TEST(I8x16GtS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtS, Greater); |
| } |
| |
| WASM_SIMD_TEST(I8x16GeS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeS, GreaterEqual); |
| } |
| |
| WASM_SIMD_TEST(I8x16LtS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtS, Less); |
| } |
| |
| WASM_SIMD_TEST(I8x16LeS) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeS, LessEqual); |
| } |
| |
| WASM_SIMD_TEST(I8x16GtU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater); |
| } |
| |
| WASM_SIMD_TEST(I8x16GeU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeU, |
| UnsignedGreaterEqual); |
| } |
| |
| WASM_SIMD_TEST(I8x16LtU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess); |
| } |
| |
| WASM_SIMD_TEST(I8x16LeU) { |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeU, |
| UnsignedLessEqual); |
| } |
| |
| WASM_SIMD_TEST(I8x16Mul) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Mul, |
| base::MulWithWraparound); |
| } |
| |
| WASM_SIMD_TEST(I8x16RoundingAverageU) { |
| RunI8x16BinOpTest<uint8_t>(execution_tier, lower_simd, |
| kExprI8x16RoundingAverageU, |
| base::RoundingAverageUnsigned); |
| } |
| |
| void RunI8x16ShiftOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode opcode, Int8ShiftOp expected_op) { |
| // Intentionally shift by 8, should be no-op. |
| for (int shift = 1; shift <= 8; shift++) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| int32_t* memory = r.builder().AddMemoryElems<int32_t>(1); |
| int8_t* g_imm = r.builder().AddGlobal<int8_t>(kWasmS128); |
| int8_t* g_mem = r.builder().AddGlobal<int8_t>(kWasmS128); |
| byte value = 0; |
| byte simd = r.AllocateLocal(kWasmS128); |
| // Shift using an immediate, and shift using a value loaded from memory. |
| BUILD( |
| r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_SHIFT_OP(opcode, WASM_GET_LOCAL(simd), |
| WASM_I32V(shift))), |
| WASM_SET_GLOBAL(1, WASM_SIMD_SHIFT_OP( |
| opcode, WASM_GET_LOCAL(simd), |
| WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO))), |
| WASM_ONE); |
| |
| r.builder().WriteMemory(&memory[0], shift); |
| FOR_INT8_INPUTS(x) { |
| r.Call(x); |
| int8_t expected = expected_op(x, shift); |
| for (int i = 0; i < 16; i++) { |
| CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g_imm[i])); |
| CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g_mem[i])); |
| } |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(I8x16Shl) { |
| RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16Shl, |
| LogicalShiftLeft); |
| } |
| |
| WASM_SIMD_TEST(I8x16ShrS) { |
| RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrS, |
| ArithmeticShiftRight); |
| } |
| |
| WASM_SIMD_TEST(I8x16ShrU) { |
| RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrU, |
| LogicalShiftRight); |
| } |
| |
| // Test Select by making a mask where the 0th and 3rd lanes are true and the |
| // rest false, and comparing for non-equality with zero to convert to a boolean |
| // vector. |
| #define WASM_SIMD_SELECT_TEST(format) \ |
| WASM_SIMD_TEST(S##format##Select) { \ |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd); \ |
| byte val1 = 0; \ |
| byte val2 = 1; \ |
| byte src1 = r.AllocateLocal(kWasmS128); \ |
| byte src2 = r.AllocateLocal(kWasmS128); \ |
| byte zero = r.AllocateLocal(kWasmS128); \ |
| byte mask = r.AllocateLocal(kWasmS128); \ |
| BUILD(r, \ |
| WASM_SET_LOCAL(src1, \ |
| WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \ |
| WASM_SET_LOCAL(src2, \ |
| WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \ |
| WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \ |
| WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ |
| 1, WASM_GET_LOCAL(zero), WASM_I32V(-1))), \ |
| WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ |
| 2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), \ |
| WASM_SET_LOCAL( \ |
| mask, \ |
| WASM_SIMD_SELECT( \ |
| format, WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2), \ |
| WASM_SIMD_BINOP(kExprI##format##Ne, WASM_GET_LOCAL(mask), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 1), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val1, 2), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \ |
| \ |
| CHECK_EQ(1, r.Call(0x12, 0x34)); \ |
| } |
| |
| WASM_SIMD_SELECT_TEST(32x4) |
| WASM_SIMD_SELECT_TEST(16x8) |
| WASM_SIMD_SELECT_TEST(8x16) |
| |
| // Test Select by making a mask where the 0th and 3rd lanes are non-zero and the |
| // rest 0. The mask is not the result of a comparison op. |
| #define WASM_SIMD_NON_CANONICAL_SELECT_TEST(format) \ |
| WASM_SIMD_TEST_NO_LOWERING(S##format##NonCanonicalSelect) { \ |
| WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier, \ |
| lower_simd); \ |
| byte val1 = 0; \ |
| byte val2 = 1; \ |
| byte combined = 2; \ |
| byte src1 = r.AllocateLocal(kWasmS128); \ |
| byte src2 = r.AllocateLocal(kWasmS128); \ |
| byte zero = r.AllocateLocal(kWasmS128); \ |
| byte mask = r.AllocateLocal(kWasmS128); \ |
| BUILD(r, \ |
| WASM_SET_LOCAL(src1, \ |
| WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \ |
| WASM_SET_LOCAL(src2, \ |
| WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \ |
| WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \ |
| WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ |
| 1, WASM_GET_LOCAL(zero), WASM_I32V(0xF))), \ |
| WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ |
| 2, WASM_GET_LOCAL(mask), WASM_I32V(0xF))), \ |
| WASM_SET_LOCAL(mask, WASM_SIMD_SELECT(format, WASM_GET_LOCAL(src1), \ |
| WASM_GET_LOCAL(src2), \ |
| WASM_GET_LOCAL(mask))), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 0), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 1), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, combined, 2), \ |
| WASM_SIMD_CHECK_LANE_S(I##format, mask, I32, val2, 3), WASM_ONE); \ |
| \ |
| CHECK_EQ(1, r.Call(0x12, 0x34, 0x32)); \ |
| } |
| |
| WASM_SIMD_NON_CANONICAL_SELECT_TEST(32x4) |
| WASM_SIMD_NON_CANONICAL_SELECT_TEST(16x8) |
| WASM_SIMD_NON_CANONICAL_SELECT_TEST(8x16) |
| |
| // Test binary ops with two lane test patterns, all lanes distinct. |
| template <typename T> |
| void RunBinaryLaneOpTest( |
| TestExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, |
| const std::array<T, kSimd128Size / sizeof(T)>& expected) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7]. |
| T* src0 = r.builder().AddGlobal<T>(kWasmS128); |
| T* src1 = r.builder().AddGlobal<T>(kWasmS128); |
| static const int kElems = kSimd128Size / sizeof(T); |
| for (int i = 0; i < kElems; i++) { |
| WriteLittleEndianValue<T>(&src0[i], i); |
| WriteLittleEndianValue<T>(&src1[i], kElems + i); |
| } |
| if (simd_op == kExprI8x16Shuffle) { |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_SHUFFLE_OP(simd_op, expected, |
| WASM_GET_GLOBAL(0), |
| WASM_GET_GLOBAL(1))), |
| WASM_ONE); |
| } else { |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(simd_op, WASM_GET_GLOBAL(0), |
| WASM_GET_GLOBAL(1))), |
| WASM_ONE); |
| } |
| |
| CHECK_EQ(1, r.Call()); |
| for (size_t i = 0; i < expected.size(); i++) { |
| CHECK_EQ(ReadLittleEndianValue<T>(&src0[i]), expected[i]); |
| } |
| } |
| |
| WASM_SIMD_TEST(I32x4AddHoriz) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| // Inputs are [0 1 2 3] and [4 5 6 7]. |
| RunBinaryLaneOpTest<int32_t>(execution_tier, lower_simd, kExprI32x4AddHoriz, |
| {{1, 5, 9, 13}}); |
| } |
| |
| WASM_SIMD_TEST(I16x8AddHoriz) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| // Inputs are [0 1 2 3 4 5 6 7] and [8 9 10 11 12 13 14 15]. |
| RunBinaryLaneOpTest<int16_t>(execution_tier, lower_simd, kExprI16x8AddHoriz, |
| {{1, 5, 9, 13, 17, 21, 25, 29}}); |
| } |
| |
| WASM_SIMD_TEST(F32x4AddHoriz) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| // Inputs are [0.0f 1.0f 2.0f 3.0f] and [4.0f 5.0f 6.0f 7.0f]. |
| RunBinaryLaneOpTest<float>(execution_tier, lower_simd, kExprF32x4AddHoriz, |
| {{1.0f, 5.0f, 9.0f, 13.0f}}); |
| } |
| |
| // Test shuffle ops. |
| void RunShuffleOpTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode simd_op, |
| const std::array<int8_t, kSimd128Size>& shuffle) { |
| // Test the original shuffle. |
| RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, shuffle); |
| |
| // Test a non-canonical (inputs reversed) version of the shuffle. |
| std::array<int8_t, kSimd128Size> other_shuffle(shuffle); |
| for (size_t i = 0; i < shuffle.size(); ++i) other_shuffle[i] ^= kSimd128Size; |
| RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, |
| other_shuffle); |
| |
| // Test the swizzle (one-operand) version of the shuffle. |
| std::array<int8_t, kSimd128Size> swizzle(shuffle); |
| for (size_t i = 0; i < shuffle.size(); ++i) swizzle[i] &= (kSimd128Size - 1); |
| RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, swizzle); |
| |
| // Test the non-canonical swizzle (one-operand) version of the shuffle. |
| std::array<int8_t, kSimd128Size> other_swizzle(shuffle); |
| for (size_t i = 0; i < shuffle.size(); ++i) other_swizzle[i] |= kSimd128Size; |
| RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, |
| other_swizzle); |
| } |
| |
| #define SHUFFLE_LIST(V) \ |
| V(S128Identity) \ |
| V(S32x4Dup) \ |
| V(S32x4ZipLeft) \ |
| V(S32x4ZipRight) \ |
| V(S32x4UnzipLeft) \ |
| V(S32x4UnzipRight) \ |
| V(S32x4TransposeLeft) \ |
| V(S32x4TransposeRight) \ |
| V(S32x2Reverse) \ |
| V(S32x4Irregular) \ |
| V(S16x8Dup) \ |
| V(S16x8ZipLeft) \ |
| V(S16x8ZipRight) \ |
| V(S16x8UnzipLeft) \ |
| V(S16x8UnzipRight) \ |
| V(S16x8TransposeLeft) \ |
| V(S16x8TransposeRight) \ |
| V(S16x4Reverse) \ |
| V(S16x2Reverse) \ |
| V(S16x8Irregular) \ |
| V(S8x16Dup) \ |
| V(S8x16ZipLeft) \ |
| V(S8x16ZipRight) \ |
| V(S8x16UnzipLeft) \ |
| V(S8x16UnzipRight) \ |
| V(S8x16TransposeLeft) \ |
| V(S8x16TransposeRight) \ |
| V(S8x8Reverse) \ |
| V(S8x4Reverse) \ |
| V(S8x2Reverse) \ |
| V(S8x16Irregular) |
| |
| enum ShuffleKey { |
| #define SHUFFLE_ENUM_VALUE(Name) k##Name, |
| SHUFFLE_LIST(SHUFFLE_ENUM_VALUE) |
| #undef SHUFFLE_ENUM_VALUE |
| kNumShuffleKeys |
| }; |
| |
| using Shuffle = std::array<int8_t, kSimd128Size>; |
| using ShuffleMap = std::map<ShuffleKey, const Shuffle>; |
| |
| ShuffleMap test_shuffles = { |
| {kS128Identity, |
| {{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}}, |
| {kS32x4Dup, |
| {{16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19}}}, |
| {kS32x4ZipLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}}}, |
| {kS32x4ZipRight, |
| {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}}}, |
| {kS32x4UnzipLeft, |
| {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}}}, |
| {kS32x4UnzipRight, |
| {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}}}, |
| {kS32x4TransposeLeft, |
| {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}}}, |
| {kS32x4TransposeRight, |
| {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}}}, |
| {kS32x2Reverse, // swizzle only |
| {{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}}}, |
| {kS32x4Irregular, |
| {{0, 1, 2, 3, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 22, 23}}}, |
| {kS16x8Dup, |
| {{18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19}}}, |
| {kS16x8ZipLeft, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}}}, |
| {kS16x8ZipRight, |
| {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}}}, |
| {kS16x8UnzipLeft, |
| {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}}}, |
| {kS16x8UnzipRight, |
| {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}}}, |
| {kS16x8TransposeLeft, |
| {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}}}, |
| {kS16x8TransposeRight, |
| {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}}}, |
| {kS16x4Reverse, // swizzle only |
| {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}}}, |
| {kS16x2Reverse, // swizzle only |
| {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}}}, |
| {kS16x8Irregular, |
| {{0, 1, 16, 17, 16, 17, 0, 1, 4, 5, 20, 21, 6, 7, 22, 23}}}, |
| {kS8x16Dup, |
| {{19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19}}}, |
| {kS8x16ZipLeft, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}}, |
| {kS8x16ZipRight, |
| {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}}}, |
| {kS8x16UnzipLeft, |
| {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}}}, |
| {kS8x16UnzipRight, |
| {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}}}, |
| {kS8x16TransposeLeft, |
| {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}}}, |
| {kS8x16TransposeRight, |
| {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}}}, |
| {kS8x8Reverse, // swizzle only |
| {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}}}, |
| {kS8x4Reverse, // swizzle only |
| {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}}}, |
| {kS8x2Reverse, // swizzle only |
| {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}}}, |
| {kS8x16Irregular, |
| {{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}}, |
| }; |
| |
| #define SHUFFLE_TEST(Name) \ |
| WASM_SIMD_TEST(Name) { \ |
| ShuffleMap::const_iterator it = test_shuffles.find(k##Name); \ |
| DCHECK_NE(it, test_shuffles.end()); \ |
| RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, \ |
| it->second); \ |
| } |
| SHUFFLE_LIST(SHUFFLE_TEST) |
| #undef SHUFFLE_TEST |
| #undef SHUFFLE_LIST |
| |
| // Test shuffles that blend the two vectors (elements remain in their lanes.) |
| WASM_SIMD_TEST(S8x16Blend) { |
| std::array<int8_t, kSimd128Size> expected; |
| for (int bias = 1; bias < kSimd128Size; bias++) { |
| for (int i = 0; i < bias; i++) expected[i] = i; |
| for (int i = bias; i < kSimd128Size; i++) expected[i] = i + kSimd128Size; |
| RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected); |
| } |
| } |
| |
| // Test shuffles that concatenate the two vectors. |
| WASM_SIMD_TEST(S8x16Concat) { |
| std::array<int8_t, kSimd128Size> expected; |
| // n is offset or bias of concatenation. |
| for (int n = 1; n < kSimd128Size; ++n) { |
| int i = 0; |
| // last kLanes - n bytes of first vector. |
| for (int j = n; j < kSimd128Size; ++j) { |
| expected[i++] = j; |
| } |
| // first n bytes of second vector |
| for (int j = 0; j < n; ++j) { |
| expected[i++] = j + kSimd128Size; |
| } |
| RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, expected); |
| } |
| } |
| |
| struct SwizzleTestArgs { |
| const Shuffle input; |
| const Shuffle indices; |
| const Shuffle expected; |
| }; |
| |
| static constexpr SwizzleTestArgs swizzle_test_args[] = { |
| {{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, |
| {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, |
| {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, |
| {{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, |
| {15, 0, 14, 1, 13, 2, 12, 3, 11, 4, 10, 5, 9, 6, 8, 7}, |
| {0, 15, 1, 14, 2, 13, 3, 12, 4, 11, 5, 10, 6, 9, 7, 8}}, |
| {{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, |
| {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, |
| {15, 13, 11, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| // all indices are out of range |
| {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, |
| {16, 17, 18, 19, 20, 124, 125, 126, 127, -1, -2, -3, -4, -5, -6, -7}, |
| {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}}; |
| |
| static constexpr Vector<const SwizzleTestArgs> swizzle_test_vector = |
| ArrayVector(swizzle_test_args); |
| |
| WASM_SIMD_TEST(I8x16Swizzle) { |
| // RunBinaryLaneOpTest set up the two globals to be consecutive integers, |
| // [0-15] and [16-31]. Using [0-15] as the indices will not sufficiently test |
| // swizzle since the expected result is a no-op, using [16-31] will result in |
| // all 0s. |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| static const int kElems = kSimd128Size / sizeof(uint8_t); |
| uint8_t* dst = r.builder().AddGlobal<uint8_t>(kWasmS128); |
| uint8_t* src0 = r.builder().AddGlobal<uint8_t>(kWasmS128); |
| uint8_t* src1 = r.builder().AddGlobal<uint8_t>(kWasmS128); |
| BUILD( |
| r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(kExprI8x16Swizzle, WASM_GET_GLOBAL(1), |
| WASM_GET_GLOBAL(2))), |
| WASM_ONE); |
| |
| for (SwizzleTestArgs si : swizzle_test_vector) { |
| for (int i = 0; i < kElems; i++) { |
| WriteLittleEndianValue<uint8_t>(&src0[i], si.input[i]); |
| WriteLittleEndianValue<uint8_t>(&src1[i], si.indices[i]); |
| } |
| |
| CHECK_EQ(1, r.Call()); |
| |
| for (int i = 0; i < kElems; i++) { |
| CHECK_EQ(ReadLittleEndianValue<uint8_t>(&dst[i]), si.expected[i]); |
| } |
| } |
| } |
| |
| // Combine 3 shuffles a, b, and c by applying both a and b and then applying c |
| // to those two results. |
| Shuffle Combine(const Shuffle& a, const Shuffle& b, const Shuffle& c) { |
| Shuffle result; |
| for (int i = 0; i < kSimd128Size; ++i) { |
| result[i] = c[i] < kSimd128Size ? a[c[i]] : b[c[i] - kSimd128Size]; |
| } |
| return result; |
| } |
| |
| const Shuffle& GetRandomTestShuffle(v8::base::RandomNumberGenerator* rng) { |
| return test_shuffles[static_cast<ShuffleKey>(rng->NextInt(kNumShuffleKeys))]; |
| } |
| |
| // Test shuffles that are random combinations of 3 test shuffles. Completely |
| // random shuffles almost always generate the slow general shuffle code, so |
| // don't exercise as many code paths. |
| WASM_SIMD_TEST(I8x16ShuffleFuzz) { |
| v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator(); |
| static const int kTests = 100; |
| for (int i = 0; i < kTests; ++i) { |
| auto shuffle = Combine(GetRandomTestShuffle(rng), GetRandomTestShuffle(rng), |
| GetRandomTestShuffle(rng)); |
| RunShuffleOpTest(execution_tier, lower_simd, kExprI8x16Shuffle, shuffle); |
| } |
| } |
| |
| void AppendShuffle(const Shuffle& shuffle, std::vector<byte>* buffer) { |
| byte opcode[] = {WASM_SIMD_OP(kExprI8x16Shuffle)}; |
| for (size_t i = 0; i < arraysize(opcode); ++i) buffer->push_back(opcode[i]); |
| for (size_t i = 0; i < kSimd128Size; ++i) buffer->push_back((shuffle[i])); |
| } |
| |
| void BuildShuffle(const std::vector<Shuffle>& shuffles, |
| std::vector<byte>* buffer) { |
| // Perform the leaf shuffles on globals 0 and 1. |
| size_t row_index = (shuffles.size() - 1) / 2; |
| for (size_t i = row_index; i < shuffles.size(); ++i) { |
| byte operands[] = {WASM_GET_GLOBAL(0), WASM_GET_GLOBAL(1)}; |
| for (size_t j = 0; j < arraysize(operands); ++j) |
| buffer->push_back(operands[j]); |
| AppendShuffle(shuffles[i], buffer); |
| } |
| // Now perform inner shuffles in the correct order on operands on the stack. |
| do { |
| for (size_t i = row_index / 2; i < row_index; ++i) { |
| AppendShuffle(shuffles[i], buffer); |
| } |
| row_index /= 2; |
| } while (row_index != 0); |
| byte epilog[] = {kExprGlobalSet, static_cast<byte>(0), WASM_ONE}; |
| for (size_t j = 0; j < arraysize(epilog); ++j) buffer->push_back(epilog[j]); |
| } |
| |
| void RunWasmCode(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| const std::vector<byte>& code, |
| std::array<int8_t, kSimd128Size>* result) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7]. |
| int8_t* src0 = r.builder().AddGlobal<int8_t>(kWasmS128); |
| int8_t* src1 = r.builder().AddGlobal<int8_t>(kWasmS128); |
| for (int i = 0; i < kSimd128Size; ++i) { |
| WriteLittleEndianValue<int8_t>(&src0[i], i); |
| WriteLittleEndianValue<int8_t>(&src1[i], kSimd128Size + i); |
| } |
| r.Build(code.data(), code.data() + code.size()); |
| CHECK_EQ(1, r.Call()); |
| for (size_t i = 0; i < kSimd128Size; i++) { |
| (*result)[i] = ReadLittleEndianValue<int8_t>(&src0[i]); |
| } |
| } |
| |
| // Test multiple shuffles executed in sequence. |
| WASM_SIMD_TEST(S8x16MultiShuffleFuzz) { |
| // Don't compare interpreter results with itself. |
| if (execution_tier == TestExecutionTier::kInterpreter) { |
| return; |
| } |
| v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator(); |
| static const int kShuffles = 100; |
| for (int i = 0; i < kShuffles; ++i) { |
| // Create an odd number in [3..23] of random test shuffles so we can build |
| // a complete binary tree (stored as a heap) of shuffle operations. The leaf |
| // shuffles operate on the test pattern inputs, while the interior shuffles |
| // operate on the results of the two child shuffles. |
| int num_shuffles = rng->NextInt(10) * 2 + 3; |
| std::vector<Shuffle> shuffles; |
| for (int j = 0; j < num_shuffles; ++j) { |
| shuffles.push_back(GetRandomTestShuffle(rng)); |
| } |
| // Generate the code for the shuffle expression. |
| std::vector<byte> buffer; |
| BuildShuffle(shuffles, &buffer); |
| |
| // Run the code using the interpreter to get the expected result. |
| std::array<int8_t, kSimd128Size> expected; |
| RunWasmCode(TestExecutionTier::kInterpreter, kNoLowerSimd, buffer, |
| &expected); |
| // Run the SIMD or scalar lowered compiled code and compare results. |
| std::array<int8_t, kSimd128Size> result; |
| RunWasmCode(execution_tier, lower_simd, buffer, &result); |
| for (size_t i = 0; i < kSimd128Size; ++i) { |
| CHECK_EQ(result[i], expected[i]); |
| } |
| } |
| } |
| |
| // Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer |
| // result. Use relational ops on numeric vectors to create the boolean vector |
| // test inputs. Test inputs with all true, all false, one true, and one false. |
| #define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes, int_type) \ |
| WASM_SIMD_TEST(ReductionTest##lanes) { \ |
| FLAG_SCOPE(wasm_simd_post_mvp); \ |
| WasmRunner<int32_t> r(execution_tier, lower_simd); \ |
| if (lanes == 2 && lower_simd == kLowerSimd) return; \ |
| byte zero = r.AllocateLocal(kWasmS128); \ |
| byte one_one = r.AllocateLocal(kWasmS128); \ |
| byte reduced = r.AllocateLocal(kWasmI32); \ |
| BUILD(r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(int_type(0))), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Eq, \ |
| WASM_GET_LOCAL(zero), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Ne, \ |
| WASM_GET_LOCAL(zero), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Eq, \ |
| WASM_GET_LOCAL(zero), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Ne, \ |
| WASM_GET_LOCAL(zero), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_SET_LOCAL(one_one, \ |
| WASM_SIMD_I##format##_REPLACE_LANE( \ |
| lanes - 1, WASM_GET_LOCAL(zero), int_type(1))), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Eq, \ |
| WASM_GET_LOCAL(one_one), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AnyTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Ne, \ |
| WASM_GET_LOCAL(one_one), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Eq, \ |
| WASM_GET_LOCAL(one_one), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_SET_LOCAL( \ |
| reduced, WASM_SIMD_UNOP(kExprV##format##AllTrue, \ |
| WASM_SIMD_BINOP(kExprI##format##Ne, \ |
| WASM_GET_LOCAL(one_one), \ |
| WASM_GET_LOCAL(zero)))), \ |
| WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ |
| WASM_RETURN1(WASM_ZERO)), \ |
| WASM_ONE); \ |
| CHECK_EQ(1, r.Call()); \ |
| } |
| |
| WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4, WASM_I32V) |
| WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8, WASM_I32V) |
| WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16, WASM_I32V) |
| |
| WASM_SIMD_TEST(SimdI32x4ExtractWithF32x4) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| BUILD(r, WASM_IF_ELSE_I( |
| WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE( |
| 0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))), |
| WASM_I32_REINTERPRET_F32(WASM_F32(30.5))), |
| WASM_I32V(1), WASM_I32V(0))); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdF32x4ExtractWithI32x4) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| BUILD(r, |
| WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE( |
| 0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))), |
| WASM_F32_REINTERPRET_I32(WASM_I32V(15))), |
| WASM_I32V(1), WASM_I32V(0))); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdF32x4ExtractLane) { |
| WasmRunner<float> r(execution_tier, lower_simd); |
| r.AllocateLocal(kWasmF32); |
| r.AllocateLocal(kWasmS128); |
| BUILD(r, |
| WASM_SET_LOCAL(0, WASM_SIMD_F32x4_EXTRACT_LANE( |
| 0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5)))), |
| WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1))); |
| CHECK_EQ(30.5, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdF32x4AddWithI32x4) { |
| // Choose two floating point values whose sum is normal and exactly |
| // representable as a float. |
| const int kOne = 0x3F800000; |
| const int kTwo = 0x40000000; |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| BUILD(r, |
| WASM_IF_ELSE_I( |
| WASM_F32_EQ( |
| WASM_SIMD_F32x4_EXTRACT_LANE( |
| 0, WASM_SIMD_BINOP(kExprF32x4Add, |
| WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)), |
| WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))), |
| WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)), |
| WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))), |
| WASM_I32V(1), WASM_I32V(0))); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdI32x4AddWithF32x4) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| BUILD(r, |
| WASM_IF_ELSE_I( |
| WASM_I32_EQ( |
| WASM_SIMD_I32x4_EXTRACT_LANE( |
| 0, WASM_SIMD_BINOP(kExprI32x4Add, |
| WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)), |
| WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))), |
| WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)), |
| WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))), |
| WASM_I32V(1), WASM_I32V(0))); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdI32x4Local) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))), |
| |
| WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(0))); |
| CHECK_EQ(31, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdI32x4SplatFromExtract) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| r.AllocateLocal(kWasmI32); |
| r.AllocateLocal(kWasmS128); |
| BUILD(r, |
| WASM_SET_LOCAL(0, WASM_SIMD_I32x4_EXTRACT_LANE( |
| 0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))), |
| WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1))); |
| CHECK_EQ(76, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdI32x4For) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| r.AllocateLocal(kWasmI32); |
| r.AllocateLocal(kWasmS128); |
| BUILD(r, |
| |
| WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))), |
| WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(1), |
| WASM_I32V(53))), |
| WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(1), |
| WASM_I32V(23))), |
| WASM_SET_LOCAL(0, WASM_I32V(0)), |
| WASM_LOOP( |
| WASM_SET_LOCAL( |
| 1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_GET_LOCAL(1), |
| WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))), |
| WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))), |
| WASM_SET_LOCAL(0, WASM_I32V(1)), |
| WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)), |
| WASM_I32V(36)), |
| WASM_SET_LOCAL(0, WASM_I32V(0))), |
| WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)), |
| WASM_I32V(58)), |
| WASM_SET_LOCAL(0, WASM_I32V(0))), |
| WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_LOCAL(1)), |
| WASM_I32V(28)), |
| WASM_SET_LOCAL(0, WASM_I32V(0))), |
| WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)), |
| WASM_I32V(36)), |
| WASM_SET_LOCAL(0, WASM_I32V(0))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| WASM_SIMD_TEST(SimdF32x4For) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| r.AllocateLocal(kWasmI32); |
| r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))), |
| WASM_SET_LOCAL(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(1), |
| WASM_F32(19.5))), |
| WASM_SET_LOCAL(0, WASM_I32V(0)), |
| WASM_LOOP( |
| WASM_SET_LOCAL( |
| 1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_GET_LOCAL(1), |
| WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))), |
| WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))), |
| WASM_SET_LOCAL(0, WASM_I32V(1)), |
| WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)), |
| WASM_F32(27.25)), |
| WASM_SET_LOCAL(0, WASM_I32V(0))), |
| WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)), |
| WASM_F32(25.5)), |
| WASM_SET_LOCAL(0, WASM_I32V(0))), |
| WASM_GET_LOCAL(0)); |
| CHECK_EQ(1, r.Call()); |
| } |
| |
| template <typename T, int numLanes = 4> |
| void SetVectorByLanes(T* v, const std::array<T, numLanes>& arr) { |
| for (int lane = 0; lane < numLanes; lane++) { |
| WriteLittleEndianValue<T>(&v[lane], arr[lane]); |
| } |
| } |
| |
| template <typename T> |
| const T GetScalar(T* v, int lane) { |
| constexpr int kElems = kSimd128Size / sizeof(T); |
| const int index = lane; |
| USE(kElems); |
| DCHECK(index >= 0 && index < kElems); |
| return ReadLittleEndianValue<T>(&v[index]); |
| } |
| |
| WASM_SIMD_TEST(SimdI32x4GetGlobal) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Pad the globals with a few unused slots to get a non-zero offset. |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128); |
| SetVectorByLanes(global, {{0, 1, 2, 3}}); |
| r.AllocateLocal(kWasmI32); |
| BUILD( |
| r, WASM_SET_LOCAL(1, WASM_I32V(1)), |
| WASM_IF(WASM_I32_NE(WASM_I32V(0), |
| WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(4))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_IF(WASM_I32_NE(WASM_I32V(1), |
| WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(4))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_IF(WASM_I32_NE(WASM_I32V(2), |
| WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(4))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_IF(WASM_I32_NE(WASM_I32V(3), |
| WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(4))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_GET_LOCAL(1)); |
| CHECK_EQ(1, r.Call(0)); |
| } |
| |
| WASM_SIMD_TEST(SimdI32x4SetGlobal) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| // Pad the globals with a few unused slots to get a non-zero offset. |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| r.builder().AddGlobal<int32_t>(kWasmI32); // purposefully unused |
| int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128); |
| BUILD(r, WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))), |
| WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(4), |
| WASM_I32V(34))), |
| WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(4), |
| WASM_I32V(45))), |
| WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(4), |
| WASM_I32V(56))), |
| WASM_I32V(1)); |
| CHECK_EQ(1, r.Call(0)); |
| CHECK_EQ(GetScalar(global, 0), 23); |
| CHECK_EQ(GetScalar(global, 1), 34); |
| CHECK_EQ(GetScalar(global, 2), 45); |
| CHECK_EQ(GetScalar(global, 3), 56); |
| } |
| |
| WASM_SIMD_TEST(SimdF32x4GetGlobal) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| float* global = r.builder().AddGlobal<float>(kWasmS128); |
| SetVectorByLanes<float>(global, {{0.0, 1.5, 2.25, 3.5}}); |
| r.AllocateLocal(kWasmI32); |
| BUILD( |
| r, WASM_SET_LOCAL(1, WASM_I32V(1)), |
| WASM_IF(WASM_F32_NE(WASM_F32(0.0), |
| WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_IF(WASM_F32_NE(WASM_F32(1.5), |
| WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_IF(WASM_F32_NE(WASM_F32(2.25), |
| WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_IF(WASM_F32_NE(WASM_F32(3.5), |
| WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))), |
| WASM_SET_LOCAL(1, WASM_I32V(0))), |
| WASM_GET_LOCAL(1)); |
| CHECK_EQ(1, r.Call(0)); |
| } |
| |
| WASM_SIMD_TEST(SimdF32x4SetGlobal) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| float* global = r.builder().AddGlobal<float>(kWasmS128); |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0), |
| WASM_F32(45.5))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0), |
| WASM_F32(32.25))), |
| WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0), |
| WASM_F32(65.0))), |
| WASM_I32V(1)); |
| CHECK_EQ(1, r.Call(0)); |
| CHECK_EQ(GetScalar(global, 0), 13.5f); |
| CHECK_EQ(GetScalar(global, 1), 45.5f); |
| CHECK_EQ(GetScalar(global, 2), 32.25f); |
| CHECK_EQ(GetScalar(global, 3), 65.0f); |
| } |
| |
| WASM_SIMD_TEST(SimdLoadStoreLoad) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| // Load memory, store it, then reload it and extract the first lane. Use a |
| // non-zero offset into the memory of 1 lane (4 bytes) to test indexing. |
| BUILD(r, WASM_SIMD_STORE_MEM(WASM_I32V(8), WASM_SIMD_LOAD_MEM(WASM_I32V(4))), |
| WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_I32V(8)))); |
| |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i; |
| r.builder().WriteMemory(&memory[1], expected); |
| CHECK_EQ(expected, r.Call()); |
| } |
| } |
| |
| WASM_SIMD_TEST(SimdLoadStoreLoadMemargOffset) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| int32_t* memory = |
| r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t)); |
| constexpr byte offset_1 = 4; |
| constexpr byte offset_2 = 8; |
| // Load from memory at offset_1, store to offset_2, load from offset_2, and |
| // extract first lane. We use non-zero memarg offsets to test offset decoding. |
| BUILD( |
| r, |
| WASM_SIMD_STORE_MEM_OFFSET( |
| offset_2, WASM_ZERO, WASM_SIMD_LOAD_MEM_OFFSET(offset_1, WASM_ZERO)), |
| WASM_SIMD_I32x4_EXTRACT_LANE( |
| 0, WASM_SIMD_LOAD_MEM_OFFSET(offset_2, WASM_ZERO))); |
| |
| FOR_INT32_INPUTS(i) { |
| int32_t expected = i; |
| // Index 1 of memory (int32_t) will be bytes 4 to 8. |
| r.builder().WriteMemory(&memory[1], expected); |
| CHECK_EQ(expected, r.Call()); |
| } |
| } |
| |
| // Test a multi-byte opcode with offset values that encode into valid opcodes. |
| // This is to exercise decoding logic and make sure we get the lengths right. |
| WASM_SIMD_TEST(S128Load8SplatOffset) { |
| // This offset is [82, 22] when encoded, which contains valid opcodes. |
| constexpr int offset = 4354; |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| int8_t* memory = r.builder().AddMemoryElems<int8_t>(kWasmPageSize); |
| int8_t* global = r.builder().AddGlobal<int8_t>(kWasmS128); |
| BUILD(r, |
| WASM_SET_GLOBAL( |
| 0, WASM_SIMD_LOAD_OP_OFFSET(kExprS128Load8Splat, WASM_I32V(0), |
| U32V_2(offset))), |
| WASM_ONE); |
| |
| // We don't really care about all valid values, so just test for 1. |
| int8_t x = 7; |
| r.builder().WriteMemory(&memory[offset], x); |
| r.Call(); |
| for (int i = 0; i < 16; i++) { |
| CHECK_EQ(x, ReadLittleEndianValue<int8_t>(&global[i])); |
| } |
| } |
| |
| template <typename T> |
| void RunLoadSplatTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode op) { |
| constexpr int lanes = 16 / sizeof(T); |
| constexpr int mem_index = 16; // Load from mem index 16 (bytes). |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| T* memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T)); |
| T* global = r.builder().AddGlobal<T>(kWasmS128); |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))), |
| WASM_ONE); |
| |
| for (T x : compiler::ValueHelper::GetVector<T>()) { |
| // 16-th byte in memory is lanes-th element (size T) of memory. |
| r.builder().WriteMemory(&memory[lanes], x); |
| r.Call(); |
| for (int i = 0; i < lanes; i++) { |
| CHECK_EQ(x, ReadLittleEndianValue<T>(&global[i])); |
| } |
| } |
| |
| // Test for OOB. |
| { |
| WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd); |
| r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T)); |
| r.builder().AddGlobal<T>(kWasmS128); |
| |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_GET_LOCAL(0))), |
| WASM_ONE); |
| |
| // Load splats load sizeof(T) bytes. |
| for (uint32_t offset = kWasmPageSize - (sizeof(T) - 1); |
| offset < kWasmPageSize; ++offset) { |
| CHECK_TRAP(r.Call(offset)); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(S128Load8Splat) { |
| RunLoadSplatTest<int8_t>(execution_tier, lower_simd, kExprS128Load8Splat); |
| } |
| |
| WASM_SIMD_TEST(S128Load16Splat) { |
| RunLoadSplatTest<int16_t>(execution_tier, lower_simd, kExprS128Load16Splat); |
| } |
| |
| WASM_SIMD_TEST(S128Load32Splat) { |
| RunLoadSplatTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Splat); |
| } |
| |
| WASM_SIMD_TEST(S128Load64Splat) { |
| RunLoadSplatTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Splat); |
| } |
| |
| template <typename S, typename T> |
| void RunLoadExtendTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode op) { |
| static_assert(sizeof(S) < sizeof(T), |
| "load extend should go from smaller to larger type"); |
| constexpr int lanes_s = 16 / sizeof(S); |
| constexpr int lanes_t = 16 / sizeof(T); |
| constexpr int mem_index = 16; // Load from mem index 16 (bytes). |
| // Load extends always load 64 bits, so alignment values can be from 0 to 3. |
| for (byte alignment = 0; alignment <= 3; alignment++) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| S* memory = r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S)); |
| T* global = r.builder().AddGlobal<T>(kWasmS128); |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP_ALIGNMENT( |
| op, WASM_I32V(mem_index), alignment)), |
| WASM_ONE); |
| |
| for (S x : compiler::ValueHelper::GetVector<S>()) { |
| for (int i = 0; i < lanes_s; i++) { |
| // 16-th byte in memory is lanes-th element (size T) of memory. |
| r.builder().WriteMemory(&memory[lanes_s + i], x); |
| } |
| r.Call(); |
| for (int i = 0; i < lanes_t; i++) { |
| CHECK_EQ(static_cast<T>(x), ReadLittleEndianValue<T>(&global[i])); |
| } |
| } |
| } |
| |
| // Test for offset. |
| { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| S* memory = r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S)); |
| T* global = r.builder().AddGlobal<T>(kWasmS128); |
| constexpr byte offset = sizeof(S); |
| BUILD(r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, offset)), |
| WASM_ONE); |
| |
| // Let max_s be the max_s value for type S, we set up the memory as such: |
| // memory = [max_s, max_s - 1, ... max_s - (lane_s - 1)]. |
| constexpr S max_s = std::numeric_limits<S>::max(); |
| for (int i = 0; i < lanes_s; i++) { |
| // Integer promotion due to -, static_cast to narrow. |
| r.builder().WriteMemory(&memory[i], static_cast<S>(max_s - i)); |
| } |
| |
| r.Call(); |
| |
| // Loads will be offset by sizeof(S), so will always start from (max_s - 1). |
| for (int i = 0; i < lanes_t; i++) { |
| // Integer promotion due to -, static_cast to narrow. |
| T expected = static_cast<T>(max_s - i - 1); |
| CHECK_EQ(expected, ReadLittleEndianValue<T>(&global[i])); |
| } |
| } |
| |
| // Test for OOB. |
| { |
| WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd); |
| r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S)); |
| r.builder().AddGlobal<T>(kWasmS128); |
| |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_GET_LOCAL(0))), |
| WASM_ONE); |
| |
| // Load extends load 8 bytes, so should trap from -7. |
| for (uint32_t offset = kWasmPageSize - 7; offset < kWasmPageSize; |
| ++offset) { |
| CHECK_TRAP(r.Call(offset)); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(S128Load8x8U) { |
| RunLoadExtendTest<uint8_t, uint16_t>(execution_tier, lower_simd, |
| kExprS128Load8x8U); |
| } |
| |
| WASM_SIMD_TEST(S128Load8x8S) { |
| RunLoadExtendTest<int8_t, int16_t>(execution_tier, lower_simd, |
| kExprS128Load8x8S); |
| } |
| WASM_SIMD_TEST(S128Load16x4U) { |
| RunLoadExtendTest<uint16_t, uint32_t>(execution_tier, lower_simd, |
| kExprS128Load16x4U); |
| } |
| |
| WASM_SIMD_TEST(S128Load16x4S) { |
| RunLoadExtendTest<int16_t, int32_t>(execution_tier, lower_simd, |
| kExprS128Load16x4S); |
| } |
| |
| WASM_SIMD_TEST(S128Load32x2U) { |
| RunLoadExtendTest<uint32_t, uint64_t>(execution_tier, lower_simd, |
| kExprS128Load32x2U); |
| } |
| |
| WASM_SIMD_TEST(S128Load32x2S) { |
| RunLoadExtendTest<int32_t, int64_t>(execution_tier, lower_simd, |
| kExprS128Load32x2S); |
| } |
| |
| template <typename S> |
| void RunLoadZeroTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode op) { |
| constexpr int lanes_s = kSimd128Size / sizeof(S); |
| constexpr int mem_index = 16; // Load from mem index 16 (bytes). |
| constexpr S sentinel = S{-1}; |
| S* memory; |
| S* global; |
| |
| auto initialize_builder = [=](WasmRunner<int32_t>* r) -> std::tuple<S*, S*> { |
| S* memory = r->builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S)); |
| S* global = r->builder().AddGlobal<S>(kWasmS128); |
| r->builder().RandomizeMemory(); |
| r->builder().WriteMemory(&memory[lanes_s], sentinel); |
| return std::make_tuple(memory, global); |
| }; |
| |
| // Check all supported alignments. |
| constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(S)); |
| for (byte alignment = 0; alignment <= max_alignment; alignment++) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| std::tie(memory, global) = initialize_builder(&r); |
| |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_I32V(mem_index))), |
| WASM_ONE); |
| r.Call(); |
| |
| // Only first lane is set to sentinel. |
| CHECK_EQ(sentinel, ReadLittleEndianValue<S>(&global[0])); |
| // The other lanes are zero. |
| for (int i = 1; i < lanes_s; i++) { |
| CHECK_EQ(S{0}, ReadLittleEndianValue<S>(&global[i])); |
| } |
| } |
| |
| { |
| // Use memarg to specific offset. |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| std::tie(memory, global) = initialize_builder(&r); |
| |
| BUILD( |
| r, |
| WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP_OFFSET(op, WASM_ZERO, mem_index)), |
| WASM_ONE); |
| r.Call(); |
| |
| // Only first lane is set to sentinel. |
| CHECK_EQ(sentinel, ReadLittleEndianValue<S>(&global[0])); |
| // The other lanes are zero. |
| for (int i = 1; i < lanes_s; i++) { |
| CHECK_EQ(S{0}, ReadLittleEndianValue<S>(&global[i])); |
| } |
| } |
| |
| // Test for OOB. |
| { |
| WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd); |
| r.builder().AddMemoryElems<S>(kWasmPageSize / sizeof(S)); |
| r.builder().AddGlobal<S>(kWasmS128); |
| |
| BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_LOAD_OP(op, WASM_GET_LOCAL(0))), |
| WASM_ONE); |
| |
| // Load extends load sizeof(S) bytes. |
| for (uint32_t offset = kWasmPageSize - (sizeof(S) - 1); |
| offset < kWasmPageSize; ++offset) { |
| CHECK_TRAP(r.Call(offset)); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST(S128Load32Zero) { |
| RunLoadZeroTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Zero); |
| } |
| |
| WASM_SIMD_TEST(S128Load64Zero) { |
| RunLoadZeroTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Zero); |
| } |
| |
| #if V8_TARGET_ARCH_X64 |
| // TODO(v8:10975): Prototyping load lane and store lane. |
| template <typename T> |
| void RunLoadLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode load_op, WasmOpcode splat_op) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| if (execution_tier == TestExecutionTier::kLiftoff) { |
| // Not yet implemented. |
| return; |
| } |
| |
| WasmOpcode const_op = |
| splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const; |
| |
| constexpr int lanes_s = kSimd128Size / sizeof(T); |
| constexpr int mem_index = 16; // Load from mem index 16 (bytes). |
| constexpr int splat_value = 33; |
| T sentinel = T{-1}; |
| |
| T* memory; |
| T* global; |
| |
| auto build_fn = [=, &memory, &global](WasmRunner<int32_t>& r, int mem_index, |
| int lane, int alignment, int offset) { |
| memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T)); |
| global = r.builder().AddGlobal<T>(kWasmS128); |
| r.builder().WriteMemory(&memory[lanes_s], sentinel); |
| // Splat splat_value, then only load and replace a single lane with the |
| // sentinel value. |
| BUILD(r, WASM_I32V(mem_index), const_op, splat_value, |
| WASM_SIMD_OP(splat_op), WASM_SIMD_OP(load_op), alignment, offset, |
| lane, kExprGlobalSet, 0, WASM_ONE); |
| }; |
| |
| auto check_results = [=](T* global, int sentinel_lane = 0) { |
| // Only one lane is loaded, the rest of the lanes are unchanged. |
| for (int i = 0; i < lanes_s; i++) { |
| T expected = i == sentinel_lane ? sentinel : static_cast<T>(splat_value); |
| CHECK_EQ(expected, ReadLittleEndianValue<T>(&global[i])); |
| } |
| }; |
| |
| for (int lane_index = 0; lane_index < lanes_s; ++lane_index) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| build_fn(r, mem_index, lane_index, /*alignment=*/0, /*offset=*/0); |
| r.Call(); |
| check_results(global, lane_index); |
| } |
| |
| // Check all possible alignments. |
| constexpr int max_alignment = base::bits::CountTrailingZeros(sizeof(T)); |
| for (byte alignment = 0; alignment <= max_alignment; ++alignment) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| build_fn(r, mem_index, /*lane=*/0, alignment, /*offset=*/0); |
| r.Call(); |
| check_results(global); |
| } |
| |
| { |
| // Use memarg to specify offset. |
| int lane_index = 0; |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| build_fn(r, /*mem_index=*/0, /*lane=*/0, /*alignment=*/0, |
| /*offset=*/mem_index); |
| r.Call(); |
| check_results(global, lane_index); |
| } |
| |
| // Test for OOB. |
| { |
| WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd); |
| r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T)); |
| r.builder().AddGlobal<T>(kWasmS128); |
| |
| BUILD(r, WASM_GET_LOCAL(0), const_op, splat_value, WASM_SIMD_OP(splat_op), |
| WASM_SIMD_OP(load_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, kExprGlobalSet, |
| 0, WASM_ONE); |
| |
| // Load lane load sizeof(T) bytes. |
| for (uint32_t index = kWasmPageSize - (sizeof(T) - 1); |
| index < kWasmPageSize; ++index) { |
| CHECK_TRAP(r.Call(index)); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Load8Lane) { |
| RunLoadLaneTest<int8_t>(execution_tier, lower_simd, kExprS128Load8Lane, |
| kExprI8x16Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Load16Lane) { |
| RunLoadLaneTest<int16_t>(execution_tier, lower_simd, kExprS128Load16Lane, |
| kExprI16x8Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Load32Lane) { |
| RunLoadLaneTest<int32_t>(execution_tier, lower_simd, kExprS128Load32Lane, |
| kExprI32x4Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Load64Lane) { |
| RunLoadLaneTest<int64_t>(execution_tier, lower_simd, kExprS128Load64Lane, |
| kExprI64x2Splat); |
| } |
| |
| template <typename T> |
| void RunStoreLaneTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| WasmOpcode store_op, WasmOpcode splat_op) { |
| FLAG_SCOPE(wasm_simd_post_mvp); |
| if (execution_tier == TestExecutionTier::kLiftoff) { |
| // Not yet implemented. |
| return; |
| } |
| |
| constexpr int lanes = kSimd128Size / sizeof(T); |
| constexpr int mem_index = 16; // Store from mem index 16 (bytes). |
| constexpr int splat_value = 33; |
| WasmOpcode const_op = |
| splat_op == kExprI64x2Splat ? kExprI64Const : kExprI32Const; |
| |
| for (int lane_index = 0; lane_index < lanes; lane_index++) { |
| WasmRunner<int32_t> r(execution_tier, lower_simd); |
| T* memory = r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T)); |
| |
| // Splat splat_value, then only Store and replace a single lane with the |
| BUILD(r, WASM_I32V(mem_index), const_op, splat_value, |
| WASM_SIMD_OP(splat_op), WASM_SIMD_OP(store_op), ZERO_ALIGNMENT, |
| ZERO_OFFSET, lane_index, WASM_ONE); |
| |
| r.builder().BlankMemory(); |
| r.Call(); |
| |
| for (int i = 0; i < lanes; i++) { |
| CHECK_EQ(0, r.builder().ReadMemory(&memory[i])); |
| } |
| |
| CHECK_EQ(splat_value, r.builder().ReadMemory(&memory[lanes])); |
| |
| for (int i = lanes + 1; i < lanes * 2; i++) { |
| CHECK_EQ(0, r.builder().ReadMemory(&memory[i])); |
| } |
| } |
| |
| // OOB stores |
| { |
| WasmRunner<int32_t, uint32_t> r(execution_tier, lower_simd); |
| r.builder().AddMemoryElems<T>(kWasmPageSize / sizeof(T)); |
| |
| BUILD(r, WASM_GET_LOCAL(0), const_op, splat_value, WASM_SIMD_OP(splat_op), |
| WASM_SIMD_OP(store_op), ZERO_ALIGNMENT, ZERO_OFFSET, 0, WASM_ONE); |
| |
| // StoreLane stores sizeof(T) bytes. |
| for (uint32_t index = kWasmPageSize - (sizeof(T) - 1); |
| index < kWasmPageSize; ++index) { |
| CHECK_TRAP(r.Call(index)); |
| } |
| } |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Store8Lane) { |
| RunStoreLaneTest<int8_t>(execution_tier, lower_simd, kExprS128Store8Lane, |
| kExprI8x16Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Store16Lane) { |
| RunStoreLaneTest<int16_t>(execution_tier, lower_simd, kExprS128Store16Lane, |
| kExprI16x8Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Store32Lane) { |
| RunStoreLaneTest<int32_t>(execution_tier, lower_simd, kExprS128Store32Lane, |
| kExprI32x4Splat); |
| } |
| |
| WASM_SIMD_TEST_NO_LOWERING(S128Store64Lane) { |
| RunStoreLaneTest<int64_t>(execution_tier, lower_simd, kExprS128Store64Lane, |
| kExprI64x2Splat); |
| } |
| |
| #endif // V8_TARGET_ARCH_X64 |
| |
| #define WASM_SIMD_ANYTRUE_TEST(format, lanes, max, param_type) \ |
| WASM_SIMD_TEST(S##format##AnyTrue) { \ |
| FLAG_SCOPE(wasm_simd_post_mvp); \ |
| WasmRunner<int32_t, param_type> r(execution_tier, lower_simd); \ |
| if (lanes == 2 && lower_simd == kLowerSimd) return; \ |
| byte simd = r.AllocateLocal(kWasmS128); \ |
| BUILD( \ |
| r, \ |
| WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \ |
| WASM_SIMD_UNOP(kExprV##format##AnyTrue, WASM_GET_LOCAL(simd))); \ |
| CHECK_EQ(1, r.Call(max)); \ |
| CHECK_EQ(1, r.Call(5)); \ |
| CHECK_EQ(0, r.Call(0)); \ |
| } |
| WASM_SIMD_ANYTRUE_TEST(32x4, 4, 0xffffffff, int32_t) |
| WASM_SIMD_ANYTRUE_TEST(16x8, 8, 0xffff, int32_t) |
| WASM_SIMD_ANYTRUE_TEST(8x16, 16, 0xff, int32_t) |
| |
| // Special any true test cases that splats a -0.0 double into a i64x2. |
| // This is specifically to ensure that our implementation correct handles that |
| // 0.0 and -0.0 will be different in an anytrue (IEEE753 says they are equals). |
| WASM_SIMD_TEST(V32x4AnytrueWithNegativeZero) { |
| WasmRunner<int32_t, int64_t> r(execution_tier, lower_simd); |
| byte simd = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I64x2_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SIMD_UNOP(kExprV32x4AnyTrue, WASM_GET_LOCAL(simd))); |
| CHECK_EQ(1, r.Call(0x8000000000000000)); |
| CHECK_EQ(0, r.Call(0x0000000000000000)); |
| } |
| |
| #define WASM_SIMD_ALLTRUE_TEST(format, lanes, max, param_type) \ |
| WASM_SIMD_TEST(V##format##AllTrue) { \ |
| FLAG_SCOPE(wasm_simd_post_mvp); \ |
| WasmRunner<int32_t, param_type> r(execution_tier, lower_simd); \ |
| if (lanes == 2 && lower_simd == kLowerSimd) return; \ |
| byte simd = r.AllocateLocal(kWasmS128); \ |
| BUILD( \ |
| r, \ |
| WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \ |
| WASM_SIMD_UNOP(kExprV##format##AllTrue, WASM_GET_LOCAL(simd))); \ |
| CHECK_EQ(1, r.Call(max)); \ |
| CHECK_EQ(1, r.Call(0x1)); \ |
| CHECK_EQ(0, r.Call(0)); \ |
| } |
| WASM_SIMD_ALLTRUE_TEST(32x4, 4, 0xffffffff, int32_t) |
| WASM_SIMD_ALLTRUE_TEST(16x8, 8, 0xffff, int32_t) |
| WASM_SIMD_ALLTRUE_TEST(8x16, 16, 0xff, int32_t) |
| |
| WASM_SIMD_TEST(BitSelect) { |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| byte simd = r.AllocateLocal(kWasmS128); |
| BUILD(r, |
| WASM_SET_LOCAL( |
| simd, |
| WASM_SIMD_SELECT(32x4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(0x01020304)), |
| WASM_SIMD_I32x4_SPLAT(WASM_I32V(0)), |
| WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0)))), |
| WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(simd))); |
| CHECK_EQ(0x01020304, r.Call(0xFFFFFFFF)); |
| } |
| |
| void RunSimdConstTest(TestExecutionTier execution_tier, LowerSimd lower_simd, |
| const std::array<uint8_t, kSimd128Size>& expected) { |
| WasmRunner<uint32_t> r(execution_tier, lower_simd); |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| uint8_t* src0 = r.builder().AddGlobal<uint8_t>(kWasmS128); |
| BUILD(r, WASM_SET_GLOBAL(temp1, WASM_SIMD_CONSTANT(expected)), WASM_ONE); |
| CHECK_EQ(1, r.Call()); |
| for (size_t i = 0; i < expected.size(); i++) { |
| CHECK_EQ(ReadLittleEndianValue<uint8_t>(&src0[i]), expected[i]); |
| } |
| } |
| |
| WASM_SIMD_TEST(S128Const) { |
| std::array<uint8_t, kSimd128Size> expected; |
| // Test for generic constant |
| for (int i = 0; i < kSimd128Size; i++) { |
| expected[i] = i; |
| } |
| RunSimdConstTest(execution_tier, lower_simd, expected); |
| |
| // Keep the first 4 lanes as 0, set the remaining ones. |
| for (int i = 0; i < 4; i++) { |
| expected[i] = 0; |
| } |
| for (int i = 4; i < kSimd128Size; i++) { |
| expected[i] = i; |
| } |
| RunSimdConstTest(execution_tier, lower_simd, expected); |
| |
| // Check sign extension logic used to pack int32s into int64. |
| expected = {0}; |
| // Set the top bit of lane 3 (top bit of first int32), the rest can be 0. |
| expected[3] = 0x80; |
| RunSimdConstTest(execution_tier, lower_simd, expected); |
| } |
| |
| WASM_SIMD_TEST(S128ConstAllZero) { |
| std::array<uint8_t, kSimd128Size> expected = {0}; |
| RunSimdConstTest(execution_tier, lower_simd, expected); |
| } |
| |
| WASM_SIMD_TEST(S128ConstAllOnes) { |
| std::array<uint8_t, kSimd128Size> expected; |
| // Test for generic constant |
| for (int i = 0; i < kSimd128Size; i++) { |
| expected[i] = 0xff; |
| } |
| RunSimdConstTest(execution_tier, lower_simd, expected); |
| } |
| |
| void RunI8x16MixedRelationalOpTest(TestExecutionTier execution_tier, |
| LowerSimd lower_simd, WasmOpcode opcode, |
| Int8BinOp expected_op) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd); |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| byte temp3 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_LOCAL(temp3, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_SIMD_I8x16_EXTRACT_LANE(0, WASM_GET_LOCAL(temp3))); |
| |
| CHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7fff)), |
| r.Call(0xff, 0x7fff)); |
| CHECK_EQ(expected_op(0xfe, static_cast<uint8_t>(0x7fff)), |
| r.Call(0xfe, 0x7fff)); |
| CHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7ffe)), |
| r.Call(0xff, 0x7ffe)); |
| } |
| |
| WASM_SIMD_TEST(I8x16LeUMixed) { |
| RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LeU, |
| UnsignedLessEqual); |
| } |
| WASM_SIMD_TEST(I8x16LtUMixed) { |
| RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LtU, |
| UnsignedLess); |
| } |
| WASM_SIMD_TEST(I8x16GeUMixed) { |
| RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GeU, |
| UnsignedGreaterEqual); |
| } |
| WASM_SIMD_TEST(I8x16GtUMixed) { |
| RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GtU, |
| UnsignedGreater); |
| } |
| |
| void RunI16x8MixedRelationalOpTest(TestExecutionTier execution_tier, |
| LowerSimd lower_simd, WasmOpcode opcode, |
| Int16BinOp expected_op) { |
| WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd); |
| byte value1 = 0, value2 = 1; |
| byte temp1 = r.AllocateLocal(kWasmS128); |
| byte temp2 = r.AllocateLocal(kWasmS128); |
| byte temp3 = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))), |
| WASM_SET_LOCAL(temp2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value2))), |
| WASM_SET_LOCAL(temp3, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1), |
| WASM_GET_LOCAL(temp2))), |
| WASM_SIMD_I16x8_EXTRACT_LANE(0, WASM_GET_LOCAL(temp3))); |
| |
| CHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7fffffff)), |
| r.Call(0xffff, 0x7fffffff)); |
| CHECK_EQ(expected_op(0xfeff, static_cast<uint16_t>(0x7fffffff)), |
| r.Call(0xfeff, 0x7fffffff)); |
| CHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7ffffeff)), |
| r.Call(0xffff, 0x7ffffeff)); |
| } |
| |
| WASM_SIMD_TEST(I16x8LeUMixed) { |
| RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LeU, |
| UnsignedLessEqual); |
| } |
| WASM_SIMD_TEST(I16x8LtUMixed) { |
| RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LtU, |
| UnsignedLess); |
| } |
| WASM_SIMD_TEST(I16x8GeUMixed) { |
| RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GeU, |
| UnsignedGreaterEqual); |
| } |
| WASM_SIMD_TEST(I16x8GtUMixed) { |
| RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GtU, |
| UnsignedGreater); |
| } |
| |
| WASM_SIMD_TEST(I16x8ExtractLaneU_I8x16Splat) { |
| // Test that we are correctly signed/unsigned extending when extracting. |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); |
| byte simd_val = r.AllocateLocal(kWasmS128); |
| BUILD(r, WASM_SET_LOCAL(simd_val, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(0))), |
| WASM_SIMD_I16x8_EXTRACT_LANE_U(0, WASM_GET_LOCAL(simd_val))); |
| CHECK_EQ(0xfafa, r.Call(0xfa)); |
| } |
| |
| #define WASM_EXTRACT_I16x8_TEST(Sign, Type) \ |
| WASM_SIMD_TEST(I16X8ExtractLane##Sign) { \ |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); \ |
| byte int_val = r.AllocateLocal(kWasmI32); \ |
| byte simd_val = r.AllocateLocal(kWasmS128); \ |
| BUILD(r, \ |
| WASM_SET_LOCAL(simd_val, \ |
| WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(int_val))), \ |
| WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 0), \ |
| WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 2), \ |
| WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 4), \ |
| WASM_SIMD_CHECK_LANE_U(I16x8, simd_val, I32, int_val, 6), WASM_ONE); \ |
| FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \ |
| } |
| WASM_EXTRACT_I16x8_TEST(S, UINT16) WASM_EXTRACT_I16x8_TEST(I, INT16) |
| #undef WASM_EXTRACT_I16x8_TEST |
| |
| #define WASM_EXTRACT_I8x16_TEST(Sign, Type) \ |
| WASM_SIMD_TEST(I8x16ExtractLane##Sign) { \ |
| WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd); \ |
| byte int_val = r.AllocateLocal(kWasmI32); \ |
| byte simd_val = r.AllocateLocal(kWasmS128); \ |
| BUILD(r, \ |
| WASM_SET_LOCAL(simd_val, \ |
| WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(int_val))), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 1), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 3), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 5), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 7), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 9), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 10), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 11), \ |
| WASM_SIMD_CHECK_LANE_U(I8x16, simd_val, I32, int_val, 13), \ |
| WASM_ONE); \ |
| FOR_##Type##_INPUTS(x) { CHECK_EQ(1, r.Call(x)); } \ |
| } |
| WASM_EXTRACT_I8x16_TEST(S, UINT8) WASM_EXTRACT_I8x16_TEST(I, INT8) |
| #undef WASM_EXTRACT_I8x16_TEST |
| |
| #undef WASM_SIMD_TEST |
| #undef WASM_SIMD_CHECK_LANE_S |
| #undef WASM_SIMD_CHECK_LANE_U |
| #undef TO_BYTE |
| #undef WASM_SIMD_OP |
| #undef WASM_SIMD_SPLAT |
| #undef WASM_SIMD_UNOP |
| #undef WASM_SIMD_BINOP |
| #undef WASM_SIMD_SHIFT_OP |
| #undef WASM_SIMD_CONCAT_OP |
| #undef WASM_SIMD_SELECT |
| #undef WASM_SIMD_F64x2_SPLAT |
| #undef WASM_SIMD_F64x2_EXTRACT_LANE |
| #undef WASM_SIMD_F64x2_REPLACE_LANE |
| #undef WASM_SIMD_F32x4_SPLAT |
| #undef WASM_SIMD_F32x4_EXTRACT_LANE |
| #undef WASM_SIMD_F32x4_REPLACE_LANE |
| #undef WASM_SIMD_I64x2_SPLAT |
| #undef WASM_SIMD_I64x2_EXTRACT_LANE |
| #undef WASM_SIMD_I64x2_REPLACE_LANE |
| #undef WASM_SIMD_I32x4_SPLAT |
| #undef WASM_SIMD_I32x4_EXTRACT_LANE |
| #undef WASM_SIMD_I32x4_REPLACE_LANE |
| #undef WASM_SIMD_I16x8_SPLAT |
| #undef WASM_SIMD_I16x8_EXTRACT_LANE |
| #undef WASM_SIMD_I16x8_EXTRACT_LANE_U |
| #undef WASM_SIMD_I16x8_REPLACE_LANE |
| #undef WASM_SIMD_I8x16_SPLAT |
| #undef WASM_SIMD_I8x16_EXTRACT_LANE |
| #undef WASM_SIMD_I8x16_EXTRACT_LANE_U |
| #undef WASM_SIMD_I8x16_REPLACE_LANE |
| #undef WASM_SIMD_I8x16_SHUFFLE_OP |
| #undef WASM_SIMD_LOAD_MEM |
| #undef WASM_SIMD_LOAD_MEM_OFFSET |
| #undef WASM_SIMD_STORE_MEM |
| #undef WASM_SIMD_STORE_MEM_OFFSET |
| #undef WASM_SIMD_SELECT_TEST |
| #undef WASM_SIMD_NON_CANONICAL_SELECT_TEST |
| #undef WASM_SIMD_BOOL_REDUCTION_TEST |
| #undef WASM_SIMD_TEST_NO_LOWERING |
| #undef WASM_SIMD_ANYTRUE_TEST |
| #undef WASM_SIMD_ALLTRUE_TEST |
| #undef WASM_SIMD_F64x2_QFMA |
| #undef WASM_SIMD_F64x2_QFMS |
| #undef WASM_SIMD_F32x4_QFMA |
| #undef WASM_SIMD_F32x4_QFMS |
| #undef WASM_SIMD_LOAD_OP |
| #undef WASM_SIMD_LOAD_OP_OFFSET |
| #undef WASM_SIMD_LOAD_OP_ALIGNMENT |
| |
| } // namespace test_run_wasm_simd |
| } // namespace wasm |
| } // namespace internal |
| } // namespace v8 |